


ABSTRACT

Parallel VLSI Architectures for Multi-Gbps MIMO Communication Systems

by

Yang Sun

In wireless communications, the use of multiple antennas at both the transmitter
and the receiver is a key technology to enable high data rate transmission without
additional bandwidth or transmit power. Multiple-input multiple-output (MIMO)
schemes are widely used in many wireless standards, allowing higher throughput using
spatial multiplexing techniques. MIMO soft detection poses significant challenges to
the MIMO receiver design as the detection complexity increases exponentially with
the number of antennas. As the next generation wireless system is pushing for multi-
Gbps data rate, there is a great need for high-throughput low-complexity soft-output
MIMO detector.

The brute-force implementation of the optimal MIMO detection algorithm would
consume enormous power and is not feasible for the current technology. We propose a
reduced-complexity soft-output MIMO detector architecture based on a trellis-search
method. We convert the MIMO detection problem into a shortest path problem.
We introduce a path reduction and a path extension algorithm to reduce the search
complexity while still maintaining sufficient soft information values for the detection.
We avoid the missing counter-hypothesis problem by keeping multiple paths during
the trellis search process. The proposed trellis-search algorithm is a data-parallel

algorithm and is very suitable for high speed VLSI implementation. Compared with



the conventional tree-search based detectors, the proposed trellis-based detector has
a significant improvement in terms of detection throughput and area efficiency. The
proposed MIMO detector has great potential to be applied for the next generation
Gbps wireless systems by achieving very high throughput and good error performance.

The soft information generated by the MIMO detector will be processed by a
channel decoder, e.g. a low-density parity-check (LDPC) decoder or a Turbo de-
coder, to recover the original information bits. Channel decoder is another very
computational-intensive block in a MIMO receiver SoC (system-on-chip). We will
present high-performance LDPC decoder architectures and Turbo decoder architec-
tures to achieve 14+ Gbps data rate. Further, a configurable decoder architecture
that can be dynamically reconfigured to support both LDPC codes and Turbo codes
is developed to support multiple 3G/4G wireless standards.

We will present ASIC and FPGA implementation results of various MIMO detec-
tors, LDPC decoders, and Turbo decoders. We will discuss in details the computa-

tional complexity and the throughput performance of these detectors and decoders.
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Chapter 1

Introduction

1.1 Motivation

Mobile wireless connectivity is a key feature of a growing range of devices from laptops
and cell phones to digital homes and portable devices. Many applications, such as
digital video, are driving the creation of new high data rate multiple antenna wireless
algorithms with challenges in the creation of area - time - power efficient architectures.

The mobile telecommunication system has evolved from several Kbps low data-
rate 1G (for “first generation”) analog systems to the current 10-100 Mbps enhanced
3G (3.5G, 3.75G, 3.9G) generation. This is soon expected to be followed by 4G with
a target data rate of 1 Gbps. Table 1.1 shows a representative set of mobile wireless
standards to highlight their differences in data rates.

As an example of the next generation wireless system, 3GPP Long Term Evolution
(LTE) [1], which is a set of enhancements to the 3G Universal Mobile Telecommuni-
cations System (UMTS) [2], has received tremendous attention recently and is con-
sidered to be a very promising 4G wireless technology. For example, Verizon Wireless
has decided to deploy LTE in their next generation 4G evolution. One of the main

advantages of 3GPP LTE is high throughput. For example, it provides a peak data



Table 1.1 : Major mobile telecommunication standards.

Generation Technology Data rates Year
1G AMPS, TACS 14.4 Kbps | ~1981
2G GSM, CDMA, TDMA 144 Kbps | ~1995
2.5G, 2.75G GPRS, EDGE, CDMA2000 ~200 Kbps | ~2000
3G W-CDMA, CDMA2000 1xEV-DO | 384 Kbps | ~2002
3.5G, 3.75G, 3.9G HSDPA, LTE, WiMAX 10-100 Mbps | ~2007
4G IMT-Advanced, LTE-Advanced 1 Gbps 2012+

rate of 172.8 Mbps for a 2 x 2 antenna system, and a 326.4 Mbps for a 4 X 4 antenna
system for every 20 MHz of spectrum. Furthermore, LTE-Advanced [3], the further
evolution of LTE, promises to provide up to 1 Gbps peak data rate.

In order to*provide higher data rates, wireless systems are adopting multiple an-
tenna configurations with spatial multiplexing to support parallel streams of wireless
data. As an example, the Vertical Bell Laboratories Layered Space-Time (V-BLAST)
system has been shown to achieve very high spectral efficiency [4]. There is an in-
creasing demand for Gbps wireless systems. For example, 3GPP LTE-Advanced,
IEEE 802.16m WiMAX, IEEE 802.11ac WLAN, and WIGWAM [5] target for Gbps
throughput with MIMO technology.

In order to enable reliable delivery of digital data over unreliable wireless channels,
the sender encodes the data using an error-correcting code prior to transmission. The

additional information (or redundancy) added by the code is used by the receiver to



recover the original data. Error-correcting codes are widely used in MIMO wireless
communications. The most commonly used error correcting codes in modern systems
are convolutional codes, Turbo codes, and low-density parity-check (LDPC) codes.
As a core technology in wireless communications, FEC (forward error correction)
coding has migrated from the basic 2G convolutional /block codes to more powerful
3G Turbo codes, and LDPC codes forecast for 4G systems.

Figure 1.1 shows a block diagram of a MIMO system and highlights the Detection
and Decoding blocks that are used to recover the multiple transmitted streams. The
number of transmit antennas and transmit streams is typically two or foﬁr but could
be as many as 8 or 12 in future systems. The complexity of the detection and decoding
algorithms can vary greatly depending on the number of antennas, modulation, and

channel code used in the system.

:‘ Channel
] Estimation
N
MIMO z><s MIMO | | Channel | |
Encoder v Detector "| Decoder
— ]

Figure 1.1 : Simplified MIMO system block diagram.

An MIMO detector is used to recover and detect the multiple transmitted streams.
Soft-output MIMO detection poses significant challenges to the MIMO receiver design

as the computational complexity increases exponentially with the number of antennas.



The optimal soft-decision detector, the maximum a posteriori (MAP) detector, will
consume enormous computing power and require tremendous computational resources
which makes it infeasible to be implemented in a practical MIMO receiver. As such,
there is a great need for efficient MIMO algorithms to reduce the MIMO detection
complexity.

A channel decoder is used to process the soft information generated by the MIMO
detector and reconstruct the original error-free data. Among all those channel de-
coders, LDPC decoders and Turbo decoders are two of the most important decoders
that are widely used in wireless communication systems. Two major challenges of
the decoder design are high throughput and flexibility. To support multi-Gbps data
rate, we need to develop efficient algorithms and architectures. To support multi-
ple communication standards, we need to develop flexible decoding algorithms and
architectures.

As two of the most complex blocks in a wireless receiver, the MIMO detector and
the channel decoder consume a significant portion of the silicon area in a wireless re-
ceiver SoC (system-on-chip). Thus, it is very important to develop high-throughput
low-complexity MIMO detectors and channel decoders to reduce the overall complex-

ity of a wireless SoC.



1.2 Scope of The Thesis

Scope of this thesis is from algorithm to VLSI architecture to ASIC/FPGA implemen-
tation. The central part of the thesis is the development of a novel MIMO detection
algorithm and architecture, and a flexible LDPC/Turbo decoder architecture. We
propose a low-complexity trellis-search algorithm for MIMO detection. We use a trel-
lis graph to represent the search space of the MIMO signal and convert the detection
problem into a shortest path problem.

We propose an area-efficient layered decoder architectures for LDPC decoding. We
further propose a multi-layer parallel decoding algorithm and architecture for multiple
Gbps high throughput decoding of LDPC codes. We propose parallel MAP algorithms
for Turbo decoding. By unifying the message passing algorithms of the LDPC codes

and the Turbo codes, we develop a configurable LDPC/Turbo architecture.

1.3 Thesis Contribution

This thesis work has generated 20 technical papers, 2 book chapters, and 3 U.S.
patent applications.

High-Throughput MIMO Detector [6, 7, 8, 9, 10]: To reduce the MIMO
detection complexity, we propose a parallel MIMO detection algorithm and its high-
speed VLSI architecture. The proposed detection algorithm is based on a novel
path-preserving trellis-search (PPTS) method.

We use a novel trellis graph as an alternative to the tree graph to represent



the search space of the MIMO signal. Based on the trellis graph, we convert the
soft MIMO detection problem into a shortest path problem. The proposed PPTS
algorithm is a multiple shortest paths algorithm on the condition that every trellis
node must be included at least once in this set of paths so that the soft information for
every possible syml;ol transmitted on every antenna is always available. Compared
to the traditional tree-search based algorithm, the proposed trellis-search algorithm
will have a significantly lower complexity.

The PPTS algorithm is a search-efficient algorithm based on a path-preserving
trellis search approach. We introduce a path reduction and a path extension algorithm
to reduce the search complexity while still maintaining sufficient soft information
values to form the log-likelihood ratios (LLRs) for the transmitted bits. We avoid
the missing counter-hypothesis problem by keeping multiple paths during the trellis
search process.

The PPTS algorithm is a very data-parallel algorithm because the searching oper-
ations at multiple trellis nodes can be performed simultaneously. Moreover, the local
search complexity at each trellis node is kept very low to reduce the processing time.
Simulation results show that the PPTS algorithm can achieve very good error per-
formance with a low search-complexity. Compared with the conventional tree-search
based detectors, the propoéed trellis-search detector has a significant improvement
in terms of detection throughput and area efficiency. The trellis-search detector has

great potential to be applied for the next generation Gbps wireless systems by achiev-



ing very high throughput and good error performance.

Iterative Detection and Decoding: We investigate an iterative detection and
decoding algorithm for MIMO communication systems. We modify our trellis-search
MIMO detection algorithm to incorporate the a priori information from the outer
channel decoders, e.g. LDPC decoder and Turbo decoder. Not like the traditional
iterative detection and decoding scheme which only performs MIMO detection once,
in our scheme, however, we re-run the MIMO detection for each outer iterations to
achieve a better performance.

High-Throughput Turbo Decoder [11, 12, 13]: The Turbo decoding algo-
rithm is a sequential algorithm, which makes it very hard to be parallelized. We
propose an efficient VLSI architecture for the 3GPP LTE/LTE-Advanced Turbo de-
coder by utilizing the algebraic-geometric properties of the quadratic permutation
polynomial (QPP) interleaver. Turbo interleaver is known to be the main obstacle to
the decoder parallelism due to the collisions it introduces in accesses to memory. The
QPP interleaver solves the memory contention issues when several MAP decoders are
used in parallel to improve Turbo decoding throughput. In this thesis, we propose
a low-complexity QPP interleaving address generator and a multi-bank memory ar-
chitecture to enable parallel Turbo decoding. Design trade-offs in terms of area and
throughput efficiency are explored to compare the architectures.

High-Throughput LDPC Decoder [14, 15, 16, 17, 18, 19]: We propose a

multi-layer parallel decoding algorithm and VLSI architecture for decoding of struc-



tured quasi-cyclic low-density parity-check (QC-LDPC) codes. The layered decoding
algorithm is known to be very memory-efficient and it can achieve a faster convergence
speed than the standard two-phase flooding decoding algorithm. In the conventional
layered decoding algorithm, the block-rows of the parity check matrix are processed
sequentially, or layer after layer. The maximum number of rows that can be simultane-
ously processed by the conventional layered decoder is limited to the sub-matrix size.
To remove this limitation and support layer-level parallelism, we extend the conven-
tipnal layered decoding algorithm and architecture to enable simultaneous processing
of multiple (K) layers of a parity check matrix, which will lead to a K-fold through-
put increase. With the proposed decoding algorithm and architecture, a multi-Gbps
LDPC decoder is feasible.

ASIC and FPGA Implementation: We have implemented a flexible multi-rate
Viterbi decoder for our WARP FPGA testbed. We have also implemented various
detectors and decoders on ASICs for throughput, area and power analysis. We have
compared the performance of our detectors and decoders against state-of-the-art so-

lutions.

1.4 Thesis Outline

In chapter 2, we will introduce the background of MIMO detection and LDPC and
Turbo decoding. We will review the related work in these fields. In chapter 3,

we will introduce a trellis-search MIMO detection algorithm and its parallel VLSI



architecture. In chapter 4, we will present a parallel Turbo decoder architecture for
LTE/LTE-Advanced system. In chapter 5, we will describe layered LDPC decoding
algorithms and architectures for the decoding of the structured QC-LDPC codes. We
will further present a flexible LDPC/Turbo joint decoder architecture. In chapter 6,
we will summarize the ASIC and FPGA implementation results of various detectors
and decoders and compare with existing solutions. Finally, chapter 7 summaries this

thesis.

1.5 List of Symbols and Abbreviations

Here, we provide a summary of the abbreviations and symbols used in this thesis:
ACSA: Add compare select add.
AMPS: Advanced mobile phone system.
APP: A posteriori probability.
ASIC: Application-specific integrated circuit.
AWGN: Additive white Gaussian noise.
BICM: Bit interleaved coded modulation.
BPSK: Binary phase shift keying.
CDMA: Code division multiple access.
CDMA2000 1xEV-DO: CDMA evolution-data optimized.
CMP: Comparison.

CMOS: Complementary metal-oxide-semiconductor silicon technology.
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dB: Decibel.

DVB-S: Digital Video Broadcasting - satellite.
DVB-T: Digital Video Broadcasting - terrestrial.
EDGE: Enhanced data rates for GSM evolution.
FEC: Forward error correction.

FER: Frame error rate.

FFU: Flexible functional unit.

FPGA: Field-programmable gate array.

Gbps: Gbit/s.

GPRS: General packet radio service.

GSM: Global system for mobile communication.
HDL: Hardware description language.

HLS: High level synthesis.

HSDPA: High-speed downlink packet access.
MAP: Maximum A Posteriori.

Mbps: Mbit/s.

MIMO: Multiple-input, multiple-output.

ML: Maximum likelihood.

MFU: Minimum finder unit.

MMSE: Minimum mean square error.

INII: Next iteration initialization.



NSW: Non-sliding window.
LDPC: Low-density parity-check.
LLR: Log-likelihood ratio.

LTE: Long-Term Evolution.

LUT: Look-up table.

OFDM.: Orthogonal frequency-division multiplexing.

PCM: Parity check matrix

PE: Processing engines.

PED: Partial Euclidean distance.

PEU: Path extension unit.

PICO: Program-in chip-out.

PPTS: Path-preserving trellis-search.
PRU: Path reduction unit.

PSU: Path selection unit.

QAM: Quadrature amplitude modulation.
QC: Quasi-Cyclic.

QPP: Quadratic permutation polynomial.
RF: Radio frequency.

RTL: Register transfer level.

SISO: Soft-input soft-output.

SMP: State metric propagation.

11
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SNR: Signal-to-noise ratio.

SoC: System-on-chip.

SRAM: Static random access memory.

Sysgen: Xilinx system generator synthesis tool.

TACS: Total a(;cess communication system.

TDMA: Time division multiple access

TSMC: Taiwan semiconductor manufacturing company.
UMTS: Universal mobile telecommunications system.
VLSI: Very-large-scale integration.

WCMA: Wideband code division multiple access.
WiMAX: Worldwide interoperability for microwave access.
WLAN: Wireless local area network.

H: Channel matrix in MIMO detection or Parity check matrix in LDPC decoding.
M,: Number of bits per constellation point.

N;: Number of transmit antennas.

N,: Number of receive antennas.

n: Noise vector.

s: Transmitted symbol vector in a MIMO transmitter.

y: Received vector in av MIMO receiver.

: Superscript denoting the conjugate transpose of a matrix.

T: Superscript denoting the transpose of a matrix.



a: Forward state metrics in Turbo decoding.

B3: Backward state metrics in Turbo decoding.

13
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Chapter 2

Background and Related Work

2.1 MIMO Detection
2.1.1 System Model

In this thesis, we consider a spatial-multiplexing MIMO system with N, transmit
antennas and N, receive antennas (N, > N), which is shown in Fig. 2.1. The bit-
interleaved coded modulation (BICM) is used at the transmitter, where the data bits
are multiplexed onto N; parallel streams. The MIMO transmission can be modeled
as a linear sysfem:

y =Hs+n, (2.1)

where H is a N, x N; complex matrix and is assumed to be known perfectly at
the receiver, s = [sg 81 ... sy,—1]7 is an N; x 1 transmit symbol vector, y is an
N, x 1 received vector, and n is a vector of independent zero-mean complex Gaussian
noise entries with variance o? per real component. A real bit-level vector x) =
[k0 Tk ..o Tk,p—1)T is mapped to a complex symbol sj as sy = map(Xk), where
the b-th bit of xi is denoted as zyp and B is the number of bits per constellation

point. Through this thesis, symbol s; and its associated bit vector xy will be used

interchangeably.
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Figure 2.1 : Block diagram for a spatial-multiplexing MIMO system with /V; transmit
and N, receive antennas.

2.1.2 Maximum Likelihood (ML) Detection

The maximum likelihood detector tries to make a hard-decision on the transmitted
signal by finding an § which minimizes ||y — H - s||2. ML detection is often used for a

MIMO system without an outer error-correcting code, or an un-coded MIMO system.

2.1.3 Maximum A Posteriori (MAP) Detection

For a coded MIMO system with an outer error-correcting code, e.g. LDPC code, a
soft decision of the transmitted signal is required. The optimal MAP detector is to
compute the log-likelihood ratio (LLR) value for the a posteriori probability (APP) of
each transmitted bit. Assuming there is no a priori information for the transmitted

bit, the LLR APP of each bit zx; can be computed as [20]:
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> el Y e (- paly —H-slP)

p = : = S:Tk b=
LLR(zyy) = mM 1 S0 1 Sk : '
[#ks = 1ly] > P(yls) > exp (-5l —H-s|)
s p=1 20’2

’ s::vk,b=1
(2.2)

With the Max-Log approximation [20], (2.2) is simplified to:

1 - 2 - 2

LLR(zks) ~ 55 ( min Iy —H-sl = min [y —H-s[*).  (23)

Note that to form LLR for bit zj;, both the hypothesis-0 and the hypothesis-1 of
bit z, are required. Otherwise, the magnitude of the LLR will be undetermined. If
a (sorted) QR decomposition of the channel matrix according to H = QR is used,
where Q and R refer to a N, X N; unitary matrix and a N; X N; upper triangular

matrix, respectively, then (2.3) is changed to:

LLR(zxs) = i( min_d(s) — min d(s)), (2.4)

20’2 sk p=1 s:z =0

where the Euclidean distance, d(s), is defined as:
Ni—1
ds) =[I§ —R-sl> = Y [(9)e — (Rs)i|”. (2.5)
k=0
In the equation above, y = Q¥y, and (-); denotes the k-th element of a vector.

2.1.4 Conventional Tree-Search Based MIMO Detection Algorithm

The MIMO detection problem can be approximately solved using linear algorithms

such as zero-forcing detection and minimum mean square error (MMSE) detection.
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However, the linear algorithms suffer from significant performance loss compared to
the non-linear algorithms. In this thesis, we mainly focus on the non-linear MIMO
MAP detection algorithms.

Conventionally, the MIMO detection problem is usually tackled based on tree-
search algorithms. The Euclidean distance in (2.5) can be computed backward re-
cursively as dy = dyy1 + ex, where e = |§ — Z;V:tgl Ry ;s; 2. Because of the upper
triangular structure of the R matrix, one can envision this iterative algorithm as a
tree traversal problem where each level of the tree represents one k value. Each node
has @ children, where @ is the QAM modulation size. Fig. 2.2 shows an example
tree-graph. In order to reduce the search complexity, a threshold, C, can be set to
discard the nodes with distance d > C. Therefore, whenever a node with a d > C is
reached, any of its children can be pruned out.

The tree-search algorithms can be often categorized into the depth-first search
algorithm and the breadth-first search algorithm. The sphere detection algorithm
[21, 22, 23, 24, 25] is a depth-first tree-search algorithm to find the closest lattice
point. To provide soft information for outer channel decoders, a modified version of
the sphere detection algorithm, or soft sphere detection algorithm, is introduced in
[20]. There are many implementations of sphere detectors, such as [26, 27, 28, 29,
30, 31, 32, 33, 34, 35]. However, the sphere detector suffers from non-deterministic
complexity and variable-time throughput. The sequential nature of the depth-first

tree-search process significantly limits the throughput of the sphere detector especially
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Figure 2.2 : An example tree structure for a MIMO system. The tree has N; levels.

Each tree node has @) children or branches.



19

when the SNR is low. The K-Best algorithm is a fixed-complexity algorithm based
on the breadth-first tree-search algorithm [36, 37, 38, 39, 40, 41]. But this algorithm
tends to have a high sorting complexity to find and retain the best candidatés, which
limits the throughput of the detector especially when K is large. There are some
other variations of the K-Best algorithm, which require less sorting than the regular
K-best algorithm, e.g. [42, 43, 44, 45, 46], but it is still very difficult for the K-Best
detector to achieve 1+ Gbps throughput.

Generally, to make a soft decision for a bit z, a maximum-likelihood (ML) hy-
pothesis and a counter-hypothesis of this bit are both required to form thé LLR. A
major problem for almost all the “conventional” tree-search algorithms is that the
counter-hypotheses for certain bits are missing due to tree pruning. As a consequence
of missing counter-hypotheses, the magnitude of the LLRs for certain bits can not be

determined, which will lead to performance degradation.

2.2 Error-Correcting Codes

Practical wireless communication channels are inherently “noisy” due to the impair-
ments caused by channel distortions and multipath effects. Error correcting codes are
widely used to increase the bandwidth and energy efficiency of wireless communication
systems. Table 2.1 summarizes the commonly used forward error correction (FEC)
codes in mobile wireless standards. As a core technology in wireless communications,

FEC coding has migrated from basic convolutional codes to more powerful Turbo
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codes and LDPC codes. Turbo codes, introduced by Berrou et al. in 1993 [47], have
been employed in 3G and enhanced 3G wireless systems, such as UMTS/WCDMA
and 3GPP Long-Term Evolution (LTE) systems. As a candidate for a 4G coding
scheme, LDPC codes, which were introduced by Gallager in 1963 [48], have recently
received significant attention in coding theory and have been adopted by some ad-
vanced wireless systems such as the IEEE 802.16e/802.16m WiMAX system and IEEE

802.11n WLAN system.

Table 2.1 : Commonly used FEC codes in mobile wireless standards.

Generation Technology FEC codes

2G GSM Convolutional codes
3G W-CDMA, LTE, WiMAX (802.16¢) Turbo codes

4G | LTE-Advanced, WiMAX (802.16m) | LDPC codes, Turbo codes

2.2.1 Turbo Codes

Turbo codes are a class of high-performance capacity-approaching error-correcting
codes [47]. As a break-through in coding theory, Turbo codes are widely used in
many 3G/4G wireless standards such as CDMA2000, WCDMA /UMTS, 3GPP LTE,
and IEEE 802.16e WiMax.

A classic Turbo encoder structure is depicted in Figure 2.3. The basic encoder

consists of two systematic convolutional encoders and an interleaver. The information
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sequence u is encoded into three streams: systematic, parity 1, and parity 2. Here
the interleaver is used to permute the information sequence into a second different
sequence for encoder 2. The performance of a Turbo code depends critically on the

interleaver structure [49].

u c0 u
G cl
Encoderl |—>
. PP
I1 ] Encoder? l—> Interleaver

D

”

A

(a) (b)

Figure 2.3 : Turbo encoder structure. (a) Basic structure. (b) Structure of Turbo
encoder in 3GPP LTE.

The traditional Turbo decoding procedure with two SISO decoders is shown in
Fig. 2.4. The definitions of the symbols in the figure are as follows. The information
bit and the parity bits at time k are denoted as u; and (pgcl), pff), vy p,(c")), respectively,
with ug, pg) € {0,1}. The channel LLR values for u; and pg) are denoted as A.(ug)
and )\c(pg)), respectively. The a priori LLR, the extrinsic LLR, and the APP LLR

for uy are denoted as A\ (ug), Ae(ur), and A,(uy), respectively.

