


ABSTRACT

Numerical Error Quantification of Agent-Based Models as Applied to Oil Reservoir

Simulation

by

Bryan Doyle

Agent-based models (ABMs) provide a fast alternative to traditional oil reservoir

models by applying localized inexpensive simulations, rather than solving a partial

differential equation at every time-step. However, while there have been theoretical

and numerical results obtained with ABMs in social science applications, the accuracy

of ABMs has not been analyzed in the context of oil reservoir modeling. My project

quantifies the accuracy of a specific ABM by comparing its results to a widely accepted

reservoir model, based on Darcy’s law. I show that while modeling single phase flow

with a variety of reservoir scenarios, this ABMmatches results given by the traditional

simulator with less than 5.4% difference. I propose extensions of my work, including

modeling two and three phase flow, and obtaining an accurate correlation between

the ABM and traditional simulator parameters; such results would provide significant

motivation in the extended use of ABMs in oil reservoir modeling.
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1

Chapter 1

Background and Literature Review

1.1 Introduction

This thesis quantifies the accuracy of an agent-based model (ABM) in its application

to oil reservoir modeling by comparing it to a traditional and widely accepted reservoir

model. Agent-based models provide a fast alternative to traditional oil reservoir

simulators, but precise bounds on their accuracy have proven difficult to obtain for

all but a small subset of ABMs. This thesis takes an alternative route in quantifying

the accuracy of such models by focusing on the rigorous computational testing of a

specific ABM called ReservoirGrail. Utilizing standard error computation techniques,

I determine to what extent ReservoirGrail captures the expected global and local

behavior of a given reservoir over time, by comparing ReservoirGrail’s results to

those of a traditional oil reservoir model whose accuracy is known.

The traditional model I choose to implement solves the compressible single-phase

Darcy equation using a discontinuous Galerkin discretization in space and modified

backward Euler as a time-step method. Through this testing, I show that for sin-

gle phase flow in both simple and more complex reservoir setups, the error between

ReservoirGrail and the traditional model is low, which suggests that ReservoirGrail

produces results that are exceptionally close to those of a trusted oil reservoir simula-

tor. Furthermore, I determine a correlation between a key artificial parameter within

ReservoirGrail and physical parameters that are required in the traditional model.
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Agent-based models have previously been widely used in the social sciences (Conte &

Paolucci [4]), and while they have recently been used to model more scientific prob-

lems (Azimi, Jamali, & Mofrad [5]), they had previously not been applied and tested

in the specific scenario of oil reservoir modeling.

1.2 Agent Based Models

Agent-based models are generic in their definition and wide-spread in their applica-

tion. This section is intended to serve as an introduction to ABMs, as both a general

tool as well as to their specific application to partial differential equations (PDEs) and

oil reservoir modeling. I first introduce the general properties of agent-based models,

as well as their past uses in modeling complex phenomena, in Section 1.2.1. Next,

I restrict my attention to the application of an agent-based model in the context of

the heat equation in Section 1.2.2, in order to depict how such a model is built in an

equation-based system. Finally, I explain how ReservoirGrail is used in its application

to oil reservoirs in Section 1.2.3, and describe how it works in the best detail I can,

while respecting the proprietary nature of the model.

1.2.1 Definition and History

Agent-based modeling is a method of simulating the dynamics of complex systems,

such as the interaction between the immune system and foreign bacteria in a bio-

logical model, or the interaction between consumers and their purchasing habits in

an economics model. Low level entities in the simulation, called “agents”, represent

granular, autonomous beings in the model. In a medical application, these agents

could be cells in the system, which can react on their own in different ways to the

presence of foreign objects. In an economic setting, the agents could be consumers,
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who act and purchase items independently in accordance with their programmed be-

havior. There is no universal agreement in literature on the exact definition of an

agent in an ABM, other than this property of autonomy (Macal, [13]). The behavior

of agents is defined by a set of logical rules that all agents in the system follow; the

specific rules of the model depend on the setting, but are generally obtained through

condensing the data obtained from prior experiments or known governing equations

into logical rules (Folick, [12]). Executing an agent-based model consists of having

agents repeatedly applying their behaviors and interactions, with other agents and

with their environment. This process generally takes place over a time interval, as

the agents interact and evolve over time, although this does not necessarily have to

be the case (Macal, [13]).

Agent-based models are generally faster than traditional models, due to their re-

placement of the linear systems with the simple logical rules. Furthermore, if the

problem grows beyond the capability of a single processor, previous work has shown

that it is possible to parallelize an agent-based algorithm to run across multiple pro-

cessors (Kurve, Kotobi, & Kesidis [9]). The flowcharts in figures 1.1 and 1.2 depict the

basic flow of processes between the two models over a single time-step, with the main

difference between the two being the linear systems in the ABM, and the linear system

in the traditional model. This speedup potential is what has driven the advancement

and continued usage of agent-based models in a variety of different fields.

Historically, agent-based models arose in the early 1990’s in order to model social

and behavioral interactions between a large number of individuals. The first major

program to utilize ABMs at its core was called Sugarscape, and was used to model

migrations of animals, pollution, and disease propagation to name a few (Epstein &

Axtell, [7]). While ABMs were not immediately accepted in the social science com-
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Figure 1.1 : Traditional model

flowchart, utilizing linear systems (the

bottleneck of such simulations).

Figure 1.2 : Agent-based model

flowchart utilizing the application of

simple rules and agents, which allows

such a simulation to execute faster

than its traditional counterpart.

munity, such models started to gain reputation in the early to mid 2000s, and more

conference talks and journal articles started utilizing them in one manner or another.

Shortly thereafter in 2010, the concept of agent-based models in their application to

social sciences was reenvisioned to include more complex systems, and as a result,

a more elaborate class of models was introduced called “Computational Social Sci-

ence”. These new models have the same basic concepts at their core, in that they

model numerous local entities to predict global behavior of systems, but can take into
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account many additional inputs that influence social science directly, such as the cul-

tural background or economic status of the agents (e.g., people) in the system (North,

[4]). For this reason, the terminology of “agent-based models” in social sciences has

been predominantly replaced with the broader term “computational social science”.

Within the last 10 years, agent-based models have been applied with more fre-

quency to a larger number of the “hard” sciences. In 2007 an ABM was used in a

biological setting, reproducing clinical data focusing on diabetic foot ulcers, and was

further utilized for testing hypothesis regarding the cause of such ulcers as well as the

effects of common therapeutical techniques (Mi, [11]). Furthermore, an agent-based

model called the “Basic Immune Simulator” was created in 2007 in order to simu-

late and study the interactions between various types of cells in the immune system,

in their response to a pathogen (Folick, [12]). This ABM was shown to effectively

capture the normal and pathological behavior in different viral infection scenarios.

ABMs have also been utilized to model systems that are stochastic in nature. In

2008, a study was performed comparing an agent-based model and a deterministic

(PDE based) model in the context of disease propagation and it was found that while

both models yielded realistic results, the ABM was able to give more probabilistic

information (expected outcome, variance in results, and result distribution) due to

the stochastic nature of the underlying agents, whereas the deterministic model only

gave a single outcome based on its input parameters (Rahmandad & Sterman, [14]).

Eight years later in 2016, a hybrid model derivation was given in the context of vocal

fold inflamation and healing, which utilized a mathematical approach to solve for the

chemical diffusion in the system, but an agent-based approach to model the cellular

interactions (Seekhao, Shung, Jaja, Mongeau, & Li-Jessen [15]). This paper also

went further to give a parallelizable and generic implementation of their algorithm,
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providing a tractable starting point for future research in this direction.

The acknowledgable downside of agent-based models is their lack of substantial

theoretical backing. A report in 2013 provided theoretical findings on the convergence

rates of ABMs in their application to a fairly broad class of complex, adaptive systems

(North, [3]), but other than this, there are few globally applicable results pertaining

to the convergence and accuracy of ABMs. In stark contrast, the methods used to

solve equation based models (such as the finite element method) have deep roots

in mathematical theory, and as such, have traditionally been the prefered method

to solve equation based systems (I go into more detail about traditional modeling

methods in Section 1.3). Despite this, a 2011 paper described an ABM applied to

a diffusion-reaction system in its modeling to cytoskeletal diffusion, and showed how

the governing PDE can be used to inform the agents’ logical rules (Azimi, Jamali,

& Mofrad [5]). In this scenario, the agents were chosen to represent the cells in the

system, and moved around in the domain with probability influenced by parameters

present in the diffusion-reaction PDE, such as the diffusivity coefficient and density

of cells in the given area. For all their past uses in the scientific community, how-

ever, the effectiveness and overall accuracy of applying agent-based models to general

equation based systems has not been explored, and due to the lack of universal theo-

retical results of ABMs, their error cannot be quantified a-priori. For this reason, the

application of ABMs to equation based systems is an underexplored area of research.

Figures 1.3 through 1.5 ([17]) depict an example of how an agent-based model can

evolve through time, and were obtained from an algorithm that models the movement

of ants in two different colonies, using agent-based modeling techniques. In this

simulation, the agents are modeled as ants, and the rules that they follow are obtained

from observed, real-world behavior of ants; that is, the ants are programmed to search
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for food, return it to their colony, tell other ants where the food is located, and defend

themselves from ants of another colony. The blue and green dots in figures 1.3 through

1.5 represent ants of two different colonies, the brown dots represent food sources,

the light blue and dark green swaths of the domain represent pheromones that the

ants emit when they have found food, and the red areas represent areas where ants

of two different colonies are fighting one another.

Figure 1.3 : Ant colony

model, T = 0 seconds.

Figure 1.4 : Ant colony

model, T = 3 seconds.

Figure 1.5 : Ant colony

model, T = 13 seconds.

1.2.2 Example: Application to Heat Equation

Natural questions arise when applying an ABM to an equation based system with

no obvious low-level entities, such as the heat equation: what are the agents in such

a formulation? What rules do they follow? How do agent movements correlate to

the rate at which the heat diffuses across the domain? This section will show one

possible way that an ABM can be built to model the heat diffusion in a domain, using

characteristics found in the governing PDE.
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Consider the heat equation, on a time interval of [0, T ] and a domain Ω:

∂u

∂t
−∇ · (k∇u) = f in Ω× [0, T ],

k∇u · n = 0 in ∂Ω× [0, T ],

u(x, 0) = uinit,

(1.1)

where k is the thermal conductivity of the domain, f is the source term, and uinit is

the initial condition. For simplicity, suppose f is a point source in Ω. In order to

use an ABM in this context to model the diffusion of heat throughout a domain, the

agents and rules that they follow must be clearly defined; in this case, agents and

their rules are used to inform the diffusion of heat throughout the domain as time

progresses, and do not represent any physical entity in the system. This is in stark

contrast to typical agent-based modeling, where the agents and their rules correspond

to physical and observable characteristics of the system being modeled.

In order to use agents to accurately inform how the heat moves around in the

domain, the physical characteristics of the system (namely, k and f) must be taken

into account. One approach to best utilize these variables is to consider agents that

start at the point source f , and move around the domain stochastically, influenced

by the local conductivity values; that is, as an agent moves throughout the domain,

the probability that it will move in a given direction will be lower if the thermal

conductivity in that direction is lower (relative to other possible directions). Once an

agent has taken a specified number of “steps”, it is retired, another agent is sent out,

and the process is repeated. Repeating this process for a large number of agents will

generate a map of agent visits throughout the domain: areas of the domain with a

higher number of visits correspond to areas that are both close to the point source, as

well as areas that have a higher thermal conductivity. Therefore, areas with a higher

number of visits will correlate to areas that the heat will naturally move to. In this
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way, the agents are used to inform the heat transfer throughout the domain, without

correlating to any kind of physical quantity.

Due to the absence of the practical and theoretical application of ABMs to equa-

tion governed systems, there has been little academic or industrial consideration in

the specific application of agent-based models to oil reservoir systems. It is for this

reason that in Section 1.2.3, I turn my attention to defining an ABM of this form;

that is, an ABM that models a PDE based oil reservoir, and whose agents and rules

do not correlate to any kind of physical quantity.

1.2.3 Application to Oil Reservoirs

The application of ABMs to oil reservoirs is similar in its application to the heat

equation in Section 1.2.2, as the PDE that governs the pressure in reservoirs is also

parabolic in nature and behaves similarly.

The specific ABM I use to model oil reservoirs is called ReservoirGrail, developed

by GrailQuest ([19]). ReservoirGrail initially requires two maps of the reservoir being

modeled: the flow-path map, which depicts the distribution of flow characteristics

throughout the reservoir∗, and a pay thickness map, depicting the thickness of the

reservoir that is able to produce oil and gas at each node. However, these maps do not

have to be exact: ReservoirGrail has the functionality to accept past production and

injection data from the wells also, and uses this to modify the given parameters so that

the simulation matches up better with the past data. In this manner, ReservoirGrail

is suited well as a mature field simulator where many years of production data are

available.

∗This flow path map can be any map the user has that contains information concerning, flow

characteristics, such as a permeability map, porosity map, or seismic map.
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Once ReservoirGrail has decided on a suitable set of parameters for the simula-

tion, an agent-based algorithm ([18]) is applied to simulate the future movement of

subsurface hydrocarbons in the reservoir. The exact set of rules that are applied to

the agents is proprietary knowledge to GrailQuest; however, the agents in this model

behave in such a way to move fluid from high pressure to low pressure as quickly

as possible, while taking into account the global structure of the reservoir, such as

impermeable barriers and relative permeability changes across the domain. A sketch

of ReservoirGrail’s algorithm is discussed below. Although ReservoirGrail can be ap-

plied to real, 3D reservoirs, the algorithm it uses models the hydrocarbon movement

in a 2D domain, then extends its results to 3D by utilizing the user provided thickness

map.

