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ABSTRACT

Semi-Parallel Architectures

For Real-Time LDPC Coding

by

Marjan Karkooti

Error correcting codes (ECC) enable the communication systems to have a low-

power, reliable transmission over noisy channels. Low Density Parity Check codes

are the best known ECC code that can achieve data rates very close to Shannon

limit. This thesis presents a semi-parallel architecture for decoding Low Density

Parity Check (LDPC) codes. A modified version of Min-Sum algorithm has been

used for the decoder, which has the advantage of simpler computations compared to

Sum-Product algorithm without any loss in performance. To balance the area-time

trade-off of the design, a special structure is proposed for the parity-check matrix. An

efficient semi-parallel decoder for a family of (3, 6) LDPC codes has been implemented

in VHDL for programmable hardware. Simulation results show that our proposed

decoder for a block length of 1536 bits can achieve data rates up to 127 Mbps. The

design is scalable and reconfigurable for different block sizes.
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Chapter 1

Introduction

1.1 Overview

In order to have a reliable communication with low power consumption over noisy

channels, error correcting codes should be used. Error correcting codes insert redun-

dancy into the transmitted data stream so that the receiver can detect and possibly

correct errors that occur during transmission. Several types of codes exist. Each of

which are suitable for some special applications. The encoding/decoding algorithm

for each code should be modified to fit into the space of practical hardware implemen-

tation. Researchers are searching for the best codes suitable for wireless applications.

There exist a large design space with trade-offs between area of the chip, speed of

decoding and power consumption. In this thesis we will address this trade-offs for

a particular type of error correcting codes, namely, Low Density Parity Check code

(LDPC). These codes have proven to have very good performance over noisy channels.

This chapter will begin with an overview of wireless communication and coding.

Then, it will talk about the error control codes and their applications. A brief de-

scription of LDPC codes and their characteristics and applications will follow. After

that, we will mention some of the related work in this area and review the existing

research in designing architectures for LDPC codes.
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Figure 1.1 : Basic elements of a digital communication system.

1.1.1 Digital Communication System

Figure 1.1 shows a basic block diagram of a digital communication system [1]. First,

information signal such as voice, video or data is sampled and quantized to form a

digital sequence, then it passes through the source encoder or data compression to re-

move any unnecessary redundancy in the data. At this stage the information can pass

through an encrypter to increase the security of the communication. Then, Channel

encoder codes the information sequence so that it can recover the correct information

after passing through channel. Error correcting codes such as convolutional, turbo [2]

or LDPC codes are used as channel encoder. The binary sequence then is passed to

the digital modulator to map the information sequence into signal waveforms. The

modulator acts as an interface between the digital signal and the channel.

The communication channel is the physical medium that is used to send the

signal from the transmitter to the receiver. The channel may be the atmosphere (for

wireless communications), a wire line or optical fiber cable. In all of these channels,

the transmitted signal is corrupted in a random manner by a variety of possible

mechanisms such as additive thermal noise generated by electronic devices, man-

made noise, e.g., automobile ignition noise, or atmosphere noise, e.g., lightning or
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thunderstorms.

At the receiving end of the digital communications system, the digital demodulator

processes the channel-corrupted transmitted waveform and reduces the waveforms to

a sequence of digital values that feeds into the decrypter and channel decoder. The

decoder reconstructs the original information by the knowledge of the code used by

channel encoder and the redundancy contained in the received data. Channel decoders

can be Viterbi [3], turbo or LDPC decoder.

Then, source decoder decompresses the data and retrieves the original information.

The probability of having error in the output sequence is a function of the code

characteristics, the type of modulation, channel characteristics such as noise and

interference level, etc. There is a trade-off between the power of transmission and

the bit error rate. Researchers are trying to minimize the power consumption while

maintaining a reliable communication. This arises a need for stronger codes with

more error correction abilities.

1.1.2 Coding

In 1948 Shannon published a paper which is the basis of the entire field of information

theory [4]. In his work, he introduced a metric by which the information can be

quantified. This metric allows one to determine the minimum possible number of

symbols necessary for the error-free representation of a given message. A longer

message containing the same information is said to have ”redundant symbols”. These

can lead to the definition of three distinct types of codes [5]:

Source codes: These codes are used to remove the uncontrolled redundancy from

the information symbols. Source coding reduces the symbol throughput re-

quirement placed upon the transmitter. Source codes also include codes used
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to format the data for specialized modulator/ transmitter pairs (e.g. Morse

code in telegraphy).

Secrecy codes: These codes encrypt the information so that it can not be under-

stood by anyone except the intended recipient.

Error control codes (error correcting codes or channel codes): The se codes

are used to format the transmitted information so as to increase its immunity to

noise. This is accomplished by inserting controlled redundancy into the trans-

mitted information stream, allowing the receiver to detect and possibly correct

errors.

As we mentioned before, in a communication system, all three types of these codes

are used to increase the reliability and performance of the system.

1.1.3 Applications of error correcting codes

Since the focus of this document is on error correcting codes, here we mention some

of the applications of these codes( Table 1.1).

Satellite downlinks are generally characterized as power-limited channels. On-

board batteries and solar cells are heavy and thus contribute significantly to launch

costs. A communication-channel bit error rate of 10−5 is desired for many applica-

tions. There is thus a need for strong error control codes that operate efficiently at

extremely low signal to noise ratios. Convolutional codes have been particularly suc-

cessful in these applications. Turbo codes and LDPC codes are other choices for these

channels. Similar principles apply to the wireless communications for cell phones, lap-

tops and PDAs. In order to increase the battery life we need to use powerful codes

like LDPC, turbo or convolutional codes.
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Table 1.1 : Applications of error correcting codes.

Application Code Comment

Wireless communications Convolutional, Turbo, Random

Satellite downlink LDPC noise

CD player Reed-Solomon Bursty channel

Tape storage + cross-interleaving

Computer memory Hamming code -

Magnetic discs Fire codes -

Computer networks CRC -

The channel in a CD playback system consists of a transmitting laser, a recorded

disc and a photo-detector. The primary contributors to errors in this channel are

fingerprints and scratches of the surface. As the surface contamination affects an

area that is usually quite large compared to the surface used to record a single bit,

channel errors occur in bursts when the disc is played. The CD error control system

handles the bursts through cross-interleaving and through the burst error-correcting

capability of Reed-Solomon codes.

Various applications exist for the error control codes in computer systems, such as

memory( random access and read-only memory), disk storage, tape storage and inter-

processor communication. Each of these has its unique characteristics that indicates

the use of certain type of codes. Hamming codes are used for the computer memories,

Fire codes for magnetic discs and Reed Solomon based system is used for the tape

mass storage system. Computer networks and internet use Cyclic Redundancy Code

(CRC) to detect packet errors.
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Table 1.2 : Performance comparison between different types of the channel codes

Code Type Shannon Limit LDPC Turbo Convolutional / Viterbi

Performance(dB) 0.18 0.185 0.6 4.5

Perror = 10−6

1.1.4 LDPC codes

Low Density Parity Check (LDPC) codes are a special case of error correcting codes

that have recently been receiving a lot of attention because of their very high through-

put and very good decoding performance. Inherent parallelism of the message passing

decoding algorithm for LDPC codes, makes them very suitable for hardware imple-

mentation.

Applications of LDPC codes are not limited to digital communications. These

codes can be used in any digital environment that high data rate and good error cor-

rection is important, such as optical fiber communications, satellite (digital video and

audio broadcast), storage (magnetic, optical, holographic), wireless (mobile, fixed),

wired line (cable modems, DSL).

Gallager [6] proposed LDPC codes in the early 1960′s, but his work received no

attention until after the invention of turbo codes in 1993, which used the same concept

of iterative decoding. In 1996, MacKay and Neal [7], [8] re-discovered LDPC codes.

Table 1.2 shows a comparison between the best known error correcting codes. Chung

et.al [9] showed that a rate 1/2 LDPC code with the block length of 107 in the binary

input additive white Gaussian noise can achieve a threshold of just 0.0045 dB away

from Shannon limit. This table shows that for very large block lengths, LDPC is the

best known code in terms of performance.
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Low Density Parity Check codes have several advantages over turbo codes: First,

Sum-Product decoding algorithm for these codes has inherent parallelization which

can be harvested to achieve a greater speed of decoding. Second, unlike turbo codes,

decoding error is a detectable event which results in a more reliable system. Third,

very low complexity decoders such as “Modified Min-Sum algorithm” that closely

approximate Sum-Product in performance, can be designed for these codes.

While standards for Viterbi and turbo codes have emerged for communication

applications, the flexibility of designing LDPC codes allows for a larger family of

codes and encoder/decoder structures. Some initial proposals for LDPC codes for

DVB-S2 are emerging [10].

Table 1.3 shows a comparison between the complexity of the encoder and the

decoders for three different types of coding. In this table N is the code length, d is

the constraint length, J is the maximum number of the decoding iterations,Wr is the

row degree and Wc is the column degree of the nodes in the parity check matrix of

a LDPC decoder. Comparisons show that LDPC decoding is linear with the block

length, whereas in turbo, it has exponential relation with the constraint length.

In order to use LDPC codes effectively, we should design a suitable architecture for

the encoder/decoder. Depending on the application, area, power or speed of decoding

could be very important. Since our focus is on wireless communications, we would

like to have low power architectures which are able to achieve 10 to 100 MHz data

rates as it is needed for 3G standard or the next generation of wireless devices.

Complexity in iterative decoding has three parts. First, complexity of the compu-

tations at each node. Second, the complexity of the interconnection. And third, the

number of times that local computations need to be repeated, usually referred to as

the number of iterations. All of these are manageable in practice. There is a trade-off
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Table 1.3 : Complexity comparison between Viterbi, turbo and LDPC en-
coder/decoder. In which N is the code length, d is the constraint length, J is the
maximum number of the decoding iterations, Wr is the row degree and Wc is the
column degree

Code Type Encoder Decoder

Convolutional / Viterbi O(Nd) O(N2d)

Turbo O(N(d1 + 1 + d2)) O(JN(1 + 2d1 + 2d2))

LDPC O(NW 2
r ) O(JN(Wr + Wc))

between the performance of the decoder, complexity and speed of decoding. We will

address these trade-offs throughout this thesis in more detail.