In the decoding process, the SISO decoder computes the extrinsic LLR value at

e
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~ Figure 2.4 : Traditional Turbo decoding procedure using two SISO decoders, where
the extrinsic LLR values are exchanged between two SISO decoders.

time k as follows:

Ae(ug) = u%%i(l{ak—l(sk—l) + Ve (8k—1, k) + Br(sk)}

— max {ag-1(Sk-1) + VE(Sk-1, &) + Br(sk)}- (2.6)

wug=0

The a and B metrics are computed based on the forward and backward recursions:

ax(sk) = rsnk%i({ak_l(sk_l) + Ve (Sk-1, 8k) } (2.7)
Br(sk) = Ig}éf{ﬁkﬂ(skﬂ) + e (Sk, Sk+1) } (2.8)

where the branch metric 7 is computed as:
e = k- (Aolur) + Aa(wa)) + fjp%" Ai). (29)
The extrinsic branch metric 4§ in (2.6) is computed as:
7 = ipf) A(0). (2.10)
The max*(-) function in (2.6-2.8) is defined as:

max(a, b) = max(a, b) + log(1 4 e1¢7?). (2.11)
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The soft APP value for uy is generated as:

)\o(uk) = )\e(uk) + )\a(uk) + )\c(uk). (212)

In the first half iteration, SISO decoder 1 computes the extrinsic value \!(u;) and
pass it to SISO decoder 2. Thus, the extrinsic value computed by SISO decoder 1
becomes the a prior: value A2 (wuy) for SISO decoder 2 in the second half iteration. The
computation is repeated in each iteration. The iterative process is usually terminated
after certain number of iterations, when the soft APP value A,(ux) converges.

The random interleaver is the main obstacle to the parallel Turbo decoding. To
facilitate high speed decoding, new wireless standards are adopting contention-free
parallel interleavers. In the literature, many decoder architectures have been ex-
tensively investigated for the older 3G Turbo codes [50, 51, 52, 53, 54, 55, 56, 57].
Recently, several Turbo decoders have been developed for the newer 3GPP LTE stan-
dard [58, 59, 60, 61]. However, the throughput of those decoders is still below 100
Mbps. As the 4G system standard is pushing for 1 Gbps data rate, it is very important

to develop a highly-parallel Turbo decoder architecture.

2.2.2 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes [62] have received tremendous attention in
the coding community because of their excellent error correction capability and near-
capacity performance. Some randomly constructed LDPC codes, measured in bit

error rate (BER) performance, come very close to the Shannon limit for the AWGN
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channel (within 0.05 dB) with iterative decoding and very long block sizes (on the
order of 10° to 107). The remarkable error correction capabilities of LDPC codes have
led to their recent adoption in many standards, such as IEEE 802.11n, IEEE 802.16e,
and IEEE 802 10GBase-T.

A binary LDPC 'code is a linear block code specified by a very sparse binary M x N
parity check matrix:

H-x" =0, (2.13)

where x is a codeword and H can be viewed as a bipartite graph where each column
and row in H represents a variable node and a check node, respectively. It should
be noted the symbol H used here is different from the symbol H used for the MIMO

channel.

Two-phase Flooding Decoding Algorithm

The basic LDPC decoding algorithm, which is often referred to as the two-phase
flooding decoding algorithm, is summarized as follows. We define the following nota-
tion. The a posteriori probability (APP) log-likelihood ratio (LLR) of each bit n is

defined as:

Il

Pr(n =0)
Pr(n=1)

The check node message from check node m to variable node n is denoted as R, .

L, =log (2.14)

The variable message from variable node n to check node m is denoted as Q. The

decoding algorithm is summarized as follows.
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Initialization: The variable message @, is initialized to the channel LLR input
from the MIMO detection described in Section 2.1.3. The check message R, is
initialized to 0. |

Phase 1) Parity Check Node Update: For each row m, the new check node
messages R, ,, corresponding to all variable nodes j that participate in this parity-
check equation, are computed using the belief propagation algorithm:

Run= ][] sien@ms)-¥| Y ¥@my) |, (2.15)

jeNm\n jGNm\n

where N, is the set of variable nodes that are connected to check node m, and N;,\n
is the set A, with variable node n excluded. The non-linear function ¥(z) is defined

as.

|z

U(z) = —log [tanh (—2—)] . (2.16)
To reduce the implementation complexity, the sub-optimal min-sum algorithm [63, 64]
can be used to approximate the non-linear function ¥(z). The scaled min-sum and
the offset min-sum algorithms are the two most often used algorithms. For the scaled
min-sum algorithm with a scaling factor of S, equation (2.15) is changed to:

Ryn=~S- l | sign(Qm,;) - min |Qm.;l- (2.17)
. JeNm\n
FENM\n

For the offset min-sum algorithm with an offset value of 3, equation (2.15) is changed

to:

Rpn = H sign(@m,;) © min |Qm ;| — 5. (2.18)

JENR\R JENm\n
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Phase 2) Variable Check Node Update: The APP LLR messages L, are

computed as:

Ly= ) Rjn, (2.19)

JEMn

where M,, is the set of check nodes that are connected to variable node n. The

variable message is computed as:

Qm,n = L, — Rm,n- (220)

Verification: If all the parity checks are satisfied, the decoding process is finished,

otherwise go to phase 1) to start a new iteration.

Hardware Implementation

The hardware implementation of LDPC decoders can be serial, semi-parallel, or fully-
parallel. As shown in Fig. 2.5, a fully-parallel implementation has the maximum
number of processing elements to achieve very high throughput. A semi-parallel
implementation, on the other hand, has a leés number of processing elements that
can be re-used, e.g. z number of processing elements are employed in Figure 2.5(b). In
a semi-parallel implementation, memories are usually required to store the temporary
results. In many practical systems, semi-parallel implementations are often employed

to achieve several hundred Mbps throughput with reasonable complexity [18, 65, 66,

17, 67, 16, 68].
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Figure 2.5 : Implementation of LDPC decoders, where CN denotes check node and
VN denotes variable node. (a) Fully-parallel. (b) Semi-parallel.

2.2.3 Block-structured Quasi-Cyclic (QC) LDPC Codes

Non-zero elements in H are typically placed at random positions to achieve good
coding performance. However, this randomness is unfavorable for efficient VLSI im-
plementation that calls for structured design. To address this issue, block-structured
quasi-cyclic LDPC codes are recently proposed for several new communication stan-
dards such as IEEE 802.11n, IEEE 802.16e, DVB-S2 and DMB-T. As shown in
Fig. 2.6, the parity check matrix can be viewed as a 2-D array of square sub ma-
trices. Each sub matrix is either a zero matrix or a cyclically shifted identity matrix
I;. Generally, the block-structured parity check matrix H consists of a j x k array
of 2z x z cyclically shifted identity matrices with random shift values z (0 < z < 2).
Table 1 summarizes the design parameters for H in the IEEE 802.11n, IEEE 802.16e,

and DMB-T standards.
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Figure 2.6 : A block structured parity check matrix with block rows (or layers) 7 = 4
and block columns k£ = 8, where the sub-matrix size is z X z.

Table 1: Design parameters for H in several standards

LDPC Code IEEE 802.11n IEEE 802.16e DMB-T
4-12 4-12 24-48
k 24 24 60
z 27-81 24-96 127
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Flexible LDPC Decoder Architecture

In the recent literature, there are many LDPC decoder architectures [69, 70, 71, 18,
72,73, 74,75, 76, 16, 77, 78, 79], but few of them support variable block-size and muti-
rate decoding. For example, in [69] a 1 Gbps 1024-bit, rate 1/2 LDPC decoder has
been implemented. However this architecture just supports one particular LDPC code
by wiring the whole Tanner graph into hardware. In [80], a code rate programmable
LDPC decoder is proposed, but the code length is still fixed to 2048 bits for simple
VLSI implementation. In [81], a LDPC decoder that supports three block sizes and

four code rates is designed by storing 12 different parity check matrices on-chip.

2.3 Summary and Challenges

MIMO detectors and LDPC/Turbo decoders are very complex signal processing
blocks in a wireless receiver SoC. The main challenges of the detector and decoder
design are high throughput and flexibility. To address these challenges, in chapter
3, we will introduce a low-complexity detection algorithm based on a trellis-search
method. We will also present a high-speed VLSI architecture for the trellis-search
based MIMO detector. In chapter 4, we will present a high-throughput Turbo de-
coder for the LTE-Advanced system. In chapter 5, we will describe a multi-mode
high-throughput LDPC decoder architecture. In chapter 6, we will assess the hard-

ware implementation tradeoffs for VLSI system design.
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Chapter 3

High-Throughput MIMO Detector Architecture

In this chapter, we propose a novel path-preserving trellis-search (PPTS) algorithm
and its high-speed VLSI architecture for soft-output MIMO detection. We represent
the search space of the MIMO signal with an unconstrained trellis graph. Based
on the trellis graph, we convert the soft-output MIMO detection problem into a
multiple shortest paths problem subject to the constraint that every trellis node
must be covered in this set of paths. The PPTS detector is guaranteed to have
soft information for every possible symbol transmitted on every antenna so that the
log-likelihood ratio (LLR) for each transmitted data bit can be accurately formed.
Simulation results show that the PPTS algorithm can achieve near-optimal error
performance with a low search complexity. The PPTS algorithm is a hardware-
friendly data-parallel algorithm because the search operations are evenly distributed

among multiple trellis nodes for parallel processing.

3.1 Trellis-Search Algorithm

Because the conventional tree-search algorithm is slow and difficult to be parallelized,
we propose a search-efficient trellis algorithm to solve the soft MIMO detection prob-

lem. The trellis-search algorithm is a data-parallel algorithm that is more suitable
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for high-speed hardware implementations.

3.1.1 Trellis Graph

The Euclidean distance in (2.5) can be computed backward recursively. To visualize
the recursion, we create a trellis graph. As an example, Fig. 3.1 shows the trellis
graph for the 4 x 4 4-QAM system. In this graph, nodes are ordered into V; vertical
slices or stages, where stage k corresponds to symbol s; transmitted by antenna k.
In other words, the trellis is formed of columns representing the number of transmit
antennas and rows representing values of transmitted symbols. The trellis starts with
a root node and ends with a dummy sink node. The stages are labeled in descending
order. In each stage, there are QQ = 22 different nodes, where each node maps to a
constellation point that belongs to a known alphabet. Thus, any transmitted symbol
vector is a particular path through the trellis. The trellis is fully connected, so there
are @™ number of different paths from root to sink. The nodes in stage k are
denoted as < k,q >, where ¢ =0,1,...,Q — 1. The edge between nodes < k,q > and

<k —1,q¢ > has a weight of e;_,(q*~1):

Nr—1 )
ek—l(q(k_—l)) = '@k—1 - Z Rk—l,j ’ 33" ’ (3-1)
j=k—1
where q*~1 is the partial symbol vector q*~V = [gx_; gk -.. qn,_1]7, and s; is the

complex-valued symbol s; = map(g;). We define the path weight as the sum of the
edge weights along this path. Then the weight of a path from root to sink is an

Euclidean distance ||[§ — R - s||?. Define a (partial) path metric dj, as the sum of the
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edge weights along this (partial) path. Then the path weight is computed backward

recursively as:
dr-1(q") = di(q) + ek—l(q(k_l))’ (32)
where dy,.(-) is initialized to 0, and dy(-) is the path weight (or Euclidean distance).

<«—Number of Antennas (N )———>»
dk(q) k-1) dk—l(q’)
e (@ )

() C . .
6}\{{&{{, %«,

YRS
20
(D ©

()

AWAWA

<«——Constellation Size (Q——>

Stage 3 Stage 2 Stage 1 Stage 0
0 1 0 1 0 1 0 1
X X X X X X X X
X X X X X X X X
3 2 3 2 3 2 3 2
Antenna 3 Antenna 2 Antenna 1 Antenna 0

Figure 3.1 : A trellis graph for the 4 x 4 4-QAM system. Each stage of the trellis
corresponds to a transmit antenna. There are Q = 22 nodes in each stage, where
each node maps to a constellation point that belongs to a known alphabet.

3.1.2 Multiple Shortest Paths Problem

We transform the soft MIMO detection problem into a multiple shortest paths prob-

lem. A similar technique of shortest path to cover different states in a state space has
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been investigated in the graph theory application [82]. In this thesis, we apply the
shortest path algorithm to the MIMO detection problem.

In the trellis graph, each trellis node < k,q > maps to a complex symbol s such
that any path from root to sink maps to a particular symbol vector s. A path weight
is a measurement of the soft probability (P(y|s)) for nodes (symbols) on this path.
'To make a soft decision for every transmitted bit xy, finding one shortest path is not
enough. We want to find multiple paths which cover every node in the trellis graph.
The multiple shortest paths problem is defined as follows. For each node < k,q >
in the trellis graph, find a shortest path from root to sink that must inclu‘de this node
< k,q >. The corresponding shortest path weight is related to the symbol probability
(P(y|sk)). If we can find such a conditional shortest path for each node in the trellis,
we will then have one soft information value for every possible symbol transmitted
on every antenna. As a result, we will have sufficient soft information values to avoid
the missing counter-hypothesis problem. Thus, the LLR for every data bit can be

formed accurately based on these soft information values.

3.1.3 Trellis Traversal Strategies

Because of the unconstrained trellis structure, there are Q"¢ different paths from
root to sink that need to be evaluated. In order to reduce the search complexity,
we propose a greedy algorithm that approximately solves the multiple shortest paths

problem defined above. In this search algorithm, the trellis is pruned by removing the

cn
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unlikely paths. However, we always preserve a predefined number of paths at each
trellis node so that there is enough soft information to compute LLRs. We refer to
it as the path-preserving trellis-search (PPTS) algorithm. It is a two-step algorithm

which is summarized as follows.

Step 1: Path Reduction

The path reduction algorithm is used to prune the unlikely paths in the trellis by
applying the M-algorithm [83] locally at each node. Fig. 3.2 illustrates the basic
data flow of the path reduction algorithm. Note that Fig. 3.2 illustrates only three
successive stages, k, k — 1, and k£ — 2 among the N; stages. Each node receives QM
incoming path candidates from nodes in the previous stage of the trellis and, then,
and the (M) paths are preserved from these QM candidates. Next, the number M
survivors are fully extended to the right so that each node will have the best QM
outgoing paths forwarded to the next stage of the trellis.

We define the following notation to help explain the algorithm. Let ﬁ,(cm) (4, 1)
denote the QM incoming path candidates for node < k,7 >, and a,(cm) (i) denote the
M surviving path metrics selected by node < k,7 >. In Fig. 3.2, the stages of the
trellis are labeled in descending order, starting from /N, — 1 and ending with 0. In
stage k, each node < k, ¢ > evaluates its @M incoming path candidates ﬂ,gm) (7,1) and
selects the best M paths from ﬁ,(cm) (4,%), where the m-th best path metric is agm) (7).

The a metrics are sorted so that ag}o) (1) < ag) (1) <..< afcM_l) (7). Next, each of the
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surviving paths is fully extended for the next stage so that there are QM outgoing
paths leaving from each node < k,i >, which are ﬂ,(f:)l(z, j). This search process

repeats for every stage of the trellis. The details of the path reduction algorithm are

summarized in Algorithm 1.

,.g B ém)(i’i) oM (E”))ut'gloing Paths QM(S)utgoing Paths
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Figure 3.2 : Flow of the path reduction algorithm, where each node evaluates all its
incoming paths and selects the best M paths.

As an example, Figure 3.3 shows 4 x 4 4-QAM trellis graph after applying the
path reduction procedure, where each node preserves only M = 2 best incoming
paths, the one with the least cumulative path weights. The path reduction procedure
can effectively prune the trellis by keeping only the number M of the best incoming

paths at each trellis node. As a result, each node in the last stage, i.e. stage 0, has the
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Algorithm 1 Path Reduction Algorithm
0) Initialization: Set loop variable k = N; — 1. For each node < k,4 >, initialize
]E:m) (] ’l) _ { |?jk — Rk’ksk(i)IQ, j, m = 0.
’ +00, j,m # 0.
1) Main Loop:
1.a) Path Selection: For each node < k,i >, select the best M paths afcm) (¢) from
the QM path candidates ﬁ,(cm) (4,1).
1.b) Path Calculation:
for 0<i<Q-1)
for 0<m<M-1)
for 0<;j<Q-1)
B (i) = o™ (@) + e (GE),
where (™, (j*®1) is the edge weight as defined in (3.1).
1.c) Loop Update: Set k =k — 1. If k # 0, goto 1.a).
2) Final Selection: For each node < 0,7 >, select the best M paths a(()m)(i) from
the QM path candidates ﬂ(()m) (4,1)-

Antenna3’ Antenna2 Antenna 1 AntennaQ
(Stage 3) (Stage 2) (Stage 1) (Stage 0)

Figure 3.3 : Path reduction example for a 4 x 4 4-QAM trellis, where M = 2 incoming
paths are preserved at each node.
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number M shortest paths (a(()m) (¢)) through the trellis. Recall that each trellis node in
stage k maps to a possible symbol s in a constellation. Thus, we have obtained a soft
information value for every possible symbol sg, the symbol transmitted by 4antenna
0. This is sufficient to guarantee that both the ML hypothesis and the counter-
hypothesis in the Max-Log LLR calculation of (2.4) are available for every data bit
Zop transmitted by antenna 0. Then, the LLRs for data bits zop, b = 0,1, ...,log @ —1,

can be computed as:

1
LLR(z0s) = 5o <min o™ ()

—5 | i, min a,@(i)) , where k,m=0.  (3.3)

=il

However, other than the trellis nodes in the last stage, the algorithm can not
guarantee that every trellis node will have the number M shortest paths through the
trellis. For example, in Figure 3.3, nodes < 2,1 > and < 2,3 > have only uncompleted
paths. Thus, we may not have enough soft information values to calculate the LLRs
for data bits zy; transmitted by antenna & # 0 because the counter-hypotheses for
these bits can be missing. Although we can use LLR clipping [20] to saturate the
LLR values, there will be some performance loss. To preserve enough soft information
values for each data bit, we next introduce a path extension algorithm to fill in the

missing paths for each trellis node ¢ in stage k.

Step 2: Path Extension

To obtain soft information for every possible symbol si, we need to make sure every

node in stage k is included in a path from root to sink. To extend node < k,7 >,
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we start to travel the trellis from this node and try to find the M most likely paths
from this node to the sink node. This is achieved by extending the paths stage
by stage, where the best M extended paths are selected in every stage. Fig. 3.4
shows an example data flow for the path extension for one node < k,7 >. Note that
instead of waiting for the entire path reduction operation to finish, we will start the
path extension operation for antenna k£ as soon as the path reduction algorithm has
finished processing stage k of the trellis. In Fig. 3.4 for example, to detect antenna
k, we first perform path reduction from stage N; — 1 to stage k, and next we perform
path extension from stage t (t = k — 1) to stage 0. Note that only one node’s path
extension process is shown in this figure. In fact, we will extend all the nodes in stage
k simultaneously.

We define ‘Ehe following notation to help explain the algorithm. Let 8™ (k,1,t, §)
denote the QM extended path candidates from node < k,i > to nodes < t,;5 >,
where 7 = 0,1,..,Q —1 and m = 0,1,.., M — 1. Let 4™ (k,i,t) denote the M
surviving paths selected in stage ¢, where m = 0,1,..., M — 1. To extend node
< k,7 >, we first retrieve data ﬂ,(crf)l (¢,7) computed in the path reduction algorithm,
and use it to initialize 6™ (k,i,t,j) = 8™ (i, ), where t = k — 1. Next, the best M
extended paths 7™ (k, i, t) are selected from 8™ (k,i,t, j). Then, v™ (k,4,t) are fully
extended for the next stage to form #(™(k,4,t — 1,5). Again, the best M extended
paths v(™(k,4,t—1) are selected from 8™ (k,4,t—1, 7). This process repeats. Finally,

’y(m)(k, 1,0) are the result M extended paths from node < k,7 > to the sink node.
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Figure 3.4 : An example data flow of the path extension algorithm for extending one
node < k,i >, where M paths are extended from this node to each of the following
stages (t,t — 1, ...,0, where t = k — 1). All the nodes < k,i >,7=10,1,...,Q — 1, can
be extended in parallel.
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The path extension algorithm is summarized in Algorithm 2.

Fig. 3.5 shows an example to extend node < 2,1 > in a 4 x 4 4-QAM trellis. We
can see that M = 2 paths are extended from this node to the sink node. It should
be noted that nodes < k,0 >, < k,1 >,...,< k,Q — 1 > can be extended in parallel
since there is no data dependency between them. After the path extension is finished,
every node in stage k will be included in a path from root to sink. Thus, we have
obtained a soft information value for every possible symbol s, the symbol transmitted
by antenna k. This is sufficient to guarantee that both the ML hypothesis and the
counter-hypothesis are available for every data bit zy . Then, the LLRs for data bits

transmitted by antenna k # 0 can be computed as:

) |
LLR(zxp) = 53 (555511 ™ (k,i,t) — Jnin ™ (k, i, t)) , where t, m = 0. (3.4)

Note that although we keep M paths for each node < k,% > in every extension step,
we only use the final smallest path weight for each node, i.e. v(™=9(k,4,¢ = 0), in
(3.4) to compute the LLR. However, keeping multiple paths in the intermediate steps

helps to improve the accuracy of the LLR values.

3.1.4 Simulation Result

In this section, we evaluate the error performance of the proposed PPTS detector
through computer simulations. The floating-point simulations are carried out for
4 x 4 16-QAM and 4 x 4 64-QAM systems where the channel matrices are assumed

to have independent random Gaussian distributions. A sorted QR decomposition
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Algorithm 2 Path Extension Algorithm for Antenna k, k = N;—1,N;—2,...,1
0) Initialization: Set loop variable t = k — 1. For each node < k,7 >, initialize

6 (K, i, 1, 5) = BT (6,9)-
1) Main Loop:
1.a) Path Selection: For each node < k,i >, select the best M paths v(™ (k,i,t)
from the QM path candidates (™ (k, i, ¢, 5).
1.b) Path Calculation:

for( 0<i<@Q-1)

for 0<m<M-1)
for( 0<;j<Q—-1)
6 (k, it — 1,4) = 7™ (k,i, 1) + €7,

where /™ (jt=1) is the edge weight as defined in (3.1).
1.c) Loop Update: Set t =t — 1. If t # 0 goto 1.a).
2) Final Selection: For each node < k,i >, select the best M paths (™ (k,1,0)
from the QM path candidates 8™ (k, 3,0, 5).

Stage 3 Stage 2 Stage 1 Stage 0
AN —A J

v
Path Reduction Path Extension

Figure 3.5 : Path extension example for one node < 2,1 >, where M = 2 paths are
extended from this node to the sink node.
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of the channel matrix is used. The soft-output of the detector is fed to a length
2304, rate 1/2 WiMax layered LDPC decoder, which performs up to 20 LDPC inner
iterations. Figures 3.6 and 3.7 show the frame error rate (FER) performance of
the PPTS detectors for different M values. As a reference, we also show the error
performance of a M;Lx—Log MAP detector with exhaustive search criterion, and a soft
K-Best detector with K = 4@Q). In the error performance comparison, the Max-Log
MAP detector with full search criterion is considered as the baseline reference. We
also show a bit error rate (BER) performance for the 4 x 4 16-QAM system in Figure
3.8.

For a 4 x 4 16-QAM system, when M = 1, the PPTS detector shows about 1 dB
performance loss at FER 10~3 compared to the baseline reference. When M = 2,
the PPTS detector shows about 0.35 dB performance degradation. When M = 3,
the PPTS detector shows only 0.15 dB.performance degradation. When M = 4, the
PPTS detector achieves a performance almost the same as the baseline reference.
Compared to the K-Best detector with K = 32, the PPTS detectors with M = 2, 3,4
significantly outperform the K-Best detector.

For a 4 x4 64-QAM system, when M = 1, the PPTS detector shows about 0.75 dB
performance loss at FER 10~ compared to the baseline reference. When M = 2, the
PPTS detector shows about 0.3 dB performance degradation. When M = 3,4, the
PPTS detector achieves a performance that is very close to the baseline reference.

Compared to the K-Best detector with K = 64, the PPTS detector with M =1
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4x4 16—QAM MIMO System with Rate 1/2 LDPC Code
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Figure 3.6 : Frame error rate performance of a coded 4 x 4 16-QAM MIMO system
using the PPTS detection algorithm with different M values.
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4x4, 64—QAM, Rate 1/2 LDPC outer—code
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Figure 3.7 : Frame error rate performance of a coded 4 x 4 64-QAM MIMO system
using the PPTS detection algorithm with different M values.
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4x4 16—QAM MIMO System with Rate 1/2 LDPC Code
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Figure 3.8 : Bit error rate performance of a coded 4 x 4 16-QAM MIMO system using
the PPTS detection algorithm with different M values.
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performs similarly to the K-Best detector, but the PPTS detectors with M = 2,3,4

significantly outperform the K-Best detector.

3.1.5 Discussions on Sorting Complexity

~ The trellis-search algorithm is a variation of the K-best tree-search algorithm. In
the K-best tree-search algorithm, K global candidates are selected in each level of
the tree. One limitation of the K-Best tree-search algorithm is that it may not pre-
serve enough soft information for every transmitted bit z. Thus the missing counter-
hypothesis problem may occur, which will lead to significant performance loss. On
the other hand, the trellis-search algorithm always guarantees that for each transmit-
ted bit z, there will be a ML-hypothesis and a counter-hypothesis so that the LLR
for transmitted bit z can be more reliably formed.