ReservoirGrail has two main phases in its simulation process, for every time-step:

the production phase, which determines the amount of hydrocarbons removed from

each cell due to the production rate of the wells, and the equalization phase, which

models the movement of the hydrocarbons after the production phase is complete.

The production phase utilizes agent-based modeling to determine the volumetric

depletion of every cell, considering a single well at a time. First, a number of agents

(on the order of 105) are sent out starting from the first well in the reservoir, and

move stochastically around the reservoir. The actual number of agents that are sent

out can be a set value, or can depend on the relative production of the well compared

to all the other wells in the reservoir. Every time the agent moves to a new cell, that

new cell must be one of its neighbors. For an interior cell with no barriers present,

there are eight potential neighbors for the agent to move to; see figure 1.6.

The probability that an agent moves to one of its neighbors can be calculated

in a variety of ways. One such method utilizes the magnitude of the permeability
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Figure 1.6 : Connectivity between the large, green central cell and its eight neighbors.

of the agent’s neighbors, relative to each other: let AE be the event that the agent

moves to cell E, let KE be the permeability of cell E, and let N be the set of all

of the agent’s neighbors it is allowed to move to. Then, the probability of event AE

occuring, denoted P (AE), is calculated as

P (AE) =
KE

KT

, where KT =
∑

N∈N
KN .

Agents stop moving after a pre-determined number of steps; however, in some sce-

narios, additional stopping criterion can be imposed, such as when an agent reaches

the boundary of the domain, or when the agent becomes surrounded by cells it has

already visited.

After all agents have reached an appropriate stopping criterion, the depletion

volume for each cell is calculated based on both the well production, and the fraction

of the total number of times agents visited the cell to the total number of visits to

all cells in the domain. For a given well W , let qW denote the well production, let

BE denote the total number of times that an agent has visited cell E in the current

time-step, and let E be the set of all cells in the domain. Then, the depletion volume
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of a cell E, denoted (∆V )E, is calculated as

(∆V )E =
BE

BT

qW , where BT =
∑

E′∈E
BE′ .

After the depletion volume is calculated and removed for all cells in the domain,

ReservoirGrail moves on to the equalization phase. First, a ratio called the “fill” of

each cell is calculated, which represents how full the cell is of movable hydrocarbons,

in percentage form. Specifically, let FE denote the fill of cell E, let OE denote the

percentage of void volume (i.e., the percentage volume not taken up by hydrocarbons)

in cell E, and let ME denote the percentage of max void volume in cell E (i.e., the

percentage of removable fluid from the cell, not including residual oil). Then, the fill

of cell E is calculated as

FE = 1−
OE

ME

.

Once this ratio is calculated for all cells, ReservoirGrail goes through the domain

cell by cell to determine how the remaining hydrocarbons equalize across the domain.

To do so, a cell E is fixed and the set of all neighbors of E, denoted NE, is generated.

Note that by definition, E ∈ NE. Using E and its neighbors, the average fill is

calculated by a weighted combination of the cell’s fill values. Let F̄E represent the

average fill of cell E and its neighbors; then, the average fill is given as

F̄E =
∑

E′∈NE

FE′ ME′ wE′ , where wE′ =















1√
2

E ′ is diagonally adjacent to E

1 else

.

This definition of the weights wE′ is to ensure that cells that are further away from

E (that is, diagonally adjacent) contribute less to the neighborhood average.

After calculating the average fill of cells in a neighborhood of E, ReservoirGrail

determines how much fluid should be moved in or out of all cells in NE by comparing
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the fill and average fill values, on a cell by cell basis. For a cell E ′ ∈ NE, if FE′ < F̄E,

it means that the cell E ′ should receive some fluid from other cells in NE; analogously,

if FE′ > F̄E, it means that the cell E ′ should lose fluid. The amount by which E ′ gains

or loses fluid is based on the equalization (EQ) rate, which is a parameter defined

by the user prior to executing the simulation. In comparison to traditional reservoir

simulators, this parameter behaves analogously to the ratio between permeability and

viscosity, and its value greatly influences how the modeled reservoir evolves over time;

see Section 2.3 for more information about the EQ rate.

Let LE′ be the amount of fluid in cell E ′ ∈ NE, denote the change in fluid of cell

E ′ by (∆L)E′ , and EQ denote the equalization rate; then, the change in fluid in cell

E ′ is calculated as

(∆L)E′ = EQ (F̄E − FE′)ME′ wE′ .

Therefore, an equalization rate of 1 corresponds to a reservoir which allows a larger

amount of fluid movement between cells, whereas an equalization rate of 0 corresponds

to a reservoir with no fluid movement in the equalization phase. The change in fluid

is calculated and applied to every cell in NE, and this process is repeated until all

cells in the domain have been considered. From there, the next well in the reservoir

is fixed and the entire process is repeated. When all wells have been considered, the

time step is incremented by 1, and the process starts over from the production phase.

Because there is no published literature on the application of agent-based model

to oil reservoir modeling, certain guarantees on the accuracy of such a method must

be investigated. Since theoretical error guarantees have proven difficult to come

by in the past, the goal of my thesis is to computationally quantify the accuracy

of ReservoirGrail through repeated testing and comparison with a traditional oil

reservoir model, which have many theoretical guarantees concerning their accuracy.
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Because many such PDE based models exist, I narrow my focus to ones that are

commonly used in oil reservoir modeling, in order to have an unbiased comparison of

the final results.

1.3 Traditional Approaches to Oil Reservoir Modeling: Lit-

erature Review

Traditionally, oil reservoirs are modeled by numerically solving a PDE which governs

the mass conservation of sub-surface components. Previously built traditional models

are analyzed in this section, and the model I use in my thesis work will be described

in more detail in Section 2.1. To determine the specific simulator to use, there are

three main questions to answer: what PDE will be modeled, how will the solution be

approximated in space, and how will the solution be stepped forward in time.

Multi-phase fluid flow and transport equations can be used to solve for the satu-

ration of each individual phase of the fluid throughout time (Jenny, Lee, & Tchelepi

[8]). Alternatively, problems dealing with fluid flow may be cast in the form of a

scalar conservation law to determine velocity of the fluid within the domain (Zhang

& Shu [2]). Finally, a more simple single-phase model may be viewed in terms of the

pressure in the domain via the single-phase Darcy equations.

Discretization in the spatial dimension is typically done utilizing one of two meth-

ods. The Finite Volume Method (FVM) is one such method, and past research has

shown that for multi-phase fluid flow and transport equations, such a discretization is

computationally scalable (Jenny, Lee, & Tchelepi [8]). Another popular discretization

technique is the discontinuous Galerkin (DG) method; prior work has shown that for

scalar conservation laws, this method provides optimal convergence for smooth flux
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terms (Zhang & Shu, [2]). Furthermore, for general non-linear parabolic equations

(such as the single-phase Darcy equation), DG provides optimal convergence in the

H1 norm (Riviere & Wheeler, [6]).

Finally, several time-stepping methods have been considered in prior work. The

third order Runge-Kutta method (RK3) is one such method, and gives both stability

(under certain time constraints on the time-step) and 3rd order global convergence

(Zhang & Shu, [2]). Another choice is the Backward-Euler (BE) method, which

is unconditionally stable regardless of the time-step, and converges linearly in time

(Riviere & Wheeler, [6]).

Overall, traditional oil reservoir models are built by determining a PDE to govern

the system, a discretization method in space, and a way to step forward in time.

However, in spite of these distinctions, all such models fundamentally rely on con-

structing and solving large linear systems at each time step. Even though there are

many areas of research dedicated to speeding up the process of forming and solving

of these linear systems, it remains today the bottleneck of such methods. It is this

area from which ABMs gain the most ground over traditional models.
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Chapter 2

Methods

This chapter goes into details concerning the traditional model I used, as well as how

I compared parameters between ReservoirGrail and the traditional model. I start in

Section 2.1 by describing the partial differential equation that the traditional model

solves. Then, in Section 2.2, I defend my choice of spatial and temporal discretization

for the model, referring heavily back to Section 1.3. Next, I describe in Section 2.3

how a correlation between ReservoirGrail’s artificial parameter and the traditional

model’s parameters was obtained. Finally, in Section 2.4, I give a mathematical

formulation for the conversion from pressure to mass in the traditional model, and

from hydrocarbon pore volume to mass in ReservoirGrail, in order to compare results

between the two.

2.1 Traditional Model: PDE

As mentioned in Section 1.3, there are three questions which govern the decision as

to which traditional simulator to use: the governing PDE, the approximation method

in space, and the time-stepping method. Because it is the goal of this thesis to

provide preliminary results on the accuracy of an ABM, I model a system with lower

complexity and which requires fewer computational resources, at the drawback of

sacrificing overall robustness. Therefore, I utilize the single phase Darcy equation in

the traditional simulator, which is both relatively simple to implement and has a low
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computational cost:

∂

∂t
(φρ)−∇ ·

(

ρ
K

µ
∇p

)

= ρf in Ω× (0, T ),

ρ
K

µ
∇p · n = 0 in ∂Ω× (0, T ),

p(x, 0) = pinit.

(2.1)

In this equation, the variable p represents the pressure, and is taken to be the unknown

in the system. The symbol Ω is used to denote the domain on which the equation is

solved over, the symbol ∂Ω is used to denote the boundary of the domain, and T is

used to denote the final time the model is solved up to. The variable φ represents the

porosity of the reservoir, and for a fixed area of the reservoir, is defined as the ratio

between the volume that hydrocarbons can occupy (i.e., volume that is not occupied

by rock), and the total volume:

φ =
void volume

total volume

The porosity is a unitless number, and always takes values between 0 and 1. The

variable ρ represents the density of the fluid being modeled. In this formulation, an

ideal fluid density approximation is used for the density:

ρ = ρref(1 + cp).

With this substitution, the value ρref represents the reference density of the fluid;

that is, the density of the fluid at standard temperature and pressure (STP). The

variable c represents the compressibility of the fluid, and its introduction is why this

formulation is a compressible single phase flow model, as opposed to an incompressible

model. In the first line of equation (2.1), the variable K represents the permeability

of the rock in the reservoir, and µ represents the viscosity of the fluid. The smaller

the permeability or the higher the viscosity values are, the slower the fluid will flow
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through the reservoir. Note that while permeability and porosity may appear to be

similar variables, they are inherently different: porosity is a measure of free space

available and is directly related to the reservoir texture, whereas permeability is

a measure of how much fluid movement the rock in the reservoir allows for, and is

directly related the the type of rock in the reservoir. Finally, the variable f represents

the source term in the model, and models the actions of the wells in the reservoir

(if any). A negative source term correlates to a production well (i.e., a well that is

removing hydrocarbons from the reservoir), and a positive source term correlates to

an injection well (i.e., a well that is injecting fluid into the reservoir).

For the purposes of this model, porosity φ and compressibility c will be assumed

to be constant with respect to time. Applying this assumption and the ideal fluid

density approximation, and dividing out the constant ρref in equation (2.1), the final

PDE to be solved is obtained:

φc
∂p

∂t
−∇ ·

(

(1 + cp)
K

µ
∇p

)

= (1 + cp)f in Ω× (0, T ),

(1 + cp)
K

µ
∇p · n = 0 in ∂Ω× (0, T ),

p(x, 0) = pinit.

(2.2)

2.2 Traditional Model: Discretization

After deciding upon the single-phase pressure model, I chose to use a discontinuous

Galerkin method in space. Across the literature I found, the two most popular spatial

discretization techniques were the finite element method (FEM), and the finite volume

method (FVM). In some circumstances, FVMs and FEMs have been found to perform

similarly for certain PDEs (Fallah, Bailey, Cross, & Taylor, [10]). However, in the

specific application of reservoir modeling, it has been shown that FVMs yield results

that are more diffusive in nature than DG methods, especially around the propagation
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front (Li, [21]), due to the artificial diffusion introduced by the formulation of said

FVMs. Due to the enhanced simulation results obtained when utilizing a DG method

over a FVM, I chose to discretize with DG in space.

Finally, the time-stepping technique I chose to use was Backward Euler. There are

several time-stepping techniques utilized in the literature, but many papers closely

related to oil reservoir simulation tend to use either a 3rd order Runge-Kutta method

(RK3) or a Backward Euler method. As discussed in Section 1.3, RK3 exhibits 3rd

order convergence, while BE only exhibits 1st order convergence. However, BE is

both unconditionally stable (unlike RK3) and is significantly easier to implement and

debug. Again, because the goal of this model is to stay as simple as possible while

still maintaining functionality, I chose to utilize BE for time-stepping.

Equation (2.2) will now be discretized with these two methods. First, I derive the

weak form of equation (2.2). Next, I rewrite one of the summations as a sum over

edges, instead as a sum over elements, using the divergence theorem. Afterwards, I

add the penalty terms, and finally, I discretize with the backward Euler method and

simplify the equation.

Let Th be a shape-regular mesh of Ω, and let Γh be the set of all edges (interior

and on the boundary) of the partition. Define the finite dimensional space Dk(Th),

known as the broken polynomial space of degree k, to be:

Dk(Th) =
{

v ∈ L2(Ω)
∣

∣ ∀E ∈ Th, v|E ∈ Pk(E)
}

,

where Pk(E) is the k degree polynomial space over the element E.