1.2 Related Work

In the last few years some work has been done on designing architectures for LDPC

coding. This subject is still very hot and researchers are looking for the best design

to balance the above trade-offs. Here we mention some of the most related work in

this area.

There exist different approaches on LDPC decoder implementation. Table 1.4

shows a comparison between serial, parallel and semi-parallel approaches. Serial

implementation of the decoder for LDPC takes a small area for processing units, but

it is very slow. This type of implementation is useful for Digital Signal Processors

(DSPs) and general purpose processors. Fully parallel implementation can achieve

very high data rates [11]. This approach is suitable for ASIC (Application Specific

Integrated Circuit), but is infeasible for large block lengths because of the routing

complexity.
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Table 1.4 : Comparison between different design methodologies

Methodology Area Speed Notes

Serial Small very low Not useful for real-time applications

Semi-parallel Medium Medium Balances the area-time trade-off

Parallel Large Fast Complex routing,

infeasible for large block lengths

Another approach is to have a semi-parallel decoder, in which the functional units

are reused in order to decrease the area. Semi-parallel architecture takes more time

to decode the codeword and the throughput is lower than fully parallel but takes

smaller area.

Now, we will categorize different architectures that exist in the literature. Blanksby

and Howland [11] directly mapped the Sum-Product decoding algorithm to hardware.

They used the fully parallel approach and connected all the functional units with wires

regarding the Tanner graph connections. Although this decoder has very good per-

formance, the routing complexity and overhead makes this approach infeasible for

larger block lengths (e.g. more than 1000 to 2000 bits). Also, implementation of all

the processing units enlarges the area of the chip.

Zhang [12] offered an FPGA implementation of a (3, 6) regular LDPC semi-parallel

decoder which achieves up to 54 Mbps symbol decoding throughput. He used a

multi-layered interconnection network to access messages from memory. Mansour [13]

proposed a 1055 bit, rate 0.4, (3, 5) regular semi-parallel decoder architecture which

is low power. He used a fully structured parity check matrix which led to a simpler

memory addressing scheme than [12]. All these architectures have used Sum-Product
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or BCJR algorithms (decoding algorithm for turbo codes).

The first step in designing the LDPC encoder/decoder may seem to be designing

the encoder and then design the corresponding decoder related to that particular set

of LDPC code. Usually this approach leads to random-like parity check matrix, which

puts a big burden on decoder design in terms of memory management, routing and

interconnection of the processing units. Boutillon et al. [14] suggested reversing the

conventional design sequence. Instead of trying to develop a decoder for a particular

LDPC code, use an available partly parallel decoder to define a constrained random

LDPC code. However, their design consisted of many random number generators,

which lead to a complex hardware. The better approach is to co-design the encoder

and the decoder which is used in [12] and [13].

Chen et.al. [15] designed an FPGA and ASIC Implementation of a rate 1/2 8088-b

Irregular LDPC decoder. Their FPGA decoder could achieve up to 40 Mbps and the

ASIC achieved 188 Mbps. Their design is one of the first implementations of the

irregular LDPC codes.

There are other researchers that offered decoder architectures for different classes

of LDPC codes but they have not implemented their design in hardware. For example,

Kim et.al. [16] offered a parallel decoder architecture for parallel concatenated parity

check codes. In these codes both parity check and generator matrices are sparse, which

leads to a simpler encoding. The weak point of this approach is that the performance

of the LDPC codes generated in systematic form is not as good as the codes with the

same block lengths which have been constructed in random manner. Echard et.al. [17]

proposed another architecture based on π-rotation parity check codes. These codes

seem to have good performance but the complexity of the hardware is not obvious

since they just implemented the high level design.
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1.3 Thesis Contributions

The contributions of this thesis are twofold. First, we have designed a class of Low

Density Parity Check codes that have good decoding performance and are suitable

for hardware realization. Then, we have designed a semi-parallel decoder architecture

for these codes that is flexible enough to be used for different block lengths and

different code ensembles of LDPC. Modified Min-Sum algorithm has been used in this

architecture which has the advantages of simpler computations with better decoding

performance comparing to other decoding algorithms. The decoder has been designed

and implemented using VHDL code for Xilinx FPGAs. An alternative decoder has

also been designed using LabVIEW and LabVIEW FPGA. The LabVIEW version

works in co-simulation and uses both the host PC and the FPGA.

1.4 Thesis Overview

The thesis is organized as follows: An introduction to linear block codes is given

in chapter 2. This chapter also gives an overview of LDPC codes and their en-

coding/decoding algorithms. Chapter 3 discusses the code design and the proposed

scalable architecture for LDPC decoder. Implementation issues, trade-offs and results

are discussed in this part. An alternative architecture which has been designed using

LabVIEW and LabVIEW FPGA is presented in chapter 4. Concluding remarks and

future work will follow in chapter 5.
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Chapter 2

Low Density Parity Check Codes

2.1 Linear Block Codes

Since Low Density Parity check codes are a special case of linear block codes, in

this chapter, we will have an overview of these class of codes to set up a ground for

discussing LDPC encoding and decoding. Reader is referred to [5] for more details.

In this section we will discuss some properties of linear codes. The structure

inherent in linear codes makes them particularly easy to implement and analyze.

Definition: The integers 0, 1, 2, ..., p− 1, where p is a prime, form the Galois field

GF(p) under modulo p addition and multiplication.

Definition: Consider a block code C consisting of N -tuples (c0, c1, ..., cN−1) of

symbols from GF (q). C is a q-arc linear code if and only if C forms a vector sub-

space over GF (q). Throughout this thesis we will consider binary codes so q = 2.

Definition: The dimension of a linear code is the dimension of the corresponding

vector space. A linear code of length N and dimension K has a total of 2K codewords

of length N . Linear codes have a number of interesting properties as follows:

Property one: The linear combination of any set of codewords is a codeword. One

consequence of this is that linear codes always contain the all-zero codeword.

Property two: The minimum distance of a linear code is equal to the weight of

the lowest weight nonzero codeword.

Proof: Minimum distance is defined as dmin = minc,c′∈C,c 6=c′d(c, c′) , which can
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be re-expressed as dmin = minc,c′∈C,c 6=c′w(c − c′). Since the codeword is linear ,

c′′ = (c− c′) is a codeword and dmin = minc′′∈C,c′′ 6=0w(c′′).

This property implies that the determination of the minimum distance (and hence

the error detection and correction capabilities) of a linear code is far easier than that

for a general block code.

Property three: The undetectable error patterns for a linear code are independent

of the codeword transmitted and always consist of the set of all nonzero codewords.

Proof: Let c be a transmitted codeword and c′ be the incorrectly received code-

word. The corresponding undetectable error pattern e = c− c′ must be a codeword

by property one.

Let {g0, g1, ..., gK−1} be a basis of codewords for the (N,K) binary code C. There

exist a unique representation c = a0g0 + a1g1 + ... + aK−1gK−1 for every codeword

c ∈ C. Since every linear combination of the basis elements must also be a code word,

there is a one-to-one mapping between the set of K-symbol blocks (a0, a1, ..., aK−1)

over GF (2) and the codewords in C. A matrix G is constructed by taking the vectors

in the basis as its rows.

G =




g0

g1

...

gK−1




=




g0,0 g0,1 ... g0,N−1

g1,0 g1,1 ... g1,N−1

...
...

. . .
...

gK−1,0 gK−1,1 ... gK−1,N−1




(2.1)

This matrix is called Generator Matrix for the code c. Generator matrix can

be used to directly encode K-symbol data blocks by multiplying this matrix and the
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information bits. Let m = (m0,m1, ..., mK−1) be a binary block of uncoded data.

mG = (m0,m1, ..., mK−1)




g0

g1

...

gK−1




= m0g0 + m1g1 + ... + mK−1gK−1 = c (2.2)

The dual space of a linear code C is denoted by C⊥, which is a vector space of

dimension (N − K). A basis {h0, h1, ..., hN−K−1} for C⊥ can be found and used to

construct a parity check matrix H.

H =




h0

h1

...

hN−K−1




=




h0,0 h0,1 ... h0,N−1

h1,0 h1,1 ... h1,N−1

...
...

. . .
...

hN−K−1,0 hN−K−1,1 ... hN−K−1,N−1




(2.3)

The parity check theorem: A vector c is a codeword in C if and only if cHT = 0.

The parity check matrix for a code also offers convenient means for determining the

minimum distance of the code.

Theorem: Let C have the parity check matrix H. The minimum distance of C is

equal to the minimum nonzero number of columns of H for which a nontrivial linear

combination sums to zero.

Proof: Let the column vectors of H be {d0, d1, ..., dN−1}. The matrix operation

cHT can be expressed as follows

cHT = (c0, c1, ..., cN−1)[d0d1...dN−1]
T = c0d0 + c1d1 + ... + cN−1dN−1 (2.4)

If c is a weight-w codeword, then cHT is a linear combination of w columns of H.

The above expression defines a one to one mapping between weight-wcodewords and

linear combinations of w columns of H. The result follows.
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The problem of recovering the data block from a codeword can be greatly simplified

through the use of systematic encoding. Consider a linear code c with generator

matrix G. Using Gaussian elimination and column reordering, it is always possible

to obtain a generator matrix of the form below. This can be proved by noting that

the rows of a generator matrix are linearly independent and that the column rank of

the matrix is equal to the row rank.

G = [P |IK ] =




p0,0 p0,1 ... p0,N−K−1 | 1 0 0 ... 0

p1,0 p1,1 ... p1,N−K−1 | 0 1 0 ... 0

p2,0 p2,1 ... p2,N−K−1 | 0 0 1 ... 0

...
...

. . .
... | ...

...
...