Sorting is often the bottleneck in the K-best detectors. Now we compare the
sorting cost of the proposed PPTS detector with that of the K-best detector. Both
PPTS and K-best detectors need to carry out a (s,t) sorting operation: find the
smallest s values out of ¢ candidates. From the above simulation results, we know
that the error performance of the K-best detector with K = 4Q) is worse than the
proposed PPTS detector with M = 2. To have a fair comparison, we compare the
(s,t) sorting complexity of the more complex PPTS detector with M = 2 and the
K-best detector with K = 4Q).

Table 3.1 summarizes the sorting complexity comparisons. The sorting complex-
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ity is measured by the number of pairwise comparisons. Generally, to find the s
smallest values from ¢ candidates requires at least t — s+ 3-,,, ., [logj] pair-
wise comparisons [84]. This bound is only achievable for s = 1,2. For the PPTS
detector, () concurrent (M, QM) sorting operations are required at each trellis stage.
For the K-best detector, one global (K, QK) sorting operation is required at each
tree level. The (s, t) sorting complexity of the K-best algorithm is approximated by
4(t — 1) + (s — 1) logy t when applying the typically used heap sort algorithm [38].
From Table 3.1, we can see that the PPTS detector has a significantly lower sorting
complexity than the traditional K-best detector especially for the higher modulation
systems. In addition, the PPTS detector can employ () concurrent smaller sorters
which will lead to a significant processing speedup.

The PPTS detector compares favorably than the sort-free detectors, such as the
flex-sphere detector [85] and the SSFE detector [44]. These sort-free detectors use a
simpler algorithm to avoid the expensive sorting operations at a cost of some perfor-
mance degradation. It should be noted that even the sort-free detectors avoid the
sorting, they still can not achieve more than 300 Mbps throughput for the 4 x 4 16-
QAM system. On the other hand, our trellis-based detector uses a sort-light algorithm

to achieve near-optimal performance and multi-Gbps throughput.
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Table 3.1 : Sorting complexity comparison
4 x 4 16-QAM MIMO System

K-Best, K = 64 Trellis, M = 2
Sorting complexity per (64,1024) ~ 4722 (2,32) =35
tree level/trellis stage One global sorter | 16 sorters in parallel
Processing speedup 1 135 times faster
Required SNR for 103 FER 10.0 dB 9.9 dB

4 x 4 64-QAM MIMO System

K-Best, K = 256 Trellis, M = 2
Sorting complexity per (256,16384)=69102 (2,128)=133
tree level /trellis stage One global sorter | 64 sorters in parallel
Processing speedup 1 520 times faster
Required SNR for 103 FER 14.4 dB 14.3 dB

3.1.6 Discussions on Search Patterns

In the proposed trellis-search algorithm, we need to perform a multi-pass search
operations. In the first-pass, the trellis is pruned by only keeping the best M incoming
paths at each node. Next, the trellis is re-visited to fill in the uncompleted paths.
One variation of this algorithm is to only visit the trellis once by keeping both M
incoming paths and M outgoing paths at each node during the sweep. This algorithm
reduces the search complexity at a cost of some performance loss because the edge
weight changes as the path changes. Fig. 3.9 compares the frame error performance of
the one-pass trellis-search detector with that of the multi-pass trellis-search detector.

As can be seen, the one-pass trellis-search has a performance loss of 0.4 dB. However,
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the one-pass detector can save the computational operations by about 40%. Thus,

the one-pass detector is a tradeoff between complexity and performance.

4x4 16—QAM MIMO System with Rate 1/2 LDPC Code

I

—<— Trellis detector, one—pass, M=2

Frame Error Rate

8.2 84 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2 104
E blNo (dB)

Figure 3.9 : Frame error rate performance for one-pass trellis search algorithm.

3.2 n-Term-Log-MAP Algorithm

As an enhancement to the conventional Max-Log-MAP algorithm, we describe a n-
Term-Log-MAP approximation algorithm to achieve near-optimum MIMO detection
performance. The same trellis-search algorithm can be used to implement the n-

Term-Log-MAP approximation algorithm.
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As we know, the optimum soft MIMO detection is based on the Log-MAP algo-
rithm, which is too complex to be implemented in a practical MIMO receiver because
the Log-MAP algorithm requires calculating log-sum of % exponential terms, where
( is the constellation size and M is the number of transmit antennas. In practice,
the Log-MAP algorithm is often approximated by the Max-Log-MAP algorithm to re-
duce complexity. However, there is still a performance gap between the sub-optimum
Max-Log-MAP detector and the optimal Log-MAP detector. Almost all the exist-
ing MIMO detector implementations are based on the sub-optimal Max-Log-MAP
approximation which limits the error performance of the detector.

In this section, we propose a reduced-complexity Log-MAP approximation algo-
rithm for high performance MIMO detection. In the proposed algorithm, we use
a reduced number (n) of exponential terms to approximate the original Log-MAP

algorithm as:

n—1

1
LLR(mip)=In Y exp ( —55lly—H- s||2) . (3.5)
1=0:z p=0 d
n—1 1
> e (- sally —H- s|I?). (3.6)
1=0:zg p=1

The trellis search method described before can be modified to implement the n-
Term-Log-MAP algorithm. Recall that in the trellis search algorithm, each node
keeps a list of M most likely paths. So altogether QM candidates in each stage k of
the trellis can be used to compute the LLRs for data bits transmitted by antenna k

using the n-Term-Log-MAP algorithm, where n = %
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The n-term log-sum operation can be implemented by iteratively applying the
two-term log-sum. The two-term log-sum can be computed using the advantageous

Jacobean algorithm as follows:
In(e? + €*) = max(a, b) + In(1 + €l*~tl) = max*(a, b). (3.7)

The In(1+€l*~?) can be approximated by using a one-dimension look-up table accessed
by |a — b|. Then the n-term log-sum can be recursively computed using the Jacobean
algorithm. The following equation shows an example to implement a four-term log-
sum:

max*(a, b, ¢,d) = max*(max*(a, b), max*(c, d)). (3.8)

To further reduce the complexity, we break the computation into two steps. Recall
that each stage of the trellis corresponds to a transmit antenna, and each node in a
stage is mapped to a constellation point. We can first compute a symbol reliability

metric I'(¢q) for each node ¢ as follows

L-1
1
Te(g) = In e_gi-zdil)(q) — max* (——dg)) ) (3.9)
1 202
1=0
The LLR for each transmitted bit is computed as:
LLR(zy,) = max * B e LI (3.10)
Bb)T gg pm0 202k q:zpp=1 202k |- '

Since multiple exponential terms are used, this algorithm will significantly out-
perform the Max-Log-MAP algorithm. Given a modulation size ), the local list
size M determines the decoding performance: larger M value leads to better error

performance.
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It should be noted that the n-Term-Log-MAP algorithm can not be applied to the
traditional MIMO detection algorithms such as the K-best detector and the sphere
detector because they can not guarantee that multiple exponential terms will exist
when computing LLRs. This is because in the tree search process, the tree nodes are
not grouped by their QAM values. Therefore, there is no control of how many terms
are found for each possible constellation point.

We evaluate the error performance of the proposed n-Term-Log-MAP trellis-search
detector. The floating-point simulations are carried out for a 4x4 16-QAM system
where the channel matrices are assumed to have independent random Gaussian dis-
tributions. A (2304, 1152) WiMax LDPC code is used as an outer channel code.
As references, we also plot the simulation results for the optimal Log-MAP detector,
the Max-Log-MAP detector based on the exhaustive search, and the Max-Log-MAP
detector based on the K-Best search algorithm. As can be seen from Fig. 3.10, the
n-Term-Log-MAP detector with M = 2 significantly outperforms the K-Best detector
with K = 32. The n-Term-Log-MAP detector with M = 3 outperforms the Max-
Log-MAP detector with exhaustive search criterion. The n-Term-Log-MAP detector

with M =4 and M = 6 performs very close to the optimal Log-MAP algorithm.

3.3 Iterative Detection and Decoding

Iterative detection and decoding is a technique to combine the detection and decoding

process to further improve the performance. By exchanging information between the
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Simulation results for a LDPC—coded 4x4 16—QAM MIMO system
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Figure 3.10 : Error performance of a coded 4 x 4 16-QAM MIMO system using the
n-Term-Log-MAP detection algorithm with different M values.
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detector and the decoder, an iterative receiver has a significant performance improve-
ment over the non-iterative receiver.

In a iterative detection and decoding scheme [20] as illustrated in Fig. 3.11, the
MIMO detector generates extrinsic information Lg; using the received signal y and
the a priori information L4; provided by the channel decoder. In the first iteration,

L 4, is not available and is assumed to be 0.

Y yY De-interleaver

MIMO LAPPI + LE 1 H'l LA2 Channel DG»COdCd Bits
Detector /. q Decoder
T ; ; _ Larr
Al I € E2 n
 Interleaver

Figure 3.11 : Iterative MIMO receiver block diagram, where the subscript “1” denotes
soft information associated with the MIMO detector and the subscript “2” denotes
soft information associated with the channel decoder.

Now the LLR value for each bit x4 is changed to: [20]

~1B-1
Z exp( ||y H- S||2+szkb Ly xkb)
LLR(zy) = In 22~ e . (3.11)
Z exp( ||y H- s||2+ZZxkb La( xkb)
sy p=1 k=0 b=0

where La(xkp) is the a priori LLR value for bit z(k,b). With the Max-Log approxi-

mation, the LLR value of (3.11) is simplified to

LLR(zkp) = 2;2 (sgklibrll d(s) — min d(s)) , (3.12)

s:zg p=0
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where the Euclidean distance, d(s), is defined as:

Ny—1 B-1
d(s) = i: <|(5’)k — (Rs)il* —0® ) s LA(“&))- - (3.13)
k=0 b=0

In a traditional iterative MIMO receiver implementation [86, 87], because the
detection block is often the bottleneck, the detection is performed only once. A list
of candidates generated by the MIMO detector are stored in a list buffer. In each
outer iteration, the soft values generated by the channel decoder are only fed back to
the list buffer to update the list and generate new soft values based on the new list.
A major drawback of this scheme is that the error performance is not as good as the
original iteration detection and decoding scheme as shown in Fig. 3.11.

However, with the proposed trellis-search algorithm, the MIMO detection task
can be performed very fast. Therefore, it is realistic to re-run the entire detection in

each outer iteration. The same trellis-search algorithm can be used for the iterative

MIMO detector by modifying the original edge weight function (3.1) to:

Np—1 9 N;—1 B-1
€k—1(q(k_1)) = ‘:‘;k—l - Z Ry - Sj} —o° Z Z-Tj,b : LA(zj,b)- (3.14)
j=k-1 Jj=k—1 b=0

The error performance of the iterative detection and decoding scheme is evaluated
through computer simulations. The floating-point simulations are carried out for
4 x 4 16-QAM systems where the channel matrices are assumed to have independent
random Gaussian distributions. A (2304, 1152) WiMax LDPC code is used as an
outer channel code. The outer LDPC iteration is fixed to 20. The magnitude of the

extrinsic LLR Lg; is saturated to 15 to avoid the large LLR values with a wrong
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sign. Fig. 3.12 shows the error performance of the iterative receiver based on the
M =1 trellis-search max-log-MAP detector for different outer iterations. Fig. 3.13
shows the error performance of the iterative receiver based on the M = 2 trellis-search
max-log-MAP detector for different outer iterations. As can be seen, with one outer
iteration, the FER performance can be improved by 1.5 to 2 dB. By increasing the
number of the outer iterations, the FER performance can be increased by about 2.5

to 3 dB.
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Figure 3.12 : Error performance of an iterative detection and decoding system, where
a M =1 trellis-search max-log-MAP detector is used.
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Figure 3.13 : Error performance of an iterative detection and decoding system, where
a M = 2 trellis-search max-log-MAP detector is used.
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3.4 VLSI Architecture for The Trellis-Search Detector

In this section, we describe VLSI architectures for the proposed PPTS detector. We
introduce a fully-parallel “systolic” architecture to achieve the maximum throughput
performance, and a “folded” architecture to reduce area for lower throughput appli-
cation. For the sake of clarity, we describe a PPTS detector architecture with M = 2
for the 4 x 4 16-QAM system. It should be noted that the architecture described can

be easily scaled for other values of M and other MIMO configurations.

3.4.1 Fully-Parallel Systolic Architecture

Fig. 3.14 shows the fully-parallel “systolic” architecture for a N; = 4 antenna system.
This architecture is fully pipelined so that it can process one MIMO symbol in every
clock cycle. In this architecture, the main processing elements include 3 path reduc-
tion units (PRUs), 3 path extension units (PEUs), 4 path selection units (PSUs), and
4 LLR calculation (LLRC) units. The detailed structures of these processing elements
will be described in the following subsections.

In Fig. 3.14, three PRUs (PRU3_;) and one PSU (PSUp) are employed to im-
plement the path reduction algorithm. The main diagonal of the systolic array is
related to the path reduction data flow shown in Fig. 3.2. The PRU implements
one main iteration loop of Algorithm 1 by employing @) path reduction processors to
simultaneously process () nodes in a certain stage (cf. Fig. 3.2). PSUp implements

the final selection step of Algorithm 1 by using () search units. The data flow for
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Figure 3.14 : A pipelined fully-parallel “systolic” architecture for the PPTS detector,
where each PRU/PEU/PSU is a cluster of @ path reduction/path extension/path
selection processors.

the path reduction is as follows. Firstly, PRUj receives R, y, and the pre-computed
|§s — Rs3s;|%, and it computes all the path candidates ﬁém) (¢,7) in parallel, which
are fed to the next PRU, i.e. PRU,. Then, PRU, computes ﬂgm) (4,7), which are fed
to PRU,, and so forth. Finally, PSU, receives ﬂ(()m) (¢,7) from PRU; and computes
a((,o)(z'), which are fed to LLRCy to compute LLR(z;) based on (3.3).

In Fig. 3.14, three PEUs and three PSUs (PSU3_;) are employed to implement the
path extension algorithm. Each row (but the last) of the systolic array is related to the
path extension data flow shown in Fig. 3.4. The PEU implements one main iteration
loop of Algorithm 2 by employing () path extension processors to simultaneously

extend @ nodes in a certain stage (cf. Fig. 3.4). The PSU is used to implement the
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final selection step of Algorithm 2. The data flow for the path extension is as follows.
To detect antenna k£ > 1, k — 1 number of the PEUs and 1 PSU are used. Let t =
k—1. Firstly, PEUy ; receives ﬂ,(ﬁi (¢,7) from PRU}, and it computes 8™ (k,,t—1, j),
which are fed to PEUj;_;. Next, PEUy,_; computes 8™ (k,i,t — 2, j), which are fed
to PEUg;—o, and s;) forth. Finally, PSUy receives 8™ (k, 4,0, ;) from PEU; and
computes ¥(¥(k, ¢,0), which are fed to LLRCy, to compute LLR(z ;) based on (3.4).

Note that to detect antenna 1, only one PSU (PSU,) is required.

3.4.2 Path Reduction Unit (PRU)

The structure of the PRU is shown in Fig. 3.15. The PRU is used to implement the
path reduction algorithm (cf. Algorithm 1:main loop). The PRU employs @ = 16
path reduction processors to process all the () nodes in a certain stage in parallel.
Each path reduction processor contains one minimum (min) finder unit (MFU) and
one path calculation unit (PCU), where the MFU is used to select the best M paths
a,(cm) (¢) from the QM incoming path candidates ﬁ,(cm) (7,4) (cf. Algorithm 1-1.a), and
the PCU is used to compute the QM new extended path candidates ﬁ,(!fi (,7) (cf.

Algorithm 1-1.b).

Min Finder Unit (MFU)

The MFU is used to select the best M = 2 paths from QM = 32 path candidates.
Fig. 3.16 shows the block diagram for the MFU unit which finds the minimum value

Zo and the second minimum value Z; from its 32 data inputs (Ip to I3;). The MFU
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Figure 3.15 : Block diagram for the PRU, which contains ¢ = 16 path reduction
Processors. '

comprises of 16 CMP (comparison) units, 15 variable size (p : (p/2+1)) C-S (compare
and select) units, and one MIN unit. The structures of the CMP unit is shown
in Fig. 3.17(a). The CMP unit compares two data inputs A and B, and outputs
the smaller one (or the “winner”): W = min(A, B), and the larger one (or the
“loser”): L = max(A, B), and the sign: S = sign(A — B). The variable size p :
(p/2+ 1) C-S unit has p inputs (A, Uy, Us, ..., Upja—1, B, V1, Va, ..., Vpjo—1) and p/2+1
outputs (W, Ly, Lo, ..., Ly3). The different values of p for the variable size C-S unit
are 4,6,8, ..., 2log(QM). Output W of the C-S unit is the smallest data among all the
p inputs. Outputs Ly, Lo, ..., Ly/s of the C-S unit are p/2 candidates for the second
smallest data among all the p inputs. Fig. 3.17(b)(c) show the structures for the 4:3
C-S unit and the 6:4 C-S unit. The structures for the larger size C-S units, e‘.g. 8:5
C-S unit and 10:6 C-S unit, are omitted in this thesis because they have very similar

structures as the 6:4 C-S unit.
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Figure 3.16 : Block diagram for the MFU, which uses 16 CMP units, 15 variable size
C-S (compare and select) units, and 1 MIN unit to implement the (2,32) sorting.

Figure 3.17 : Block diagram for the CMP unit, the 4:3 C-S unit, and the 6:4 C-S
unit.

L,

L,

Ls
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The MFU functions as follows. As shown in Fig. 3.16, the MFU takes QM = 32
data inputs and feeds them to 16 CMP units, where each CMP unit generates the
winner and the loser of its two data inputs. The connection of the computational
blocks in the MFU resembles a tree-like structure. Every two CMP units are con-
nected to one 4:3 C-S unit, where the outputs of the 4:3 C-S unit are the winner (W)
of its four data inputs, and two candidates (L1, Ly) for the second winner. Every two
4:3 C-S units are connected to one 6:4 C-S unit, where the outputs of the 6:4 C-S unit
are the smallest data (W) among its 6 data inputs, and three candidates (L;, Lg, L3)
for the second smallest data. Similarly, every two 6:4 C-S units are cbnnected to
one 8:5 C-S unit, and two 8:5 C-S units are connected to a final 10:6 C-S unit. Fi-
nally, output W of the 10:6 C-S unit is the smallest data (Zp) among the 32 data
(Io, I1, ..., I31). Outputs Ly, Lo, ..., Ls of the 10:6 C-S unit are the five candidates for
the second smallest data among the 32 data inputs. A MIN unit is used to generate

the second smallest data Z; (Z; = min(Ly, Lo, ..., Ls)).

Path Calculation Unit (PCU)

Fig. 3.18 shows the PCU architecture which employs M = 2 partial Euclidean distance
calculation (PEDC) units to compute QM = 32 path metrics in parallel. The partial

Euclidean distance (PED) di_; is computed recursively as

dip_1 = di + ex_1. (315)
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The metric increment eg_; (cf. (3.1)) is computed as follows:

ex—1=|T + Re_15-1" sx_1/°, (3.16)
where
Np—1
T= Z Rk—l,j * 85— gk—l- (317)
j=k

For a given PED dj, we need to compute J = 16 new PEDs di_;. Instead of
computing each new PED separately, we can compute () new PEDs in a group by
knowing that symbol si_; is drawn from a known alphabet: s;_; € {1+ 7, +1 +
3j,£3 £, £3 £+ 35}, and Ry_1 -1 is a real value if using a certain QR decomposition
method, e.g. Gram-Schmidt QR decomposition [88]. Let sx_1(q), ¢ =0,1,...,Q — 1,

denote the complex symbol for the ¢g-th constellation point in the alphabet. Then

(3.16) is re-expressed as:

ex-1() = T+ By alsn1 (@ +2Re (Recrgr - Tsea(@). (3.18)

We pre-compute Ry_; ;_;|sx—1(q)|* for different ¢ and save them in registers. Fig. 3.19
shows the architecture for the PEDC unit, which computes @) = 16 PEDs in parallel.
In this architecture, a shift and add (SHAD) unit is used to implement the constant
multiplication A - sg_1, a multiplier (MULT) is used to implement Ry_; 1 - T*, and

a CPX NORM unit is used to compute the L2 norm (|T'|?) of the complex signal T
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Figure 3.19 : Block diagram for the PEDC unit, which computes 16 PEDs in parallel.
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3.4.3 Path Extension Unit (PEU)

The PEU implements the path extension algorithm (cf. Algorithm 2:main loop). The
PEU has a very similar architecture to the PRU. Fig. 3.20 shows the block diagram
for the PEU, which employs ) = 16 path extension processors to extend @) nodes in
a certain stage in parallel. Each path extension processor contains one MFU and one
PCU, where the MFU is used to select the best M paths fy(m)(k, 1,t) from QM path
candidates 8™ (k,i,t,5) (cf. Algorithm 2-1.a), and the PCU is used to calculate the

QM new extended path candidates 8™ (k,4,t — 1,7) (cf. Algorithm 2-1.b)

0 k.0,1) TR00) 1 {60,601,
( i ey B (G gy ( )
Path Extension‘ Processor ‘O
0™k, 1,1 (k1.0 ek 1. 1,)
(k,1,2)) Lo L (k,1,7) — '
Path Extension Processor lJ | J .
o : ' . - L
dm) k,15,t ; m)klst : 0 (k,lS,t—l,j)
®154)) | L———17"k 150 ——1 ;
Path Extension Processor 15

j=0,1,...,15; m=0,1 PEU

Figure 3.20 : Block diagram for the PEU, which contains Q = 16 path extension
processors.

3.4.4 Path Selection Unit (PSU)

The PSU implements the final selection step in Algorithm 1 or Algorithm 2. As

shown in Fig. 3.21, the PSU contains only ¢ MFUs to realize @) concurrent sorting
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E————
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Figure 3.21 : Block diagram for the PSU, which contains ) = 16 MFUs.

3.4.5 LLR Computation Unit (LLRC)

The LLRC is used to compute LLRs based on (3.3) or (3.4). Fig. 3.22 shows the
block diagram of the LLRC unit. To compute log,(Q) = 4 LLRs for antenna k in
parallel, we need 4 sets of hardware blocks shown in Fig. 3.22 to compute LLR(x4),
b=0,1,...,log@Q — 1, for our example 16-QAM system. It should be noted that the
multiplier in Fig. 3.22 may not be required if the outer channel decoder uses a linear
decoding algorithm such as the Min-Sum algorithm [63] in LDPC decoding or the
Max-Log-MAP algorithm [89] in Turbo decoding. In that case, the multiplier can be
replaced by a simpler normalizer. To support the n-Term-Log-MAP algorithm, the
LLRC block needs to be modified by replacing the MIN unit with a n-input Log-sum

unit. Fig. 3.23 shows an example for the eight-term log-sum unit.
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Figure 3.22 : Block diagram of the LLRC unit.
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Figure 3.23 : Eight-term log-sum unit.

68



69

3.4.6 Throughput Performance of The Systolic Architecture

The proposed systolic MIMO detector architecture (cf. Fig. 3.14) can provide very
high throughput performance. This architecture is fully pipelined so that it can
process one MIMO symbol in every clock cycle. Generally, if we let the clock frequency
be fclk MHz, then the throughput (Mbps) for a N; x N, Q-QAM system can be
expressed as:

Throughput_Systolic = N - log, @ - fclk. (3.19)

As an example, assuming a system clock of 400 MHz, the systolic architecture can

provide a throughput of 6.4 Gbps for a 4 x 4 16-QAM system.

3.4.7 Folded Architecture

For system applications that may require less throughput, we can fold the fully-
parallel systolic architecture to reduce the parallelism and hence the hardware com-
plexity. Fig. 3.24 shows the folded architecture where only one PRU and one PEU
are instantiated to save area. Note that the PRU/PEU is the most area-consuming
block in the PPTS detector.