Fix an element E ∈ Th, multiply equation (2.2) by v ∈ Dk(Th), and integrate over

the element E to obtain

∫

E

cφ
∂p

∂t
v −

∫

E

∇ ·

(

(1 + cp)
K

µ
∇p

)

v =

∫

E

(1 + cp)fv (2.3)
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The second integral can be rewritten using the divergence theorem:

−

∫

E

∇ ·

(

(1 + cp)
K

µ
∇p

)

v =

∫

E

(1 + cp)
K

µ
∇p · ∇v −

∫

∂E

(1 + cp)
K

µ
∇p · nv,

where n is the outward facing normal of element E. Applying this change to equation

(2.3) and summing over all elements E ∈ Th, we obtain

∑

E∈Th

∫

E

cφ
∂p

∂t
v +

∑

E∈Th

∫

E

(1 + cp)
K

µ
∇p · ∇v −

∑

E∈Th

∫

∂E

(1 + cp)
K

µ
∇p · nv

=
∑

E∈Th

∫

E

(1 + cp)fv

(2.4)

Sum over edges: The third sum in equation (2.4) can be rewritten by noting that

every interior edge will be integrated over twice, as it will be a part of the boundary

of exactly two elements in Th. Let Γ
0
h denote the set of interior edges, and let e ∈ Γ0

h.

Let Ei1 , Ei2 ∈ Th be such that Ei1 ∩ Ei2 = e, and without loss of generality, assume

that i1 < i2. Further, define n1 to be a unit normal vector which points from element

Ei1 to Ei2 , and define n2 = −n1. With this notation, the following integral may be

rewritten:

∫

e

(1 + c(p)|E1
)
K

µ
(∇p)|E1

· n1v|E1
+

∫

e

(1 + c(p)|E2
)
K

µ
(∇p)|E2

· n2v|E2

=

∫

e

(

(

(1 + cp)
K

µ
∇pv

) ∣

∣

∣

∣

E1

−

(

(1 + cp)
K

µ
∇pv

) ∣

∣

∣

∣

E2

)

· n1. (2.5)

For ease of notation, the jump function is introduced: for an edge e = E1 ∩ E2, the

jump of a function ψ along e ∈ Γ0
h is defined as

[ψ] = ψ|E1
− ψ|E2

Utilizing the jump function, equation (2.5) may be rewritten more compactly as

∫

e

[

(1 + cp)
K

µ
∇pv

]

· n1
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This holds for all e ∈ Γ0
h. However, every edge along the boundary of the domain

(that is, e ∈ Γh\Γ
0
h) will only be integrated over once, since there is only a single

element in Th which has e on its boundary. The jump function is modified to handle

this case, and to allow for a more compact final equation. For an edge e ∈ Γh\Γ
0
h,

the jump of a function v along e is simply defined as

[ψ] = ψ

Therefore, the jump of a function ψ over any edge (i.e., e ∈ Γh) is given as

[ψ] =















ψ|Ei1
− ψ|Ei2

if e ∈ Γ0
h

ψ if e ∈ Γh\Γ
0
h

Although the second case may seem like a trivial inclusion, this definition allows the

third sum in equation (2.4) to be written as:

∑

E∈Th

∫

∂E

(1 + cp)
K

µ
∇p · nv =

∑

e∈Γh

∫

e

[

(1 + cp)
K

µ
∇pv

]

· n (2.6)

where n in the second integral is understood to be the unit normal pointing from

Ei1 to Ei2 in the case of interior edges, and the outward pointing unit normal for

boundary edges.

This sum can be decomposed further. Define the average of a function ψ along

an edge e ∈ Γh to be

{ψ} =















1

2

(

ψ|Ei1
+ ψ|Ei2

)

if e ∈ Γ0
h

ψ if e ∈ Γh\Γ
0
h

Then, for two functions a and b, note the following identity, for any elements E1 and

E2:

[ab] = a|E1
b|E1

− a|E2
b|E2
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= a|E1
b|E1

−
1

2
(a|E1

b|E2
− a|E1

b|E2
− a|E2

b|E1
+ a|E2

b|E1
)− a|E2

b|E2

=
1

2
(a|E1

b|E1
−a|E1

b|E2
+a|E2

bE1
−a|E2

b|E2
)+

1

2
(a|E1

b|E1
+a|E1

b|E2
−a|E2

b|E1
−a|E2

b|E2
)

=
1

2
(a|E1

+ a|E2
) (b|E1

− b|E2
) + (a|E1

− a|E2
)
1

2
(b|E1

+ b|E2
) = {a}[b] + [a]{b}

Using this identity, the sum in equation (2.6) can be rewritten as:

∑

e∈Γh

∫

e

[

(1 + cp)
K

µ
∇pv

]

· n

=
∑

e∈Γh

∫

e

{

(1 + cp)
K

µ
∇p

}

[v] · n+
∑

e∈Γh

∫

e

[

(1 + cp)
K

µ
∇p

]

{v} · n

(2.7)

The solution to equation (2.4), p, satisfies

[

(1 + cp)
k

µ
∇p

]

· n = 0 almost everywhere on Γ0
h,

Using this fact and the boundary condition in equation (2.2), the two sums in equation

(2.7) can be reduced to

∑

e∈Γh

∫

e

{

(1 + cp)
K

µ
∇p

}

[v] · n+
∑

e∈Γh

∫

e

[

(1 + cp)
K

µ
∇p

]

{v} · n

=
∑

e∈Γ0

h

∫

e

{

(1 + cp)
K

µ
∇p

}

[v] · n.

This implies that equation (2.4) becomes

∑

E∈Th

∫

E

cφ
∂p

∂t
v +

∑

E∈Th

∫

E

(1 + cp)
K

µ
∇p · ∇v −

∑

e∈Γ0

h

∫

e

{

(1 + cp)
K

µ
∇p · n

}

[v]

=
∑

E∈Th

∫

E

(1 + cp)fv

(2.8)

Symmetry terms: At it currently stands, the solution to equation (2.8) does not

necessarily have a solution, and if it does, this solution is not necessarily unique. In

order to ensure the existence and uniqueness of a solution for the DG method, both
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symmetry and penalty terms must be added to the formulation. For this reason, I

add the following terms to the left-hand side of the equation:

−ǫ
∑

e∈Γ0

h

∫

e

{

(1 + cp)
K

µ
∇v · n

}

[p]

where ǫ is defined by the type of DG method being utilized:

ǫ =































+1 Symmetric Interior Penalty Galerkin method (SIPG)

−1 Nonsymmetric Interior Penalty Galerkin method (NIPG)

0 Incomplete Interior Penalty Galerkin method (IIPG)

For my tests, I use the NIPG method, meaning that ǫ = −1. Note that, since [p] = 0

almost everywhere over all interior edges, the terms being added are equal to 0. This

means that consistency of the weak form is maintained when the symmetry terms are

added to the left-hand side.

Penalty terms: As with the symmetry terms, I add the following sum to the left-

hand side of equation (2.8:
∑

e∈Γ0

h

∫

e

σ

|e|
[p][v],

in order to ensure existence and uniqueness of a solution. Again, note that the

consistency of the original weak form is maintained due to regularity assumptions on

p. In this notation, σ is a positive number, known as the penalty parameter, and |e|

is the length of edge e. The stable form of the discretization is given as

∑

E∈Th

∫

E

cφ
∂p

∂t
v +

∑

E∈Th

∫

E

(1 + cp)
K

µ
∇p · ∇v

−
∑

e∈Γ0

h

∫

e

{

(1 + cp)
K

µ
∇p · n

}

[v] +
∑

e∈Γ0

h

∫

e

{

(1 + cp)
K

µ
∇v · n

}

[p]

+
∑

e∈Γ0

h

∫

e

σ

|e|
[p][v] =

∑

E∈Th

∫

E

(1 + cp)fv.

(2.9)



24

Backward Euler discretization: Equation (2.9) will now be discretized with the

backward Euler method. Let the pressure at the current time-step, n+1, be denoted

as pn+1, and the pressure at the past time-step, n, be denoted as pn. Further, denote

the source term at the n+ 1 time-step, f(tn+1), as

f(tn+1) = fn+1.

The backward Euler discretization of equation (2.9) is

∑

E∈Th

∫

E

cφ
pn+1 − pn

∆t
v +

∑

E∈Th

∫

E

(1 + cpn+1)
K

µ
∇pn+1 · ∇v

−
∑

e∈Γ0

h

∫

e

{

(1 + cpn+1)
K

µ
∇pn+1 · n

}

[v] +
∑

e∈Γ0

h

∫

e

{

(1 + cpn+1)
K

µ
∇v · n

}

[pn+1]

+
∑

e∈Γ0

h

∫

e

σ

|e|
[pn+1][v] =

∑

E∈Th

∫

E

(1 + cpn+1)fn+1v.

(2.10)

Although equation (2.10) is the true backward Euler discretization, implementing this

would lead to a non-linear system of equations, meaning that an iterative method

would be required at each time-step to obtain to a solution. To avoid this, I time lag

all of the (1 + cpn+1) terms in equation (2.10) to obtain:

∑

E∈Th

∫

E

cφ
pn+1 − pn

∆t
v +

∑

E∈Th

∫

E

(1 + cpn)
K

µ
∇pn+1 · ∇v

−
∑

e∈Γ0

h

∫

e

{

(1 + cpn)
K

µ
∇pn+1 · n

}

[v] +
∑

e∈Γ0

h

∫

e

{

(1 + cpn)
K

µ
∇v · n

}

[pn+1]

+
∑

e∈Γ0

h

∫

e

σ

|e|
[pn+1][v] =

∑

E∈Th

∫

E

(1 + cpn)fn+1v.

(2.11)

Final numerical scheme: Denote pn+1

h as the numerical solution obtained by the

DG discretization, at time-step n + 1. Moving all the terms with unknowns to the

left-hand side of equation (2.11), all terms with known data to the right-hand side,
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and multiplying by ∆t, the final numerical scheme of equation (2.2) becomes

∑

E∈Th

∫

E

cφpn+1

h v +∆t
∑

E∈Th

∫

E

(1 + cpnh)
K

µ
∇pn+1

h · ∇v

−∆t
∑

e∈Γ0

h

∫

e

{

(1 + cpnh)
K

µ
∇pn+1

h · n

}

[v] + ∆t
∑

e∈Γ0

h

∫

e

{

(1 + cpnh)
K

µ
∇v · n

}

[pn+1

h ]

+∆t
∑

e∈Γ0

h

∫

e

σ

|e|
[pn+1

h ][v] = ∆t
∑

E∈Th

∫

E

(1 + cpnh)f
n+1v +

∑

E∈Th

∫

E

cφpnhv

(2.12)

2.3 ReservoirGrail: Equalization Rate

ReservoirGrail aims to simplify the oil reservoir model by introducing an artificial

parameter, called equalization (EQ) rate, whose purpose is to replace the physical

quantity K/µ, the permeability to viscosity ratio, present in the traditional model.

One of the goals of my research is to determine if there is a relationship between the

EQ rate and K/µ, and what the correlation is if it exists.

In order to determine this correlation, I first run the traditional model at fixed

permeability values, between 10mD and 1000mD. I then run ReservoirGrail at varied

EQ rates, from 0 to 1 in increments of 0.1, and save the results. I use three different

norms to calculate the error between the ReservoirGrail and traditional simulator

results: the ℓ1, ℓ2, and ℓ∞ norms, which are defined as:

For v =













v1
...

vn













∈ R
n : ||v||1 =

n
∑

i=1

|vi|,

||v||2 =

√

√

√

√

n
∑

i=1

v2i ,

||v||∞ = max
1≤i≤n

|vi|.
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To determine how well the results from the traditional model and ReservoirGrail

match each other, I generate the ℓ1, ℓ2, and ℓ∞ norm errors between the two sets

of results. For every test performed, tables of the generated results can be found in

appendix A. The “best match EQ rate” for each scenario is defined to be the EQ rate

that minimizes one of the three errors measured; the norm to minimize depends on

the scenario itself, and is determined on a case by case basis in Section 3.

2.4 Solution Conversion

The unknown in the PDE defined in Section 2.1 is pressure, p, which means the

generated solution will show the pressure distribution across each element in the

domain. However, ReservoirGrail generates solutions that depict the hydrocarbon

pore volume (HPV) in each element of the mesh. The HPV value in a cell gives

the amount of hydrocarbons present per square foot in the cell. In all of the tests

I perform in this thesis, oil is the only hydrocarbon present, meaning that the HPV

value is in units of barrels of oil per square foot, bbl/ft2; for more information on the

unit “barrel”, see Appendix B. To compare the results of both the traditional model

and ReservoirGrail, the solutions must be in the same units. I propose converting

both solutions to units of pounds (lbs) of oil, which can then be easily converted into

barrels if necessary.

Denote the mass of oil in an element E ⊂ R
2 at time tn by mn

E. In order to

convert pressure to mass with the traditional model, note the following mathematical

definition for the mass in an element E:

mn
E = D

∫

E

ρ(tn) dV,

where ρ is the density of the material in question in units of lbs/ft3, and D is the
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depth of the reservoir at element E in units of feet. Recall from Section 2.1 the ideal

fluid density approximation:

ρ(p(t)) = ρref(1 + cp(t)).