. . .
...

pK−1,0 pK−1,1 ... pK−1,N−K−1 | 0 0 0 ... 1




(2.5)

When a data block is encoded using a systematic generator matrix, the data block is

embedded without modification in the last K coordinates of the resulting codeword.

c = mG (2.6)

=

[
m0 m1 ... mK−1

]
[P |IK ]

=

[
c0 c1 ... cN−K−1 | m0 m1 ... mK−1

]

After decoding, the last K symbols are removed from the selected codeword and

passed along to the data sink. The performance of the Gaussian elimination opera-

tions on a generator matrix does not alter the codeword set for the associated code.

Column reordering, on the other hand, may generate codewords that are not in the

original code. If a given application requires that a particular codeword set be used

and thus does not allow for column reordering, it is always possible to use some set

of the coordinates other than the last k for the message positions. This can slightly

complicate certain encoder/decoder designs.
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Given a systematic generator matrix, the corresponding parity check matrix can

be obtained as shown below:

H = [IN−K | − P T ]

=




1 0 0 ... 0 | −p0,0 −p1,0 ... −pK−1,0

0 1 0 ... 0 | −p0,1 −p1,1 ... −pK−1,1

0 0 1 ... 0 | −p0,2 −p1,2 ... −pK−1,2

...
...

...
. . .

... | ...
...

. . .
...

0 0 0 ... 1 | −p0,N−K−1 −p1,N−K−1 ... −pK−1,N−K−1




(2.7)

For binary codewords, −P T = P T . We should note that one can always transform

the corresponding generator matrix of a given parity check matrix, to the systematic

form using Gaussian eliminations.

By knowing the above definitions, we are ready to discuss the properties of LDPC

codes in the next section.

2.2 Low Density Parity Check Codes

Low Density Parity Check codes are a class of linear block codes corresponding to

the parity check matrix H. Parity check matrix H(N−K)×N consists of only zeros and

ones and is very sparse which means that the density of ones in this matrix is very

low. Given K information bits, the set of LDPC codewords c ∈ C in the code space

C of length N , spans the null space of the parity check matrix H in which: cHT = 0.

For a (Wc,Wr) regular LDPC code each column of the parity check matrix H has

Wc ones and each row has Wr ones. If degrees per row or column are not constant,

then the code is irregular. Some of the irregular codes have shown better performance
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than regular ones. But irregularity results in more complex hardware and inefficiency

in terms of re-usability of functional units. In this work we have considered regular

codes to achieve full utilization of processing units. Code rate R is equal to K/N

which means that (N −K) redundant bits have been added to the message so as to

correct the errors. Ryan [18] has a very good tutorial on LDPC codes, some of the

descriptions in this work has been taken from his document.

2.3 Tanner Graph

LDPC codes can be represented effectively by a bi-partite graph called a “Tanner”

graph [19], [20]. A bi-partite graph is a graph (nodes or vertices are connected by

undirected edges) whose nodes may be separated into two classes, and where edges

may only be connecting two nodes not residing in the same class. The two classes of

nodes in a Tanner graph are “Bit Nodes” and “Check Nodes.” The Tanner graph of

a code is drawn according to the following rule: “Check node fj, j = 1, ..., N −K is

connected to bit node xi, i = 1, ..., N whenever element hji in H (parity check matrix)

is a one.” Figure 2.1 shows a Tanner graph made for a simple parity check matrix

H. In this graph each Bit node is connected to two check nodes (Bit degree=2) and

each Check node has a degree of four.

Definition: Degree of a node is the number of branches that is connected to that

node.

Definition: A cycle of length l in a Tanner graph is a path comprised of l edges

which closes back on itself. The Tanner graph in the above figure, has a cycle of

length four which has been shown by dashed lines.

Definition: The Girth of a Tanner graph is the minimum cycle length of the graph.

The shortest possible cycle in a bipartite graph is clearly a length-4 cycle. Length-
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Figure 2.1 : Tanner graph of a parity check matrix.

four cycles manifest themselves in the H matrix as four 1’s that lie on the corners of

a sub-matrix of H.

We are interested in cycles, particularly in short cycles because they have negative

impact on the decoding algorithm for LDPC codes as will be discussed later.

2.4 Designing LDPC Code

The first step in designing an LDPC code is to decide about an answer to the following

questions:

1. What is the preferred block length of the code? It has been shown that codes

with large block lengths can have very good performance. Richardson [21] showed that

codes with the block length of 106 can achieve bit error rates that are less than 0.13

dB away from Shannon limit. The problem is that large block lengths are infeasible

in practice.
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2. Regular or Irregular code? For the regular code, all the Bit nodes have the

same degree(db), and all the Check nodes have a constant degree dc.

3. What is the degree of each Bit node or Check node? In other words, how

many ones are allowed in each row or column of the parity check matrix? For the

regular codes, degrees of all the Bit nodes will be the same. For irregular codes, one

should decide how many different degrees is allowed to have for the Bit nodes and

Check nodes. Higher degrees means that more computations should be done in each

node to generate the outgoing messages. Also,nodes with higher degrees have faster

convergence to their correct value.

4. What is the Rate of the code? Rate of the codes determines how much redun-

dancy do we want to have in the code? For example a rate 1/2 code uses sends twice

as much bits as the number of the information bits.

5. What is the maximum number of decoding iterations? We will discuss this in

more detail in the decoding section.

After deciding about the above parameters, we can design the parity check matrix.

2.5 Designing the Parity Check Matrix

The Parity check matrix plays a major role in the performance The LDPC encod-

ing/decoding. As mentioned by Gallager, this matrix should be very sparse. It also

determines the complexity of the encoder/decoder. Depending on the platform who

is going to do the encoding/decoding process, this matrix can be random or struc-

tured. Random matrixes are suitable for the decoders running on general purpose

processors, but for dedicated hardware like FPGAs or ASICs, it is better to have a

structured matrix. Structure in parity check matrix leads to a more efficient hardware

representation. It also requires less memory to keep the matrix. We will discuss this
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issue in more detail in the architecture design chapter. Here, we will list ways to

generate a sparse matrix H. Some of these ways are more complex than the others,

but they don’t necessarily lead to a better code.

1. Start from all zero matrix of the size (N −K)×N and randomly invert some

elements in the matrix to reach the resulting degrees for different nodes.

2. Generate H by randomly creating weight Wc columns.

3. Generate H with weight Wc columns and uniform row weights of Wr.

4. Generate H with weight Wc columns and uniform row weights of Wr with no

two columns have overlap of more than one. This condition removes all the length-four

cycles which results in better performance.

5. Generating H like (4) and avoiding other short cycles.

6. Generate the parity check matrix in a structured manner. For example a struc-

ture that is used in hardware design is to generate this matrix using a combination

of the shifted blocks of identity matrices.

7. Generate the parity check matrix using a polynomial.

Each of the above ways have their own pros and cons, depending on the applica-

tion, we can choose one of them. In this research, we have used the 6th way. Since it

is more suitable for the hardware design.

After designing the parity check matrix H, the generator matrix G can be derived

by solving GHT = 0. Performing Gaussian elimination on the resulting matrix G,

will put it in systematic form G = [I|P ]. As mentioned in the previous chapter, this

results in the easy recovery of the information bits after decoding. Now, we are ready

to do the encoding.
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2.6 Encoding

Having the parity check matrix of a set of LDPC code, we can draw the corresponding

Tanner graph. To give a general perspective about encoding of LDPC codes, we can

say that one might first assign each of the information bits to a Bit node in the graph,

then the values of the remaining Bit nodes are determined so that all the parity check

constraints satisfy. In this way, the problem of encoding LDPC codes boils down to

selecting the nodes to which assign the information bits and a strategy for calculating

the values of the other Bit nodes.

In order to put encoding process in the matrix notation, to encode a message m

of K bits with LDPC codes, one might compute c = mG in which c is the N bit

codeword and GK×N is the generator matrix of the code in which GHT = 0.

As an example suppose that we want to send the message m = [1011] over the

channel. First we encode it using:

H = [P T |I] =




1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1




(2.8)

and

G = [I|P ] =




1 0 0 0 1 1 1

0 1 0 0 1 1 0

0 0 1 0 1 0 1

0 0 0 1 0 1 1




(2.9)

The codeword will be equal to

c = mG =

[
1 0 1 1 0 0 1

]
(2.10)
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.

At first glance, encoding might seem to be a computationally extensive task, since

all the parity check equations should satisfy, which can be in quadratic relation with

the code length. But in reality, encoding can be done very efficiently, and the encod-

ing complexity can be a fraction of the decoding complexity. Several low complexity

algorithms exist for the encoding of LDPC codes. Some techniques exploit the sparse-

ness of the parity check matrix for efficient encoding [12]. Another approach is to

impose some structure to Tanner graph so that encoding is transparent and simple.

Repeat-Accumulate codes are an example of structured graphs . Richardson et.al.

showed that transforming the Generator matrix to upper triangular form leads to re-

duced complexity encoding [22]. It should be noted that all the computations for the

encoding are on binary values and in bit-level. So, instead of adders and multipliers,

XORs and AND gates can be used which are cheaper than their counterparts.

2.7 Decoding Algorithms for LDPC Codes

In addition to presenting LDPC codes in his seminal work in 1960, Gallager also pro-

vided a decoding algorithm that is effectively optimal. Since then, other researchers

have independently discovered that algorithm and related algorithms, albeit some-

times for different applications. The algorithm iteratively computes the distributions

of variables in graph-based models and comes under different names, such as “Message

passing algorithm”, “Sum-Product algorithm” or “belief propagation algorithm”. The

iterative decoding algorithm for turbo codes is a specific instance of the Sum-Product

algorithm.

In order to describe the iterative decoding, we need to use a Tanner graph for

LDPC coding. Information is sent along the edges of the Tanner graph. Local
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computations is done in each node of the graph. To facilitate the subsequent iterative

processing, one tries to keep the graph as sparse (low density) as possible. Although

that approach can be suboptimal, it is usually quite close to optimal and has an

excellent complexity vs. performance tradeoff.