Because we only have one PRU and one PEU, we need to schedule them sequen-
tially. Fig. 3.25 illustrates the detection timing diagram using the folded architecture
for a 4 antenna system. In this diagram, the PRU is scheduled to run the path reduc-
tion (PR) operations from t=0 to t=11, and the PEU is scheduled to run the path

extension (PE) operations from ¢=4 to t=15. Note that the subscripts of the PRs
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Figure 3.24 : Folded architecture for the PPTS detector.

and PEs in this diagram have the same meaning as that in Fig. 3.14. For simplic-
ity, the final path selection operations (executed in PSU) and the LLR calculation
operations are omitted in this diagram. Furthermore, as the pipeline stages for the
PRU and PEU are 4 clock cycles, we can feed four back-to-back MIMO symbols in 4
consecutive cycles, e.g at t,t+1,t+2,t+ 3 to fully utilize the hardware. And we can
feed the next four back-to-back MIMO symbols at ¢ + 12,¢ + 13,¢ + 14, ¢ + 15 into
the pipeline, and so forth. The throughput of the folded architecture for a 4 antenna

system is given as:
4
Throughput_folded _4ant = 3 log, Q - fclk. (3.20)

For a larger MIMO system with N; > 4 transmit antennas, if we still use one PRU

and one PEU, the throughput for a N; > 4 antenna system is estimated as:

2N;
(N, — 1)(N, — 2)

Throughput_folded_N = log, @ - fclk. (3.21)

As an example, assuming a system clock of 400 MHz, the systolic architecture can
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provide a throughput of 2.13 Gbps for a 4 x 4 16-QAM system. As a balanced
tradeoff, the folded architecture significantly reduce the area but still maintaining
high throughput performance.

Note that for larger MIMO systems (N; > 4), the throughput is limited by the
number of the path extension operations. However, we can employ more than one

PEU in the folded architecture to match with the processing speed of the PRU.

t=0 I[=4 t=8 t=12 t=16
PR g
PR,
PR,
PE
Next set of
symbols
_PEp ]

Figure 3.25 : Detection timing diagram for a 4 antenna system using the folded
architecture.

3.5 Summary

In this chapter, we introduce a novel low-complexity trellis-search detection algorithm
and VLSI architecture. In chapter 6, we will describe an ASIC implementation of a
multi-Gbps MIMO detector based on this trellis-search architecture. In this chapter,
we also introduce an iterative detection decoding scheme which can be used to improve

the error performance of the MIMO system by around 3 dB through the use of the
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proposed PPTS detection approach. In chapter 4 and 5, we will describe two kinds of
channel decoders (Turbo decoders and LDPC decoders) that can be used to integrate

with the MIMO detector to form an iterative receiver.
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Chapter 4

High-Throughput Turbo Detector for
LTE/LTE-Advanced System

Turbo codes invented in 1993 [47] have attracted much attention recently because the
new wireless systems are demanding higher and higher data rate. For example, in
the LTE-Advance standard, the target data rate is 1 Gbps, which poses a significant
challenge for the Turbo decoder design. Our goal is to develop a highly-parallel Turbo
decoder architecture to achieve 1+ Gbps high data rate. We utilize the contention-free
interleaver defined in the LTE standard to enable parallel Turbo decoding without
additional data buffers.

Turbo decoders suffer from high decoding latency due to the iterative decoding
process, the forward-backward recursion in the maximum a posteriori (MAP) de-
coding algorithm and the interleaving/de-interleaving between iterations [47, 90, 91].
Sliding window architectures are often used to reduce the latency of the MAP decod-
ing. The choice of the sliding window algorithm may have a significant impact on the
decoding BER performance and parallelism. In this chapter, we will present a new
parallel sliding window algorithm and a new parallel non-sliding window algorithm
for the LTE Turbo decoding.

A high throughput Turbo decoder can be realized by parallelizing several MAP
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decoders, where each MAP decoder operates on a segment of the received codeword
[92]. Due to the randomness of the Turbo interleaver, two or more MAP decoders
may access the same memory at the same clock cycle which will lead to a memory
collision. As a result, the decoder has to be stalled which consequently delays the
decoding process. The Interleaver structures in the 3G standards, such as CDMA /W-
CDMA/UMTS, do not have a parallel structure. Although the memory stalls caused
by the interleaver can be partially reduced by using write buffers [93], the memory
st?alls will occur more and more frequently as the parallelism degree increases. To
solve this problem, the high data rate 3GPP LTE standard has adopted a contention-
free, parallel interleaver which is called quadratic permutation polynomial (QPP)
Turbo interleaver [94]. From an algebraic-geometric perspective, the QPP interleaver
allows analyti(ial designs and simplifies hardware implementation of a parallel Turbo
decoder [95]. Based on the permutation polynomials over integer rings, every factor
of the interleaver length can be a parallelism degree for the decoder [95] which is
contention-free.

Turbo decoder architectures in the literature are mostly based on the older matrix-
permutation interleavers, thus the parallelism level is significantly limited. In this
chapter, we will utilize the conflict-free QPP interleaving property to design a highly-
parallel Turbo decoder for high speed wireless applications. The proposed decoder
can achieve over 1Gbps data rate, which is significantly higher than the existing Turbo

decoders.
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4.1 LTE/LTE-Advanced Turbo Codes

As shown in Figure 4.1, the Turbo encoding scheme in the LTE/LTE-Advanced stan-
dard is a parallel concatenated convolutional code with two 8-state constituent en-
coders and one quadratic permutation polynomial (QPP) interleaver [94]. The func-
tion of the QPP interleaver is to take a block of N-bit data and produce a permutation
of the input data block. From the coding theory perspective, the performance of a
Turbo code depends critically on the interleaver structure [49]. The basic LTE Turbo
coding rate is 1/3. It encodes an N-bit information data block into a codeword with
3N + 12 data bits, where 12 tail bits are used for trellis termination. The initial
value of the shift registers of the 8-state constituent encoders shall be all zeros when
starting to encode the input information bits. LTE has defined 188 different block

sizes, 40 < N < 6144.

» ;. (Systematic )

Uy, (Information )
; 1

QPP
Interleaver

»]

D
X

D2 (Parity 2)

Figure 4.1 : Structure of rate 1/3 Turbo encoder in the LTE/LTE-advanced system.
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4.2 QPP Interleaver

The task of an interleaver is to permute the soft values generated by the MAP decoder
and write them into random or pseudo-random positions. Interleaving/deinterleaving
of extrinsic information is a key issue that needs to be addressed to enable par-
allel decoding because memory access contention may occur when MAP decoders
fetch/write extrinsic information from/to memory. The QPP interleaver defined in
the new LTE/LTE-advanced standard differs from previous 3G interleavers in that it
is based on algebraic constructions via permutation polynomials over integer rings. It
is known that permutation polynomials generate contention-free interleavers [96, 95],

i.e. every factor of the interleaver length becomes a possible parallelism degree.

4.2.1 Algebraic Description of QPP Interleaver

The QPP interleaver can be expressed via a simple mathematical formula. Given an
information block length N, the z-th interleaving output position is specified by the

quadratic expression: [94]
f(x) = (fo2® + fiz) mod N, (4.1)

where parameters f; and f, are integers and depend on the block size N (0 <
z, f1, fo < N). For each block size, a different set of parameters f; and f, are defined.
In LTE, all the block sizes are even numbers and are divisible by 4 and 8. Moreover,
the block size N is always divisible by 16, 32, and 64 when N >= 512, N >= 1024,

and N >= 2048, respectively. By definition, parameter f; is always an odd number
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whereas f; is always an even number. Through further inspection, we can list the

following algebraic properties for the QPP interleaver.

QPP interleaver algebraic property 1:

f(z) has the same even/odd parity as z:

f(2k)mod2 = 0

= 1.

F(2k+1) mod 2

QPP interleaver algebraic property 2:
The remainders of f(z)/4 ,f(z+1)/4, f(z +2)/4, and f(z + 3)/4 are unique:

f(4k) mod 4 =0

¢

1 when (f1 + fo) mod 4 =1

f(4k + 1) mod 4 = <
3 when (fi + f2) mod 4 =3

f(4k +2) mod 4 =2
(

3 when (fy + fo) mod4 =1

f(4k 4+ 3) mod 4 = <
1 when (fi + f2) mod 4 = 3.
\

QPP interleaver algebraic property 3:

f(z) mod n = f(z +m) mod n,VYm : m mod n = 0.

Property 1 can be easily verified since parameter fs is always even and parameter f;
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is always odd by definition. Property 2 can be shown through the following equations:

f(4k) = 4(4f2k* + fik)
fAk+1) = 4(4fok® +2fok+ fik) + o+ fi
f(4k+2) = 4(4fok? +4fok + fik + fo) + 211

f(4k+3) = 4(4fok® + 6fok + fik + 2fa) + fo + 3f1.

Property 3 can be verified by:

f@+m) = f(z) + m(2faz + fom + f1).

We will explain later that these algebraic properties are very useful in designing

memory systems for parallel Turbo decoder.

4.2.2 QPP Contention-Free Property

In general, a Turbo interleaver/de-interleaver f(z), is said to be contention-free for a

window size of L if and only if it satisfies the following constraint [95, 97, 98]

[f(xziL)J L [ﬂxsz)J’ (4.2)

where 0 < z < L, 0 < 4,5 < P (= N/L), and i # j. The terms in (4.2) are
essentially the memory indices that are concurrently accessed by the P MAP decoder
cores. If these memory indices are unique during each read and write operation, then
there are no contentions in memory accesses. Figure 4.2 shows an example of the

contention-free memory access scheme.
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X x+L x+2L x+3L

MEM 0 MEM 1 MEM 2 MEM 3

Figure 4.2 : An example of the contention-free interleaving, where a data block is
divided into P = 4 segments (SEG 0 to SEG 3) with equal length of L = N/P.
The contention-free property requires that for a fixed offset x at each segment, the

segment indices for the interleaving addresses @ (0 <3< P—1) are unique

so that they can be physically mapped to different memory modules.

It has been shown in [96, 95] that every factor of the interleaver length N becomes a
possible interleaver parallelism that satisfies the contention-free requirement in (4.2).
Table 4.1 summaries the parallelism degrees (up to 64) for some of the LTE QPP

interleavers.

Table 4.1 : QPP interleaver parallelism.

N f(z) Parallelism (factors of N)

40 1022 + 3z 1,2,4,5,8,10,20

48 1222 4+ Tz 1,2,3,4,6,8,12,16,24

64 4272 + 192 1,2,4,8,16,32
6016 | 94z2 + 23z 1,2,4,8,16,32,47,64
6080 | 19022 + 47z | 1,2,4,5,8,10,16,19,20,32,38,40,64
6144 | 480z2 + 263z | 1,2,3,4,6,8,12,16,24,32,48,64
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4.2.3 Hardware Implementation of QPP Interleaver
Based on the algebra analysis in [96], the QPP interleaver is guaranteed to always
generate a unique address which greatly simplifies the hardware implementation. In
MAP trellis decoding, the QPP interleaving addresses are usually generated in a
consecutive order (with step size of d). By taking advantage of this fact, the QPP

interleaving address can be computed in a recursive manner. Suppose the interleaver

starts at xo, we first pre-compute f(zo) as:

f(il)()) = (f21'(2) + flil‘o) mod N. (43)

In the following cycles, as z is incremented by d, f(x + d) is computed recursively as

follows:

fz+d) = (folz+d)*+ fi(z +d)) mod N (4.4)

= (f(z) +g(z)) mod N, (4.5)
where g(z) is defined as:
g(z) = (2dfax + d*f2 + df1) mod N. (4.6)
Note that g(x) can also be computed in a recursive manner:

g(z+d) = (9(z)+2d*f,) mod N (4.7)

= (g(z) + (2d*f; mod N)) mod N. (4.8)
The initial value g(zo) needs to be pre-computed as:

g(.’L‘()) = (2df21’0 + d2f2 + dfl) mod N. (49)
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The modulo operation in (4.5) and (4.8) can be difficult to implement in hardware
if the operands are not known in advance. However, by definition we know that both
f(z) and g(z) are less than N, and parameters f; and f, are both less than N too.
Thus, the modulo operations in (4.5) and (4.8) can be simply realized by additions
and subtractions. In the LTE standard, the value N is between 40 and 6144.

In the proposed method, three numbers need to be pre-computed: (2d2f;) mod N,
f(zo), and g(z). Figure 4.3 shows a hardware architecture to compute the interleav-
ing address f(z), where z starts from zy and is incremented by d on every clock cycle.
For example, by setting d to 1, this circuit can generate interleaving addresses at each
step of 1. If n consecutive interleaving addresses are required at each clock cycle, this
circuit can be replicated n times with n different initial values: xq, o + 1, ..., and
To+n—1.

The circuit in Figure 4.3 can generate interleaving address in a descending order
as well by setting d to be a negative number, eg. d = —1. But g(zo) needs to
be recomputed for negative d. To be able to generate both forward and backward
addresses using the same f(z) and g(z) functions, we now describe a method to
generate the QPP interleaving address in the descending order. By substituting x

with z — d in (4.5) and reorganize (4.5), we can get:
flx—d)=(f(z) — g(x — d)) mod N. (4.10)
Similarly, substitute z with z — d in (4.8) and reorganize (4.8), we can get:

g(z — d) = (g9(z) — (2d*f mod N)) mod N. (4.11)
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Figure 4.3 : Forward QPP address generator circuit diagram, step size = d.

Based on (4.10)(4.11), Figure 4.4 shows a hardware architecture to compute the QPP
address f(z) in the descending order (backward generating), where z starts from zg
and is decremented by d on every clock cycle. The three pre-computed values are the
same as those in the forward QPP address generator (cf. Figure 4.3).

As can be seen from Figure 4.3 and 4.4, the proposed QPP interleaver pattern
generator consumes very few resources. The complexity of this circuit is an order
of magnitude smaller than the previous 3G interleavers. For example, a circuit with
about 30K gate count is reported in [99] to generate the interleaving addresses for
Turbo codes in the previous 3G standard (3GPP Release-4), and a UMTS hardware
interleaver with 10.5K gate count is presented in [100]. The low complexity of the

proposed QPP interleaver is achieved due to the fact that the addresses are calculated
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sequentially, not randomly.
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Init ——eo-»
—| gk)
e
N -

Figure 4.4 : Backward QPP address generator circuit diagram, step size = d.

4.3 Sliding Window and Non-Sliding Window M AP Decoder
Architecture

MAP decoder architectures have been studied by many researchers [101, 102, 103,
104, 101, 105, 106]. Several factors, such as interleaver structure and sliding window
scheme, must be considered when choosing an appropriate MAP decoder for LTE
Turbo decoding. In this section we modify two low-latency MAP decoder architec-

tures and propose a low-complexity QPP interleaving address generator to operate
full-speed with the MAP decoder.

Due to the double recursion in the MAP decoding algorithm [91], the MAP decoder
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suffers from high decoding latency. To reduce the decoding latency, the sliding window
algorithm is often used [107]. However, the problem of the sliding window approach is
the unknown backward (or forward) state metrics which are required in the beginning
of the backward (or forward) recursion. We refer to the state metrics at sliding
window length diste;nce as stakes. These stakes can be estimated by using a training
calculation [107], which will result in an additional decoding delay depending on the
training length. For LTE Turbo codes, we do not recommend this traditional sliding
window method when the Turbo coding rate is high. Because many parity bits will
be removed after the base Turbo code is punctured to a higher code rate, the training
length has to be increased to accurately estimate the state metrics at those stakes
which consequently delays the decoding process.

For LTE Turbo decoding, we suggest to use a low-latency decoding method, re-
ferred to as state metric propagation (SMP) method, where the state metrics at stakes
are initialized with stakes from the previous iteration [108]. In the very first iteration,
uniform state metrics can be used for initialization. This method avoids the training
calculation by propagating the state metrics to the next iteration. This method is
especially useful when the Turbo coding rate is high. Based on our simulation results,
the performance degradation caused by the window truncation in the SMP method
is smaller than that in ther traditional training based sliding window method in the
case of high Turbo code rate. To compare the decoding performance using these two

sliding window algorithms for high rate LTE Turbo codes, we perform floating point
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simulations using BPSK modulation over AWGN channel. The LTE rate match-
ing algorithm [94] is used for code puncturing. Figure 4.5 shows the floating-point
simulation result for a rate of 0.95 Turbo code. Because of the high code fate, the
maximum number of iterations is set to 10. In the figure, we show the block error
rate (BLER) curves for the SMP based sliding window algorithm and the traditional
training based sliding window algorithm. In the traditional training algorithm, we
assume the training length is equal to the window length. As can be seen, the BLER
performance of the SMP algorithm with window length W = 64 is better than that
of the training algorithm with window length W = 64, and is close to thé,t of the
training algorithm with W = 96. The SMP algorithm with W = 96 and the training
algorithm with W = 128 perform close to the optimal case when there is no window
effect. Because of the good decoding performance and low decoding delay, we adopted
the SMP algorithm in our Turbo decoder design.

The SMP based sliding window (SW) MAP algorithm (SW-MAP) has a window
overhead of W (c.f. Figure 4.6(a)), which will lead t‘o additional decoding delays.
To eliminate this window overhead, we also consider a non-sliding window (NSW)
based MAP algorithm (NSW-MAP) which is shown in Figure 4.6(b). To be more
general, we consider the case of decoding a segment of the code block where the
segment length is L = N/P. In the SW algorithm, a sliding window is applied“to the
backward recursion where the stakes are initialized from the previous Turbo iteration.

If the window length is W, then (L/W) x 2 stakes need to be saved (note that MAP
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Figure 4.5 : Simulation result for a rate of 0.95 LTE Turbo code using two different
sliding window algorithms.
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1 can only be initialized with stakes from MAP 1, not from MAP 2, resulting in twice
the amount of stake memory). In the NSW algorithm, no sliding window is applied to
the backward recursions. So only the stakes at the end of the recursion needed to be
saved. It should be noted that the memory bandwidth of the NSW-MAP algorithm
is higher than the SW-MAP algorithm since two LLRs are read and two LLRs are
written in one cycle. When the decoder parallelism is high, i.e. P is large, the NSW-
MAP algorithm has throughput advantage over the SW-MAP algorithm. There are
many other varieties of the MAP algorithms. See [109] for a thorough analysis of the
MAP decoder architectures. In this thesis, we primarily focus on these tw6 simple but
effective MAP algorithms, and we will present QPP interleaving address generator

architectures for these two MAP algorithms.

4.3.1 QPP Interleaving Address Generator for SW-MAP Decoder

Figure 4.7 shows the recommended SW-MAP decoder architecture. The SW-MAP
decoder requires one set of o unit, # unit, branch unit, and LLRC unit because of
the single flow structure. It employs fully parallel add-compare-select-add (ACSA)
[110] units to calculate the state metrics in the a and [ recursion processes. A
SMP buffer was used to save the stakes for use in the next Turbo iteration. In the
SW algorithm, the channel LLRs (systematic L, and parity L,) are loaded from the
symbol memory in the sequential order. A priori information LLR(in) are loaded

from the LLR memory in the sequential order for the first half iteration, and in
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Figure 4.6 : Two recommended MAP decoding algorithms for LTE Turbo codes. (a)
SW-MAP decoding algorithm. (b) NSW-MAP decoding algorithm.

the interleaving order for the second half iteration. The soft information LLR(out)
are written to the LLR memory in the backward sequential order during the first
half iteration, and in the backward interleaving order for the second half iteration.
To avoid loading interleaving systematic LLRs from the symbol memory during the
second half iteration, we have modified the MAP algorithm to combine the systematic
LLR with the extrinsic LLR in the first half iteration.

In this algorithm, the interleaving addresses must be generated during the second
half iteration to provide read and write addresses to the LLR memory. In the SW
algorithm, the read operation is in the forward direction, whereas the write operation

is in the backward direction and is always behind the read operation. Figure 4.8(a)
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Figure 4.7 : SW-MAP decoder architecture.

shows an example of the addressing scheme for W = 4 and z¢y = 0. Figure 4.8(b)
shows a hardware architecture for generating interleaving read/write addresses by
using one forward QPP generator (cf. Figure 4.3) and one last-in first-out (LIFO)
buffer.

When the sliding window length is large, using a LIFO can be costly. We will now
propose another method to generate the interleaving write addresses. As depicted
in Figure 4.9(b), a forward QPP address generator and a backward QPP address
generator are used to recursively generate the read addresses f(x) and write address
f(y), respectively. The initial values f(zo) and g(z¢) for the forward QPP generator

need to be pre-computed. However, the initial values for the backward QPP address
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Figure 4.8 : (a) An example of the interleaver addressing scheme for the SW-MAP
decoder, where W = 4, g = 0. (b) Architecture for generating QPP interleaving
read/write addresses.

generator are obtained from (synchronized with) the forward QPP address generator
every W cycles and then a backward recursion is performed on the next W —1 cycles
to generate the next W — 1 write address. Figure 4.9(a) gives an example of this

algorithm for W =4 and zy = 0.

4.3.2 QPP Address Generator for Radix-4 SW-MAP Decoder

Radix-4 MAP decoding [52, 104] is a commonly used technique to achieve a higher
trellis processing speed. For binary Turbo codes, eg. LTE Turbo codes, the trellis
cycles can be reduced 50%. by doing Radix-4 processing. In the Radix-4 processing,
during the second half iteration two LLRs for information bit vector {us, u,4+1} are
needed to be fetched/writen from/to the LLR memory at addresses f(z) and f(z+1).

Thus, two read and two write interleaving addresses need to be generated in each clock
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Figure 4.10 : (a) An example of the forward/backwoard data flow in Radix-4 SW-
MAP algorithm, where W = 4. (b) A hardware architecture to generate read/write
interleaving addresses for the Radix-4 SW-MAP decoder.
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cycle. Figure 4.10(a) shows an example of the read/write addressing scheme where
a sequence is partitioned into even and odd sub-sequences. Figure 4.10(b) shows a
hardware architecture to generate the interleaving read and write addresses for the
Radix-4 SW-MAP decoder. Two forward QPP address generators (with step d = 2)
are used to generate the interleaving read addresses, and two backward QPP address
generators (with step d = 2) are used to generate the interleaving write addresses.
Based on the QPP algebraic property 1, the LLR memory can be partitioned into

even and odd indexed banks to avoid collisions.
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Figure 4.11 : NSW-MAP decoder architecture.
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4.3.3 QPP Address Generator for NSW-MAP Decoder

In the NSW algorithm, forward and backward recursions are performed simultane-
ously by processing data from both ends of the sub-trellis. After the middle point,
soft LLRs are calculated in both forward and backward directions. Figure 4.11 shows
the NSW-MAP decoder architecture. Note that the NSW-MAP decoder requires two
branch metric calculation units and two LLR calculation (LLRC) units because of the
double-direction data processing. Figure 4.12(a) shows the forward/backward data
flow in the NSW-MAP decoding process. Because both the forward and the backward
processes need to access memory, we propose to use a two phase memory accessing
scheme to support double-direction data processing. As shown in Figure 4.12(b), in
phase 0, the forward MAP process is allowed to read two data at addresses f(z) and
f(z + 1) from the LLR memory. In the next clock cycle (phase 1), the backward
MAP process is allowed to read two data at addresses f(y) and f(y — 1) from the
LLR memory. And then this process repeats. For the write operation, it is the same
as the read operation. Also, the write address is just a delayed version of the read
address. The number of delay cycles depends on the pipeline delays in the LLRC
unit in the MAP decoder which is typically several clock cycles. Figure 4.12(c) shows
a hardware architecture to implement this two-phase memory accessing algorithm,
where the LLR memory is partitioned into even and odd indexed banks to avoid

collisions. Each bank is a two-port memory module.
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Figure 4.12 : (a) Forward/backward data flow in the NSW-MAP decoding process.
(b) Two-phase memory accessing scheme. (c) A hardware architecture for generating
interleaving addresses for the NSW-MAP decoder.
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4.3.4 QPP Address Generator for Radix-4 NSW-MAP Decoder

The two-phase memory accessing scheme shown in Figure 4.12(b) can be extended
to support Radix-4 NSW-MAP decoding as well, where four data at addresses f(z),
f(z+1), f(z+2), and f(z+3) are needed to be generated in each clock cycle. Based
on the QPP algebraic property 2 that the four consecutive interleaving addresses
taking modulo 4 will lead to unique values, so the memory can be partitioned into
four banks to allow four concurrent memory accesses in each clock cycle without

any collisions. Figure 4.13 shows a hardware architecture for generating interleaving

addresses for the Radix-4 NSW-MAP decoder.
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Figure 4.13 : A hardware architecture for generating interleaving addresses for the
Radix-4 NSW-MAP decoder.

4.3.5 MAP Decoder Comparison

Table 4.2 compares the resource usage and decoding latency for a SW-MAP decoder

and a NSW-MAP decoder, in which W is the sliding window length in the SW
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algorithm, L is the segment length L = N/P, B, and B, are the total bit widths for

the o state metrics (8 states in total) and the 7 branch metrics, respectively.

Table 4.2 : MAP decoder architecture comparison.