Therefore, calculating the mass in each element becomes equivalent to performing the

calculation

mn
E = D

∫

E

ρref(1 + cpn) dV (2.13)

The parameter ρref is the reference density, which is the density of the fluid at STP,

and c is the compressibility of the fluid. The solution p is post-processed in this

manner after solving the PDE system, to obtain a distribution of mass across the

domain.

Converting HPV to mass with ReservoirGrail’s results is more straightforward,

and only requires the introduction of several conversion factors. ReservoirGrail pro-

duces many different files once it is executed, one of which being the “TransHPV”

files. These files contain the solution output, in units of barrels of oil per square foot,

at reservoir conditions. Let h be the mesh spacing in units of feet, ρref be the reference

density of the oil at STP, and note that the conversion factor from bbl to ft3 is 5.614

ft3/bbl. Then, dimensional analysis shows that

[

HPVh2 ρref 5.614
ft3

bbl

]

=

[

bbl

ft2
ft2

lbs

ft3
ft3

bbl

]

= [lbs] .

Therefore, multiplying these parameters together will give a value in lbs of oil. How-

ever, since the HPV values are given in the setting of reservoir conditions, and the

density and conversion factor are given at STP, a final conversion factor of

1

1− cp̃
(2.14)
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is necessary, where p̃ is defined as the difference in pressure in psi between the subsea

reservoir and the sea-level platform that the oil is extracted to. Note that this con-

version factor in equation (2.14) assumes that the temperature does not change from

reservoir to standard conditions. Let pw be the pressure at the subsea well head, and

let ps be the sea level pressure; then, p̃ is defined as

p̃ = pw − ps.

The pressure at sea level is given as 14.7 psi; therefore, this equation becomes

p̃ = pw − 14.7,

where pw is a parameter that can be varied in both the traditional simulator and in

ReservoirGrail.

Define HPVE to be the reported HPV value in element E; then, the final conver-

sion from HPV to lbs of oil is given as

mE =
5.614HPVE h

2 ρref
1− cp̃

After these two conversions, the results of both simulators are compared directly.



29

Chapter 3

Results

The purpose of this chapter is to describe the tests I ran to compare the two simula-

tors, as well as to analyze and give an interpretation of the generated results. This

includes graphs of the error versus equalization rate, heatmaps of the distribution of

the error across the reservoir, and a localized 40 acre error analysis. I first layout

the general parameters used in both simulators in Section 3.1, and then present the

tests, their results, and my analysis as it pertains to the accuracy of ReservoirGrail

in Section 3.2.

3.1 Test Setup

In Section 3.1.1, I explain the techniques I use to analyze the data generated from

the different considered scenarios, including error calculations and interpretations. I

then discuss the parameters in both reservoirs that are held constant throughout the

simulations in Section 3.1.2, and give an explanation pertaining to their values.

3.1.1 Data Analysis

Once the results are obtained from both models for a given test scenario, I analyze

the data in three different ways in order to provide a well-rounded and informative

depiction of the results. These different analysis strategies I utilize are determined

by what would be the most helpful way to visualize the differences between the two

models, as well as by what features are important for industrial consideration.
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The first technique I use is different between the first reservoir scenario (single and

double producer) and the following scenarios (variable permeability and impermeable

barriers). With the first scenario, I provide graphs showing how the best match EQ

rate changes with the K/µ ratio, as well as showing how the ℓ1, ℓ2, and ℓ∞ percent

errors change with K/µ. With the other scenarios, I instead hold K/µ constant and

show graphs of the EQ rate vs. the ℓ1, ℓ2, and ℓ∞ percent errors. For the next data

analysis technique, I provide heatmaps of the percent error across the domain for the

best-mach EQ rate’s results, as well as a heatmap of error in terms of barrels of oil

(e.g., bbl error), in order to provide a global view of the discrepancies between the

two simulators.

These two tests are meant to compare the two models’ results in a straightfor-

ward manner; however, the final method I use to analyze the data is a 40 acre test,

which focuses on determining how accurate ReservoirGrail is in determining the oil

remaining in a given area around the well-head(s). I calculate this value by summing

the difference (without taking an absolute value) in the remaining oil between the

two models in a 40 acre area around the well-head(s) (equivalently, in a circle with

radius 750 feet centered at the well-head(s)).

3.1.2 Static Reservoir Variables

As most of the variables in the traditional and ReservoirGrail simulators do not change

across tests, it will be most beneficial to list these variables once and refer back to

them many times. Table 3.1 shows all of the variables used in the traditional model,

Table 3.2 shows all of the variables used in ResrevoirGrail, and Table 3.3 shows all of

the variables shared in both models.

The specific values for µ, c, and pinit in Table 3.1 were chosen in order to represent
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Traditional Model Variables Value

ρref 54.31 lbs/ft3

µ 10 cP

c 6.953932712× 10−6psi−1

pinit 2250 psi

f(tn+1) −3.251103483 (1 + cpn)−1 month−1

Table 3.1 : Variables and their values in the PDE model.

a realistic reservoir scenario. For more information on units and their realistic values,

see Appendix B. Note that a constant source function does not imply a constant

production rate, it implies a constant change in pressure across the domain: for this

reason, the source function given in Table 3.1 is time dependent. The specific values

in the source function were obtained in order to replicate the constant production

rate defined in Table 3.3.

ReservoirGrail Variables Value

Bo 1

1

Bg
1

So 1

Sg 0

Table 3.2 : Variables and their values in the agent-based model.

In Table 3.2, Bo is the oil formation factor, and Bg is the gas formation fac-

tor. These values represent the shrinkage/expansion factors from reservoir to surface
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conditions of oil and gas, respectively, due to both the compressibility of the two

hydrocarbons, as well as the amount of gas that is dissolved into the oil at reservoir

conditions. As the work done in this thesis assumes that there is no gas present in

the modeled reservoir, the value of Bg is irrelevant (and is therefore set to be 1), and

furthermore, the oil formation factor only takes into account the amount at which oil

expands as it is brought from reservoir to surface conditions due to its compressibility.

However, as discussed in Section 2.4, the conversion factor given in equation (2.14)

takes care of this consideration. Therefore, the value of Bo = 1 is given to model

oil that does not expand as it moves from reservoir to surface conditions, and this

expansion factor is taken care of after the simulation is complete with equation (2.14).

The variable So is the initial oil saturation in the reservoir, and is set to 1 in all of

the tests in order to model a reservoir full of oil, with no water or gas. Similarly, the

variable Sg represents the initial gas saturation of the reservoir, and is set to 0 in the

tests to model a reservoir with no gas present.

The production rate in Table 3.3 was obtained by assuming that 15% of the reser-

voir’s total available hydrocarbons are extracted in its first 10 years of production, or

equivalently, an extraction rate of 0.125% of the reservoir’s initial hydrocarbons every

month. This corresponds to the production rate in Table 3.3, under the assumption

of single phase flow.

Furthermore, a porosity of 1 was used throughout the simulations. For an expla-

nation and realistic values for φ, see Appendix B.

3.2 Computational Tests

I now go through the different reservoir scenarios that I tested, analyze the data as de-

scribed in Section 3.1.1, and provide an interpretation as to the degree of accuracy of
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Common Variables Value

φ 1

pw 2250 psi

D 10 ft

Length of simulation 11 months

Time-step 1 month

Domain (0, 2550)× (0, 2550) feet

Grid spacing 50 ft

Cell layout 51× 51

Production rate 14476.608 barrels of oil/month

Table 3.3 : Variables and their values that are common to both models.

the agent-based model. In Section 3.2.1, I test multiple reservoirs with varying homo-

geneous permeability values in the traditional model against reservoirs with varying

EQ rates in ReservoirGrail, in order to determine a correlation between permeability

and EQ rate. These tests are performed with both a single production well present, as

well as two production wells. From these tests, I begin testing more complex reservoir

scenarios: in Section 3.2.2, I test a reservoir with a permeability map that changes

quickly and to a large degree near the production well, and in Sections 3.2.3 and

3.2.4, I consider reservoirs with both impermeable barriers and variable permeability

across their domain. In Section 3.2.5, I consider single producer reservoirs with small

homogeneous permeability and EQ rate values, in order to explore the effect that

these small parameters have on the error between the two models. Finally, in Section

3.2.6 I consider the effects of computing solutions of two different reservoir setups on
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a refined mesh in the traditional model, and comparing them to the output generated

by ReservoirGrail on a standard mesh.

3.2.1 Single and Double Producers

Two simple reservoir scenarios were tested with both models, with the viscosity µ

being held constant, in order to determine a correlation between the EQ rate and

K/µ ratio, as well as to determine the accuracy of ReservoirGrail in comparison to

the traditional model. Since µ is constant in these tests, determining a correlation

between EQ rate and the permeability to viscosity ratio is equivalent to finding a

correlation between the EQ rate and permeability, K. The tests in this section

differed by the number and placement of production oil wells in the domain; figures

3.1 and 3.2 depict these two scenarios.

Figure 3.1 : Domain of oil reservoir for single producer test. The black dot marks the

location of the production oil well.
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Figure 3.2 : Domain of oil reservoir for double producer test. The black dots mark

the locations of the two production wells.

With the traditional model, permeability values of 10, 20, 30, 40, 50, 100, 200,

500, and 1000 mD were tested. For these simple reservoir setups with no additional

features, I decided that minimizing the global error (hence, the ℓ2 error) over the entire

domain is more important than minimizing either of the other two errors. Therefore,

for the single and double producer tests, I define the “best match EQ rate” to be the

EQ value that minimizes the ℓ2 error. Tables depicting the error values correlating

to each EQ rate for each permeability value can be found in appendix A; specifically,

tables A.1 through A.9 for the single producer tests, and tables A.10 through A.18

for the double producer tests.

Figure 3.3 shows the permeability vs. the ℓ2 error (in percentage form) between the

two models for the single-production scenario, and figure 3.4 shows the permeability
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vs. its best match equalization rate for the single-production scenario.

Figure 3.3 : Permeability value vs. ℓ2 error, in percentage, for a single production

well scenario. Note that the first data point is higher than the rest, and that the error

monotonically increases after the ratio climbs above 40mD. See tables A.1 through

A.9.

Note how the error is low for permeability values of 20, 30 and 40mD in figure

3.3, and starts to grow monotonically after that. This behavior can be understood

by considering figure 3.4, which shows that the best match EQ rate plateaus at a

value of 1 at and after the reservoir tests with a permeability of 40mD and above.

The reason for this sharp cutoff is that ReservoirGrail is programmed to not accept

EQ rates above 1; see Section 1.2.3 for more information about how the EQ rate

influences ReservoirGrail’s simulations.

Further note in figure 3.3 that while all of the error is less than 0.6% for the
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Figure 3.4 : Permeability value vs. best match EQ rate, for a single production well

scenario. Note that the best match EQ rate plateaus after the permeability climbs

above 40mD. See tables A.1 through A.9.

single producer test, a permeability value of 10mD gives an error that is relatively

high, in comparison to the other permeability values. It is possible that this point

is an outlier, and the high relative error is due to the coarse steps in EQ rate and

permeability that were taken for the reservoir tests. I explore this idea further in

Section 3.2.5 by “zooming in” on permeability values close to 10mD and EQ rates

close to 0.1, taking smaller steps in both parameters to attempt to explain this large

relative jump in error observed in figure 3.3.

Figure 3.5 shows the ℓ1 error in percentage form, and figure 3.6 shows ℓ∞ error

in percentage form, both for the single-production scenario. The same features are

apparent when the error is measured in these norms as well.
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Figure 3.5 : Permeability value vs. ℓ1 error, in percentage, for a single production

well scenario. Same behavior as depicted in figure 3.3. See tables A.1 through A.9.

The second scenario tested was one with two production wells, distributed across

the domain as in figure 3.2. All other variables remain the same, except that the

production rate for each well is half of that in the first test, in order to maintain the

same global production rate between the two tests.

Figure 3.7 shows the ratio vs. the ℓ2 error (in percentage form) between the two

models for the double-production scenario, and figure 3.8 shows the ratio vs. its best

match equalization rate for the double-production scenario. The same features are

present in these figures as in the single-production test: there is a relatively high error

for the permeability value of 10mD, and the best match equalization rate plateaus at

1.0 after a permeability value of 30mD, leading the to monotonically increasing error.

Again, the same features can be seen in the ℓ1 error plot, figure 3.9, and in the ℓ∞
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Figure 3.6 : Permeability value vs. ℓ∞ error, in percentage, for a single production

well scenario. Same behavior as depicted in figure 3.3. See tables A.1 through A.9.

error plot, figure 3.10.

In addition to viewing the percent ℓ1, ℓ2, and ℓ∞ errors and their corresponding

EQ rates, I plot the global error for both the single and double producer tests with a

permeability of K = 30mD (and corresponding EQ rate of 0.7 for the single producer

test, and 1.0 for the double producer test), in terms of percent error and bbl error.

This permeability was chosen as it is in the range of realistic values for oil reservoirs.

For the single producer test, figure 3.11 shows the percent error in the reservoir,

and figure 3.12 shows error in units of barrels of oil.

Similarly, for the double producer test, figure 3.13 shows the percent error in the

reservoir, and figure 3.14 shows the error in units of barrels of oil.

As discussed in Section 3.1.1, another metric I use to determine the difference
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Figure 3.7 : Permeability value vs. ℓ2 error, in percentage, for a double production

well scenario. Note that the first data point is higher than the rest, and that the error

monotonically increases after the permeability climbs above 30mD. See tables A.10

through A.18.

between the two reservoir models is the 40-acre test. I calculate the difference in

remaining oil between ReservoirGrail and the Darcy simulator, and sum up over cells

that are within a circle with a radius of 750 feet. Figure 3.15 shows in yellow the

cells that are considered in the single producer test, and figure 3.16 shows in yellow

the cells that are considered in the double producer test.