In order to discuss the concepts of iterative decoding, we will first introduce a

simple hard-decision decoding algorithm known as “Bit flipping algorithm” that has

the flavor of the more powerful algorithms. This algorithm is often of interest for

very high speed applications, such as optical networking. Bit flipping algorithm has

lower complexity than message passing, albeit at the cost of lower performance. This

algorithm works on the hard decisions of the received signal. So, the messages are

just single bits.

2.7.1 Bit Flipping Algorithm

The idea behind this algorithm is to “flip” the least number of bits until all the parity

checks are satisfied. Suppose that each Bit node starts with a value of either zero

or one. At each iteration the Bit node decides either to flip its value or to keep it

unchanged. When a large number of the neighboring check equations are unsatisfied,

the Bit node decides to flip its value. This follows from the assumption that the Bit

node value which is in error, has the most number of unsatisfied check equations.

This process is easier when H is low density, i.e., when only a few bits are involved in

each check equation and each bit is involved in only a few check equations. We will

describe this algorithm by means of an example.

Example: Consider a (7, 4) Hamming code with parity check matrix:
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HT =




1 1 1 0 | 1 0 0

1 1 0 1 | 0 1 0

1 0 1 1 | 0 0 1




=

[
P T | I

]
(2.11)

and generator matrix G = [I|P ].

Suppose that transmitted codeword is: c = [1011001] and the received codeword

with one error is:

y = c + [0100000] = [1111001].

We may decode y to correct the error via the series of the parity checks implied

by yHT = 0. For example from the columns of HT , we can write:

y1 + y2 + y3 + y5 = 0

y1 + y2 + y4 + y6 = 0

y1 + y3 + y4 + y7 = 0

Note that all the bits in each equation should satisfy parity with modulo-2 addi-

tion. The top two equations fail to “check”, so we suspect that one of the common

bits between those two equations should be in error (y1 or y2). Since y1 is also used

in the other equation which checks, we can conclude that y2 was in error and should

be flipped. In this way, all the parity checks will be satisfied. This example uses the

assumption that it is more likely to have one bit error.

Consider again the (7, 4) Hamming code discussed above, where code bits ck ∈
{0, 1} are to be transmitted over an AWGN channel as the symbols xk ∈ {±1}, with

xk = (−1)ck . We can draw the Tanner graph for this code as figure 2.2. Also, more

information can be included to the graph to facilitate description of the decoding

algorithm.
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Figure 2.2 : Tanner graph of the example Hamming code.

The yk is a received symbol from AWGN channel. yk = xk + nk, where nk is the

noise for kth bit. The graph edges can be considered as information-flow pathways to

be followed in the iterative computation of various probabilistic quantities. This can

be seen as a generalization of the use of the trellis branches as paths in the Viterbi

algorithm implementation of maximum likelihood sequence detection/decoding.

Consider now the subgraph of the graph corresponding to the first column of

the parity check matrix H (figure 2.3). In one computation of the message passing

algorithm, node x1 passes all the information that it has available to it to each of

the check nodes fj, excluding the information the receiving node already possesses.

As an example the message being passed from x1 to node f3( x1 −→ f3) is the

information from the channel( via y1) and extrinsic information node x1 had received

from nodes f1 and f2, on a previous half-iteration. Note that Extrinsic information

are the messages to be passed between nodes. In one half iteration of the decoding

algorithm, such computations (xi −→ fj) are made for all Bit-node/Check node pairs.

In the other half-iteration, messages are passed in the opposite direction (from Check

nodes to Bit nodes, fj −→ xi)(figure 2.4). Decoding is stopped after a maximum
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Figure 2.4 : Message passed to/from Check nodes.

number of iterations is reached or if all the parity check equations are satisfied.

Here is a summary of the decoding algorithm:

• Initialize nodes.

• Pass the messages from Bit nodes to Check nodes.

• Pass the messages from Check nodes to Bit nodes.

• Approximate the codeword from probabilistic information residing in Bit nodes.

If cHT = 0 or maximum number of iterations reached, then stop otherwise

continue iterations.

Like the optimal MAP symbol by symbol decoding of trellis codes, we are inter-

ested in computing the a posteriori probability (APP) that a given bit in c equals

one, given the received block y. The codeword c should satisfy parity check con-
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straints. Without loss of generality, let us focus on the decoding of bit ci. Thus we

are interested in computing pr(ci = 1|y, Si). Where Si is the event that the bits in c

satisfy the Wc parity check equations involving ci.

In order to discuss the decoding process, we need to explain some lemmas that

Gallager introduced in his paper [23].

Lemma 1: Consider a sequence of m independent binary digits a = (a0, a1, ..., am)

in which pr(ak) = pk.

Then the probability that a contains an even number of ones is :

1/2 + 1/2
m∏

k=1

(1− 2pk) (2.12)

And the probability that a contains an odd number of ones is one minus this value:

1/2− 1/2
m∏

k=1

(1− 2pk). (2.13)

Proof: This proof follows by induction on m.

m = 2 : pr(even) = pr(a1 + a2 = 0)

= p1p2 + (1− p2)(1− p2)

= 1/2 + 1/2(1− 2p1)(1− 2p2) (2.14)

Assume that equation (2.12) holds for m = L− 1. Then with ZL = a1 + ... + aL, we

have

pr(ZL = 0) = pr(ZL−1 + aL = 0)

= 1/2 + 1/2(1− 2pr(ZL−1 = 1))(1− 2pL)

= 1/2 + 1/2
m∏

k=1

(1− 2pk). (2.15)

Now we need to define some notation that are used in decoding algorithm:
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• Rj = {i : hji = 1}: The set of column locations of the ones in the jth row.

• Rj\i = {i′ : hji′ = 1, i′ 6= i}: The set of column locations of the ones in the jth

row, excluding location i.

• Ci = {j : hji = 1}: The set of row locations of ones in the ith column.

• Ci\j = {j′ : hj′i = 1, j′ 6= j}: The set of row locations of ones in the ith column,

excluding location j.

Theorem (Gallager): The a posteriori probability (APP) ratio for ci given the

received word y and the event Si is

Pr(ci = 0|y, Si)

Pr(ci = 1|y, Si)
=

(1− Pi)

Pi

∏
j∈Ci

(1 +
∏

i′∈Rj\i
(1− 2Pji′))∏

j∈Ci
(1−∏

i′∈Rj\i
(1− 2Pji′))

. (2.16)

Under the assumption that the received samples in y are statistically independent.

Proof: By using Bayes’ rule we have:

Pr(ci = 0|y, Si)

Pr(ci = 1|y, Si)
=

(1− Pi)

Pi

Pr(Si|ci = 0,y)/P (Si)

Pr(Si|ci = 1,y)/P (Si)
. (2.17)

Given ci+1, the other Wr−1 bits in a given parity check equation involving ci must

contain an odd number of ones. From lemma1, the probability of an odd number of

ones in the other Wr − 1 bits of the jth parity check equation is:

1/2− 1/2
∏

i′∈Rj\i

(1− 2Pji′)

Similar comment holds for the ci = 0 case. Because samples in yi are statistically

independent, the probability that all Wc parity checks are satisfied is the product of

all such probabilities:

Pr(ci = 0|y, Si)

Pr(ci = 1|y, Si)
=

∏
j∈Ci

(1 +
∏

i′∈Rj\i
(1− 2Pji′))∏

j∈Ci
(1−∏

i′∈Rj\i
(1− 2Pji′)))

. (2.18)
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Computation of the above formula is very complex, so Gallager provided an iter-

ative algorithm which is the “Message Passing Algorithm”.

Now we will combine the theorem and the lemma to get more compact result.

Suppose that rji(b) is the message to be passed from the Check node fj to the Bit

node xi in which b ∈ {0, 1}. This is the probability of the jth check equation being

satisfied given bit ci = b and the other bits have a separable distribution given by

{qj′i}j′ 6=j.

Also suppose that qji(b) is the message to be passed from bit node xi to check

node fj regarding the probability that ci = b , b ∈ {0, 1}. It is the probability that

ci = b given extrinsic information from all check nodes, except node fj, and channel

sample yi. Then using the lemma we can write:

rji(0) = 1/2 + 1/2
∏

i′∈Rj\i

(1− 2pji′) (2.19)

rji(1) = 1/2− 1/2
∏

i′∈Rj\i

(1− 2pji′). (2.20)

Thus, the theorem may be written as:

Pr(ci = 0|y, Si)

Pr(ci = 1|y, Si)
=

(1− pi)
∏

j∈Ci
rji(0)

pi

∏
j∈Ci

rji(1)
. (2.21)

Also, we can write :

qji(0) = (1− pi)
∏

j′∈Ci

rj′i(0) (2.22)

qji(1) = pi

∏

j′∈Ci\j
rj′i(1). (2.23)

The algorithm iterates back and forth to update qji and rji. To complete the

loop, we need to make the assignment: pji′ ←− qji′(1). Before we give the iterative

decoding algorithm, we need the following results:
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Lemma 2: Suppose yi = xi + ni where ni ∼ N (0, σ2) and pr(xi = +1) = pr(xi =

−1) = 1/2. Then, for x = {−1, +1} we can write:

Pr(xi = x|y) =
1

1 + e−2yx/σ2 (2.24)

Proof:

Pr(xi = x|y) =
p(y|xi = x)Pr(xi = x)

p(y)

=
1/2e−(y−x)2/2σ2

1/2e−(y−1)2/2σ2 + 1/2e−(y+1)2/2σ2

=
exy/σ2

ey/σ2 + e−y/σ2

=
1

ey(1−x)/σ2 + e−y(1+x)/σ2

=
1

1 + e−2xy/σ2 .

2.7.2 Sum-Product Algorithm - Probability Domain

For a (N −K)×N parity check matrix, we define N −K “Check nodes” and N “Bit

nodes”. Check nodes represent parity check equations and Bit nodes represent the

code bits. Decoding is performed iteratively. In each iteration, every Bit node passes

a message to the Check nodes that are connected to it. In the next half iteration,

each Check node sends a message to the Bit nodes. This message is a function of

all the extrinsic information that it has received from the Bit nodes in the last part.