SW-MAP | NSW-MAP
a unit 1 1
[ unit 1 1
Branch unit 1 2
LLRC 1 2
QPP address generator 2 2
State-buffer (bit) By x W By x L
~-buffer (bit) By xW 0
SMP-buffer (bit) By X 2L/W By x 4
Processing time (cycles) W+ L L

The sub-block size W depends on the parallelism level P in a parallel Turbo
decoder architecture where multiple MAP decoders are employed. Figure 4.14 illus-
trates the two parallel decoding algorithms based on the SW-MAP decoder and the
NSW-MAP decoder. In this particular example, P = 4 number of MAP decoders are
used.

To compare the area for these two types of MAP decoder architectures, we have
synthesized them in a TSMC 65-nm CMOS technology for a 400 MHz clock frequency.
The fixed point word lengths for the channel LLRs, extrinsic LLRs, and state metrics

are 6, 7, and 10 respectively [12]. For the SW-MAP architecture, the sliding window
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length W is assumed to be 64. Consider decoding of a segment of a code block where
the code length is N = 6144 and the segment length is L = N/P, Figure 4.15 shows
the area cost for these two types of MAP decoders. As can be seen, as the decoder
parallelism P increases, the area cost of the NSW-MAP decoder reduces quickly and

comes closer to the area cost of the SW-MAP decoder.

2-5 T T T T T
"E : : : : —8— NSW-MAP Decoder
T =i SW—-MAP Decoder

Area (mm2)

e .

0124 8 16 32 64
Parallelism (P)

Figure 4.15 : Area of a NSW-MAP decoder and a SW-MAP decoder.

To compare the efficiency of these two architectures, we define an efficiency metric
as area X time, or AT, where area is one MAP decoder area and time is the

processing time for a sub-trellis for a half Turbo iteration. Figure 4.16 plots the
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AT complexities for different P, where the AT value is displayed on a logarithmic
scale. Clearly, when the parallelism degree P is small, the NSW-MAP architecture
has a higher AT complexity than the SW-MAP architecture because a large number
of state metrics have to be buffered. On the other hand, as P increases, the NSW-
MAP architecture will become more efficient due to the fact that the double-flow
NSW-MAP decoding has no sliding window overhead, whereas the single-flow SW-

MAP decoding has a sliding window overhead of As a design tradeoff, we

WPy
adopted the SW-MAP architecture in our final hardware implementation to save area
while still achieving 1Gbps throughput.

Figure 4.17 compares the AT complexities of a Radix-4 SW-MAP decoder and
a Radix-4 NSW-MAP decoder for a 250 MHz clock frequency. One observation is
that the Radix-4 transform can effectively reduce the AT complexity of the NSW-
MAP decoder when P is small. However, Radix-4 transform will not necessarily
reduce the AT complexity of the SW-MAP decoder. This is due to the fact that the
Radix-2 decoder can run at a faster clock frequency, and has a lower complexity than

the Radix-4 decoder (assuming full LogMAP implementation). We will compare the

Radix-2 and the Radix-4 architectures in more detail in the next section.

4.4 Top Level Parallel Turbo Decoder Architecture

Decoder parallelism is necessary to achieve the LTE/LTE-Advance high throughput

requirement which is up to 1 Gbps. In order to increase the throughput by a factor
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of P, an information block can be divided into P segments with equal length L and
then each segment is processed independently by a dedicated MAP decoder [111, 112,
113, 114, 103, 115, 116, 117, 12, 53, 58]. In this scheme, each of the P MAP cores
processes the data sequentially and fetches/writes the data simultaneously always
at the same offset « to each segment. The interleaver structure in the current and
previous 3G standards do not have a parallel structure which makes it difficult to
realize the parallelization of the MAP decoders. Expensive write buffers have to be
used to reduce the memory collision caused by the interleaver [93, 118]. However,
when the parallelism degree increases, the collisions can not be effectively‘resolved
by using write buffers. The LTE QPP interleaver, however, has an inherent parallel
structure that supports contention-free memory accesses which result in a large design
space for the selection of appropriate levels of decoder parallelism.

In this section, we will present a highly-parallel Turbo decoder architecture based
on the QPP conflict-free interleaver and give an analysis of the complexity and the
throughput. Figure 4.18 shows a hardware architecture for implementing the pro-
posed parallel SW-MAP algorithm. In this architecture, P sets of QPP interleavers
are used to generate the interleaving addresses f(z), f(z+L), ..., and f(z+(P—1)L)
concurrently, where L is the segment length L = N/P. Based on the QPP contention-
free property, these P addresses will be mapped to different memory modulgs 0 to
P — 1 without any collisions. Thus, no write buffers are required. A crossbar network

is used to permute the data between the MAP decoders and the memory modules.
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Furthermore, based on the QPP interleaver algebraic property 3, this architecture
can be modified to support the Radix-4 SW and NSW MAP decoding algorithms
by setting the following constraints. To support the Radix-4 SW-MAP decoding, L
needs to be divisible by 2, and each memory module needs to be partitioned into even
and odd indexed banks. To support the Radix-4 NSW-MAP decoding, L needs to be

divisible by 4, and each memory module needs to be partitioned into four banks.

4.4.1 Throughput-Area Tradeoff Analysis

High throughput is achieved by using multiple MAP decoders and multiple mem-
ory modules/banks. In this section, we will analyze the impact of parallelism on

throughput and area. The maximum throughput is measured as:

N N -
SW Throughput = ; . x _ f -
Decoding time  J.(N/P+ W)
N N -
NSW Throughput = = = /

Decoding time T - (N/P)’
where N = N, W = W in the case of Radix-2 decoding, and N = N, /2, W= W/2in
the case of Radix-4 decoding. I is the total number of half iterations performed by
the Turbo decoder. f is the operating clock frequency.

To analyze the area and throughput performance for different QPP parallelism
degrees, we describe a Radix-2 and a Radix-4 SW parallel Turbo decoder in Verilog
HDL and synthesize these decoders for a 656 nm CMOS technology using Synopsys
Design Compiler. The tradeoff analysis result is given in Figures 4.19 and 4.19 which

plots the area and the throughput for different parallelism degrees and clock rates. As
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can be seen, a 1 Gbps throughput is achievable with 64 Radix-2 MAP decoder cores
running at a 310MHz clock frequency or 32 Radix-4 MAP decoder cores running at
a 250MHz clock frequency.

For a parallel Turbo decoder which consists of multiple MAP units, the MAP
units tend to dominate the silicon area especially when the parallelism is high. From
Figures 4.19 and 4.20, we can see that given the same throughput target, the Radix-2
architecture provides a lower area cost than the Radix-4 architecture for most of the
cases and especially when P is large. This is mainly due to the fact that the Radix-2
MAP unit can run at a faster clock frequency, and has a lower Complekity than the
Radix-4 MAP unit (assuming full LogMAP implementation). However, it should be
noted that the Radix-2 decoder may need a higher partitioning of the code block than
the Radix-4 decoder to achieve the same throughput target. As a design tradeoff, we
adopted the Radix-2 architecture in our final hardware implementation to save area

while still meeting the 1 Gbps throughput target.

4.5 Summary

We have presented a highly-parallel Turbo decoder architecture for LTE-Advance
system. By utilizing the new contention-free interleaver, we designed a 64-MAP
parallel decoder to achieve 1+ Gbps data rate. Compared to the existing 3G or 4G
Turbo decoders, the proposed Turbo decoder has a significant throughput advantage

while still maintaining low area cost and low power consumption. In Chapter 6, we

et
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Figure 4.19 : Area-throughput tradeoff analysis for Radix-2 Turbo decoder
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Figure 4.20 : Area-throughput tradeoff analysis for Radix-4 Turbo decoder.
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will present the ASIC implementation results for the proposed Turbo decoder in more
details. To support iterative detection and decoding scheme, this Turbo decoder can

be configured to output soft LLR values to the detector.
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Chapter 5

High-Throughput LDPC Decoder Architecture

LDPC codes have inherent large parallelism that can be exploited to design a high-
speed decoder. In theory, a random LDPC code with infinite block size will achieve
near-capacity performance. However, it is very complex to implement such a decoder
because of the random parity check matrix. To reduce implementation complexity
while still maintaining good error protection capability, new wireless standards are
adopting structured quasi-cyclic LDPC (QC-LDPC) codes. These structured QC-
LDPC codes typically have a block size of several thousands bits and can be either
regular codes and irregular codes. If the parity check matrix of a LDPC code has
the same row and column degree, this LDPC code is called a regular LDPC code.
Otherwise, it is an irregular LDPC code.

Partial-parallel architectures are often used for the decoding ofthese structured
QC-LDPC codes. The main challenge of the partial-parallel architecture is to de-
velop a flexible decoder architecture to support multiple codes. The existing LDPC
decoders are developed mostly for a particular standard which lacks the flexibility
to be reconfigured to support multiple standards. In this chapter, we describe high-
throughput low-density parity-check (LDPC) decoder architectures that support vari-

able block sizes and multiple code rates. Various techniques are used to reduce the
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implementation complexity of the LDPC decoders. We first present a Min-sum algo-
rithm based LDPC decoder. Next, we present a more powerful Log-MAP algorithm
based LDPC decoder. To achieve multi-Gbps decoding throughput, we propose a
multi-layer parallel decoder architecture. Furthermore, we propose a flexible decoder
architecture that can support both LDPC codes and Turbo codes with a low hardware

overhead.

5.1 Structured QC-LDPC Codes

In chapter 2, we have introduced the general LDPC codes. Almost all the practical
wireless systems currently use the QC-LDPC codes. In this chapter, we mainly focus
on the decoder design for the structured QC-LDPC codes. As shown in Fig. 5.1(a)(b),
for a QC-LDPC code, the parity check matrix (PCM) is constructed from an M x N
seed matrix by replacing each '1’ in the seed matrix with a Z x Z cyclically shifted
identity sub-matrix, where Z is an expansion factor. A corresponding Tanner factor
graph representation of this MZ x NZ generated PCM is shown in Fig. 5.1(c). It
divides the variable nodes and the check nodes into clusters of size Z such that if
there exists an edge between variable and check clusters, then it means Z variable
nodes connect to Z check nodes via a permutation (cyclic shift) network.

As an example, Fig. 5.2 shows the parity check matrix for the block length 1944
bits, code rate 1/2, sub-matrix size Z = 81, IEEE 802.11n LDPC code. In this matrix

representation, each square box with a label I, represents an 81 x 81 cyclicly-shifted
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Figure 5.1 : Parity check matrix and its factor graph representation
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identity matrix with a shifted value of z, and each empty box represents an 81 x 81

zero matrix.

Is; Isol [Iu| |Iso] |Ipo| |[11{1o
L g |y Iss| I Iy| Iy
I3 L4\ 137 Ise| 14 Iy| Iy
Iey|Is3 Is3 L35 Io| Iy
Iao Trolle6 I\ Io| Io
Io Is| |1y, so I3 Io| 1o
Igo|I70ll79 Ise| |Is; Iy Iy| Iy
Iss I33|1s7 I |1 Iyl Ip
g4 11415 I3 I3, Iy Iy
Lns| 70| 1o I7| Iy Iyl Iy
L|Ise| |Is7)l35 P Iyl Iy
Lyl el oo Iyy| sy Lie| Iy Iy

Figure 5.2 : Parity check matrix for block length 1944 bits, code rate 1/2, sub-matrix
size Z = 81, IEEE 802.11n LDPC code.

5.2 Layered Decoding Algorithm

A good tradeoff between design complexity and decoding throughput is partially
parallel decoding by grouping a certain number of variable and check nodes into a
cluster for parallel processing. Furthermore, the layered decoding algorithm [70] can
be applied to improve the decoding convergence time by a factor of two and hence
increases the throughput by two times.

The layered decoding algorithm [71] is described as follows. We define the following

notation. The a posteriori probability (APP) log-likelihood ratio (LLR) of each bit
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n is defined as:

Pr(n =0)
Ln = log Pr(n=1)

(5.1)
where L, is initialized to be the channel input LLR. The check node message from
check node m to variable node n is denoted as Rm,. The variable message from
variable node n to check node m is denoted as Q.. The conventional layered
algorithm, or single-layer algorithm, assumes that the rows are grouped into layers
where the parity check matrix for this layer has at most a column-weight of one.
The single-layer algorithm only handles one layer at a time, i.e. the maximum row
parallelism is limited to the sub-matrix size Z. Each layer is processed as a unit,
one layer after another. For each non-zero column n inside the current layer, variable

node messages Qm,n» that correspond to a row m are formed by subtracting the check

node message R, from the APP LLR message Ly:

Qm,n = Ln - Rfm,w (52)

For each row m, the new check node messages R/

mn» Corresponding to all variable

nodes j that participate in this parity-check equation, are computed using the be-
lief propagation algorithm. In this work, we use the scaled min-sum approximation
algorithm (with scaling factor of S) to compute the R value:

R,= [] sien(Qms) - ¥| > ¥@Qm,) |, (5.3)

JENM\n FENM\n

where N, is the set of variable nodes that are connected to check node m, and N;,\n

is the set N, with variable node n excluded. The non-linear function ¥(z) is defined
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|z]

()=t s (2] ”

To reduce implementation complexity, the min-sum algorithm [63, 64] can be used to
approximate the non-linear function ¥(z). By applying the scaled min-sum algorithm

with a scaling factor of S, equation (5.3) is changed to:

R,.=S- I I sign(Qm,;) -+ min |Qum !, (5.5)
. ]ENm\n
FJENm\n

where NV, is the set of variable nodes that are connected to check node m, and N,,\n
is the set N, with variable node n excluded. After the check nodes messages are

computed, the new APP LLR messages L/, are updated as:
L' =L, +R,, — Run (5.6)

The layered decoding algorithm is often used to decode the structured QC-LDPC
codes. In chapter 2, we have introduced the layer decoding algorithm in detail. We

summarize the layered decoding algorithm in Algorithm 3.

5.3 Block-Serial Scheduling Algorithm

To implement Algorithm 3 in hardware, we propose a block-serial (BS) scheduling
algorithm as shown in Fig. 5.3. In this algorithm, one full iteration is divided into M
sub iterations. A processing element (PE) is applied to each layer in sequence. Each

Z % Z sub-matrix is treated as a macro within which all the involved parity checks



115

Algorithm 3 Layered belief propagation algorithm

Initialization:
V(m,n) with H(m,n) =1, set Ryn =0, L, = 2
for iteration ¢ =1 to I do
for layer [ =1to L do
1) Read:
V(m,n) with H'(m,n) = 1:
Read L, and R,,, from memory

2) Decode:
Qmn = Lpn — Rinn
R = [Liensn SI80(Qmi) ¥ (e pin ¥ (@nmg))
Ly = Qun + R
3) Write back:
Write L7¢* and R}¢Y back to memory
end for

end for

Decision making: %, = sign(L,)
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are processed in parallel using Z number of PEs. Each PE is independent from all

others since there is no data dependence between adjacent check rows.

A0A1A2A3 BOBIB2B3 C0C1C2C3 D0D1D2D3
000 | 000 | 0000 [XD000 |2 , > | o
0 0@%}/ 00 M%O DLEA 1] oA, g
00 0| 00 [o0o000]0 0 =4
m% 0000 | 000 |22 | =
Block-serial scheduling 1 Read : 2 Decode :3 Write back
» Layer 1 Layer 2 > ... Pt Layer M
Sub-iteration 1  Sub-iteration 2 Sub-iteration M

Figure 5.3 : Block-serial (BS) scheduling algorithm

5.4 Min-sum LDPC Decoder Architecture

Fig. 5.4 shows the block diagram of the decoder architecture based on the layered
min-sum decoding algorithm. In each sub—itefation, a cluster of APP messages and
check messages are fetched from APP and Check memory, and then the APP messages
are passed through a flexible permuter to be routed to the correct Processing Engines
(PEs) for updating new APP messages and check messages. The PEs are the central
processing units of the architecture that are responsible for updating the check node
and variable node messages. The number of PEs determines the parallelism factor
of the design. For a certain block-size code, only Z PEs are working while the rest

are in a power saving mode. As shown in Fig. 5.5, the PE inputs wr elements of L,



La_new from PEs

APP Memory

Flex

Addr
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Rmn_new from PEs
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Partially Parallel Decoding |

Ln_new
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Figure 5.4 : Top level min-sum LDPC decoder architecture
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and R, where wr is the number of nonzero values in each row of the PCM. Q.n
is calculated based on (5.2). The sign and magnitude of Q,,, are processed based
on (5.5) to generate new R,,. Then the Q,,, are added to the R,,, to generate
new L, (w, of them) based on (5.6). The outputs (L, and R,,) of all the Z PEs
are concatenated and stored in one address of the APP and Check memories. For
each layer’s sub-iteration, it takes about 2wr clock cycles to process, so the decoding

throughput is:

N x Z x Rate X fclkmage
2 x E x iterations

Throughput ~

where Rate is the code rate and E is the total number of edges between all variable
nodes and check nodes in the seed matrix. Clearly, the throughput would be linearly

proportional to the expansion factor Z for a given seed matrix.

min|
~<P| ABS » FMIN min2 » unsign
——p 2sign R, new
L Sgn’
> XOR | DFF 4
- XOR
Rim sgn bit Sgnl—')
L, —p» FIFO Ln_new

Qun Qmn_fifo

Figure 5.5 : Processing Engine (PE)
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5.4.1 Flexible Permuter Design

One of the main challenges of the LDPC decoder architecture is the permuter design
that is responsible for routing the messages between variable nodes and check nodes.
However for QC-LDPC codes, the permuter is just a barrel shifter network (size-Z) for
cyclically shifting the node messages to the correct PEs. Fig. 5.6 gives an example
of a size-4 barrel shifter network. The hardware design complexity of this type of
network is O(Z[log, Z]) as compared to O(Z?) for the directly connected network.
For large size Z (e.g. 128), the barrel shifter network needs to be partitioned into
multiple pipeline stages for high speed VLSI implementation.

Traditionally a de-permuter would be needed to permute the shuffled data back
and save it to memory, which would occupy a significant portion of the chip area [80].
However, due to the cyclic shift property of the QC-LDPC codes, no de-permuter
is needed. We can just store the shuffled data back to memory and for the next
iteration we should then shift this "shuffled data” by an incremental value A =

(shift, — shift, 1) mod Z.

N =
Switch
1 0
2 1
—o
3 2 Suwitch
Barrel shifted by 1 . —©

Figure 5.6 : A 4 x 4 Barrel shifter network
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5.4.2 Pipelined Decoding for Higher Throughput

Data depency

A\ Index 0 1 2 3/4 s
Layer i | ReadMin-sum Wr"e l‘ack Layer i X X X
Layer i+1. Reac‘(Mi’n-sum Write back Layer i+1 X X
7
(a) Two layer pipelined decoding (b) Two adjacent layers of the matrix

1 7
Clockcycleioi :2:3:4i5=65 :8:9510311:12:13I

R= Read
Layer i [Ro|R2|R3|R5|  [wolw2|wa|ws| W = Write

ST = Stall
Layer i+1 [R1]s7|s7|R3[Ra]  [wi|wa|wa]

Two memory read stalls due to data depency
(c) Pipelining data hazard

Figure 5.7 : Pipelined decoding

The decoding throughput cz;n be further improved by overlapping the decoding
of two layers using a pipelined method. The decoding of each layer of the parity
check matrix is performed in two stages: 1) Memory read and min-sum calculation
and 2) Memory write back. However, due to the possible data dependence between
two consecutive layers (there is no data dependency inside each layer because the
column weight is at most 1 in each layer), a pipelining data hazard might occur.
Fig. 5.7 shows an example of pipelined decoding. In Fig. 5.7(c), at clock cycle 6,
layer (i 4+ 1) is trying to access APP memory address 3 which will not be updated by
layer ¢ until clock cycle 7, hence two pipeline stalls need to be inserted. Moreover, a

horizontal rescheduling algorithm can also be applied to help reduce pipeline stalls.
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For example, in Fig. 5.7, layer (i + 1)’s reading can be rescheduled from the original
sequence 1-3-4 to 1-4-3 to reduce pipeline stalls. This way, the decoding throughput

will be increased to

N x Z x Rate x fclk

Pipelined Th hput ~
ipeline roughpu Ex1 )

where [ is the number of iterations.

5.5 Log-MAP LDPC Decoder Architecture
5.5.1 Low-Complexity Implementation of The Log-MAP Algorithm

Conventionally, function ¥(z) = — log(tanh(|z/2|)) is used for the decoding oper-
ations in Algorithm 3. However, the ¥(z) function is prbne to quantization noise
and can be numerically unstable [119]. Alternately, a different and numerically more
robust way to compute the R,,, is shown as

Brn= Y BQmj=( Y BQm;) B Q. (5.7)

FJENm\n FENm

where the B and B operations are defined as a @b £ f(a,b) = log jfj and a B
b2 g(a,b) = log—léi-e_a—:; [120][121]. This computation method is especially suitable

for the proposed BS scheduling algorithm in which the macro blocks are processed

in sequential order. For hardware implementation, f(-) and g(-) functions can be
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simplified to

f(a,b) = sign(a) sign(d) (min(|a|, |b]) +

log(1 + e~(*H1M) _ log(1 + e—||a|—|b||))7
(5.8)

9(a,) = sign(a)sign(t) (min(lal, o)) +
log(1 — e=(H+18D) _ log(1 — e—||a|—|b!|))_
In hardware, the non-linear correction terms log(1 + e *) and log(1 — e™*) in (5.8)

are approximated using low-complexity 3-bit lookup tables (LUTSs) [121].

5.5.2 Radix-2 Log-MAP SISO Decoder

Fig. 5.8 shows the proposed soft-input soft-output (SISO) decoder architecture for
generating R,,,. We refer to it as Radix-2 (R2) recursion architecture since only one
element can be processed in one clock cycle. The R2-SISO core consists of one f(-)
recursion unit followed by one g(-) unit. Note that the g(-) unit would have the same
structure as the f(-) unit but with a different LUT.

Fig. 5.9 shows the decoding schedule for check row m. During the first d,,,* cycles,
the incoming variable messages Qm, (Vn € N,,) are fed to the decoder sequentially
and the f(-) unit is reused d,, times to obtain the intermediate B sum S,,. Then, the
outgoing messages R, (Vn € N,,) are generated in a sequential order by the g(-) unit.
Though the decoding is sequential for each check row, multiple (Z) check rows within

one layer can be processed in parallel by employing multiple (Z) SISO decoders, which

*dm is the number of non-zero elements in check row m.
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increases the throughput by a factor of Z (see Fig. 5.3). Furthermore, the decoding
throughput can be improved by overlapping the decoding of two layers as shown in
Fig. 5.9. This scheduling would require dual-port memory for simultaneous read and
write operations. Typically data dependencies between layers will occasionally stall
the pipeline for one or more cycles. However the pipeline stalls can be avoided by

shuffling the order of the layers [68].

R2-S1ISO Core

L log(l + g~ (laHdD )
b dwABS L I
| pgegl B S <Py gl
1k 'Sign bit
1 XOR Sign(a) * Sign(b)

Figure 5.8 : Radix-2 (R2) SISO decoder architecture

5.5.3 Radix-4 SISO Decoder via Look-Ahead Transform

To increase the throughput of the R2-SISO decoder, a look-ahead transform can be
used for the f(-) recursion. This transform leads to an increase in the number of

data processed in each cycle as shown in Fig. 5.10, where two elements are processed
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Figure 5.9 : Pipelined decoding schedule

in one clock cycle. We refer to this transform as Radix-4 (R4) recursion. Fig. 5.11
shows the corresponding Radix-4 SISO decoder architecture. Since two elements can
be processed in each cycle, it has a throughput speed up of 2. Table 2 summarizes
the synthesis results (90nm CMOS technology) for the R4 and R2 SISO decoders. To
compare these two architectures, we define an efficiency factor n as the throughput
speed-up with R4-SISO divided by the area overhead. As can be seen, R4-SISO

achieves throughput-area efficiency gains especially at lower clock frequency.

x(2n+1)
x(2n)

> y(2n)
—> y(2n+1)

Figure 5.10 : One level look-ahead transform of f(-) recursion



5.5.4

125
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Figure 5.11 : Radix-4 (R4) SISO architecture

Table 2: Comparison of two SISO decoder architectures

450 MHz 325 MHz 200 MHz
R2 SISO area 6978 um? 6367 um? 6197 um?

R4 SISO area 12774 uym? 10077 um? 8944 pum?
n = popeedup__ 1.09 1.26 1.39

Area overhead

Top Level Log-MAP LDPC Decoder Architecture

Fig. 5.12 shows the Log-MAP LDPC decoder architecture. In the proposed BS

scheduling algorithm, the parallelism factor is equal to the sub-matrix size Z. Since

parameter Z varies from code to code, i.e. 19 different sizes of Z are defined in

WiMax, we must design a datapath that is modular and scalable to support different

code types. This is achieved by employing distributed SISO decoders and memory

banks as shown in Fig. 5.12. This architecture can also reduce the overall power

consumption by deactivating the memory banks and SISO decoders that are not be-
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ing used. The L messages, on the other hand, are stored in a central memory bank
for parallel accessing by Z SISO decoders. This is achieved by grouping [1xZ]L
messages (associated with each sub-matrix) into one memory word.