When the difference is calculated as described above, Table 3.4 shows that Reser-

voirGrail reports less remaining oil within 40 acres than the traditional model, by

at most 0.61% for permeability values at and above 20 mD. However, for a reservoir

with a permeability of 10 mD, ReservoirGrail reports more remaining oil within 40
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Figure 3.8 : Permeability value vs. best match EQ rate, for a double production well

scenario. Note that the best match EQ rate plateaus after the permeability climbs

above 30mD. See tables A.10 through A.18.

acres than the traditional model by 0.58%.

Similarly to Table 3.4, Table 3.5 show that ReservoirGrail underestimates the

amount of remaining oil within 40 acres of either of the two wells by at most 0.37% for

permeability values at and above 20 mD, and overestimates the amount of remaining

oil by 0.23% for a reservoir with permeability of 10 mD.

3.2.2 Varied Permeability

Section 3.2.1 shows that for simple reservoir setups, there is a very low difference

between the results produced by ReservoirGrail and the Darcy simulator. The pur-

pose of this next test and the tests in Sections 3.2.3 and 3.2.4 are to start stressing
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Figure 3.9 : Permeability value vs. ℓ1 error, in percentage, for a double production

well scenario. Same behavior as depicted in figure 3.7. See tables A.10 through A.18.

the simulators by adding in features that are common in realistic oil reservoirs. The

varied permeability reservoir has a well centered in the domain as before in the single

producer test, but now includes a permeability profile that changes across the domain.

Figure 3.17 shows this domain: the green cells represent areas with a permeability of

200 mD, and white cells represent areas with a permeability of 10 mD.

Other than the permeability and equalization rate, all of the variables used in

both the traditional model and ReservoirGrail are listed in tables 3.1, 3.2, and 3.3.

For this setup, minimizing the local error (hence, the ℓ∞ error) was instead deter-

mined to be the appropriate metric to analyze the accuracy of ReservoirGrail, in order

to control the error along the permeability interface and around the well-head. An

equalization rate of 0.1 in ReservoirGrail was determined to give the closest results;
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Figure 3.10 : Permeability value vs. ℓ∞ error, in percentage, for a double production

well scenario. Same behavior as depicted in figure 3.7. See tables A.10 through A.18.

see Table A.19. Table 3.6 shows the ℓ∞, ℓ2, and ℓ1 norm errors in percentage form of

the varied permeability test, figure 3.18 shows the error “heat-map” in percent error,

and figure 3.19 shows the same heat-map in terms of barrels of oil.

Although the errors in this test are higher than in the single and double producer

tests in Section 3.2.1, this is to be expected, as the overall complexity of the reservoir

has increased by considering varied permeability values across the domain. This being

said, even along the interface of the permeability discontinuity where one would expect

a larger discrepancy to occur, the difference is still extremely low (between 1%-2%

difference).

Finally, the error between the amount of oil remaining in a 40 acre area around

the well head in the two models is considered, for an EQ rate of 0.1. Table 3.7
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Figure 3.11 : Cell by cell percent error of the single producer test.

shows that the discrepancy between the two simulators for this analysis technique is

approximately 0.01%.

3.2.3 Impermeable Barrier with Single Producer

Another feature that consistently show up in oil reservoirs are impermeable barriers,

which no fluid can flow through. This thesis will compare results between the two

simulators when such a barrier is introduced to the domain. I first show several

sets of results for domains with a single barrier present to the left of the well, vary

the permeability values uniformly across the domain. Next, I depict the results of

a scenario with two such barriers present with a single oil well with homogeneous

permeability. Finally, I present two sets of results depicting a domain with two

barriers, two wells, and varied permeability; in the first test, the second barrier is to
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Figure 3.12 : Cell by cell barrels of oil error of the single producer test.

the left of both production wells, and in the second test, this barrier is moved so that

it is splitting in between the two wells.

The way that ReservoirGrail models an impermeable barrier is by considering

a line between specified points in the domain, and severing the connections between

nodes that this line passes between, ensuring that the agents can no longer move freely

between the nodes; see figure 3.20. In general, this allows for the modeling of one

dimensional barriers in ReservoirGrail. The traditional model being utilized, how-

ever, has difficulty modeling one dimensional barriers; as such, only two dimensional

barriers will be considered in this thesis.

In order to model a two dimensional barrier in ReservoirGrail, the specified line

must pass directly through the nodes, which severs connections to that node from all of

its neighbors; see figure 3.21. Analogously, modeling a two dimensional barrier in the
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Figure 3.13 : Cell by cell percent error of the double producer test.

traditional model consists of removing elements from the domain in consideration, and

assigning no-flow (that is, 0 Neumann) boundary conditions to the inner boundary.

Figure 3.22 shows the domain of this test, where the red elements represent the

location of the barrier.

Three different permeability values for the reservoir were considered and tested:

30, 50, and 100 mD. The remaining variables are listed in tables 3.1, 3.2, and 3.3.

For this setup, minimizing the local error (hence, the ℓ∞ error) was determined to be

the appropriate metric to analyze the accuracy of ReservoirGrail, in order to control

the error along the impermeable barrier and around the well-head. The different

permeability values are considered independently, in the three different sections below.
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Figure 3.14 : Cell by cell barrels of oil error of the double producer test.

Permeability: 30mD

The results for the single barrier, 30 mD test are now shown.

The permeability of 30 mD corresponded to a best-match equalization rate of 0.4;

see Table A.20. Table 3.8 shows the ℓ∞, ℓ2, and ℓ1 norm errors in percentage form.

Further, figure 3.23 shows the error heat map in terms of percent error, and figure

3.24 shows the error heat map in terms of barrels of oil. Note that the error is highest

around the well in the center (which is to be expected), and is relatively low around

the barrier.

Finally, the error between the amount of oil remaining in a 40 acre area around

the well head in the two models is considered, for an EQ rate of 0.4. Table 3.9 shows

that the two models differ by 0.11% in terms of total oil remaining, within 40 acres

of the well.
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Figure 3.15 : Domain of 40 acre test with a single well. An area of 40 acres corresponds

to a circle with radius 750 feet.

Permeability: 50mD

The results for the single barrier, 50 mD test are now shown.

The permeability of 50 mD corresponded to a best-match equalization rate of 1.0;

see Table A.21 for more details. Table 3.10 shows the ℓ∞, ℓ2, and ℓ1 norm errors in

percentage form. Further, figure 3.25 shows the error heat map in terms of percent

error, and figure 3.26 shows the error heat map in terms of barrels of oil. Note that

the error is highest around the well in the center (which is to be expected), and is

relatively low around the barrier. It is worth mentioning that although the maximum

error increases from the 30mD case by approximately 0.7%, this is localized to near

the well head; the error across the rest of the domain is still on the same order as

before.
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Figure 3.16 : Domain of 40 acre test with a single well. An area of 40 acres corresponds

to a circle with radius 750 feet.

Finally, the error between the amount of oil remaining in a 40 acre area around

the well head in the two models is considered, for an EQ rate of 1.0. Table 3.11 shows

that the two models differ by 0.21% in terms of total oil remaining, within 40 acres

of the well.

Permeability: 100mD

The results for the single barrier, 100 mD test are now shown.

The permeability of 100 mD corresponded to a best-match equalization rate of

1.0; see Table A.22 for more details. Table 3.12 shows the ℓ∞, ℓ2, and ℓ1 norm errors

in percentage form. Further, figure 3.27 shows the error heat map in terms of percent

error, and figure 3.28 shows the error heat map in terms of barrels of oil. Note that
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K(mD) EQ Difference (bbl) Avg Diff (bbl/cell) Difference (%)

10 0.1 -20687 -29.7 0.58%

20 0.2 2302 3.3 0.06%

30 0.7 2827 4.1 0.08%

40 1.0 5135 7.4 0.14%

50 1.0 8664 12.4 0.24%

100 1.0 15782 22.6 0.43%

200 1.0 19349 27.8 0.53%

500 1.0 21491 30.8 0.59%

1000 1.0 22205 31.9 0.61%

Table 3.4 : The difference between Darcy’s law simulator and ReservoirGrail, for a

single well. A positive difference implies that the traditional simulator reports more

remaining oil than ReservoirGrail does.

the error is highest around the well in the center (which is to be expected), and is

relatively low around the barrier, which is analogous to the results of the 30mD and

50mD tests.

Finally, the error between the amount of oil remaining in a 40 acre area around

the well head in the two models is considered, for an EQ rate of 1.0. Table 3.13 shows

that the two models differ by 0.48% in terms of total oil remaining, within 40 acres of

the well. While this is higher than both the 30mD and 50mD test, it is still extremely

low.



51

K(mD) EQ Difference (bbl) Avg Diff (bbl/cell) Difference (%)

10 0.1 -12020 -10.0 0.23%

20 0.3 2714 2.3 0.05%

30 1.0 1939 1.6 0.04%

40 1.0 6430 5.0 0.12%

50 1.0 9186 7.7 0.17%

100 1.0 14763 12.3 0.28%

200 1.0 17562 14.7 0.33%

500 1.0 19245 16.1 0.36%

1000 1.0 19806 16.5 0.37%

Table 3.5 : The difference between Darcy’s law simulator and ReservoirGrail, for

two wells. A positive difference implies that the traditional simulator reports more

remaining oil than ReservoirGrail does.

Norm Percent Error

∞ 3.52%

2 1.21%

1 0.94%

Table 3.6 : Percent errors for the varied permeability test. Note that while the values

are slightly higher than in Section 3.2.1, they are still relatively low.
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Figure 3.17 : The domain for the varied permeability test. The green area has a

permeability of 200mD, while the white area has a permeability of 10mD.

Difference (bbl) Average Difference (bbl/cell) Difference (%)

263 0.38 0.01%

Table 3.7 : The difference between the traditional and ReservoirGrail simulators,

for the variable permeability test. A positive difference implies that the traditional

simulator reports more remaining oil than ReservoirGrail does.

3.2.4 Double Impermeable Barrier

I now turn my attention to domains with two impermeable barriers present. I first

consider a scenario with a single producer with barriers the the left and top of the

production well and homogenous permeability, then consider two cases with two pro-



53

Figure 3.18 : Cell by cell percent error of varied permeability test.

Norm Percent Error

∞ 0.66%

2 0.15%

1 0.13%

Table 3.8 : Percent errors for the single barrier, 30 mD test. Note that while the

values are slightly higher than in Section 3.2.1, they are still relatively low.

duction wells and variable permeability, one of which has the same barrier setup as

the single producer test, and one with a barrier present in between the two production

wells.
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Figure 3.19 : Cell by cell barrels of oil error of varied permeability test.

Figure 3.20 : Connectivity between the large, green central cell and its neighbors, with

a red barrier severing some of the original connections. In this example, ReservoirGrail

models the barrier as a one dimensional object.
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Figure 3.21 : Connectivity between the two large green cells and their neighbors, with

a barrier severing some of their connections. In this example, ReservoirGrail models

the barrier as a two dimensional object, as the red cells in the middle are essentially

removed from the simulation.

Difference (bbl) Average Difference (bbl/cell) Difference (%)

3859 5.62 0.11%

Table 3.9 : The difference between the traditional and ReservoirGrail simulators,

for the single barrier, 30 mD test. A positive difference implies that the traditional

simulator reports more remaining oil than ReservoirGrail does.

Single Producer

Figure 3.29 shows the domain of this test, where the red elements represent the

location of the barrier. A permeability value of 30 mD was selected for this test.

The remaining variables are listed in tables 3.1, 3.2, and 3.3. As in the previous

impermeable barrier tests, a high relative error is observed around the barrier itself,
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Figure 3.22 : The domain for the single barrier test. Red cells represent the location

of the barrier.

Norm Percent Error

∞ 1.35%

2 0.22%

1 0.19%

Table 3.10 : Percent errors for the single barrier, 50 mD test.

in every EQ rate comparison. Therefore, minimizing the error along the barrier

(hence, the ℓ∞ norm) is determined to be the metric for this reservoir test.

This test setup corresponded to a best-match equalization rate of 0.3; see Table

A.23 for additional details. Table 3.14 shows the ℓ∞, ℓ2, and ℓ1 norm errors in

percentage form. Further, figure 3.30 shows the error heat map in terms of percent
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Figure 3.23 : Cell by cell percent error of the single barrier, 30 mD test.

Difference (bbl) Average Difference (bbl/cell) Difference (%)

7543 10.99 0.21%

Table 3.11 : The difference between the traditional and ReservoirGrail simulators,

for the single barrier, 50 mD test. A positive difference implies that the traditional

simulator reports more remaining oil than ReservoirGrail does.

error, and figure 3.31 shows the error heat map in terms of barrels of oil. Note that

the areas of highest error in the domain are near the well in the center and along

both of the barriers, which is to be expected.

Finally, the error between the amount of oil remaining in a 40 acre area around

the well head in the two models is considered, for an EQ rate of 0.3. Table 3.15 shows

that the two models differ by 0.05% in terms of total oil remaining, within 40 acres
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Figure 3.24 : Cell by cell barrels of oil error of the single barrier, 30 mD test.

Norm Percent Error

∞ 3.12%

2 0.44%

1 0.36%

Table 3.12 : Percent errors for the single barrier, 100 mD test.

of the well.