Then, it checks if the codeword is valid or not. It does the iterations until it finds the

valid code word or reaches the maximum number of the iterations.

The following steps should be done for all the is and js for which the element in

the parity check matrix is a one (hij = 1).
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Step 0: Initialize qji by:

qji(0) = 1− pi = Pr(xi = +1|y) =
1

1 + e−2yi/σ2 (2.25)

qji(1) = pi = Pr(xi = −1|y) =
1

1 + e2yi/σ2 . (2.26)

Step 1: Horizontal stepping on rji by:

rji(0) = 1/2 + 1/2
∏

i′∈Rj\i

(1− 2qji′(1)) (2.27)

rji(1) = 1− rji(0). (2.28)

Step 2: Vertical stepping on qji :

qji(0) = Kji(1− pi)
∏

j′∈Ci

rj′i(0) (2.29)

qji(1) = Kjipi

∏

j′∈Ci\j
rj′i(1). (2.30)

where the constants Kji are chosen to ensure that qji(0) + qji(1) = 1

Step 3: For all the i’s compute:

Qi(0) = Ki(1− pi)
∏
j∈Ci

rji(0) (2.31)

Qi(1) = Kipi

∏
j∈Ci

rji(1). (2.32)

where the constants Ki are chosen to ensure that Qi(0) + Qi(1) = 1.

Step 4: For every row index i:

ĉi =





1 ifQi(1) > 0.5

0 else
(2.33)

If ĉHT = 0, or if maximum number of iteration is reached then stop, else

continue iterations from step 1.
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Figure 2.5 : The φ(x) = − log(tanh(x/2)) function which is part of the Log-Sum-
Product algorithm.

Sum-Product algorithm used in decoding of LDPC codes requires a large number

of multiplications of probabilities which makes the algorithm numerically unstable,

specially for very long codes. Thus as with the Viterbi and BCJR algorithms, a

log-domain version of the algorithm is preferred.

Now, we define the following log likelihood ratios as part of the decoding algorithm:

Lci = log
Pr(xi = +1|yi)

Pr(xi = −1|yi)
(2.34)

Lrji = log
rji(0)

rji(1)
(2.35)

Lqji = log
qji(0)

qji(1)
(2.36)

LQi = log
Qi(0)

Qi(1)
. (2.37)
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2.7.3 Sum-Product Algorithm - Log Domain

This algorithm iterates over columns and rows of parity check matrix H, and operates

on nonzero entries by performing the following steps:

Step 0: initialize Lqji by:

Lqji = Lci = 2yi/σ
2 (2.38)

Step 1: Evaluate Lrji by:

Lrji = (Πi′∈Rj\i
αji′).φ(Σi′∈Rj\i

φ(βji′)) (2.39)

where,

αji = sign(Lqji)

βji = ‖Lqji‖

φ(x) = − log(tanh(x/2))

= log(
ex + 1

ex − 1
),

Step 2:

Lqji = Lci + Σj′∈Ci\jLrj′i (2.40)

Step 3:

LQi = Lci + Σj∈Ci
Lrji (2.41)

Step 4: For every row index i:

ĉi =





1 ifLQi < 0

0 else
(2.42)

If ĉHT = 0 or if maximum number of iteration is reached then stop, else continue

iterations from step 1.
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2.7.4 Min-Sum Algorithm

Consider the update equation for Lrji in the Sum-Product algorithm:

Lrji = (Πi′∈Rj\i
αji′).φ(Σi′∈Rj\i

φ(βji′)) (2.43)

The φ(x) is a function which is decreasing for the values of x > 0. Figure (2.5)

shows a plot of this function. It is intuitive that the term corresponding to the

smallest βji in the above summation dominates, so that:

φ(Σi′∈Rj\i
φ(βji′)) = φ(φ(mini′βji′)) = mini′βji′ (2.44)

Notice that the second equality follows from φ(φ(x)) = x. Thus the Min-Sum algo-

rithm is the same as Sum-Product algorithm in which step (1) is replaced by this

equation:

Step 1’:

Lrji = (Πi′∈Rj\i
αji′).mini′∈Rj\i

βji′) (2.45)

Because of the approximation in this equation, there is a degradation in the per-

formance of Min-Sum comparing to Sum-Product algorithm.

2.7.5 Modified Min-Sum Algorithm

In the literature, it has been experimentally shown that scaling the soft information

during the decoding using min-sum algorithm, results in better performance. Scaling

slows down the convergence of iterative decoding and reduces the overestimation

error comparing to Sum-Product algorithm. Heo [24] showed that density evolution

techniques can be used to determine the optimal scaling factor. He also showed that

for a (3,6) LDPC code scaling factor of 0.8 is optimal. In this algorithm, it is enough
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to change the step 2 in Min-Sum algorithm with :

[Step2′ :]Lqji = (Lci + Σj′∈Ci\jLrj′i) ∗ γ (2.46)

in which γ is the scaling factor.

We will discuss the important parameters and simulation results of our design in

the next chapter. Implementation diagrams and statistics of the designed architecture

will follow.
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Chapter 3

LDPC Decoder Design

3.1 Algorithmic Parameters of the Design

The structure of the parity check matrix has a major role in the performance of

the decoder. Finding a good matrix is an essential part of the decoder design. As

mentioned earlier, parity check matrix determines the connections between different

processing nodes in the decoder according to the Tanner graph. Also, degree of each

node is proportional to the amount of computations that should be done in that node.

For example a (3, 12) LDPC has twice as many connections as a (3, 6) code, which

results in twice as many messages to be passed across the nodes and the memory

needed to store those messages is twice the memory required for a (3, 6) code. Chung

et.al. [25] showed that (3, 6) is the best choice for rate 1/2 LDPC code. We have used

a (3, 6) code in our design.

In each iteration of the decoding, first all the Check nodes receive and update their

messages and then, in the next half-iteration all the Bit nodes update their messages.

If we choose to have a one-to-one relation between processing units in the hardware

and Bit and Check nodes in the Tanner graph, then the design will be fully parallel.

Obviously, a fully parallel approach takes a large area; but is very fast. There is also

no need for central memory blocks to store the messages. They can be latched close

to the processing units [11]. With this approach, the hardware design can be fixed to

relate to a special case of the parity check matrix.
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Table 3.1 : LDPC decoder hardware resource comparison.

Design Fully Semi Fully

Parameters Parallel Parallel Serial

Code Length N N N

Message

Length K K K

Code Rate K/N K/N K/N

No. of BFUs N N/S 1

No. of CFUs N −K (N −K)/S 1

Memory Bit (Wc + 1)Nb (Wc + 1)Nb (Wc + 1)Nb

Wire 2(Wc + 1)Nb (Wc + 1)Nb/S 2(Wc + Wr)b

Time

Per Iteration T ST T/2(2N −K)

Counter

(Address 0 Wr(Wc + 1) 1

Generator)

Address

Decoder 0 Wr(Wc + 1) 1

(for Memories)

Scattered Several One

Memory Type Latches Memory Memory

Blocks Block
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Table 3.1 shows a comparison between the resources for a parallel, semi-parallel

or serial implementation of the decoder. In this table , Wc is the degree of Bit nodes,

Wr is the degree of the Check nodes, b is the number of the bits per message and S

is the folding factor for the semi-parallel design.

Implementing LDPC decoding algorithm in fully-serial architecture has the small-

est area since it is sufficient to have just one Bit Functional Unit (BFU) and one Check

Functional Unit (CFU). The fully-serial approach is suitable for Digital Signal Pro-

cessors (DSPs) that have only a few functional units. However, speed of the decoding

is very low in a serial decoder.

To balance the trade-off between area and time, the best strategy is to have a

semi-parallel design. This involves the creation of “lc” CFUs and “lb” BFUs, in which

lc << N − K and lb << N and then the reuse of these units throughout decoding

time. For semi-parallel design, the parity check matrix should be structured in order

to enable re-usability of units. Also, in order to design a fast architecture for LDPC

decoding, we should first design a good H matrix which results in good performance.

Following the block-structured design similar to [13], we have designed H matrices

for (3, 6) LDPC codes.

3.1.1 Design of Parity Check Matrix

Figure 3.1 shows the structured parity check matrix that has been used in this thesis.

The matrix consists of (3 × 6 = 18) blocks of size s in which s is a power of two.

Each s × s block is an identity matrix that has been shifted to the right amn times,

m = 1, ..., 3, n = 1, ..., 6. The shift values can be any value between 0 and s− 1 [26],

[27], and have been determined with a heuristic search for the best performance in

the codes of the same structure. Our approach is different from [13] since the sub-
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Figure 3.1 : Parity Check Matrix of a (3,6) LDPC code.

block length is not a prime number. Also, shifts are determined by simulations and

searching for the best matrix that satisfies our constraints (with the highest girth ).

Mao etal. [28] performed a heuristic search to find good LDPC codes at short block

lengths. They introduced an algorithm to determine the average girth of a graph and

showed that the girth distribution is an important entity associated with the Tanner

graph of a code which relates the performance of the iterative belief propagation

algorithm to the structure of the graph. This means that the graphs with the highest

average girth have the best performance comparing to the other graphs of the similar

block length.

3.1.2 Average girth calculation algorithm

Suppose that girth at node u is the length of the shortest cycle that passes through

that node. Girth distribution, g(l), l = 4, 6, ..lmax of a Tanner graph is the fraction of

the symbol nodes with girth l, where lmax is the maximum girth in the graph. The

average girth of the Tanner graph is
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lmax/2∑

k=2

g(2k).2k. (3.1)

To compute the girth at a given node u, a tree is ”grown” step by step starting

from the ”root” u. At step k, all the nodes at distance k from u are included into the

tree. This procedure is repeated until, at step k, a node connected to at least two

nodes included at step k − 1 is included. This introduces the formation of the first

cycle. Integer 2k is then the girth at node u. The complexity of this algorithm is low

and quite manageable for the short block lengths. The complexity of computing the

girth distribution is O(n2) where n is the block length.