The decoding flow for one sub-iteration is as follows: at each cycle, [1 x Z] L
messages are first f;atched from the L-memory and passed through a circular shifter
to be routed to z SISO decoders. The soft input information Q,, is formed by
subtracting the old extrinsic message R,,, from the APP message L,. Then the
SISO decoder generates a new extrinsic message R,,, and APP message L,, and

stores them back to the R-memory and the L-memory, respectively.

Circular Shifter
Zx7Z
E| | siso E| | s1so
2. | Core 2. Core
=4 1 & Z

[

Figure 5.12 : Log-MAP LDPC decoder architecture with scalable datapath

By designing proper control logic, the decoder can be dynamically reconfigured to

support multiple block-structured LDPC codes. With this partial-parallel architec-
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ture, the pipelined (Radix-4) decoding throughput is approximately equal to:

2x N X Z x Rate x fclk
ExI ’

(5.9)

where N is the number of block-columns in H, Z is the sub-matrix size, R is the code
rate, E is the total number of non-zero sub-matrices in the parity check matrix, and

I is the number of full iterations.

5.5.5 Performance Evaluation

The number of entries in the look-up-table determines the decoding performance
and was analyzed in Fig. 5.13. We use two cases of IEEE 802.11n LDPC codes
for simulation, and assume BPSK modulation and an AWGN channel with a (7.3)
quantization scheme (7 total bits with 3 fractional bits). From Fig. 5.13, we can see
that a 32-entry LUT has nearly no performance loss compared with the floating point
belief propagation (BP). And a 24-entry LUT only has about 0.02dB performance
loss compared with floating point BP. However a 16-entry LUT suffers about 0.05dB
performance degradation. As a comparison, we also depict the performance of the
offset min-sum approximation algorithm [63] which suffers 0.3 to 0.7dB performance

degradation compared to floating point BP.

5.6 Multi-Layer Parallel LDPC Decoder Architecture

The conventional layered decoder architecture [71, 109] is initially developed to pro-

cess the parity check matrix layer by layer, where each layer corresponds to a block-
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Figure 5.13 : Performance comparison of different LUT configurations.
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row of the parity check matrix. Since the column-weight of each layer is typically 1
in many applications, such as IEEE 802.11n and IEEE 802.16e, this greatly simplifies
the decoder design. To further improve the throughput, the two consecutive layers’
data processing can be partially overlapped through a pipelined schedule [17, 65],
where the data conflicts between two layers can be resolved by stalling the pipeline.
The maximum row parallelism for the conventional layered algorithm is equal to the
sub-matrix size Z, i.e. we can employ Z parallel check node processors to process Z
rows in parallel. With this amount of parallelism, the conventional layered decoder
can typically offer 100-1000 Mbps throughput [65, 68, 17, 122, 123|.

To go beyond 1-Gbps throughput, the layered architecture needs to be extended
to provide higher parallelism. One natural extension of the conventional layered
architecture is to design a multi-layer parallel architecture where multiple (K) layers
of a parity check matrix are processed in parallel. Now the maximum row parallelism
is increased to KZ, i.e. we can employ KZ check node processors to process KZ
rows in parallel. It should be noted that the multi-layer parallel decoding algorithm
would still require less memory than the two-phase flooding algorithm because there
is still no need to store the variable node messages in the multi-layered algorithm.

In this section, we propose a new multi-layer parallel decoding algorithm and
VLSI architecture for high throughput LDPC decoding. The data conflicts between
layers are resolved by modifying the LLR update rules. As a case study, we describe

a double-layer parallel decoder architecture for IEEE 802.11n LDPC codes.
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To support layer-level parallelism, we propose a multi-layer (K-layer) parallel
decoding algorithm, where the maximum row parallelism is increased to KZ. When
using the conventional layered algorithm to process multiple layers at the same time,
data conflicts may occur when updating the LLRs because there can be more than
one check node connected to a variable node. Fig. 5.14 shows an example of the
data conflicts when updating LLRs for two consecutive layers, where check node (or
row) mg and check node m; are both connected to variable node (or column) n. To
resolve the data conflicts, we use the following LLR update rule for a K-layer parallel
decoding algorithm. For a variable node n, let m; represents the k-th check node that
is connected to variable node n. Then the LLR value for variable node n is updated
as:

L, =L,+ (R — Bmyn)- (5.10)

Compared to the original LLR update rule (5.6), the new LLR update rule combines
all the check node messages and adds them to the old LLR value. We can define a
macro-layer as a group of K layers of the parity check matrix. The multi-layer parallel
decoding algorithm is summarized as follows. For each layer k in each macro-layer [,

do the following;:

ka,n =L, — Rmk,n (511)
R ~=5. i ;) - i ; 5.12
men =5[] sion(@n)- min |Qm,l (512)
jENmk\n J ™k
K-1
Ly=Ln+ Y (Bpp— Rmgn) (5.13)

k=0
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In the above calculation, the LLR values L, are updated macro-layer after macro-
layer. Within each macro-layer, all the check rows can be processed in parallel,
which therefore leads to a K times larger parallelism than the conventional layered
algorithm. For example, we can use K Z number of check node processors to process

K Z rows in parallel.

n

N
\(ﬂ 1

Figure 5.14 : Example of the data conflicts when updating LLRs for two layers.

5.6.1 Multi-Layer Decoding Performance Evaluation

In the multi-layer parallel decoding algorithm, the layer-parallelism K will have some
negative impact on the decoding convergence speed because the LLR updates occur
less frequently than in the single-layer algorithm. To compare the performance of
the multi-layer parallel decoding algorithm against the conventional layered decoding
algorithm, we perform floating-point simulations for the block length 1944 bits, code
rate 1/2 IEEE 802.11n LDPC code. BPSK modulation is used for an AWGN channel.
In the simulation, we collect at least 100 frame errors and the maximum iteration

number is set to 15 for all the experiments. Fig. 5.15 compares the frame error rate

(FER) performance of K-layer parallel decoders for K = 1,2,3,4,6. We also plot
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the FER curve for the traditional two-phase flooding algorithm for comparison. As
can be seen from the figure, the double-layer parallel decoder has shown a negligible
performance loss, and the triple-layer parallel decoder has shown a small performance
loss (< 0.1 dB). Compared with single layered decoding, as K increases, the FER
performance slowly degrades as expected. Note that the performance loss can be
compensated by slightly increasing the iteration number. Nevertheless, the K-layer
parallel decoder will have a K-fold throughput increase compared to the conventional
single-layer decoder. Note that compared to the two-phase flooding decoding, the
throughput of the single-layered decoder is N times slower, where NN is the total
number of the layers. Thus, a trade-off can be made between the layer-parallelism

K, the error performance, and the throughput.

5.6.2 Double-Layer Parallel Decoder Architecture for IEEE 802.11n LDPC

Codes

As a case study, we have designed a double-layer parallel decoder for IEEE 802.11n
LDPC codes. We propose a macroblock-serial (MB-serial) decoding algorithm. In
this algorithm, a Z X Z sub-matrix is considered as a block and a macroblock (MB)
contains four such blocks. Fig. 5.16(a) shows an example of an MB which contains
four blocks: A, B, C, and D. Fig. 5.16(b) shows the MB view of the first two layers of
the parity check matrix in Fig. 5.2. Because the rate 1/2 matrix is sparser than the

high rate matrix, some blocks in an MB can be zero blocks. However, for a denser



o Block lengh 1944 bits, Code rate 1/2, IEEE 802.11n LDPC code

Frame Error Rate (FER)

| == Two—phase decoding with 15 max. iter.

""" e Six—layer decoding with 15 max. iter.

___________ | =& Quad—layer decoding with 15 max. iter. |]
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Figure 5.15 : Simulation results for multi-layer parallel decoding algorithm.
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matrix, e.g. rate 5/6 matrix, all the four blocks in an MB are often non-zero blocks

as shown in Fig. 5.16(c).

MB MBO MBI  MB2  MB3  MB4
A B | Isg  |Iso|In|Iso| |L79| 11| Lo
C|D I; | Ig] I Iss| I; Iy | Iy
(@ ®)

MBO MBI MB2 MB3  MB4 MBS5 MB6 MB7 MB8 MB9 MB10 MB11

D3| Lug | Igo | o6 1a| Ina| I7 | Bo | oo | Isa) Ja7 | Iso| | Jao | 173\ 151 | Jra 17J123 L1
Leo| I3\ Ina| Iso| oa | T Vs | s | Is| ne] 151 Toa| Yes| Iy | Las 1621154 I I lp

(©

Figure 5.16 : (a) One MB with a dimension of 2Z x 2Z. (b) The MB view of the first
two layers of the rate 1/2 matrix in Fig. 5.2. (c) The MB view of the first two layers
of the matrix for rate 5/6, block length 1944 bits, 802.11n code.

We propose a partial parallel decoder architecture, where each MB is processed as
a unit. Inside each macro-layer, MB is processed in serial, from left to right. Thus, we
refer to this architecture as an MB-serial architecture. Fig. 5.17 shows the top level
block diagram for the proposed MB-serial decoder architecture. In this architecture,
the LLR memory is used for storing the initial and updated LLR values for each bit
in a codeword. For LDPC codes with M x N sub-matrices each of which being a
Z x Z shifted identity matrix, the LLR memory is organized such that Z LLR values
are stored in the same memory word and there are N words in the memory. The
LLR memory has two read-ports and two write-ports so that 27 LLR values can be
accessed at the same clock cycle. The decoding is a two-stage procedure. During the

first stage, 22 LLR values are read from the LLR memory at each clock cycle and
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are passed to four permuters A, B, C, and D, which correspond to four blocks in an
MB (cf. 5.16(a)). Note that for zero blocks in an MB, the corresponding permuters

and other related logic will be disabled.

> LLR Memory <€

|
r
! v v y
Permuter A Permuter B Permuter C Permuter D
¢L"A ¢L”B *L"C ¢L"D
o Even Layer Odd Layer o
=5 MB Processing Unit MB Processing Unit <3
= (Contains Z MSUs) (Contains Z MSUs) =
*Dm,nA ¢Dm,n3 *Dm,nc ¢Dm,nD
Permuter A' Permuter B' Permuter C' Permuter D'

Figure 5.17 : MB-serial LDPC decoder architecture for the double-layer example.

The 2Z permuted LLR values L,, and L, , are fed to the even-layer’s MB pro-
cessing unit, and the other 27 permuted LLR values L, and L, are fed to the odd-
layer’s MB processing unit. Each MB processing unit consists of Z = 81 min-sum
units (MSUs) based on the maximum sub-matrix size defined in the IEEE 802.11n
standard. Fig. 5.18 shows the block diagram for one MSU. Each MSU can process
two LLR values at each clock cycle so that altogether Z MSUS can process 2Z LLR

values at each clock cycle. During the first stage, @) values are computed by subtract-
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Figure 5.18 : Block diagram for the pipelined Min-sum unit (MSU).

Index = Super-layer number
0 | Min0 | Minl Pos Sign Array
1 | Min0O | Minl Pos Sign Array

M2-1| Min0 | Minl Pos Sign Array

Figure 5.19 : R-Regfile organization.
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ing the R values from the LLR values based on (5.11). The R values are stored in a
compressed way. The R-Regfile is used to store the information for restoring the Ry,
values. Fig. 5.19 shows the organization of the R-Regfile. For each row m, only the
first minimum (min0), the second minimum (min1), the position of the first minimum
(pos), and the sign bits for all Qm,,, related to row m are stored in the R-Regfile. A

R value generator (R-Gen) is used to restore the R values from the R-Regfile as:

{ 0.75Y;, if n; = Pp,

| Bmn;| = (5.14)

0.75X,,, otherwise,
where X,, and Y,, denote the first minimum value and the second minimum value
for row m, respectively, and P,, denotes the position of the first minimum value for
row m. The sign bits of the R,,,; value are generated using the sign array. As the
scaled min-sum algorithm is used, the R value is scaled by a factor of 0.75. A min
finder unit (MFU) is used to compare the Qmn, and Qum ., values against X and
Y read from the Ping-Pong register, where X and Y are the first minimum and the
second minimum temporary variables and are initialized to be the maximum possible
positive values. The two new minimum values X’ and Y are stored in the Ping-Pong
register. The index of the minimum @ value and sign bits for all ) values are also
updated in the Ping-Pong register. The Ping-Pong register consists of two registers
(ping and pong registers), where each register has the same organization as one word
of the R-Regfile. Two registers are required because we want to support pipelined

decoding by overlapping two macro-layers’ data processing. During the second stage,
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the R’-Gen unit gets values from the Ping-Pong register and restores the most recently
updated R’ values. Another R-Gen unit gets values from R-Regfile and restores the

old R values. Then a Delta-R value, denoted as D value, is formed by:
. D, = R;n,nj — R (5.15)

The R-Regtfile has two read-ports so that it can be accessed simultaneously by two
consecutive macro-layers. After the second stage, the contents of the Ping-Pong
register is written to the R-Regfile overwriting the values for the current macro-layer,
and the Ping and Pong registers switch role.

Now turning back to the top level decoder in Fig. 5.17, after the 2Z D values are
produced by each MB processing unit, the D values are de-permuted and added to

the LLR values from the FIFO to form the updated 2Z LLR values as:

L;lo = Lno + DmA,no + Dmc,no (516)

L;h = Lnl + DmB,m + DmD,nl- (517)

The new updated LLR values are then written back to the LLR memory.

To further increase the throughput, we can overlap the decoding process of two
macro-layers. The pipelined data flow is illustrated in Fig. 5.20. The data dependen-
cies between two macro-layers are avoided by using a scoreboard to keep track of the
read and write sequences of the LLR values. Pipeline stalls will be inserted if there is
a data dependency between two macro-layers. If one ignores the extra pipeline stalls,

which are typically small, the proposed double-layer pipelined decoder can process
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two macro-layers of the matrix simultaneously, which leads to a significant throughput

improvement.

Stage 1 | Stage 2 I Macro-layer 0

l Stage 1 | Stage 2 J Macro-layer 1

I Stage 1 I Stage2 | Macro-layer M/2-1
;ﬁme

Figure 5.20 : Pipelined decoding data flow for the double-layer example.

It should be noted that the described double-layer parallel architecture shown
in Fig. 5.17 can be generalized for a K-layer parallel architecture by employing K

macroblock processing units to process K layers in parallel.

5.7 Discussion on the Similarities of LDPC Decoders and

Turbo Decoders

LDPC codes and Turbo codes have many similarities, e.g. they all have a trellis
structure that can be processed using a similar MAP algorithm [14]. We can develop
a specialized decoder for each family for higher performance. We can also develop
a configurable decoder for both families of codes with limited hardware overhead.
For example, we can extend the single-layered LDPC decoder architecture to support
Turbo codes. Recall that in Chapter 4, we have presented a parallel Turbo decoder

based on multiple MAP units. We can develop a unified MAP unit for both LDPC
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codes and Turbo codes.

5.8 Flexible and Configurable LDPC/Turbo Decoder

In this section, we propose a unified decoding algorithm for both LDPC codes and
Turbo codes. We extend the layered LDPC decoder architecture to support Turbo

codes with a low hardware overhead.

5.8.1 Flex-SISO Module

To support both LDPC codes and Turbo codeé, usually two separate decoders are
needed. To save area, we propose a flexible soft-input soft-output (SISO) module,
named Flex-SISO module, for decoding of both LDPC and Turbo codes. The SISO
module is bas?d on the MAP algorithm [91]. To reduce complexity, the MAP algo-
rithm is usually calculated in the log domain [89]. In this thesis, we assume the MAP
algorithm is always calculated in the log domain.

The decoding algorithm underlying the Flex-SISO module works for codes which
have trellis representations. For LDPC codes, a Flex-SISO module was used to decode
a layer of a parity check matrix, or super-code. For Turbo codes, a Flex-SISO module
was used to decode a component convolutional code. The iteration performed by
the Flex-SISO module is called a sub-iteration, and thus one full iteration contains n
sub-iterations.

Fig. 5.21 depicts the proposed Flex-SISO module. The output of the Flex-SISO
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module is the a posteriori probability (APP) log-likelihood ratio (LLR) values, de-
noted as Ao(u), for information bits. It should be noted that the Flex-SISO module
exchanges the soft values A,(u) instead of the extrinsic values in the iterative decod-
ing process. The extrinsic values, denoted as A(u), are stored in a local memory
of the Flex-SISO module. To distinguish the extrinsic values generated at differ-
ent sub-iterations, we use A.(u;old) and A(u; new) to represent the extrinsic values
generated in the previous sub-iteration and the current sub-iteration, respectively.
The soft input values \;(u) are the outputs from the previous Flex-SISO module, or
other previous modules if necessary. Another input to the Flex-SISO niodule is the
channel values for parity bits, denoted as A.(p), if available. For LDPC codes, we
do not distinguish information and parity bits, and all the codeword bits are treated
as information bits. However, in the case of Turbo codes, we treat information and
parity bits separately. Thus the input port A.(p) will not be used when decoding of
LDPC codes. At each sub-iteration, the old extrinsic values, denoted as A.(u;old),
are retrieved from the local memory and should be subtracted from the soft input
values A;(u) to avoid positive feedback.

A generic description of the message passing algorithm is as follows. Multiple
Flex-SISO modules are connected in series to form an iterative decoder. First, the
Flex-SISO module receives the soft values A;(u) from upstream Flex-SISO modules
and the channel values (for parity bits) A.(p) if available. The \;(u) can be thought

of as the sum of the channel value A;(u) (for information bit) and all the extrinsic

et
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values \.(u) previously generated by all the super-codes:

Xi(w) = Ao(u) + D Ae(u). (5.18)

Note that prior to the iterative decoding, \;(u) should be initialized with A.(u). Next,
" the old extrinsic value \¢(u;old) generated by this Flex-SISO module in the previous

iteration is subtracted from A;(u) as follows:
Ae(u) = Ai(u) — Ae(u; old). (5.19)

Then, the new extrinsic value A\¢(u;new) can be computed using the MAP algorithm

based on A¢(u), and \.(p) if available. Finally, the APP value is updated as
Mo(u) = Ai(u) — Ae(u; 0ld) + Ae(u; new). (5.20)

Then this updated APP value is passed to the downstream Flex-SISO modules. This

computation repeats in each sub-iteration.

Channel values for
parity bits

Soft values for ) {w)| R y) APP values for
) : eX - u
information bits = Moglilse 0 —i)) information bits

Olq extrinsi.c values ie(u:'OId)T l Af{u;new) New extrinsic values
for information bits for information bits

Memory

Figure 5.21 : Flex-SISO module.
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5.8.2 Flex-SISO Module to Decode LDPC Codes

In this section, we show how to use the Flex-SISO module to decode LDPC codes.
Because QC-LDPC codes are widely used in many practical systems, we will primarily
focus on the QC-LDPC codes. First, we decompose a QC-LDPC code into multiple
super-codes, where each layer of the parity check matrix defines a super-code. After
the layered decomposition, each super-code comprises 2z independent 2-state single
parity check codes. Fig. 5.22 shows the super-code based, or layered, LDPC decoder
architecture based on the Flex-SISO modules. The decoder parallelism at each Flex-
SISO module is at the level of the sub-matrix size z, because these z single parity
codes have no data dependency and can thus be processed simultaneously. This
architecture differs from the regular two-phase flooding LDPC decoder in that a
code is partitioned into multiple sections, and each section is processed by the same
processor. This scheduling algorithm is similar to the layered scheduling algorithm

[71]. The convergence rate can be twice faster than that of a regular decoder.

Flex-SISO 1 Flex-SISO 2 Flex-SISO n

Au) Aq(u) Aw) A.(u) cee —PIA(u) A(u)
A old)T lle(u;new)
Memory Memory Memory

Figure 5.22 : LDPC decoding using Flex-SISO modules where a LDPC code is de-
composed into n super-codes, and n Flex-SISO modules are connected in series to
decode.
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Since the data flow is the same between different sub-iterations, one physical Flex-
SISO module is instantiated, and it is re-used at each sub-iteration, which leads to
a partial-parallel decoder architecture. Fig. 5.23 shows an iterative LDPC decoder
hardware architecture based on the Flex-SISO module. The structure comprises an
APP memory to st(;re the soft APP values, an extrinsic memory to store the extrinsic
values, and a MAP processor to implement the MAP algorithm for z single parity
check codes. Prior to the iterative decoding process, the APP memory is initialized
with channel values A;(u), and the extrinsic memory is initialized with 0.

The decoding flow is summarized as follows. It should be noted that the parity
bits are treated as information bits for the decoding of LDPC codes. We use the
symbol uy to represent the k-th data bit in the codeword. For check node m, we use
the symbol up, x to denote the k-th codeword bit (or variable node) that is connected
to this check node m. To remove corr;zlations between iterations, the old extrinsic
message is subtracted from the soft input message to create a temporary message A;

as follows

At(Um k) = Ai(ur) — Ae(Umi; old), (5.21)

where \;(ug) is the soft input log likelihood ratio (LLR) and Ac(upm x; 0ld) is the old
extrinsic value generated by this MAP processor in the previous iteration. Then the

new extrinsic value can be computed as:

A (U i new) = BN (tm,5), | (5.22)

J:3#k
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where the H operation is associative and commutative, and is defined as [120]

Finally, the new APP value is updated as:

A(up) B A(ug) = log

1+ e/\(ul)e)\(uz)

(5.23)

eMu1) 1 eMuz)

Ao(uk) = At(Umk) + Ae(Um k; new). (5.24)

For each sub-iteration [, equations (5.21-5.24) can be executed in parallel for check

nodes m = [z to lz + z — 1 because there are no data dependency between them.

Ai(u)

APP
Memory

14(p)=0

Flex-SISO

¥

q_\i,(u)

'\Aj » MAP Processor

LDPC

()

Ao(4)

Ae(u; 0ld)

yie(u; new)

Extrinsic

Memory

Figure 5.23 : LDPC decoder architecture based on the Flex-SISO module.

5.8.3 Flex-SISO Module to Decode Turbo Codes

In this section, we show how to use the Flex-SISO module to decode Turbo codes. A

Turbo code can be naturally partitioned into two super-codes, or constituent codes.

In a traditional Turbo decoder, where the extrinsic messages are exchanged between
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two super-codes, the Flex-SISO module can not be directly applied, because the
Flex-SISO module requires the APP values, rather than the extrinsic values, being
exchanged between super-codes. In this section, we made a small modification to
the traditional Turbo decoding flow so that the APP values are exchanged in the
decoding procedure.

The traditional Turbo decoding procedure with two SISO decoders is shown in
Fig. 5.24. The definitions of the symbols in the figure are as follows. The information
biﬁ and the parity bits at time k are denoted as u; and (pﬁ), pff), ey p§c”)), respectively,
with wuy, pg) € {0,1}. The channel LLR values for u; and p,(ci) are denoted as A.(ux)
and )\c(pg)), respectively. The a priori LLR, the extrinsic LLR, and the APP LLR

for uy, are denoted as A;(ug), Ae(ux), and A, (ug), respectively.

: I«
11 a(u) V'C(P l) uc(lﬂ) /12e(u)
1 (4)—e] SISO1 O\ EL OIS
¢ A (u) l—» > 12,(u)
> 11

Figure 5.24 : Traditional Turbo decoding procedure using two SISO decoders, where
the extrinsic LLR values are exchanged between two SISO decoders.

In the decoding process, the SISO decoder computes the extrinsic LLR value at

time k as follows:

Ae(ug) = max {om—1(8k-1) + Vi(Sk—1, Sk) + Br(sk)}

wug=1

- mﬁx {ak_l(sk_l) =+ ’}’Z(Sk_l, Sk) =+ ﬂk(sk)} (525)

wu=0
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e
| A1) | 4(p2)
Flex-SISO1 | Flex-SISO2
Ae(u) IR 2 i(w) gl‘.(ug MAP A o(u), = A2w) Ql%(ug MAP Ao
d Processor '@_ - Processor
Ao(usold) | Ao(u;new) 2 Lusold) | Aounew)
Memory Memory

Figure 5.25 : Modified Turbo decoding procedure using two Flex-SISO modules. The

soft LLR values are exchanged between two SISO modules.

The a and B metrics are computed based on the forward and backward recursions:

ak(sg) = Iflzi{akq(sk—ﬁ + Yi(Sk-1, Sk) }

Br(sk) = Ig}t%‘z({ﬂk—kl(sk-kl) + Ve (Sk, Sk41) }

where the branch metric 7, is computed as:

Ye =tk - (Ae(ur) + Aa(ur)) + ZPE:) ) )\c(pgci)).