Double Producer, with Left Barrier and Varied Permeability

Figure 3.32 shows the domain of this test. Varied permeability values of 10 mD,

100 mD, and 1000 mD were used in this simulation, again shown in figure 3.32.

The remaining variables are listed in tables 3.1, 3.2, and 3.3. As in the previous
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Figure 3.25 : Cell by cell percent error of the single barrier, 50 mD test.

Difference (bbl) Average Difference (bbl/cell) Difference (%)

17331 25.26 0.48%

Table 3.13 : The difference between the traditional and ReservoirGrail simulators,

for the single barrier, 100 mD test. A positive difference implies that the traditional

simulator reports more remaining oil than ReservoirGrail does.

impermeable barrier tests, a high relative error is observed around the barriers, in

every EQ rate comparison. Therefore, minimizing the error along the barrier (hence,

the ℓ∞ norm) is determined to be the metric for this reservoir test.

This test setup corresponded to a best-match equalization rate of 0.3; see Table

A.24 for additional details. Table 3.16 shows the ℓ∞, ℓ2, and ℓ1 norm errors in

percentage form. Further, figure 3.33 shows the error heat map in terms of percent
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Figure 3.26 : Cell by cell barrels of oil error of the single barrier, 50 mD test.

Norm Percent Error

∞ 0.64%

2 0.19%

1 0.16%

Table 3.14 : Percent errors for the double barrier, single producer test.

error, and figure 3.34 shows the error heat map in terms of barrels of oil. Note that

the areas of highest error in the domain are near the production wells, as is to be

expected.

Finally, the error between the amount of oil remaining in a 40 acre area around

the well head in the two models is considered, for an EQ rate of 0.3. Table 3.17 shows

that the two models differ by 0.18% in terms of total oil remaining, within 40 acres
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Figure 3.27 : Cell by cell percent error of the single barrier, 100 mD test.

Difference (bbl) Average Difference (bbl/cell) Difference (%)

1690 2.46 0.05%

Table 3.15 : The 40 acre difference between the traditional and ReservoirGrail simu-

lators, for the double barrier, single producer test. A positive difference implies that

the traditional simulator reports more remaining oil than ReservoirGrail does.

of the well.

Double Producer, with Central Barrier and Varied Permeability

Figure 3.35 shows the domain of this test. Varied permeability values of 10 mD,

100 mD, and 1000 mD were used in this simulation, again shown in figure 3.35.

The remaining variables are listed in tables 3.1, 3.2, and 3.3. As in the previous
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Figure 3.28 : Cell by cell barrels of oil error of the single barrier, 100 mD test.

Norm Percent Error

∞ 4.54%

2 0.75%

1 0.44%

Table 3.16 : Percent errors for the double barrier, double producer, varied permeabil-

ity test, with a left barrier.

impermeable barrier tests, a high relative error is observed around the barriers, in

every EQ rate comparison. Therefore, minimizing the error along the barrier (hence,

the ℓ∞ norm) is determined to be the metric for this reservoir test.

This test setup corresponded to a best-match equalization rate of 0.4; see Table

A.25 for additional details. Table 3.18 shows the ℓ∞, ℓ2, and ℓ1 norm errors in
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Figure 3.29 : The domain for the double barrier, single producer test. Red cells

represent the location of the barrier.

Difference (bbl) Average Difference (bbl/cell) Difference (%)

9333 13.60 0.18%

Table 3.17 : The 40 acre difference between the traditional and ReservoirGrail sim-

ulators, for the double barrier, double producer, varied permeability test, with a left

barrier. A positive difference implies that the traditional simulator reports more

remaining oil than ReservoirGrail does.

percentage form. Further, figure 3.36 shows the error heat map in terms of percent

error, and figure 3.37 shows the error heat map in terms of barrels of oil. Again, note

that the areas of highest error in the domain are near the production wells, as is to

be expected. Furthermore, the ℓ∞ error in this test is approximately 1.5% less than



64

Figure 3.30 : Cell by cell percent error of the double barrier, single producer test.

the ℓ∞ error in the central barrier test.

Norm Percent Error

∞ 2.97%

2 0.50%

1 0.37%

Table 3.18 : Percent errors for the double barrier, double producer, varied permeabil-

ity test, with a central barrier.

Finally, the error between the amount of oil remaining in a 40 acre area around

the well head in the two models is considered, for an EQ rate of 0.4. Table 3.19 shows

that the two models differ by 0.12% in terms of total oil remaining, within 40 acres



65

Figure 3.31 : Cell by cell barrels of oil error of the double barrier, single producer

test.

of the well.

Difference (bbl) Average Difference (bbl/cell) Difference (%)

6225 9.07 0.12%

Table 3.19 : The 40 acre difference between the traditional and ReservoirGrail sim-

ulators, for the double barrier, double producer, varied permeability test, with a

central barrier. A positive difference implies that the traditional simulator reports

more remaining oil than ReservoirGrail does.
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Figure 3.32 : The domain for the double barrier, double producer test with varied

permeability and a barrier to the left of both production wells.

3.2.5 Small Permeability and EQ Rate Tests

As depicted in figures 3.3, 3.5, and 3.6, and discussed briefly in Section 3.2.1, a low

permeability value of 10mD leads to a higher relative error when compared to the

error generated by reservoirs with larger permeability values. This section will show

that this high relative error is due to the coarse EQ rate steps taken in previous

tests, and not due to the divergence of the two models as permeability and EQ rate

decrease.

I first consider a reservoir with permeability of 10mD, and EQ rates of 0.00, 0.04,

0.07, 0.10, 0.13, and 0.16, with a domain given in figure 3.1. This is done in order

to compare results from this test to results generated in Section 3.2.1, where a 10mD

reservoir was also tested, but with a coarser EQ rate step of 0.1. I will show error in
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Figure 3.33 : Cell by cell percent error of the double barrier, double producer, varied

permeability test, with a left barrier.

the ℓ∞ norm, in order to more effectively demonstrate the difference that a smaller

EQ rate step makes; however, Table A.27 shows results for the ℓ2 and ℓ1 errors as

well, which depict the same behavior.

Figure 3.38 shows the results of this test. Furthermore, figure 3.39 shows how the

ℓ∞ error changes based on the step size of EQ rate. The data in this figure is cutoff

after the 40mD test, in order to provide a closer look at this range of K values.

If an EQ rate step of 0.1 is taken as in Section 3.2.1, the best match EQ rate for

this domain is 0.1, which leads to an ℓ∞ error of approximately 4.78%. This is much

higher than the errors generated for the 20, 30, and 40mD tests, all of which are

below 1% ℓ∞ error. However, if a smaller EQ rate step is taken, the best match EQ

rate is 0.04, which corresponds to an ℓ∞ error of 2.43%; as this error is much closer
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Figure 3.34 : Cell by cell barrels of oil error of the double barrier,double producer,

varied permeability test, with a left barrier.

to the errors generated by the 20, 30, and 40mD tests in Section 3.2.1, this implies

that the high relative error depicted in figure 3.6 is due to a coarse EQ rate step, and

not due to any kind of divergence between the two simulators.

I also ran this test with permeability values of 8mD and 12mD, in order to show

that the same results hold if the permeability is slightly modified. I again use the

ℓ∞ error to show my result with more clarity, but tables A.26 and A.28 shows results

for the ℓ2 and ℓ1 errors as well, where the same behavior holds. Figure 3.40 shows

the EQ rate vs. ℓ∞ error generated for an 8mD reservoir, and analogously, figure ??

shows the EQ rate vs. ℓ∞ error generated for a 12mD reservoir. In both cases, note

that a lower error is attainable when smaller EQ rate steps are taken, as shown in

the 10mD test.
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Figure 3.35 : The domain for the double barrier, double producer test with varied

permeability and a barrier in between both production wells.

3.2.6 Refined Mesh Tests

All of the previous tests have been performed on a mesh that is 51× 51, as depicted

in figures 3.1 and 3.2. To determine the effect that a more refined mesh has on

the resulting difference between the traditional model and ReservoirGrail, results are

generated using the traditional model and a mesh that is 102 × 102 with half the

spacing between cells. Once these results are obtained, the generated 102 × 102

matrix containing the mass in each element is converted into a 51 × 51 matrix, in

order to compare results with ReservoirGrail. To perform this conversion, the 102×

102 matrix is broken up into distinct 2 × 2 sub-matrices, each of whose entry-wise

sum corresponds to the mass in an element in the 51 × 51 mesh. As an example,

the mass of the elements in the 102 × 102 mesh with coordinates (0, 25) × (0, 25),
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Figure 3.36 : Cell by cell percent error of the double barrier, double producer, varied

permeability test, with a central barrier.

(0, 25)× (25, 50), (25, 50)× (0, 25), and (25, 50)× (25, 50) are summed to obtain the

mass in the (0, 50) × (0, 50) section of the domain, which is then compared to the

mass reported by ReservoirGrail in the same (0, 50)× (0, 50) section of the domain.

Two reservoirs are considered with refined meshes: a domain with a single pro-

duction well and a constant permeability of 30mD, analogous to tests performed in

Section 3.2.1, and a domain with a single production well, constant permeability of

30mD, and an impermeable barrier to the left of the well, analogous to tests performed

in Section 3.2.3. Figure 3.42 shows the domain used in this first test.

As in Section 3.2.1, the ℓ2 error was deemed to be the most important error metric

in this test, so the best-match EQ rate is defined in this case to be the EQ rate which

minimizes the ℓ2 difference between the two models. This test setup corresponded to
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Figure 3.37 : Cell by cell barrels of oil error of the double barrier,double producer,

varied permeability test, with a central barrier.

a best-match EQ rate of 0.7, which matches the best-match EQ rate obtained when

simulating with the coarser 51 × 51 mesh. Figure 3.43 shows the EQ rate vs. %ℓ2

error, for the test with the coarse mesh, as well as the test with the finer mesh.

Table 3.20 shows the ℓ∞, ℓ2, and ℓ1 norm errors in percentage form. Note that

although simulating with a finer mesh reduces the ℓ∞ difference slightly between the

two models, there is no other significant change between the two sets of results.

Figure 3.44 shows the domain used in the second test with the refined mesh, which

contains an impermeable barrier to the left of the well, analogous to tests performed

in Section 3.2.3.

As in Section 3.2.3, the ℓ∞ error was deemed to be the most important error metric

in this test, so the best-match EQ rate is defined in this case to be the EQ rate which
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Figure 3.38 : EQ rate vs. ℓ∞ error of the 10mD permeability test.

Norm Percent Error, 51× 51 Mesh Percent Error, 102× 102 Mesh

∞ 0.96% 0.92%

2 0.10% 0.10%

1 0.08% 0.08%

Table 3.20 : Percent errors for the constant permeability of 30mD test, with both a

coarse and fine mesh.

minimizes the ℓ∞ difference between the two models. This test setup corresponded to

a best-match EQ rate of 0.4, which matches the best-match EQ rate obtained when

simulating with the coarser 51 × 51 mesh. Figure 3.45 shows the EQ rate vs. %ℓ∞

error, for the test with the coarse mesh, as well as the test with the finer mesh.

Table 3.21 shows the ℓ∞, ℓ2, and ℓ1 norm errors in percentage form. Although the
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Figure 3.39 : Comparison between ℓ∞ error when a coarse EQ rate step is used vs. a

finer step.

finer mesh gives a slightly higher ℓ∞ difference with this setup, the change is small.

Norm Percent Error, 51× 51 Mesh Percent Error, 102× 102 Mesh

∞ 0.66% 0.69%

2 0.15% 0.15%

1 0.13% 0.13%

Table 3.21 : Percent errors for the single fault test, with both a coarse and fine mesh.
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Figure 3.40 : EQ rate vs. ℓ∞ error of the 8mD permeability test.

Figure 3.41 : EQ rate vs. ℓ∞ error of the 12mD permeability test.
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Figure 3.42 : Domain for the refined mesh test, with constant 30mD permeability.

Figure 3.43 : Relationship between EQ rate and %ℓ2 difference between the simula-

tors, for the coarse and fine mesh; see table A.29 for more details.
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Figure 3.44 : Domain for the refined mesh test, with constant 30mD permeability

and a single barrier.
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Figure 3.45 : Relationship between EQ rate and %ℓ2 difference between the simu-

lators, for the coarse and fine mesh with a single barrier; see table A.30 for more

details.
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Chapter 4

Future Work

4.1 Future Work

I have shown that a specific agent-based model (ReservoirGrail) when applied to

simple oil reservoir scenarios gives results that differ by no more than 0.6% than the

results obtained through a traditional model, when error is measured in ℓ2. Similarly

low error is obtained when measuring error in the ℓ1 and ℓ∞ norms, with differences

of no more than 0.4% in ℓ1, and no more than 5.4% in ℓ∞. Similar results are

obtained when the simulators are tested with domains with varied permeability and

impermeable barriers: ℓ2 errors of 1.21% for the varied permeability domain and

0.75% for the impermeable barrier domains are observed. In addition to this, I have

also shown that there is a correlation between ReservoirGrail’s artificial parameter,

equalization rate, and the physical ratio present in traditional models, K/µ, and

have further demonstrated that this relationship is more sensitive when considering

reservoirs with permeability values less than 10mD.