In order to design a good decoder, we have to decide about some parameters

such as type of the decoding algorithm, block length, maximum number of iterations,

number of bits in each message.

3.1.3 Choosing the suitable decoding algorithm

Figure 3.2 shows the result of some simulations based on the designed LDPC code.

Simulations are done for the 768 bits block of the rate 1/2 LDPC code which is sent

through additive white Gaussian noise (AWGN) channel. Figure shows that Min-

Sum algorithm which is an approximation of the Sum-Product, suffers from some

performance loss because of the approximations. On the other hand, Modified Min-

Sum shows even better performance than Sum-Product in some SNR ranges. For this

simulations, maximum number of iterations is set to 20.

Table 3.2 shows a comparison between the number of calculations needed for each

of the decoding algorithms for a (3, 6) LDPC code in each iteration of decoding.

From the table it is clear that Modified Min-Sum algorithm substitutes the costly

function evaluations with addition and shift. Although Modified Min-Sum has a few
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Figure 3.2 : Simulation results for the decoding performance of different algorithms.

more additions than other algorithms, it is still preferred since nonlinear function

evaluations are omitted.

Figure 2.5 shows φ(x) = − log(tanh(x/2)), the nonlinear function in the Log-

Sum-Product algorithm. Because of the exponential decline for the values of x ∈
[0, 1], φ(x) is very prone to quantization error which results in loss of the decoder

performance. There exist two approaches to determine values of this function. One is

direct implementation of log and tanh in hardware as [11] which is costly for hardware.

The other approach is to use look-up tables (LUT) as [12] which is very sensitive

to the number of quantization bits and number of LUT values. The other issue is

the amount of memory needed to store these LUTs. For example, in a (3, 6) LDPC

code, each Check Functional Unit (CFU) needs to do six LUT reads at the same time

which means either using one LUT and spending 6 cycles evaluating the values or

having 6 LUTs and spending one cycle. The former approach is very slow while the



42

Table 3.2 : Complexity comparison between decoding algorithms per iteration.

Algorithm Addition Function Evaluation Shift

f(x) = − log(tanh(x/2))

Log-Sum-Product 24× (N −K) + 7×N 12× (N −K) -

Min-Sum 24× (N −K) + 7×N - -

Modified Min-Sum 24× (N −K) + 10×N - 6×N

latter takes a large area. Since in the decoding process there is need to store all the

messages that pass between nodes, any decrease in the amount of required memory is

greatly desired. This makes Modified Min-Sum algorithm a better approach for the

hardware.

3.1.4 Block Length

Figure 3.3 shows a comparison between the performances of two sets of (3, 6) LDPC

codes of rate 1/2 and block lengths of 768 and 1536 designed with above structure and

also with random generated parity check matrix. Increasing the block length improves

the performance, but at the same time it increases the amount of the computations

linearly (assuming that other parameters are fixed). From the figure, it can be seen

that this structure has a minor effect on the performance of the decoder.

3.1.5 Number of the Quantization Bits

Since this decoders work on soft information, the messages that are sent between

nodes are real values. In order to represent these values in fixed point arithmetic, we

need to quantize them. There is some performance loss because of the quantization.
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Figure 3.3 : Simulation results for the decoding performance of different block lengths.

Number of the bits used in the messages is compared in 3.4. This figure compares

the performance of the Min-Sum algorithm using 4,5,6 bits for the messages for a

code with the block length of 768 bits. We assume that each i : f message has a

sign bit plus i bits for the integer and f bits for the fractional part. So, the total

number of the bits used in each message is 1 + i + f . For example a 2 : 4 message

uses 1 + 2 + 4 = 7 bits. Figure 3.4 shows a comparison between 1 : 4, 2 : 2, 2 : 3, 2 : 4

bit messages. It is obvious that using two bits for the integer part is necessary and

2:2 outperforms 1:4 even with less number of bits. Also, figure shows that increasing

the number of bits from 2:2 to 2:3 or 2:4 gives a small improvement to the decoding

performance with 20% to 40% increase in the area. We have used the 5 bits in our

design which is related to the 2:2 case.
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Figure 3.4 : Comparison between the performance of the LDPC decoder using differ-
ent number of bits for the messages for a code with the block length of 768 bits.

3.1.6 Maximum Number of the Iterations

A comparison between three curves with different stopping criteria is shown in figure

3.5. It is obvious that increasing the number of the iterations, increases the perfor-

mance. The drawback is that it takes more time to decode. Increasing the maximum

number of iterations from 5 to 10, doubles the decoding time (In the worst case, since

some of the iterations can be skipped of the valid codeword is found earlier).

Next section talks about the proposed architecture that has been designed using

the above parameters.

3.2 Reconfigurable Architecture Design

For LDPC codes, increasing the block length results in a performance increase. That

is because the Bit and Check nodes receive some extrinsic information from the nodes
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Figure 3.5 : Comparison between the performance of the LDPC decoder with different
stopping criteria or a code with the block length of 1536 bits

that are very far from them in the block. This increases the error correction ability

of the code. Having a scalable architecture which can be scaled for different block

lengths enables us to choose a suitable block length N for different applications.

Usually N is in the order of 500 ∼ 5000 for practical uses. Our design is flexible for

block lengths of N = 6 × 2θ for a (3,6) LDPC code. As an example for θ = 8, N is

equal to 1536. By choosing different values for θ we can get different values for the

block length. We will discuss the statistics and design of the architecture for block

length 1536 bits. The proposed LDPC decoder can be scaled for the other lengths

such as 768. It should be noted that changing the block length is an off-line process,

since a new bitstream file should be compiled to download to an FPGA.
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Figure 3.6 : Overall architecture of an LDPC decoder.

3.2.1 Overall Architecture for LDPC Decoder

The overall architecture for a (3, 6) LDPC decoder is shown in figure 3.6. This semi-

parallel architecture consists of Wc×Wr = 3× 6 = 18 memory units (MEMmn,m =

1, ..., Wc, n = 1, ..., Wr) to store the values passed between Bit nodes and Check nodes

and Wr memories (MemInitn) to store the initial values read from the channel.

MemCodemn stores the code bits resulted from each iteration of the decoding. This

architecture has several Bit Functional Units and Check Functional Units that can be

reused in each iteration. Since the code rate is 1/2, there are twice as many columns

in the parity check matrix as rows, which means that number of BFUs should be two

times the number of CFUs to balance the time spent on each half-iteration. For the

block length of 1536, we have chosen the parallelism factor of 48 for CFUs and 96 for

BFUs. Each of these units will be used 16 = 1536/96 times in each iteration. These

units will perform computations on different input sets that will be synchronized by

the controller unit.
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3.2.2 Control Unit

Control unit supervises the whole process of the decoding. When a block is ready at

the input, the information bits are read from the FPGA I/O pins. In each clock cycle,

P of these messages are read and stored in Mem − Inits. When the whole block is

stored in the memories, the CFUs start reading from memories and processing the

information. After all the CFUs update their messages, BFUs start reading from

memories and updating the values in the MEMmn. In the meanwhile, it writes the

threshold bits in the MEM −Codemn (the decoded codeword). When all the values

are updated, the first iteration ends and the next iteration starts. At the same time

as next set of CFUs, values of MEM − Codemn is checked to see if all the parity

check equations are satisfied or not. By the time that CFUs are done, the result

of the validity check of the codeword found at the end of the previous iteration is

ready. If the code is valid, then decoder starts sending out the resulting codeword

and inputting the new block.

3.2.3 Check Functional Unit

Figure 3.7 shows the interconnection between memories, address generators and CFUs

that are used in the first half of iterations. In each cycle ADGCmn generate addresses

of the messages for the CFUs. Split/Merge (S/M) units pack/unpack messages to

be stored/read to/from memories. To increase the parallelism factor, it is possible

to pack more messages (i.e. δ) to put to a single memory location. This poses a

constraint on the design of H matrix, since the shift values should all be multiples of

δ. The finite state machine “control unit” supervises the flow of messages in/out of

memories and functional units.

Figure 3.8 shows the Architecture for Check Functional Units (CFUs). This ar-
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Figure 3.7 : Connections between memories, CFUs and address generators.

chitecture calculates the messages based on equation 2.45. Since we are using the

Modified Min-Sum algorithm, the computations inside CFUs are less complex com-

pared to the Sum-Product algorithm. Each CFU has Wr = 6 inputs and 6 outputs.

This unit computes the minimum among different choices of five out of six inputs.

CFU outputs the result to output ports corresponding to each input which is not

included in the set. For example out1 is the result of:

out1 =
6∏

i=2

sign(ini). min(abs(in2), abs(in3), ..., abs(in6)) (3.2)

in which abs(.) is the absolute value function.

Also, during the computations of the current iteration, CFU checks the code bits

resulting from the previous iteration to check if the code bits satisfy the corresponding

parity check equation (step 5 of the decoding algorithm). After the first half of the
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iteration is complete, the result of all parity checks on the codeword will be ready

too. With this strategy, computations in Check nodes and Bit nodes can be done

continuously without the need to wait for checking the codeword resulting from the

previous iteration. This increases the speed of the decoding.

3.2.4 Bit Functional Unit

The interconnection between BFUs and memory units and address generators ADGB

is shown in figure 3.9. Locations of the messages in the memories are such that a

single address generator can service all the BFUs. Controller makes sure that all the

units are synchronized.

The architecture of a Bit Functional Unit is shown in the figure 3.10. This unit

computes the messages based on equation 2.46. BFU scales the messages with a

scaling factor of γ. Heo [24] shows that scaling factors of 0.75 ∼ 0.85 are all good

with 0.8 to be optimal. Since scaling of 0.75 can be done with two shifts and one

addition, instead of multiplication, we have chosen this scaling factor for our design.
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This architecture can also be used for the structured irregular codes with some

minor modifications. For example, assume that the parity check matrix of the ir-

regular code is similar to figure 3.1, but it has 4 block rows and 7 block columns

in which some of the blocks are full of zeros, then we can have an irregular code

with row degrees of 6, 7 and column degrees of 3, 4. We should add some circuitry

so that for the blocks full of zero in the parity check matrix, it sends a zero message

to the corresponding inputs of the BFU/CFUs. In this case the BFUs will have 5

input/outputs and CFUs will have 8 input/outputs.