The extrinsic branch metric 4§ in (5.25) is computed as:
%= ipff) Aelpl)-
The max*(-) function in (5.25-5.27) is defined as:
max(a, b) = max(a, b) + log(1 + e~1*~?).
The soft APP value for uy is generated as:

Mo(uk) = Ae(ur) + Ag(ur) + Ac(ug)-

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)
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In the first half iteration, SISO decoder 1 computes the extrinsic value \!(uz) and
passes it to SISO decoder 2. Thus, the extrinsic value computed by SISO decoder 1
becomes the a priori value A2(uy) for SISO decoder 2 in the second half iteration. The
computation is repeated in each iteration. The iterative process is usually terminated

after a certain number of iterations, when the soft APP value A,(uy) converges.

Modified Turbo Decoder Structure Using Flex-SISO Modules

In order to use the proposed Flex-SISO module for Turbo decoding, we modify the
traditional Turbo decoder structure. Fig. 5.25 shows the modified Turbo decoder
structure based on the Flex-SISO modules.

It should be noted that the modified Turbo decoding flow is mathematically equiv-
alent to the original Turbo decoding flow, but uses a different message passing method.
The modified data flow is as follows. In the first half iteration, Flex-SISO decoder
1 receives soft LLR value A} (uy) from Flex-SISO decoder 2 through de-interleaving
(A} (ug) is initialized to channel value A (ux) prior to decoding). Then it removes the
old extrinsic value Al(ug;old) from the soft input LLR A}(ux) to form a temporary
message A\l (ux) as follows (for brevity, we drop the superscript “1” in the following
equations)

Ae(ug) = Ni(ug) — Ae(ug; old). (5.32)

To relate to the traditional Turbo decoder structure, this temporary message is math-

ematically equal to the sum of the channel value A.(u) and the a priori value A, (uy)
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in Fig. 5.24:

)\t(uk) = )\c(uk) + )\a(uk). (533)

Thus, the branch metric calculation in (5.28) can be re-written as:

o = e Me(ur) + Y 0Y - Ae(pY). (5.34)

The extrinsic branch metric (7§) calculation, and the extrinsic LLR (A¢(ux)) calcu-
lation, however, remain the same as (5.29) and (5.25-5.27), respectively. Finally, the

soft APP LLR output is computed as:
Ao(uk) = Ag(uk) + Ae(ug; new). (5.35)

In the Flex-SISO based iterative decoding procedure, the soft outputs A}(u) com-
puted by Flex-SISO decoder 1 are passed to Flex-SISO decoder 2 so that they be-
come the soft inputs A?(u) for Flex-SISO decoder 2 in the second half iteration. The
computation is repeated in each half-iteration until the iteration converges. Since
the operations are identical between two sub-iterations, only one physical Flex-SISO
module is instantiated, and it is re-used for two sub-iterations.

Fig. 5.26 shows an iterative Turbo decoder architecture based on the Flex-SISO
module. The architecture is very similar to the LDPC decoder architecture shown in
Fig. 5.23. The main differences are: 1) the Turbo decoder has separate parity channel
LLR inputs whereas the LDPC decoder treats parity bits as information bits, 2) the
Turbo decoder employs the MAP algorithm on an N-state trellis whereas the LDPC

decoder applies the MAP algorithm on z independent 2-state trellises, and 3) the
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interleaver /permuter structures are different (not shown in the figures). But despite
these differences, there are certain important commonalities. The message passing
flows are the same. The memory organizations are similar, but with a variety of sizes
depending on the codeword length. The MAP processors, which will be described in
the next section, hz;ve similar functional unit resources that will be configured using

multiplexors for each algorithm. Thus, it is natural to design a unified SISO decoder

with configurable MAP processors to support both LDPC and Turbo codes.

APP Ac(u)
Memory
|4)
Flex-SISO v
Ai(w) fb"‘“’» Turbo Ao(1)

'\A/ MAP Processor

Ae(u;old) rle(u; new)

Extrinsic
Memory

Figure 5.26 : Turbo decoder architecture based on the Flex-SISO module.

5.8.4 Design of A Flexible Functional Unit

The MAP processor is the main processing unit in both LDPC and Turbo decoders as
depicted in Fig. 5.23 and Fig. 5.26. In this section, we introduce a flexible functional

unit to decode LDPC and Turbo codes with a small additional overhead.
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MAP Functional Unit for Turbo Codes

In a Turbo MAP processor, the critical path lies in the state metric calculation unit
which is often referred to as add-compare-select-add (ACSA) unit. As depicted in
Fig. 5.27, for each state m of the trellis, the decoder needs to perform an ACSA

operation as follows:

ag = m’éx(ao + Yo, @1 + M), (5.36)

where o and «; are the pr_evious state metrics, and o and 7; are the branch metrics.
Fig. 5.27(b) shows a circuit implementation for the ACSA unit, where a signed-input
look-up table “LUT-S” was used to implement the non-linear function log(1 + e~1#l).
This circuit can be used to recursively compute the forward and backward state

metrics based on eq. (5.26)(5.27).

0 —
% Yo — + l
Yo @ 'y +
o o —» =
1 Y1 + MSB ,

Y1 ___:Ej + _go

@ (b)

Figure 5.27 : Turbo ACSA structure. (a) Flow of state metric calculation. (b) Circuit
diagram for the Turbo ACSA unit.
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MAP Functional Unit for LDPC Codes

In the layered QC-LDPC decoding algorithm, each super-code comprises z indepen-
dent single parity check codes. Each single parity check code can be viewed as a
terminated 2-state convolutional code. Fig. 5.28 shows an example of the trellis

structure for a single parity check node.

u0 +ul+u2+u3 =0 (GF2)

Figure 5.28 : Trellis structure for a single parity check code.

An efficient MAP decoding algorithm for a single parity check code was given in
[124]: for independent random variables ug, uy, ..., u; the extrinsic LLR value for bit

ug is computed as:

Aug) = EE)\i(Ui), (5.37)
~{ux}

where the compact notation ~{ux} represents the set of all the variables with w
excluded. For brevity, we define a function f(a, b) to represent the operation \;(u,)H

Ai(u2) as follows

1+ e%?®
e?+eb’

f(a,b) =log (5.38)

where a £ \;(u;) and b £ \;(uy). Fig. 5.29 shows a forward-backward decoding flow
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to implement (5.37). The forward () and backward () recursions are defined as:

a1 = flom, M) (5.39)

Br = f(Br+i, Ye+1)s (5.40)

where v, = A\;(ux) and is referred to as the branch metric as an analogy to a Turbo
decoder. The a and (B metrics are initialized to +o0o in the beginning. Based on the

a and (8 metrics, the extrinsic LLR for u; is computed as:

A(uk) = f(o, Br)- (5.41)

Forward Recursion : ak+1=f (ak, yk)

Backward Recursion : Bi=f (Bis1, Vi)

Figure 5.29 : A forward-backward decoding flow to compute the extrinsic LLRs for
single parity check code.

Fig. 5.30 shows a MAP processor structure to decode the single parity check code.
Three identical f(a,b) units are used to compute «, 3, and X\ values. To relate to
the top level LDPC decoder architecture as shown in Fig. 5.23, the inputs to this
MAP processor are the temporary metrics A¢(um k), and the outputs from this MAP

processor are the extrinsic metrics Ae(Um,k; new).
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Figure 5.30 : MAP processor structure for single parity check code.

To compute (5.38) in hardware, we separate the operation into sign and magnitude

calculations:

sign(f(a,b)) = sign(a) sign(b),
|£(a,b)| = min(lal, [b]) + log(1 + e~(1D)

—log(1 + e-|lal—'bl|). (5.42)
Compared to the classical “tanh” function used in LDPC decoding
U(z) = —log(tanh(|z/2|)), (5.43)

the f(-) function is numerically more robust and less sensitive to quantization noise.
Due to its widely dynamic range (up to +oo), the ¥(z) function has a high com-
plexity and is prone to quantization noise. Although many approximations have been
proposed to improve the numerical accuracy of ¥(z) [125, 126, 72], it is still expensive

to implement the W(z) function in hardware. However, the non-linear term in the
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f(-) function has a very small dynamic range:
0 < g(z) 2 log(1 + e #1) < 0.7,

thus the f(-) function can be more easily implemented in hardware by using a low
complexity look-up table (LUT). To implement g(z) in hardware, we propose to use
a 4-value LUT approximation which is shown in table 5.1. For fixed point implemen-
tation, we propose to use 2 fractional bits to implement the LUT. Table 5.2 shows
the proposed LUT implementation. It should be noted that g(z) is the same as the
non-linear term in the Turbo max*(-) function (c.f. eq. (5.30)). Thus, the same

look-up table configuration can be applied to the Turbo ACSA unit.

Table 5.1 : LUT approximation for g(z) = log(1 + e~*!)

lz] || |z|=0]|0<]|z| <0.75 [ 0.75 < |z| <2 | |z| > 2

g(z) || 0.75 0.5 0.25 0

Table 5.2 : LUT implementation

gz || 3|22 |2(1]1]1]|1]|1] 0

Fig. 5.31 depicts a circuit implementation for the LDPC |f(a,b)| functional unit

using two look-up tables “LUT-S” and “LUT-U”, where LUT-S and LUT-U imple-
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ment log(1 + e_ll“'—'b") and log(1 + e~(el+1¥))  respectively. The difference between
LUT-S and LUT-U is that: LUT-S is a signed-input look-up table that takes both
positive and negative data inputs whereas LUT-U is an unsigned-input look-up table

(half size of LUT-S) that only takes positive data inputs.

|a| LUT-U
b ——4> +

Figure 5.31 : Circuit diagram for the LDPC |f(a,b)| functional unit.

Unified MAP Functional Unit

If we compare the LDPC |f(a,b)| functional unit (c.f. Fig. 5.31) with the Turbo
ACSA functional unit (c.f. Fig. 5.27), we can see that they have many commonalities
except for the position of the look-up tables and the multiplexor. To support both
LDPC and Turbo codes with minimum hardware overhead, we propose a flexible
functional unit (FFU) which is depicted in Fig. 5.32. We modify the look-up table
structure so that each look-up table can be bypassed when the bypass control signal

is high. A select signal was used to switch between the LDPC mode and the Turbo
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mode. The functionality of the proposed FFU architecture is summarized in Table

9.3.

Figure 5.32 : Circuit diagram for the flexible functional unit (FFU) for LDPC/Turbo
decoding.

5.8.5 Design of A Flexible SISO Decoder

Built on top of the FFU arithmetic unit, we introduce a flexible SISO decoder architec-
ture to handle LDPC and Turbo codes. Fig. 5.33 illustrates the proposed dual-mode
SISO decoder architecture. The decoder comprises four major functional units: alpha
unit (a), beta unit (§), extrinsic-1 unit, and extrinsic-2 unit. The decoder can be
reconfigured to process: i) an 8-state convolutional Turbo code, or ii) 8 single parity
check codes.

In the Turbo mode, all the elements in the Flex-SISO decoder will be activated.

For Turbo decoding, we use the Next Iteration Initialization (NII) sliding window
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Ae(u;0ld)—
4dp)

Table 5.3 : Functional description of the FFU

Signals || LDPC Mode Turbo Mode
select 1 0
bypass1 0 1
bypass2 1 0
X |al Qo
Y |b] Yo
4 |a a1
w —[b| g
Z |f(a,b)| max*(ao + Yo, @1 + 1)
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Figure 5.33 : Flexible SISO decoder architecture.
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algorithm [108, 127] as described in Chapter 4. The NII approach can avoid the cal-
culation of training sequences as initialization values for the 3 state metrics, instead
the boundary metrics are initialized from the previous iteration. As a result, the de-
coding latency is smaller than the traditional sliding window algorithm which requires
a calculation of training sequences [107, 110}, and thus only one 3 unit is required.
Moreover, this solution is very suitable for high code-rate Turbo codes, which require
a very long training sequence to obtain reliable boundary state metrics. Note that
this scheme would require an additional memory to store the boundary state metrics.

A dataflow graph for the NII sliding window algorithm is depicted in Fig. 5.34,
where the X-axis represents the trellis flow and the Y-axis represents the decoding
time so that a box may represent the processing of a block of L data in L time
steps, where L is the sliding window size. In the decoding process, the o metrics are
computed in the natural order whereas the 3 metrics and the extrinsic LLR ().) are
computed in the reverse order. By using multiple FFUs, the « and 3 units are able to
compute the state metrics in parallel, leading to a real time decoding with a latency
of L.

The decoder works as follows. The decoder uses the soft LLR value \;(u) and
old extrinsic value A.(u;old) to compute A;(u) based on (5.32). A branch metric
calculation (BMC) unit is used to compute the branch metrics v(u, p) based on (5.34),
where u,p € {0,1}. Then the branch metrics are buffered in a 7y stack for backward

(8) metric calculation. The « and 3 metrics are computed using (5.26)(5.27). The
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Figure 5.34 : Data flow graph for Turbo decoding.

boundary § metrics are initialized from an NII buffer (not shown in Fig. 5.33). A
dispatcher unit is used to dispatch the data to the correct FFUs in the a/f unit.
Each a/ unit has fully-parallel FFUs (8 of them), so the 8-state convolutional trellis
can be processed at a rate of one-stage per clock cycle.

To compute the extrinsic LLR as defined in eq. (5.25), we first add [ metrics
with the extrinsic branch metrics v°(p), where v¢(p) is retrieved from the v stack, as
v¢(0) = 0, v*(1) = v(0,1) = A:(p). The extrinsic LLR calculation is separated into
two phases which is shown in the right part of Fig. 5.33. In phase 1, the extrinsic-1
unit performs 8 ACSA operations in parallel using 8 FFUs. In phase 2, the extrinsic-2
unit performs 6 max*(a, b) operations and 1 subtraction. Finally, the soft LLR \,(u)
is obtained by adding A.(u; new) with Ai(u), where A\;(u) is also retrieved from the

stack, as A(u) = v(1,0).
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In the LDPC mode, a substantial subset (more than 90%) of the logic gates will
be reused from the Turbo mode. As shown in Fig. 5.35, three major functional units
(o unit, B unit, and the extrinsic-1 unit) and two stack memories are reused in the
LDPC mode. The extrinsic-2 unit will be de-activated in the LDPC mode. The
decoder can process 8 single parity check codes in parallel because each of the « unit,

[ unit, and extrinsic-1 unit has 8 parallel FFUs.

{ T Flex-SISO Decoder
3 (LDPC Mode)
Py Y e} FFU 2 o
l}ﬁ?’old)— w BMC .g‘ : >
0 Unit (y) FFUS — ]
¥ stack k= Alpha Unit (o)) a 5 g select=1
e [T | |3 Y Py
o PADD | BHO LR : i
FFU 8 i
Extrinsic -1 Unit E © | 4)
B
From vy stack: A{u)
Beta Unit (B)

Figure 5.35 : Flexible SISO decoder architecture in LDPC mode.

The dataflow graph of the LDPC decoding (c.f. Fig. 5.29) is very similar to that of
the Turbo decoding (c.f. Fig. 5.34). The decoder works as follows. The decoder first
computes A;(u) based on (5.21). In the LDPC mode, the branch metric v is equal to
At(u). Prior to decoding, the @ and [ metrics are initialized to the maximum value.
We assume that the check node degree is L. In the first L cycles, the o unit recursively
computes the « metrics in the forward direction and stores them in an « stapk. In

the next L cycles, the @ unit recursively computes the g metrics in the backward
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direction. At the same time, the extrinsic-1 unit computes the extrinsic LLRs using
the o and 3 metrics. While the 8 unit and the extrinsic-1 unit are working on the
first data stream, the o unit can work on the second stream which leads to a pipelined

implementation.

5.8.6 LDPC/Turbo Parallel Decoder Architecture Based on Multiple Flex-

SISO Decoders

For high throughput applications, it is necessary to use multiple SISO decoders work-
ing in parallel to increase the decoding speed. For parallel Turbo decoding, multi-
ple SISO decoders can be employed by dividing a codeword block into several sub-
blocks and then each sub-block is processed separately by a dedicated SISO decoder
[112, 113, 114, 103, 12]. For LDPC decoding, the decoder parallelism can be achieved
by employing multiple check node proc.essors [17, 65, 66, 67, 76].

Based on the Flex-SISO decoder core, we propose a parallel LDPC/Turbo decoder
architecture which is shown in Fig. 5.36. As depicted, the parallel decoder comprises
P Flex-SISO decoder cores. In this architecture, there are three types of storage.
Extrinsic memory (Ext-Mem) is used for storing the extrinsic LLR values produced
by each SISO core. APP memory (APP-Mem) is used to store the initial and updated
LLR values. The APP memory is partitioned into multiple banks to allow parallel
data transfer. The Turbo parity memory is used to store the channel LLR values

for each parity bit in a Turbo codeword. This memory is not used for LDPC de-
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coding (parity bits are treated as information bits for LDPC decoding). Finally, two

permuters are used to perform the permutation of the APP values back and forth.

L 4

APP Mem
t Turbo
r Permuter I Parity Mem
, L 2
A(wold) A(u) \ 4
YV VP vy vy
& Flex- g Flex- g Flex-
> SISO = SISO = SISO
s Core 1 s Core 2 e Core P
wo(u) r 1] S
(U, new) *

r Permuter ]

Figure 5.36 : Parallel LDPC/Turbo decoder architecture based on multiple Flex-SISO

decoder cores.

5.9 Summary

In this chapter, we have presented high-throughput LDPC decoderarchitectures for
QC-LDPC codes. We propose a multi-layer parallel LDPC decoding algorithm and
describe a multi-layer LDPC decoder architecture to achieve 3 Gbps decoding speed.
To support both LDPC and Turbo codes, we propose a unified decoder architecture
which can be dynamically configured for both codes with a small hardware ovérhead,
based on combining some of the architecture concepts from Chapter 4 on Turbo

decoding with the current chapter on LDPC decoding.
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Chapter 6

ASIC and FPGA Implementation Results

In this chapter, we present the ASIC (application-specific integrated circuit) and
FPGA (field-programmable gate array) implementation results of various MIMO de-
tectors and channel decoders. The algorithms and architectures were presented in
Chapters 3, 4, and 5, with Chapter 3 focusing on MIMO detection, Chapter 4 fo-
cusing on Turbo decoders, and Chapter 5 focusing on LDPC and joint LDPC/Turbo
decoders. First, we will present résults on our Rice WARP testbed which is an efficient

verification environment before the creation of a VLSI ASIC acceleration design.

6.1 Decoder Accelerator Design for WARP Testbed

We have implemented a channel decoder accelerator for the Rice WARP Wireless
Research Platform [128, 129]. The Rice Wireless Research Platform is reconfigurable
and consists of DSP and FPGA devices along with RF radios and high speed AD and
DA converters. Experiments on the testbed can be performed to allow for algorithm
and partitioning verification, identification of unforeseen bottlenecks, and over the air
bit and frame error rate determination. The programmable transceiver hardware is
connected to a general purpose host computer for control and interfacing. The testbed

platform currently utilizes Mathworks Simulink environments for coordination and
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The design is built using the 10.1 release of the Xilinx tools (ISE 10.1.03 + IP3,
Sysgen 10.1.3.1386). In this design, a K=7 convolutional code is used. The code
structure and the puncture pattern are compliant with the IEEE 802.11a standard.

The FEC codec supports all three modes of the current WARP OFDM PHY: 1)
| SISO mode, 2) 2 x 2 MIMO mode, and 3) 2 X 2 or 2 x 1 Alamouti mode. The FEC
codec supports three modulation types: 1) BPSK, 2) QPSK, and 3) 16-QAM. The
coding can be turned on and off by programming the control register. The coding rate
can be changed by modifying the second byte of the packet header. Four different
code rates are supported: 1/2, 2/3, 3/4, and 1.

The FEC encoder was implemented with Verilog and was integrated into the
Sysgen model as a black-box, which is a standard port to include alternate HDL
blocks. Fig. 6.2 shows the connection between the encoder and the rest of the Sys-
gen blocks. As can be seen, the encoder sits between the “data_buffer” block and
the “PktBuffer CRC1” block. The encoder will pre-fetch the data (scrambled infor-
mation data) from the “PktBuffer.CRC1” block and encode it. The encoded bits
are stored into a local small buffer. When this buffer is full, the encoder will stop
fetching data from the “PktBuffer CRC1” block. When the encoder sees a new data
byte request from the “data_buffer” block, it will return a coded data byte to the
“data_buffer” block. When the coding is turned off, the encoder will bypass the
scrambled information data to the “data_buffer” block.

The FEC decoder was also implemented with Verilog and is integrated into Sysgen
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6.2 VLSI Implementation Results for MIMO Detectors
6.2.1 Trellis-Search MIMO Detector, M =1

In chapter 3, we have described the VLSI architectures for the trellis-search MIMO
detectors. To evaluate the hardware complexity of the proposed MIMO detector
architecture, we implemented a M = 1 trellis-search MIMO detector (cf. Section
3.1) using Verilog HDL [6, 7, 8]. To save area, this detector is based on the folded
architecture as described in Chapter 3.

This 4 x4 16-QAM soft MIMO detector has been synthesized (using Synopsys De-
sign Compiler), placed and routed (using Cadence SoC Encounter) for a TSMC 65nm
CMOS technology. Figure 6.4 shows the VLSI layout view of the MIMO detector.
The fixed-point bit precision for R and y are 10 bits. The LLR outputs are repre-
sented in 7 bits. Based on the fixed-point simulation results, the finite word-length
implementation leads to negligible performance degradation (about 0.1dB) from us-
ing the floating-point representation. The maximum achievable clock frequency is 450
MHz based on the post-layout simulation. The corresponding maximum throughput
is 600 Mbps.

Table 6.1 compares the detection throughput and hardware complexity of the
proposed detector versus two state-of-the-art detectors from the literature: depth-first
soft sphere detector with 256 search operations from [28], and soft K-best detector
from [39]. In [39], a real QR decomposition is used with a small K=5. Compared to

solutions [39, 28], our solution can achieve a faster throughput because we avoid the
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171

Garrett [28] Guo [39] This work
Algorithm Depth-First K-Best PPTS (M =1)
Configuration || 4 x 4 16-QAM | 4 x 4 16-QAM | 4 x 4 16-QAM
Throughput 38.8 Mbps 106 Mbps 600 Mbps
Core Area 10 mm? 0.56 mm? 0.79 mm?
Gate Count 1100 K 97 K 550 K
Max Frequency 122.88 MHz 200 MHz 450 MHz
Technology 180 nm 130 nm 65 nm
T (Moms] 28.4 0.92 0.91

trellis-search MIMO detector, instead of working on the scaled s, signal, we scale each

1

element in the R matrix by 700, = \/%—0 and use the original QAM symbol s; in the

computation. We use the notation Q[QI].[QF]] to represent a fixed point number with
QI number of integer bits and QF number of fractional bits so that the total word
length is QI + QF. Table 6.2 summarizes the fixed point design parameters for the
scaled R, received ¢, PED, and LLR, where the PED is rounded to 10 bits between
computational blocks. This fixed-point detector has about 0.1 dB performance loss

compared to the floating-point detector.

Table 6.2 : Fixed point design parameters for the 4 x 4 16-QAM MIMO system
Scaled R

Signal Received ¢ PED LLR

Q1.9 signed | Q4.6 signed

QRIQI).[QF] Q4.6 unsigned | Q4.2 signed
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first soft sphere detector (MMF-SSD) from [87].

Since these designs have different technologies, i.e. 65nm, 130nm, 180nm, and
250nm. For a fair comparison, we need to scale these designs into a same technology,
i.e. 65nm. To compare silicon area cost, a fair metric is the gate equivalent or gate
count, which does not change much as technology node changes. To further compare
area efficiency, we define an area efficiency metric (KGate/bit) as:

Gate count x Frequency
Throughput

Area efficiency = (6.1)

This metric does not change much as the technology node changes, and can be used
to measure the area efficiency of the design. Similarly, to compare power efficiency,
we define an energy efficiency metric (nJ/bit) as:

Normalized power
Throughput

Energy efficiency = (6.2)

In the equation above, the normalized power is the power number that is scaled to a
same technology node, i.e. 65nm, as:

Power

(6.3)

Normalized power = - 5
technology scaling factor

As can be seen, the proposed detectors achieve very high data throughput while still
maintaining a low area and energy requirement.

In terms of error performance, the proposed trellis detector with M = 2 outper-
forms the K-Best detector with K = 64 (cf. Fig. 3.6). Although the depth-first
detector with un-limited search steps achieves near-optimal performance, in a prac-

tical design, the search steps will be limited to meet the throughput requirement.
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However, with limited search steps, the error performance of a depth-first detector
quickly degrades. For example, the depth-first MMF-SSD detector from [87] shows a
0.6-0.8 dB performance loss compared to the optimal case.