From this point, there are multiple avenues for future directions of research in this

project. Obtaining a more precise equalization rate to K/µ ratio correlation would

allow for a more precise correspondence between physical reservoir parameter’s and

ReservoirGrail’s EQ rate. Furthermore, introducing 2 and 3 phase flow comparisons to

ReservoirGrail would allow for more realistic scenarios, and would either provide more

confidence in ReservoirGrail’s results or suggest areas of improvement. In addition,
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comparing to ReservoirGrail’s results to those of a 2 phase flow simulator would

allow for the scenario of multiple production and injection wells running in the same

reservoir, which is a very common practice in industry.
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Appendices
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Appendix A

Tables for Reservoir Tests

This appendix has the raw data used to determine the figures in Sections 3.2.1, 3.2.2,

3.2.3, 3.2.4, 3.2.5, and 3.2.6.

EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.39% 0.80% 30.14%

0.1 0.37% 0.55% 4.77%

0.2 0.42% 0.70% 6.77%

0.3 0.46% 0.80% 7.82%

0.4 0.50% 0.88% 8.39%

0.5 0.54% 0.93% 8.74%

0.6 0.57% 0.98% 9.00%

0.7 0.60% 1.01% 9.20%

0.8 0.62% 1.05% 9.35%

0.9 0.64% 1.07% 9.48%

1.0 0.66% 1.09% 9.58%

Table A.1 : Error comparisons between different EQ rates, for the single producer

scenario with permeability 10mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.15% 0.92% 36.97%

0.1 0.08% 0.21% 2.85%

0.2 0.05% 0.08% 0.86%

0.3 0.06% 0.11% 1.74%

0.4 0.09% 0.17% 2.25%

0.5 0.12% 0.22% 2.59%

0.6 0.14% 0.26% 2.83%

0.7 0.17% 0.30% 3.01%

0.8 0.19% 0.33% 3.16%

0.9 0.21% 0.35% 3.28%

1.0 0.22% 0.38% 3.37%

Table A.2 : Error comparisons between different EQ rates, for the single producer

scenario with permeability 20mD.



83

EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.28% 1.09% 39.43%

0.1 0.24% 0.47% 5.31%

0.2 0.21% 0.32% 2.51%

0.3 0.17% 0.24% 1.46%

0.4 0.13% 0.18% 0.90%

0.5 0.11% 0.14% 0.54%

0.6 0.09% 0.11% 0.78%

0.7 0.08% 0.103*% 0.96%

0.8 0.07% 0.104*% 1.11%

0.9 0.07% 0.11% 1.22%

1.0 0.08% 0.12% 1.32%

Table A.3 : Error comparisons between different EQ rates, for the single producer

scenario with permeability 30mD.

*: Three decimal places were given here in order to show which EQ rate minimized the

given norm; with only two decimal places, this determination would be non-unique.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.38% 1.20% 40.70%

0.1 0.34% 0.62% 6.58%

0.2 0.30% 0.47% 3.78%

0.3 0.27% 0.38% 2.73%

0.4 0.23% 0.31% 2.17%

0.5 0.20% 0.26% 1.81%

0.6 0.17% 0.22% 1.55%

0.7 0.15% 0.19% 1.36%

0.8 0.13% 0.16% 1.20%

0.9 0.11% 0.14% 1.08%

1.0 0.10% 0.12% 0.98%

Table A.4 : Error comparisons between different EQ rates, for the single producer

scenario with permeability 40mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.44% 1.27% 41.48%

0.1 0.40% 0.71% 7.36%

0.2 0.36% 0.56% 4.57%

0.3 0.33% 0.47% 3.51%

0.4 0.29% 0.40% 2.95%

0.5 0.26% 0.35% 2.59%

0.6 0.23% 0.30% 2.34%

0.7 0.20% 0.27% 2.14%

0.8 0.18% 0.24% 1.98%

0.9 0.16% 0.21% 1.86%

1.0 0.15% 0.19% 1.76%

Table A.5 : Error comparisons between different EQ rates, for the single producer

scenario with permeability 50mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.56% 1.41% 43.13%

0.1 0.53% 0.89% 9.01%

0.2 0.49% 0.74% 6.22%

0.3 0.45% 0.65% 5.17%

0.4 0.41% 0.58% 4.60%

0.5 0.38% 0.52% 4.25%

0.6 0.35% 0.48% 3.99%

0.7 0.32% 0.44% 3.79%

0.8 0.30% 0.41% 3.64%

0.9 0.28% 0.38% 3.51%

1.0 0.27% 0.36% 3.41%

Table A.6 : Error comparisons between different EQ rates, for the single producer

scenario with permeability 100mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.62% 1.49% 44.07%

0.1 0.59% 0.98% 9.95%

0.2 0.55% 0.83% 7.16%

0.3 0.51% 0.74% 6.11%

0.4 0.47% 0.67% 5.54%

0.5 0.44% 0.61% 5.19%

0.6 0.41% 0.57% 4.93%

0.7 0.38% 0.53% 4.73%

0.8 0.36% 0.50% 4.58%

0.9 0.34% 0.47% 4.45%

1.0 0.33% 0.45% 4.35%

Table A.7 : Error comparisons between different EQ rates, for the single producer

scenario with permeability 200mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.66% 1.54% 44.76%

0.1 0.62% 1.03% 10.63%

0.2 0.59% 0.89% 7.84%

0.3 0.55% 0.79% 6.79%

0.4 0.51% 0.72% 6.23%

0.5 0.48% 0.67% 5.87%

0.6 0.45% 0.62% 5.61%

0.7 0.42% 0.59% 5.42%

0.8 0.40% 0.55% 5.26%

0.9 0.38% 0.53% 5.13%

1.0 0.36% 0.50% 5.03%

Table A.8 : Error comparisons between different EQ rates, for the single producer

scenario with permeability 500mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.67% 1.56% 45.04%

0.1 0.64% 1.05% 10.92%

0.2 0.60% 0.91% 8.13%

0.3 0.56% 0.81% 7.07%

0.4 0.52% 0.74% 6.51%

0.5 0.49% 0.69% 6.15%

0.6 0.46% 0.64% 5.90%

0.7 0.43% 0.60% 5.70%

0.8 0.41% 0.57% 5.54%

0.9 0.39% 0.54% 5.42%

1.0 0.37% 0.52% 5.32%

Table A.9 : Error comparisons between different EQ rates, for the single producer

scenario with permeability 1000mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.29% 0.59% 16.30%

0.1 0.26% 0.33% 1.99%

0.2 0.30% 0.44% 2.94%

0.3 0.34% 0.51% 3.40%

0.4 0.38% 0.56% 3.68%

0.5 0.41% 0.60% 3.86%

0.6 0.44% 0.64% 3.99%

0.7 0.46% 0.66% 4.09%

0.8 0.48% 0.69% 4.17%

0.9 0.50% 0.71% 4.23%

1.0 0.51% 0.72% 4.28%

Table A.10 : Error comparisons between different EQ rates, for the double producer

scenario with permeability 10mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.18% 0.71% 19.53%

0.1 0.13% 0.21% 1.67%

0.2 0.10% 0.12% 0.32%

0.3 0.08% 0.10% 0.69%

0.4 0.08% 0.11% 0.94%

0.5 0.09% 0.14% 1.11%

0.6 0.10% 0.16% 1.23%

0.7 0.12% 0.18% 1.33%

0.8 0.14% 0.20% 1.40%

0.9 0.15% 0.22% 1.46%

1.0 0.16% 0.23% 1.50%

Table A.11 : Error comparisons between different EQ rates, for the double producer

scenario with permeability 20mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.31% 0.84% 20.75%

0.1 0.26% 0.39% 2.85%

0.2 0.22% 0.29% 1.46%

0.3 0.18% 0.23% 0.93%

0.4 0.15% 0.18% 0.66%

0.5 0.12% 0.15% 0.48%

0.6 0.10% 0.12% 0.35%

0.7 0.08% 0.11% 0.36%

0.8 0.07% 0.093*% 0.43%

0.9 0.07% 0.087*% 0.49%

1.0 0.07% 0.086*% 0.54%

Table A.12 : Error comparisons between different EQ rates, for the double producer

scenario with permeability 30mD.

*: Three decimal places were given here in order to show which EQ rate minimized the

given norm; with only two decimal places, this determination would be non-unique.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.38% 0.92% 21.39%

0.1 0.34% 0.50% 3.47%

0.2 0.30% 0.39% 2.07%

0.3 0.26% 0.33% 1.55%

0.4 0.22% 0.28% 1.27%

0.5 0.19% 0.24% 1.10%

0.6 0.17% 0.21% 0.97%

0.7 0.15% 0.18% 0.87%

0.8 0.13% 0.16% 0.80%

0.9 0.11% 0.14% 0.73%

1.0 0.10% 0.13% 0.68%

Table A.13 : Error comparisons between different EQ rates, for the double producer

scenario with permeability 40mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.43% 0.97% 21.78%

0.1 0.39% 0.56% 3.85%

0.2 0.35% 0.46% 2.46%

0.3 0.31% 0.39% 1.93%

0.4 0.27% 0.34% 1.66%

0.5 0.24% 0.30% 1.48%

0.6 0.22% 0.27% 1.35%

0.7 0.19% 0.24% 1.26%

0.8 0.17% 0.22% 1.18%

0.9 0.16% 0.20% 1.12%

1.0 0.14% 0.18% 1.06%

Table A.14 : Error comparisons between different EQ rates, for the double producer

scenario with permeability 50mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.53% 1.07% 22.63%

0.1 0.49% 0.69% 4.67%

0.2 0.45% 0.59% 3.28%

0.3 0.41% 0.52% 2.75%

0.4 0.37% 0.47% 2.47%

0.5 0.34% 0.43% 2.29%

0.6 0.31% 0.39% 2.17%

0.7 0.29% 0.37% 2.07%

0.8 0.27% 0.34% 1.99%

0.9 0.25% 0.32% 1.93%

1.0 0.24% 0.30% 1.88%

Table A.15 : Error comparisons between different EQ rates, for the double producer

scenario with permeability 100mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.58% 1.13% 23.11%

0.1 0.54% 0.76% 5.14%

0.2 0.50% 0.65% 3.74%

0.3 0.46% 0.59% 3.22%

0.4 0.42% 0.53% 2.94%

0.5 0.39% 0.49% 2.76%

0.6 0.36% 0.46% 2.64%

0.7 0.34% 0.43% 2.54%

0.8 0.32% 0.41% 2.46%

0.9 0.30% 0.38% 2.40%

1.0 0.29% 0.37% 2.35%

Table A.16 : Error comparisons between different EQ rates, for the double producer

scenario with permeability 200mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.61% 1.16% 23.46%

0.1 0.57% 0.79% 5.48%

0.2 0.53% 0.69% 4.09%

0.3 0.49% 0.63% 3.56%

0.4 0.45% 0.57% 3.28%

0.5 0.42% 0.53% 3.10%

0.6 0.39% 0.50% 2.98%

0.7 0.37% 0.47% 2.88%

0.8 0.35% 0.44% 2.80%

0.9 0.33% 0.42% 2.74%

1.0 0.32% 0.41% 2.69%

Table A.17 : Error comparisons between different EQ rates, for the double producer

scenario with permeability 500mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.62% 1.18% 23.61%

0.1 0.58% 0.81% 5.63%

0.2 0.54% 0.71% 4.23%

0.3 0.50% 0.64% 3.70%

0.4 0.46% 0.59% 3.42%

0.5 0.43% 0.55% 3.25%

0.6 0.40% 0.51% 3.12%

0.7 0.38% 0.48% 3.02%

0.8 0.36% 0.46% 2.95%

0.9 0.34% 0.44% 2.88%

1.0 0.33% 0.42% 2.83%

Table A.18 : Error comparisons between different EQ rates, for the double producer

scenario with permeability 1000mD.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 1.33% 1.87% 35.93%

0.1 0.94% 1.21% 3.52%

0.2 0.84% 1.10% 5.60%

0.3 0.77% 1.05% 6.55%

0.4 0.73% 1.033*% 7.11%

0.5 0.71% 1.03% 7.50%

0.6 0.695*% 1.03% 7.78%

0.7 0.692*% 1.04% 8.02%

0.8 0.694*% 1.05% 8.21%

0.9 0.70% 1.06% 8.37%

1.0 0.70% 1.08% 8.50%

Table A.19 : Error comparisons between different EQ rates, for the varied permeabil-

ity test.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.27% 1.01% 37.17%

0.1 0.20% 0.37% 4.71%

0.2 0.17% 0.23% 1.87%

0.3 0.14% 0.17% 0.83%

0.4 0.13% 0.15% 0.66%

0.5 0.12% 0.14% 0.96%

0.6 0.12% 0.15% 1.17%

0.7 0.12% 0.16% 1.33%

0.8 0.12% 0.17% 1.46%

0.9 0.13% 0.19% 1.57%

1.0 0.14% 0.21% 1.67%

Table A.20 : Error comparisons between different EQ rates, for the single barrier,

30mD test.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.42% 1.19% 39.39%

0.1 0.39% 0.63% 6.85%

0.2 0.36% 0.50% 4.01%

0.3 0.33% 0.43% 2.97%

0.4 0.30% 0.38% 2.44%

0.5 0.28% 0.34% 2.12%

0.6 0.26% 0.31% 1.89%

0.7 0.24% 0.28% 1.72%

0.8 0.22% 0.26% 1.58%

0.9 0.20% 0.24% 1.46%

1.0 0.19% 0.22% 1.35%

Table A.21 : Error comparisons between different EQ rates, for the single barrier,