3.3 FPGA Architecture

For real-time hardware, fixed-point computations are less costly than floating point

[29], [30]. A fixed-point decoder uses quantized values of the soft information. There

is a trade-off between the number of quantization bits, area of the design, power con-

sumption and performance. Using more bits decreases the bit error rate, but increases
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Figure 3.10 : Bit Functional Unit (BFU) architecture

the area and power consumption of the chip. Also, depending on the nature of the

messages, the number of bits used for integer or fractional part of the representation

is important. Our simulations show that using 5 bits for the messages is enough for

good performance. These messages will be divided into one sign bit, two integer bits

and two fractional bits. Figure 3.4 shows the performance of the decoder using 4, 5, 6

bits and the floating point version.

In general, ports are the expensive parts of the memory blocks. As a result, the

memory blocks in the FPGA have no more than two ports. In order to increase the

number of the message read/writes in each clock cycle in the dual-port memories, we

pack eight message values and store them in a single memory address. This enables

us to read 2× 8 = 16 messages per memory per cycle.

A prototype architecture has been implemented by writing VHDL (Hardware

Description Language) code [31]and targeted to a Xilinx VirtexII-3000 FPGA. Table

3.3 shows the utilization statistics of the FPGA. Based on the Leonardo Spectrum

synthesis tool report, the maximum Clock frequency of this decoder is 121 MHz.

Considering the parameters of our design, it takes 96 cycles to initialize the memories
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Table 3.3 : Xilinx VirtexII-3000 FPGA utilization statistics.

Resource Used Utilization rate

Slices 11,352 79%

4 input LUTs 20,374 71%

Bonded IOBs 100 14 %

Block RAMs 66 68 %

with the values read from the channel, 32 cycles for each CFU and BFU half-iterations,

and 48 cycles to send out the resulting codeword. Assuming that the decoder does µ

iterations to finish the decoding, the data rate can be calculated with the following

equation:

Datarate =
(blocklength× decoderfrequency)

cycles

and,

cycles =
N

2λ
+ µ(

2(N −K)
lc

+
2N

lb
) +

N −K

lc

+
(N −K)

2λ
= (96 + µ× (32 + 32) + 32 + 48)

In which N is the block length, K is number of the information bits, λ is the packing

ratio for the messages in the memories, lb is number of BFUs, and lc is the number of

CFUs. With maximum number of iterations, µ = 20 (worst case), the data rate can be

127 Mbps. This architecture is suitable for a family of codes with similar structure as

described earlier and different block lengths, parallelism ratios and message lengths.

Table 3.4 demonstrates a comparison between some of the architectures for LDPC

decode that are currently available and our design.

In order to reconfigure the decoder for other block lengths, we should note that

changing the block-size of the codeword changes the sizes of the memory blocks. If
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Table 3.4 : Summary for some of the available architectures for LDPC decoder

Reference Block Code Arch. Data Dec.

No. Length Type Type Rate Alg.

[12] 9216 Regular Semi-parallel 54 Mbps Sum-prod

[13] 305,1055 Regular Semi-parallel - BCJR

[11] 1024 Irregular Parallel 1Gbps Sum-prod

[15] 8088 Irregular Semi-parallel 40,188 Mbps Sum-prod

Proposed 768,1536 Regular Semi-parallel 127 Mbps Modified

Architecture 6 ∗ 2q Min-Sum

we assume that the codes are still (3, 6) and have a parity check matrix similar to

figure 3.1, then all the CFUs, BFUs and address generators can be used for the new

architecture. The size of the memories changes and there will be a slight modification

in the address generator units because they should address a different number of

memory words. This can be done by changing the size of the counters used in the

address generators. Since the counters are parametric in the VHDL code, this can be

done with a new compilation of the code using these new values.

Next section talks about the design of the LDPC encoder/decoder using LabVIEW

and LabVIEW FPGA. A similar architecture to the VHDL version is designed using

LabVIEW.
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Chapter 4

Implementation of the LDPC Encoder / Decoder

in LabVIEW

4.1 Implementation in LabVIEW Host

An end-to-end communication link has been implemented using LabVIEW from Na-

tional Instruments. A block diagram for this design is presented in figure 4.1. First,

information bits are feed to the LDPC encoder. Then, it modulates the encoded

signal using BPSK modulation. The modulated codewords are sent across additive

white gaussian (AWGN) channel. The received bits enter the decoder to correct all

the errors that have occurred through transmission and find the original data.

The decoder uses Sum-Product algorithm and is quite general. It can work with

any class of parity check matrix and LDPC code. This decoder does the computations

in different processing nodes in serial. The result is a more abstract design but it

takes a fair amount of time to do the decoding. Different parameters of the decoder

can be changed during the process. For example, signal to noise ratio(SNR) of the

communication, maximum number of the iterations for decoding,etc. Figures 4.3,

4.4, 4.5 show block diagrams of the Virtual Instruments (VIs) of the LDPC encoder

/ decoder implemented in LabVIEW.

Table 4.1 shows the hierarchy of the LabVIEW VIs that are used for this im-

plementation. It should be noted that this decoder works in fully simulation mode,

which means that the whole model runs on the PC. Another approach is to use co-
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Figure 4.1 : Block diagram of the implementation of end to end communication link
in LabVIEW

Table 4.1 : Hierarchy of the LabVIEW Implementation-Simulation only mode .

Figure Description Parent Children

Number

4.3 Communication system - 4.4

4.4 LDPC Decoder-Simulation mode 4.3 4.5

4.5 Phi Function 4.4 -

simulation in the sense that encoding takes place on the host PC and the decoding

on the FPGA. This implementation is discussed in the next section.

4.2 LDPC Decoder Implementation in LabVIEW FPGA

In this section we will discuss the design parameters and strategies for the implemen-

tation of an LDPC decoder using LabVIEW FPGA. This decoder is designed for a

rate 1/2, (3,6) LDPC code with a block length of 768 bits. The block diagram of the

design is shown in figure 4.2. As shown in the figure, the Host computer interacts

with the channel and the FPGA. Only the LDPC decoder runs on the FPGA.

Figure 4.6 shows the Host version of the LDPC decoder which runs on the PC

and controls the inputs/ outputs to the decoder that runs on the FPGA (figure 4.7).

Here is a description of the decoder that runs on the FPGA. During the initializa-
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Figure 4.2 : Block diagram of the implementation of end to end communication link
in LabVIEW

tion step, it reads the soft information from channel and stores them in the memories

MEMij, i ∈ {1, ..., Wc} and j ∈ {1, ..., Wr}. Also, it keeps a copy of the initial input

values in the memories MEMIj, j ∈ {1, ..., Wr}. In the next step, each CFU reads

the values from memories and computes the messages to be passed to BFUs using

Modified Min-Sum algorithm and stores them back in the memories. Then, BFUs

read the values from memories and compute the messages to pass to the Check nodes.

They also threshold the resulting values to find a codeword. Next step is to check

if the resulting codeword is valid or not. To increase the throughput, this step is

combined with the CFU calculations to avoid computing a new set of address and

redundant computations. In this step it checks to see if all the parity check equations

satisfy or not. If the codeword is valid, then it stops decoding of this block and starts

the next block. Otherwise, it continues the iterations until it reaches the maximum

number of the iterations.

Since the smallest integer in LabVIEW is 8 bit, the decoder uses 8 bit values for

the messages. If we could change the values to 5 bits, we could save some area without

any major performance loss. Table 4.2 shows the resource utilization statistics of the

designed decoder using LabVIEW FPGA. We have compiled the design for the Xilinx
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Table 4.2 : Device utilization statistics for the architecture designed in LabVIEW
FPGA using Xilinx VirtexII-3000 FPGA

Resource Used Utilization rate

Slices 8443 58%

MULT18X18s 2 2%

External IOBs 93 19%

Block RAMs 24 25 %

VirtexII-3000 FPGA which is on the PXI-7833 board from National Instruments. The

decoder is able to run on the 3M gate FPGA board and the Host computer controls

it. This decoder is designed for the block length of 768 bits. For larger block lengths,

we basically need to change the amount of memory used for the design.

The graphical view of the LabVIEW FPGA implementation of the LDPC decoder

is shown in the following figures. For an detailed description of LabVIEW features,

reader should refer to LabVIEW user manual [32].

Table 4.3 shows a hierarchy of the LabVIEW FPGA implementation, which de-

scribes the relation between different figures that follow.
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Table 4.3 : Hierarchy of the LabVIEW Implementation Co-simulation mode.

Figure Description Parent Children

Number

4.6 LDPC decoder co-simulation (Host) - 4.7

4.7 LDPC decoder co-simulation (FPGA) 4.6 4.8,4.9,

4.12,4.14

4.8 Initializing the memories 4.7 -

4.9 Connection of the CFU units and memories 4.7 4.9

4.10 Four CFUs connected to split/ merge units 4.9 4.11

4.11 Check functional unit implementation 4.10 -

4.12 Connections between BFUs and memories 4.7 4.13

4.13 Bit Functional Unit calculations 4.12 -

4.14 Sending out the decoded information bits 4.7 -
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Figure 4.3 : Implementation of end to end communication link in LabVIEW
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Figure 4.5 : Implementation of φ(x) = −log(tanh(x/2)) in LabVIEW
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Figure 4.7 : Implementation of LDPC decoder in LabVIEW FPGA
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Figure 4.8 : Initializing the memories by reading from channel
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Figure 4.9 : Connection of the CFU units and memories
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Figure 4.10 : Four CFUs connected to split/ merge units
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Figure 4.11 : Check functional unit implementation
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Figure 4.12 : Connections between BFUs and memories
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Figure 4.13 : Bit Functional Unit calculations

Figure 4.14 : Sending out the decoded information bits.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Throughout this thesis document, we discussed the design issues and parameters of

designing a semi-parallel decoder for LDPC codes. We showed how structure of the

parity check matrix affects the performance of LDPC decoding. Also, the relation

between the type of the decoder, block length, code rate, maximum number of the

decoding iterations, number of bits used for the messages passed between nodes, etc.

have effect on the achievable bit error rates in different signal to noise ratios.