The trellis MIMO detector with M = 2 achieves a balanced tradeoff between
hardware complexit—y and error performance (< 0.3 dB loss). Therefore, the proposed
detector is a good solution for the Gbps MIMO detection problem as it achieves both

high throughput performance and good error performance.

Table 6.3 : Architecture comparison with two independent works

Reference Studer [33] Guo [39] Systolic Folded
Algorithm Depth-First | K-Best, K=5 | Trellis, M=2 | Trellis, M=2
Configuration 4x4 16-QAM | 4x4 16-QAM | 4x4 16-QAM | 4x4 16-QAM
Clock Frequency 71 MHz 200 MHz 400 MHz 400 MHz
Technology 250 nm 130 nm 65 nm 65 nm
Throughput 10-95 Mbps 106 Mbps 6.4 Gbps 2.1 Gbps
Core Area 1.9 mm? 0.56 mm? 3.19 mm? 1.18 mm?
Gate Count 56.8 K 97 K 222 M 820 K
Power N/A N/A 210 mW 81 mW
Area Efficiency 403-42 183 138 156
Energy Efficiency N/A N/A 0.03 0.04
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Table 6.4 : Architecture comparison with two internal works

Reference Radosav. [86] | Myllyla [87] Systolic Folded
Algorithm BSSD MMF-SSD | Trellis, M=2 | Trellis, M=2
Configuration 4x4 16-QAM | 4x4 16-QAM | 4x4 16-QAM | 4x4 16-QAM
Clock Frequency 200 MHz 250 MHz 400 MHz 400 MHz
Technology 130 nm 180 nm 65 nm 65 nm
Throughput 72 Mbps 31-121 Mbps 6.4 Gbps 2.1 Gbps
Core Area 0.57 mm? 0.59 mm? 3.19 mm? 1.18 mm?
Gate Count 210 K 43.9 K 2.22 M 820 K
Power 43.45 mW 83 mW 210 mW 81 mW
Area Efficiency 583 354-90 138 156
Energy Efficiency 0.15 0.09 0.03 0.04

6.3 VLSI Implementation Results for LTE Turbo Decoders

6.3.1 Highly-Parallel LTE-Advanced Turbo Decoder

A highly-parallel 3GPP LTE/LTE-Advanced Turbo decoder, which consists of 64
Radix-2 SW-MAP decoder cores (cf. Chapter 4 Section 4.4), has been synthesized,
placed and routed for a 1.0V 8-metal layer TSMC 65nm CMOS technology [11]. The
decoder has scalable parallelism. The decoder can employ 64, 32, and 16 MAP units
when the block size N >= 2048, N >= 1024, and N >= 512, respectively. For small
block size N < 496, the decoder can use up to 8 MAP cores. Figure 6.6 shows the top
layout view of this ASIC which shows the core area of this decoder. The fixed-point

bit precisions are as follows: the channel symbol LLRs for systematic and parity
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bits are represented with 6-bit signed numbers (with 2 fractional bits), the internal
a and 3 state metrics are represented with 10-bit unsigned integer numbers (mod-
ulo normalization), and the extrinsic LLRs are represented with 8-bit signed integer
numbers. Based on the fixed-point simulation result, the finite word-length implemen-
tation leads to negligible BER performance degradation from using the floating-point
representation. The maximum achievable clock frequency is 400 MHz based on the
post-layout simulation. The corresponding maximum throughput is 1.28 Gbps (at 6
itgrations) with a core area of 8.3 mm?.

We compare the proposed Turbo decoder with existing Turbo decoders from [112],
[113], [58], and [61]. In [112], a parallel Turbo decoder based on 7 MAP decoders
is presented. In order to avoid memory contention, a custom designed interleaver,
which is not standard compliant, is used. In [113], a 3G-compliant parallel Turbo
decoder based on the row-column permutation interleaver is introduced. In [58], a
188-mode Turbo decoder chip for 3GPP LTE standard is presented. In this decoder,
8 MAP units are used to achieve a maximum decoding throughput of 129Mbps (at
8 iterations). In [61], a Radix-4 Turbo decoder is proposed for 3GPP LTE and
WiMax standards. A maximum throughput of 186Mbps is supported by employing
8 MAP units (at 8 iterations). Table 6.5 summarizes the implementation results
of the proposed decoder and the hardware comparison with existing decoders. As
can be seen, the proposed decoder supports the 3GPP LTE-Advanced throughput

requirement (1 Gbps) at a small area cost, and achieves a good energy efficiency.
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This work | Bougard Thul Wong Kim
[11] [112] [113] [58] [61]
Max. block size 6144 432 5120 6144 6144
MAP cores 64 7 6 8 8
Maximum iterations 6 6 6 8 8
Technology 65nm 180nm 180nm 90nm 130nm
Supply voltage 0.9V 1.8V NA 1.0V 1.2V
Clock frequency 400MHz | 160MHz | 166MHz | 275MHz | 250MHz
Core area 8.3mm? | 7.16mm? | 13mm? | 2.1mm? | 10.7mm?
Gate Equivalent 5.8M 587K T 1.3M # 740K 1 800K
Arithmetic Logic 4.9M 373K N/A N/A 500K
Throughput 1.28Gbps | 75.6Mbps | 60Mbps | 129Mbps | 186Mbps
Power consumption || 845mW N/A N/A 219mW N/A
Energy efficiency 0.11 1.45 1.65 0.21 0.61

(nJ/bit/iteration)

t The gate count is estimated based on the chip data in this thesis.

¥ The unit cell area is assumed to be 10.00 um? for 180nm technology.

t The unit cell area is assumed to be 2.82 pm? for 90nm technology.
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SNR level. For instance, at a rather low SNR of 1.0 dB, the pipelined decoder can

achieve 150 Mbps. While at a higher SNR of 2.2 dB, the pipelined decoder can achieve

about 1 Gbps.

Table 6.6 : IEEE 802.11n LDPC decoder design statistics [18].

Non-pipelined | Pipelined
Frequency 400 MHz 400 MHz
Area 1.3 mm? 1.9 mm?
Logic gates 90 K 195 K
Total memory 77,760 bits | 77,760 bits
Throughput@2.2dB SNR 500 Mbps 1 Gbps
Throughput@1.0dB SNR 80 Mbps 150 Mbps

6.4.2 Variable Block-Size and Multi-Rate LDPC Decoder

A flexible LDPC decoder which supports variable block sizes from 360 to 4200 bits

in fine steps, where the step size can be 24 (at rate 1/4, 1/3, 1/2, 2/3, 3/4, 5/6 and

7/8), or 25 (at rate 2/5, 3/5 and 4/5), or 27 (at rate 8/9), or 30 (at rate 9/10), was

described in Verilog HDL [17]. Layout was generated for a TSMC 0.13um CMOS

technology as shown in Fig. 6.7. Table 6.8 compares this decoder with two existing

LDPC decoders from [69] and [80].
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6.4.3 An IEEE 802.11n/802.16e Multi-Mode LDPC Decoder

In order to support even more wireless systems than our result in Section 6.4.2, a
multi-mode LDPC decoder which supports both IEEE 802.11n and IEEE 802.16e
has been synthesized on a TSMC 90nm 1.0V 8-metal layer CMOS technology [16].
The detailed VLSI architecture has been described in Chapter 5 Section 5.5. Fig. 6.8
shows the VLSI layout view of the LDPC decoder. Table 6.8 compares this decoder
with the state-of-the-art LDPC decoders of [130] and [80]. The decoder in [130] has
the flexibility to support 19 modes of LDPC codes in the WiMax standard, however
it will not support the higher data rates envisioned for 4G and IMT-Advanced. The
decoder in [80] has a throughput of 640 Mbps, but it does not have the flexibility to
support multiple codes. As can be seen, our decoder shoWs significant performance

improvement in throughput, flexibility, area and power.

Table 6.8 : IEEE 802.11n/802.16e LDPC decoder comparison

This Work [16] | Shih [130] | Mansour [80]

Flexibility 802.16e/.11n 802.16e | 2048-bit fixed
Max Throughput 1 Gbps 111 Mbps 640 Mbps
Total Area, 3.5 mm? 8.29 mm? 14.3 mm?
Max Frequency 450 MHz 83 MHz 125 MHz
Peak Power 410 mW 52 mW 787 mW
Technology 90 nm 0.13 um 0.18 um

Max Iteration 10 8 10
Algorithm Full BP Min-Sum | Linear Apprx.













Table 6.9 : LDPC decoder comparisons, HLS v.s. manual design.

This Work [15] | Rovini [65] | Brack [66]
Core Area 1.2 mm? 0.74 mm? | 1.337 mm?
Max Frequency 400 MHz 240 MHz | 400 MHz
Max Power 180 mW 235 mW NA
Technology 65 nm 65 nm 65 nm
Quantization 6 5 6
Number of Iterations 10 13 25-20
Max Code Length 2304 1944 2304
Memory (SRAM) 82,944 bit 68,256 bit | 0.551 mm?
Max Throughput @ R=1/2 415 Mbps 178 Mbps | 333 Mbps
Max Latency @ R=1/2 2.8 us 5.75 us 6.0 us
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provides block-level clock gating which shuts off entire processing blocks to minimize

power at an architectural level. Table 6.10 compares the power consumption of a

(2304, 1/2) pipelined LDPC decoder with and without clock-gating. SpyGlass [133]

was used to conduct the gate-level power estimation (not including external SRAMs).

From Table 6.10, we can see a 29% reduction of the “sequential internal power” via

clock-gating. It should be noted that the power number shown in Table 6.10 is just

the standard cell power consumption number.

Table 6.10 : SpyGlass power estimates with and without clock gating
Power Leakage | Internal | Switching | Total
W/ clock-gating || 3.43mW | 46.1mW | 22.5mW | 72.0mW
W/O clock-gating || 3.43mW | 64.5mW | 22.5mW | 90.4mW
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6.4.5 Multi-Layer Parallel LDPC Decoder for IEEE 802.11n

A flexible double-layer parallel decoder which fully supports IEEE 802.11n LDPC
codes was designed in Verilog HDL [134]. The detailed VLSI architecture of this
decoder was described in Chapter 5 Section 5.6. The fixed-point design parameters
are as follows. The channel input LLR is represented with 6-bit signed numbers with
2 fractional bits. The word lengths of the extrinsic R values and the APP LLR values
are 6 bits and 7 bits, respectively. According to the computer simulation, this fixed-
point implementation introduces only a performance loss of 0.05 dB compared to the
floating-point implementation.

We have synthesized the decoder for a TSMC 45nm CMOS technology. The
maximum clock frequency is 815 MHz and the area is 0.81 mm? based on the Synopsys
Design Compiler synthesis resul‘;. Tableh6.1 1 summarizes the throughput performance
of this double-layer parallel decoder for the decoding of IEEE 802.11n LDPC codes
at 15 iterations. Table 6.12 compares the implementation result of our decoder with
existing 802.11n LDPC decoders from [65, 68, 122]. The solutions from [65, 68, 122]
are all based on the conventional single-layer decoding architecture. Compared to
those decoders, our pipelined double-layer parallel decoder achieves a much higher

throughput at low complexity.



Table 6.11 : Throughput performance of the multi-layer parallel decoder

Block length || Rate 1/2 | Rate 2/3 | Rate 3/4 | Rate 5/6
648 bits 380 Mbps | 520 Mbps | 760 Mbps | 1.0 Gbps
1296 bits 750 Mbps | 1.1 Gbps | 1.3 Gbps | 2.0 Gbps
1944 bits 1.1 Gbps | 1.7 Gbps | 2.2 Gbps | 3.0 Gbps

Table 6.12 : LDPC decoder comparison for IEEE 802.11n
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This work [134] | Rovini [65] | Gunnam [68] | Studer [122]
Technology 45 nm 65 nm 130 nm 180 nm
Area 0.81 mm? 0.74 mm? 1.85 mm? 3.39 mm?
Frequency 815 MHz 240 MHz | 500 MHz | 208 MHz
Iter. 15 14 5 5
Throughput 3.0 Gbps 410 Mbps 1.6 Gbps 780 Mbps

6.5 VLSI Implementation Results for LDPC/Turbo Multi-

Mode Decoder

To support more wireless standards with both LDPC and Turbo coding schemes, we
have implemented a joint LDPC/Turbo decoder. This flexible decoder together with
the proposed MIMO detector can provide a solution for the more advanced iterative

detection and decoding scheme.

6.5.1 Implementation Results for The Flexible Functional Unit

The flexible functional unit (FFU) introduced in Chapter 5 (cf, Fig. 5.32) was first

synthesized. The word lengths for X, Y, V, and W are all 9 bits. To evaluate the area
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efficiency of the proposed FFU, we have described the LDPC f(a,b) unit, the Turbo
ACSA unit, and the FFU in Verilog HDL, and synthesized them on a TSMC 90nm
CMOS technology. The maximum achievable frequency (assuming no clock skews)
and the synthesized area at two frequencies (400 MHz and 800 MHz) are summarized
in Table 6.13. As can be seen, the proposed flexible functional unit FFU has only
about 15% area and timing overhead compared to the dedicated functional units. The

area efficiency is achieved because many logic gates can be shared between LDPC and

Turbo modes.

Table 6.13 : Synthesis results for different functional units

Functional unit | |f(a,b)| ACSA FFU

Max frequency | 920 MHz | 885 MHz | 815 MHz
Area (400MHz) | 1192 pym? | 1263 pm? | 1419 pm?
Area (800MHz) | 1882 pm? | 2086 pm? | 2423 pm?

6.5.2 Implementation Results for The Flex-SISO Decoder

The Flex-SISO decoder introduced in Chapter 5 (cf, Fig. 5.33) has been synthesized
on a TSMC 90nm CMOS technology. Table 6.14 summarizes the area distribution of
this decoder. The maximum clock frequency is 500 MHz and the synthesized area is
0.098 mm?. The Flex-SISO is a basic building block in a LDPC decoder or a Turbo
decoder, and can be reconfigured to process an 8-state trellis for a Turbo code, or 8

check rows for an LDPC code. As the baseline design, a single Flex-SISO decoder can
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approximately support 30-40 Mbps (LTE) Turbo decoding, or 40-50 Mbps (802.16e
or 802.11n) LDPC decoding. In a parallel processing environment, multiple SISO

decoders can be used to increase the throughput.

Table 6.14 : Flex-SISO decoder area distribution.

Unit Area

a-unit 0.014 mm?

[B-unit 0.014 mm?
Extrinsic-1 unit 0.014 mm?
Extrinsic-2 unit 0.004 mm?

a and v stack memories || 0.045 mm?

Control logic & others || 0.007 mm?

Total 0.098 mm?

6.5.3 Implementation Results for The Top-level LDPC/Turbo Decoder

We have designed a high-throughput, flexible LDPC/Turbo decoder to support the
following three codes: 1) 802.16e WiMAX LDPC code, 2) 802.11n WLAN LDPC code,
and 3) 3GPP-LTE Turbo code [14, 19]. Table 6.15 summarizes the performance and
design parameters for this decoder. The number of the Flex-SISO decoders is chosen
to be 12.

To evaluate the fixed-point decoding performance, we perform float-point and bit-
accurate fixed-point simulations for LDPC and Turbo codes; using BPSK modulation

over an AWGN channel. As a good trade-off between complexity and performance,
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Table 6.15 : Performance of the unified LDPC/Turbo decoder.

Codes Code size | Parallelism | Quant. | Iter. | Throughput Latency
LDPC 802.16e | 576-2304 b | z = 24-96 6.2 15 600 Mbps | 1590 cycles
LDPC 802.11n | 648-1944 b | z = 27-81 6.2 15 500 Mbps | 1620 cycles

LTE Turbo 40-6144 b 12 6.2 6 450 Mbps | 6822 cycles

we use 6.2 (6 bits in total with 2 fractional bits) quantization scheme for channel LLR
inputs for fixed-point LDPC and Turbo decoders.

Fig. 6.11 shows the bit error rate (BER) simulation result for a WiMAX LDPC
code with code-rate = 1/2, and code-length = 2304. The maximum number of it-
erations is 15. As can be seen from Fig. 6.11, the fixed-point FFU solution has a
very small performance degradation (< 0.05dB) at BER level of 107® compared to
the floating point solution. We also plot a BER curve for the scaled minsum solu-
tion [63], which is a sub-optimal approximation algorithm without using the look-up
tables. As can be seen from the figure, the look-up table based FFU solution can
deliver a better decoding performance than the scaled minsum solution. The com-
plexity of adding the look-up tables is relatively small because the word length of
the data in the look-up table is only 2-bit (cf. Chapter 5 Table 5.2). Figure 6.12
compares the convergence speed of the single-layered decoding algorithm with the
standard two-phase flooding decoding algorithm.

Fig. 6.13 shows the BER simulation result for 3GPP-LTE Turbo codes with block
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Figure 6.11 : Simulation results for a rate 1/2, length 2304 WiMAX LDPC code.
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Figure 6.12 : Comparison of the convergence speed.

sizes of 6144, 1024, 240, and 40. The maximum number of Turbo iterations is 6
(12 half iterations). The sliding window length is 32. As can be seen from the
figure, the FFU based fixed-point decoder has almost no performance loss compared
to the floating point case. The proposed FFU solution will deliver a better decoding
performance than the sub-optimal max-logMAP solution.

For LDPC decoding, with 12 available Flex-SISO cores the decoder can process up
to 12 x 8 = 96 check nodes simultaneously. Because the sub-matrix size z is between
24 to 96 for 802.16e LDPC codes, and 27 to 81 for 802.11n, the proposed decoder
always guarantees that all of the z check nodes within a layer can be processed in
parallel.

For 3GPP-LTE Turbo decoding, the codeword can be partitioned into M sub-
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Figure 6.13 : Simulation results for 3GPP-LTE Turbo codes with a variety of block
sizes.
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blocks for parallel processing. The LTE Turbo code uses a quadratic permutation
polynomial (QPP) interleaver [96] so that it allows conflict free memory access as
long as M is a factor of the codeword length. There are 188 different codeword
sizes defined in LTE. For LTE Turbo codes, all of the codewords can support a
parallelism level of 8, some of the codewords can support parallelism levels of 10 or
12. Because we have 12 Flex-SISO cores available, we will dynamically allocate the
maximum possible number of Flex-SISO cores (8 < M < 12) constrained on the QPP
ipterleaver parallelism. As an example, for the maximum codeword size of 6144, we
can allocate all of the 12 Flex-SISO cores to work in parallel. It should be noted that
the parallelism level has some impact on the error performance of the decoder due to
the edge effects caused by the sub-block partitioning [135].

This flexible decoder has been implemented in Verilog HDL and synthesized on a
TSMC 90nm CMOS technology using Synopsys Design Compiler [14]. The maximum
clock frequency of this decoder is 500 MHz. The synthesized core area is 3.2 mm?,
which includes all of the components in this decoder. Table 6.15 summarizes the
features of this decoder. The decoder can be configured to support IEEE 802.16e
LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Compared
to a dedicated LDPC decoder solution [16], this flexible decoder has only about 15-
20% area overhead when normalized to the same throughput target (with the same
number of iterations). Compared to a dedicated Turbo decoder solution [114], our

flexible decoder shows only about 10-20% area overhead when normalized to the same
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technology and the same throughput and code length. Table 6.5 compares our flexible

decoder with existing LDPC/Turbo multi-mode decoder.

Table 6.16 : Architecture comparison with existing flexible LDPC/Turbo

solutions.
This work [136] [137] [138]
Technology 90nm 65nm 130nm 90nm
Clock frequency 500MHz 400MHz 200MHz NA
Core area, 3.2mm? | 0.62mm? NA NA
Throughput (LDPC) || 600Mbps | 257Mbps | 11.2Mbps | 70Mbps
Throughput (Turbo) || 450Mbpst | 18.6Mbpst | 86.5Mbpsi 14Mbpsf

t Binary Turbo code.
! Double-binary Turbo code.

6.6 Discussions on the Iterative Receiver Design and Imple-

mentation

With the proposed MIMO detector and LDPC/Turbo decoder, an iterative receiver
can be realized by connecting the detector to the decoder. For a channel decoder,
data buffers would be required because the decoder usually needs to receive a whole
codeword block before starting the decoding process. For a MIMO detector, data
buffers will also be required because of the channel interleaving. Fig. 6.14 and Fig. 6.15
show the area and power estimation for the iterative receivers for different antennas.
In the estimation, we assume each stream is separated coded and multiple LDPC

decoders are used for decoding multiple data streams. The detector area and power
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for 4 antenna systems are estimated based on the implementation result in Table 6.3,
and the decoder area and power for 4 antenna systems are estimated based on the
implementation result in Table 6.8. All the numbers are normalized to a same
technology, i.e. 65nm. The area and power for 2 and 8 antenna systems are estimated
based on the ASIC implementation results for 4 antenna system. Since the streams are
separated coded, the decoder complexity increases almost linearly with the number of
antennas. However, the detector complexity increases quadratically with the number

of antennas, with a complexity of O((N; — 1)(N; — 2)/2).

N
o

& LDPC Decoder
MIMO Detector

Area (mm square)
> o

2 4 8
Number of Antennas

Figure 6.14 : Area estimation for iterative receiver.
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Figure 6.15 : Power estimation for iterative receiver.

6.7 Summary

We have implemented a channel encoder and a channel decoder accelerator for the
Rice WARP FPGA testbed. The encoder/decoder was successfully integrated into
the WARP MIMO-OFDM System Generator model.

We have implemented various detectors and decoders on ASICs to evaluate the
implementation complexity. Compared with the existing detector and decoder solu-
tions, our architecture can achieve a higher throughput performance with reasonable
hardware resources.

A potential receiver system for 4G wireless systems could be created from the

MIMO detection in Chapter 3 and Chapter 6 connected a channel decoder support-
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ing Turbo and LDPC codes from Chapter 4 and Chapter 5. The system could con-
figured for a single pass or for multiple iterations. Initial simulation results for this

architecture were presented in Chapter 3 Section 3.3.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion of The Current Results

In this thesis, we introduced a reduced-complexity MIMO detector based on a novel
trellis-search algorithm. We represent the search space of the MIMO signal with a trel-
lis structure and convert the MIMO detection problem into a shortest path problem.
We proposed a high-throughput VLSI architecture, which can support multiple Gbps
data rate. We presented the ASIC implementation results for the proposed MIMO
detector architecture. Compared to the existing solutions, the proposed trellis-search
based MIMO detector has a significant throughput advantage and a higher area effi-
ciency. The simulation results suggest that the error performance is very close to the
optimum MAP detector.

We proposed a parallel Turbo decoding algorithm and architecture to achieve Gbps
data rate. We employ multiple MAP decoding units to process a codeword in parallel.
By utilizing the contention-free interleaver structure, we avoid the memory conflict
problem. We implemented a LTE-Advance Turbo decoder on an ASIC technology.

We proposed a multi-layer parallel LDPC decoding algorithm and architecture

to achieve multiple Gbps data rate. The proposed scalable LDPC decoder can be
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configured to support different block sizes and code rates. We presented several
ASIC implementation results for LDPC decoders for various wireless standards, e.g.
IEEE 802.11n and IEEE 802.16e. We further presented a joint LDPC/Turbo decoding
algorithm and architecture to support more wireless standards with a small hardware
overhead.

We developed an iterative detection and decoding scheme based on the proposed
trellis-search detector. In this scheme, the LLR soft values generated by the decoder
are fed to the detector, and then the detector restarts a new round of detection to
further refine the LLR soft values. The simulation results suggest that a 2.5-3 dB gain
can be achieved by such a scheme. The component detector and decoder architectures

and ASIC implementations can be combined to create this receiver.

7.2 Future Work

The following issues can be further investigated:

1. Real-value decomposition based trellis-search algorithm: The current trellis-
search algorithm is based on the complex-value decomposition of the channel matrix.
A variation of this algorithm is to use the real-value decomposition of the channel
matrix and to form a real-valued trellis diagram. The number of stages and the
number of nodes in each stage will change in a real-valued trellis diagram. It would be
an interesting problem to extend the current complex-valued trellis-search algorithm

to support real-valued model and compare the complexity and the performance of
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these two schemes.

2. Unified decoding architecture: It would be an interesting problem to extend
the current joint LDPC/Turbo decoder architecture to support more error-correcting
codes such as LDPC convolutional codes, non-binary LDPC codes, and non-binary
Turbo codes.

3. Low power design: Next generation CMOS technology would offer more low-
power features such as multiple supply voltages and multiple threshold libraries. Fur-
thermore, the 3D CMOS technology is emerging to replace the current planar CMOS
technology. The designer can take advantage of these new technologiés to reduce
the power consumption from all aspects. Low power design is especially useful for

hand-held devices, such as cellphones.
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