50mD test.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.60% 1.37% 41.28%

0.1 0.57% 0.86% 8.64%

0.2 0.54% 0.74% 5.78%

0.3 0.51% 0.67% 4.74%

0.4 0.48% 0.62% 4.21%

0.5 0.46% 0.58% 3.89%

0.6 0.44% 0.55% 3.67%

0.7 0.41% 0.52% 3.49%

0.8 0.39% 0.49% 3.35%

0.9 0.38% 0.47% 3.23%

1.0 0.36% 0.44% 3.12%

Table A.22 : Error comparisons between different EQ rates, for the single barrier,

100mD test.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.29% 0.98% 36.21%

0.1 0.21% 0.31% 4.09%

0.2 0.17% 0.21% 1.35%

0.3 0.16% 0.19% 0.64%

0.4 0.16% 0.20% 1.05%

0.5 0.17% 0.21% 1.31%

0.6 0.18% 0.23% 1.48%

0.7 0.18% 0.24% 1.62%

0.8 0.19% 0.26% 1.73%

0.9 0.19% 0.27% 1.82%

1.0 0.20% 0.29% 1.91%

Table A.23 : Error comparisons between different EQ rates, for the double barrier,

single producer, 30mD test.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.66% 1.28% 29.32%

0.1 0.52% 0.86% 6.69%

0.2 0.47% 0.78% 4.73%

0.3 0.44% 0.75% 4.54%

0.4 0.42% 0.72% 4.74%

0.5 0.40% 0.71% 4.86%

0.6 0.39% 0.70% 4.96%

0.7 0.37% 0.69% 5.03%

0.8 0.36% 0.69% 5.09%

0.9 0.35% 0.69% 5.15%

1.0 0.35% 0.68% 5.20%

Table A.24 : Error comparisons between different EQ rates, for the double barrier,

double producer, variable permeability with a left barrier test.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.60% 1.21% 28.10%

0.1 0.44% 0.67% 5.84%

0.2 0.41% 0.58% 3.97%

0.3 0.39% 0.53% 3.29%

0.4 0.37% 0.50% 2.97%

0.5 0.35% 0.48% 3.16%

0.6 0.34% 0.47% 3.29%

0.7 0.33% 0.47% 3.39%

0.8 0.33% 0.46% 3.47%

0.9 0.32% 0.46% 3.54%

1.0 0.32% 0.46% 3.60%

Table A.25 : Error comparisons between different EQ rates, for the double barrier,

double producer, variable permeability with a central barrier test.

EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.00 0.53% 0.92% 27.01%

0.04 0.52% 0.73% 4.55%

0.07 0.53% 0.79% 6.37%

0.10 0.54% 0.85% 7.48%

0.13 0.55% 0.91% 8.39%

0.16 0.57% 0.95% 9.21%

Table A.26 : Error comparisons between different EQ rates, for the single barrier and

8mD permeability test.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.00 0.39% 0.81% 30.18%

0.04 0.36% 0.47% 2.43%

0.07 0.37% 0.50% 3.67%

0.10 0.38% 0.56% 4.78%

0.13 0.39% 0.61% 5.54%

0.16 0.41% 0.65% 6.10%

Table A.27 : Error comparisons between different EQ rates, for the single barrier and

10mD permeability test.

EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.00 0.29% 0.79% 32.38%

0.04 0.24% 0.31% 4.63%

0.07 0.24% 0.30% 1.80%

0.10 0.25% 0.34% 2.91%

0.13 0.27% 0.39% 3.67%

0.16 0.28% 0.43% 4.23%

Table A.28 : Error comparisons between different EQ rates, for the single barrier and

12mD permeability test.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.29% 1.12% 40.15%

0.1 0.25% 0.48% 5.74%

0.2 0.21% 0.33% 2.92%

0.3 0.17% 0.24% 1.86%

0.4 0.14% 0.18% 1.29%

0.5 0.11% 0.14% 0.93%

0.6 0.09% 0.12% 0.73%

0.7 0.08% 0.10% 0.92%

0.8 0.07% 0.11% 1.06%

0.9 0.07% 0.11% 1.18%

1.0 0.08% 0.12% 1.28%

Table A.29 : Error comparisons between different EQ rates, for the refined traditional

model mesh with constant 30mD permeability.
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EQ Rate 1-Norm Error (%) 2-Norm Error (%) ∞-Norm Error (%)

0.0 0.27% 1.02% 37.55%

0.1 0.21% 0.37% 5.10%

0.2 0.17% 0.23% 2.26%

0.3 0.15% 0.17% 1.22%

0.4 0.13% 0.15% 0.69%

0.5 0.12% 0.14% 0.91%

0.6 0.12% 0.15% 1.11%

0.7 0.12% 0.16% 1.27%

0.8 0.13% 0.17% 1.40%

0.9 0.13% 0.19% 1.52%

1.0 0.14% 0.21% 1.62%

Table A.30 : Error comparisons between different EQ rates, for the refined traditional

model mesh with constant 30mD permeability and a single barrier.
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Appendix B

Unit Descriptions and Conversions

In order to make this thesis as applicable to real scenarios as possible, I decided to

use units that are common among the industry in the United States. However, most

of these units are not SI units, or common in other countries. The purpose of this

appendix then, is to give conversion factors between the units I use in this paper and

SI units, as well as to mention realistic ranges of these units when applicable.

Compressibility: Denoted c, given in units of psi−1 (“psi” stands for “pounds per

square inch”). The approximate range of values c can take for oil is between 10−3psi−1

and 10−7psi−1. The conversion to SI units is given as

1

psi
= 1.4503774× 10−4 meter2

Newton

To justify the compressibility value I used for oil in Section 3.1.2, it will be necessary

to describe how the compressibility of oil changes as a function of pressure. Oil

compressibility decreases with pressure as shown in figure B.1, until it reaches the

“bubble point” pressure, which is the amount of pressure required to dissolve the gas

into the liquid oil. After this point, the compressibility changes at a much slower rate.

As this paper assumes single phase flow (that is, no gas present), the compressibility

of oil was taken to be 6.953932712 × 10−6, which correlates to values in figure B.1

after the bubble point pressure.

Porosity: Denoted φ, this is a unitless quantity representing the ratio between the

volume that is free for fluid to occupy to the total volume, in a given section of the
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Figure B.1 : Oil compressibility (y-axis), as a function of pressure (x-axis) [16].

reservoir. Realistic values for φ range between 0.1 and 0.3. I chose a value of 1 for

my tests, due to the limited initial functionality of the standard Darcy simulator, but

I do not expect that changing this value would influence the results or error much at

all, since it simply affects the speed at which the oil moves through the reservoir.

Viscosity: Denoted µ, and given in units of cP (centi-Poise). The approximate range

of realistic values for the viscosity of oil is between 1 cP and 1000 cP, depending greatly

on the temperature and pressure. The conversion to SI units is given as

1 cP = 10−3 Pascal seconds

A viscosity of µ = 10cP was used throughout all of the tests, which is a common

value observed in practice.
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Permeability: Denoted K, and given in units of mD (milli-Darcy’s). The approxi-

mate range of values for the permeability of rocks found in oil reservoirs is between

10 mD and 1000 mD. The conversion to SI unites is given as

1 mD = 9.901× 10−16 meter2

The permeability values were different in most of the tests that I performed, and took

on values everywhere between 10 mD and 1000 mD. This wide variation was neces-

sary in order to determine a relationship between the permeability in the traditional

simulator and the EQ rate in ReservoirGrail.

Volume of oil: The volume of oil is given in units of bbl (barrels of oil). The

conversion rate is given as

1 bbl = 0.158983 meter3
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Appendix C

ReservoirGrail: Additional Information

The purpose of this appendix is to provide some additional information pertaining

to the inputs of ResrvoirGrail, and how its algorithm works. Section C.1 describes

how to format and import data for the production and injection wells in the domain,

Section C.2 defines the reservoir map inputs used in the tests ran in this thesis, Section

C.3 describes the less-intuitive global parameters in ReservoirGrail, and Section C.4

gives two flowcharts depicting how the well and production phases work, which are

the two main components of ReservoirGrail’s algorithm.

C.1 Importing Data

In the middle of creating a new project, the dialogue box shown in figure C.1 will ask

the user if they want to import production and injection data for the project now,

or wait until later. I have personally found the process easier if I imported data at

this point, compared to waiting until after the project has been created. Clicking

“Yes” will bring up figure C.2, which asks the user to specify a header file for the

project. The header file contains the API of each well in the domain, as well as their

X and Y coordinates; figure C.3 shows an example of the header file I used for a

single, centered production well in my tests. Checking the “CSV as a header row”

option prior to importing the data lets ReservoirGrail automatically fill the “Data

Type” options, corresponding to the header row. After importing the header file,
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production and injection data can be specified for each well by importing the relevant

CSV file. Figure C.4 shows how to import the production data, and figure C.5 shows

an example of the production data I used for the tests in this thesis. As I limited

my tests to single phase flow, I did not have any injection wells, and therefore no

injection data to import.

Figure C.1 : Dialogue box, prompting the user to import data for their project. It is

easier to import this data now, rather than after the project has been created.

C.2 Defining Reservoir Maps

After creating the project and opening it, ResrvoirGrail brings up its home project

screen, shown in figure C.6. This screen asks for the type of system, pay thickness and

flow path maps, and a description of the domain’s discretization, in order to define

the structure of the reservoir being simulated. The type of system being simulated

is analogous to the boundary conditions imposed on the domain: a closed system

corresponds to zero Neumann (i.e., no flow) boundary conditions, whereas the struc-

turally controlled and complex systems correspond to a domain with both zero and

non-zero Neumann boundary conditions. For the tests I ran, only a closed system was

considered. The “Pay Thickness Map” input defines the thickness of the reservoir at
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Figure C.2 : Example of importing header data, which defines the locations and APIs

of all production and injection wells in the reservoir.

Figure C.3 : The header data used, for all single producer tests.

every node, in units of feet. Further, the “Flow Path Map” represents the perme-

ability of the reservoir at each node, relative to every other node. This means that

ReservoirGrail views a flow path map with a value of 1 at every node equivalently as

a flow path map with a value of 10 at every node. The parameters under the “Grid

Description” section at the bottom are used to define the spatial discretization of the

domain. The “# Columns” and “# Rows” define how many nodes to model in the
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Figure C.4 : Example of importing production well data.

X and Y directions, respectively, the “Minimum X” and “Minimum Y” values give

the coordinate for the bottom left most node in the domain, and the “Grid Interval”

input determines the distance between each node in both the X and Y direction. In

this case, a 51×51 grid with the first node at (25, 25) and a spacing of 50 feet between

the nodes corresponds to a domain of (0, 2550)× (0, 2550).

In addition to the above required inputs to this screen, a fault line may also

be specified here by giving ReservoirGrail a file path to the fault file, under the

“Centerline Fault File” input. Section 3.2.3 discusses how ReservoirGrail interprets

fault lines, and figure C.8 shows an example of the fault that I used for my single

barrier tests in Section 3.2.3. In this file, the first and second columns represents

the X and Y locations, respectively, of the node with a fault passing through it, and

the third column represents the fault ID, which is used if multiple different faults are

present in the same reservoir.
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Figure C.5 : The production data used, for all single producer tests.

Figure C.6 : ReservoirGrail’s home screen.
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Figure C.7 : Screen where local reservoir features are specified, such as fault lines

and permeability changes.

C.3 Defining Reservoir Parameters and Output Files

Going back to the home screen, clicking on the “Reservoir Parameters” tab on the

left brings up the screen shown in figure C.9, where the global aspects of the reservoir

are specified. The values shown on this screen represent an example of what was

used in the tests I ran in this thesis; the only parameter that was changed between

simulations was the Equalization Rate, as discussed in detail in Sections 1.2.3 and

2.3. The two parameters in the upper right, under the “Initial Pressure” section, are

used to, unsurprisingly, calculate the reservoir’s initial pressure, by multiplying the

“Reservoir TVD from Surface” by the “Pressure Gradient”. For the example shown

in figure C.9, this value is given as

pinit = Reservoir TVD from Surface×Pressure Gradient = 5000ft×0.45
psi

ft
= 2250psi.
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Figure C.8 : The fault line data used, for the single barrier tests.

Finally, going back to the home screen in figure C.6, clicking on the “Define

Visualization Outputs” tab towards the bottom brings up the screen shown in figure

C.10. In order to have ReservoirGrail produce the TransHPV files discussed in Section

2.4, the “Hydrocarbon Pore Volume” box must be checked.
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Figure C.9 : Screen where global reservoir parameters are specified, such as porosity

and initial oil and gas saturation.

Figure C.10 : Options to determine what outputs ReservoirGrail generates for the

simulation.
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C.4 ResrvoirGrail Flowchart

This section is intended to serve as a high-level abstraction of ReservoirGrail’s algo-

rithm, described in Section 1.2.3. At the beginning of every time-step, ReservoirGrail

starts in the well phase shown in figure C.11, and after meeting the appropriate stop-

ping criterion, moves to the production phase in figure C.12. Once stopping criterion

are met in the production phase, the time-step is incremented and ReservoirGrail

starts over at the well phase, until all time-steps have been simulated.
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Figure C.11 : A flowchart of the well phase of ReservoirGrail’s algorithm, which is

used to send out agents and record their visits across the domain.
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Figure C.12 : A flowchart of the production phase of ReservoirGrail’s algorithm,

which is used to remove the appropriate amount of hydrocarbons from each cell and

equalize the remaining oil, gas, and water as necessary.
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