In this research, a decoder for LDPC coding has been designed and implemented

using VHDL for Xilinx VirtexII FPGA. Modified Min-Sum algorithm has been used

as the decoding algorithm, since it is very suitable for hardware design and has very

good performance. The structure of the design and semi-parallel architecture balances

the trade-off between area and speed for decoding. For a block length of 1536 bits, it

achieves a data rate of 127 Mbps. Also, this reconfigurable architecture can be easily

scaled to larger block lengths.

5.2 Future Work

In order to be able to use this decoder in realistic applications, we need to design

an encoder for the LDPC codes. This enables us to integrate the encoder/decoder

pair to the testbed for wireless communication which has been designed in center for
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multimedia communications (CMC) at Rice university.

The designed decoder is suitable for (3, 6) regular codes, the next step will be

some modifications to support irregular codes too. Suitably designed irregular LDPC

codes have shown better performance than regular codes.

Since we have implemented and verified the decoder on FPGA, the next step will

be migration to ASIC (application specific integrated circuit) and fabricate a chip for

the decoder.
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Appendix A

Appendix : Some Notes on Software Settings

A.1 ModelSim

In this appendix we will explain some of the notes that should be considered when

setting up the software.

1. After installing ModelSim, it is necessary to compile the libraries necessary for

analyzing VHDL. These are the commands that should be used:

-Run ”compxlib -s mti se -f all -l all -o c : \modeltech 5.7a\xilinx libs” from the

Windows command line.

-Run the following in ModelSim:

• vmap simprims C : \Modeltech 5.7a\xilinx libs\simprim

• vmap unisims C : \Modeltech 5.7a\xilinx libs\unisim

• vmap XilinxCoreLib C : \Modeltech 5.7a\xilinx libs\XilinxCoreLib

• vmap simprims ver C : \Modeltech 5.7a\xilinx libs\simprim ver

• vmap unisims ver C : \Modeltech 5.7a\xilinx libs\unisim ver

• vmap XilinxCoreLib ver C : \Modeltech 5.7a\xilinx libs\XilinxCoreLib ver

2. In order to be able to simulate post place and route design, ModelSim needs to

know the link to Simprim library. The following commands need to be executed on the

command line to compile each of the SIMPRIM source files. The SIMPRIM VHDL

libraries are written using VITAL libraries, the packages defined by the standard are
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fully accelerated by ModelSim. These commands can be saved in a do to run as a

script.

• cd < directorystoragelocation >

• vlib simprim

• vmap simprim simprim

• vcom -work simprim {XILINX\vhdl\src\simprims\simprim V components.vhd}

• vcom -work simprim {XILINX\vhdl\src\simprims\simprim V package.vhd}

• vcom -work simprim {XILINX\vhdl\src\simprims\simprim V ITAL.vhd}

If the SIMPRIM library exists already compiled in a shared area then only the fol-

lowing line needs to be executed, the vmap command maps the logical library to the

physical directory.

vmap simprim F : \some directory\vendors\xilinx\simprim

3. Performing Behavioral Simulation [33]: Before Model Technologys simulation

tools can be used to simulate the design, the parent design and the testbench need to

be analyzed. These design files are analyzed with the vcom command, into a local,

default, work library, created using the vlib command.

Analyze the parent design and testbench file. Select the MTI ModelSim, and go

to the project-directory and type the following:

• vlib work

• vcom mycore.vhd

• vcom testbench.vhd

Invoke the simulator. The simulator may now be invoked by typing in the following

command: vsim cfg testbench The cfg testbench needs to correspond to the name
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of the VHDL configuration declared in the testbench. This loads the testbench, the

parent design, and the simulation model of the mycore core, stored in the location

referenced by xilinxcorelib.



75

Bibliography

[1] J. G. Proakis. Digital Communications, volume 3. McGRAW Hill, 1995.

[2] A. Glavieux C. Berrou and P. Thitimajshima. Near Shannon Limit Error-

Correcting Coding and Decoding: Turbo-Codes. Proceedings of International

Communications Conference (ICC’93), pages 1064–1070, 1993.

[3] A. Viterbi. Orthogonal tree codes for communication in the presence of white

gaussian noise. IEEE Transactions on Communications, 15:238 –242, Apr 1967.

[4] Joy A. Thomas Thomas M. Cover. Elements of Information theory. John Wiley

and Sons, 1991.

[5] S.B. Wicker. Error Control Systems for Digital Communication and Storage.

Prentice Hall, New Jersey, 1995.

[6] R.G. Gallager. Low-Density Parity-Check Codes. IRE Transactions on Infor-

mation Theory, 8:21–28, Jan 1962.

[7] D.J.C. MacKay and R.M. Neal. Near Shannon Limit Performace of Low Density

Parity Check codes. In Electronics Letters, volume 32, pages 1645–1646, Aug

1996.

[8] D.J.C. MacKay. Good Error-Correcting Codes Based on Very Sparse Matrices.

IEEE Transaction on Information Theory, 45(2):399–431, Mar 1999.



76

[9] S. Chung, Jr. G. D. Forney, T. Richardson, and R. Urbanke. On the design

of low-density parity-check codes within 0.0045 db of the shannon limit. IEEE

Communications Letters, 5:58–60, February 2001.

[10] L.N. Lee. LDPC Code, Application to the Next Generation Wireless Communi-

cation Systems, 2003. Fall VTC, Panel Presentation by Hughes Network.

[11] A.J. Blanksby and C.J. Howland. A 690-mW 1-Gbps 1024-b, Rate-1/2 Low-

Density Parity-Check Code Decoder . Journal of Solid State Circuits, 37(3):404–

412, Mar 2002.

[12] T. Zhang. Efficient VLSI Architectures for Error-Correcting Coding. PhD thesis,

University of Minnesota, Minneapolis, Jul 2002.

[13] M.M. Mansour and N.Shanbhag. Low Power VLSI Decoder Architectures for

LDPC Codes. Proceedings of the International Symposium on Low Power Elec-

tronics and Design. ISPLED ’02, pages 284–289, 2002.

[14] J. Castura E. Boutillon and F.R. Kschischang. Decoder First Code Design. In

Proceedings of the 2nd International Symposium on Turbo codes and Related

Topics, pages 459–462, Brest,France, Sept 2000.

[15] Y. Chen and D. Hocevar. A FPGA and ASIC Implementation of Rate 1/2 8088-b

Irregular Low Density Parity Check Decoder. GLOBECOM, 2003.

[16] G. Sobelman S. Kim and J. Moon. Parallel VLSI Architectures for a Class of

LDPC Codes. IEEE International Symposium on Circuits and Systems, 2:II–93

– II–96, May 2002.



77

[17] R. Echard and S. Chang. The p-rotation low-density parity check codes. IEEE

Global Telecommunications Conference, GLOBECOM ’01, 2:980 – 984, Nov

2001.

[18] W. Ryan. An Introduction to Low-Density Parity-Check Codes.

http://www.ece.arizona.edu/ ryan/NewApr 2001.

[19] R.M. Tanner. A recursive approach to low complexity codes. IEEE Transactions

on Information Theory, 27(5):533–547, Sep 1981.

[20] B.J. Frey F.R. Kschischang and H.A. Loeliger. Factor graphs and the sum-

product algorithm. IEEE Transactions on Information Theory, 47(2):498–419,

Feb 2001.

[21] A. Shokrollahi T.J. Richardson and R. Urbanke. Design of Capacity-Approaching

Irregular Low-Density Parity-Check Codes. IEEE Transactions on Information

Theory, 47(2):619–637, Feb 2001.

[22] T. Richardson R. Urbanke. Efficient Encoding of Low-Density Parity Check

Codes. IEEE Trans. on Information Theory, 47(2):638–656, Feb 2001.

[23] R.G. Gallager. Low-Density Parity-Check Codes. MIT Press, 1963.

[24] J. Heo. Analysis of Scaling Soft Information on Low Density Parity Check Codes.

Electronics Letters, 39(2):219 –221, Jan 2003.

[25] S.Y. Chung, T.J. Richardson, and R.L. Urbanke. Analysis of Sum-Product De-

coding of Low-Density Parity-Check Codes Using a Gaussian Approximation.

IEEE Transactions on Information Theory, 47(2):657–670, Feb 2001.



78

[26] J. Rosenthal and P.O. Vontobel. Constructions of regular and irregular LDPC

codes using Ramanujan graphs and ideas from Margulis. Proc. of 38th Allerton

Conference on Communication, Control and Computing, pages 248–257, Oct.

2000.

[27] G.A.Margulis. Explicit constructions of garaphs without short cycles ans low

density codes. Combinatorica, 2:71–78, 1982.

[28] Y. Mao and A.H. Banihashemi. A Heuristic Search for Good Low-Density Parity-

Check Codes at Short Block Lengths. IEEE International Conference on Com-

munications, ICC, 1(11-14):41 –44, Jun 2001.

[29] David A. Patterson John L. Hennessy. Computer architecture, a quantitative

approach. Morgan Kaufmann publishers, third edition, 2003.

[30] John F. Wakerly. Digital design principles and practices. Prentice-Hall, 1990.

[31] Peter J. Ashenden. The designer’s guide to VHDL. Morgan Kaufmann publish-

ers, second edition, 1996.

[32] National Instruments. LabVIEW Basics I,II Course Manual, Dec 2001. Ver 6.1,

www.ni.com.

[33] Xilinx. CORE Generator Guide-ISE 5. www.xilinx.com.


