
RICE UNIVERSITY

Parallel VLSI Architectures for Multi-Gbps
MIMO Communication Systems

by
Yang Sun

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy
APPROVED, THESIS COMMITTEE:

h R. Cavallaro, Chair
Professor of Electrical and Computer
E ineering and Comp ter Science

Behnaam Aazhang
J.S. Abercrombie Professor

ngineering

Richard A. Tapia
University Professor and
Maxfield-Oshman Professor of
Computational and Applied Mathematics

Illy4?~
Associate Professor of Computational and
Applied Mathematics

J r a Lille berg
A junct Professor of Electrical
Computer Engineering

Houston, Texas
December, 2010

ABSTRACT

Parallel VLSI Architectures for Multi-Gbps MIMO Communication Systems

by

Yang Sun

In wireless communications, the use of multiple antennas at both the transmitter

and the receiver is a key technology to enable high data rate transmission without

additional bandwidth or transmit power. Multiple-input multiple-output (MIMO)

schemes are widely used in many wireless standards, allowing higher throughput using

spatial multiplexing techniques. MIMO soft detection poses significant challenges to

the MIMO receiver design as the detection complexity increases exponentially with

the number of antennas. As the next generation wireless system is pushing for multi­

Gbps data rate, there is a great need for high-throughput low-complexity soft-output

MIM 0 detector.

The brute-force implementation of the optimal MIMO detection algorithm would

consume enormous power and is not feasible for the current technology. We propose a

reduced-complexity soft-output MIMO detector architecture based on a trellis-search

method. We convert the MIMO detection problem into a shortest path problem.

We introduce a path reduction and a path extension algorithm to reduce the search

complexity while still maintaining sufficient soft information values for the detection.

We avoid the missing counter-hypothesis problem by keeping multiple paths during

the trellis search process. The proposed trellis-search algorithm is a data-parallel

algorithm and is very suitable for high speed VLSI implementation. Compared with

the conventional tree-search based detectors, the proposed trellis-based detector has

a significant improvement in terms of detection throughput and area efficiency. The

proposed MIMO detector has great potential to be applied for the next generation

Gbps wireless systems by achieving very high throughput and good error performance.

The soft information generated by the MIM 0 detector will be processed by a

channel decoder, e.g. a low-density parity-check (LDPC) decoder or a Turbo de­

coder, to recover the original information bits. Channel decoder is another very

computational-intensive block in a MIMO receiver SoC (system-on-chip). We will

present high-performance LDPC decoder architectures and Turbo decoder architec­

tures to achieve 1 + Gbps data rate. Further, a configurable decoder architecture

that can be dynamically reconfigured to support both LDPC codes and Turbo codes

is developed to support multiple 3G / 4G wireless standards.

We will present ASIC and FPGA implementation results of various MIMO detec­

tors, LDPC decoders, and Turbo decoders. We will discuss in details the computa­

tional complexity and the throughput performance of these detectors and decoders.

Acknowledgments

-
I would like to thank my advisor, Professor Joseph R. Cavallaro, for his thoughtful

comments and support for the last three years. I would also like to thank other

members of my committee, Professor Behnaam Aazhang, Professor Richard Tapia,

Professor Illya Hicks, and Professor Jorma Lilleberg for their constructive comments.

I would like to thank Texas Instrument, Xilinx, Nokia, Nokia-Siemens Networks,

Synfora/Synopsys, and US National Science Foundation (under grants CCF-0541363,

CNS-0551692, CNS-0619767, CNS-0923479, and EECS-0925942) for their support of

the research.

I would also like to thank my family. First, to my parents, I could not have accom­

plished this without your support. Second, to my wife, Qinyi, for being supportive

and helpful as always.

Last but not least, I would like to thank Tai Ly, Marjan Karkooti, Predrag Ra­

dosavljevic, Kia Amiri, Michael Wu, Guohui Wang, and Bei Yin for their useful

feedback and comments.

Abstract

Acknowledgments

List of Illustrations

List of Tables

1 Introduction

1.1 Motivation .

1.2 Scope of The Thesis

1.3 Thesis Contribution.

1.4 Thesis Outline

Contents

1.5 List of Symbols and Abbreviations

2 Background and Related Work

2.1 MIMO Detection ...

11

iv

X

XV

1

1

5

5

8

9

14

14

2.1.1 System Model . 14

2.1.2 Maximum Likelihood (ML) Detection . 15

2.1.3 Maximum A Posteriori (MAP) Detection 15

2.1.4 Conventional Tree-Search Based MIMO Detection Algorithm . 16

2.2 Error-Correcting Codes .

2.2.1 Thrbo Codes . .

2.2.2 Low-Density Parity-Check Codes

2.2.3 Block-structured Quasi-Cyclic (QC) LDPC Codes

2.3 Summary and Challenges

19

20

23

27

29

3 High-Throughput MIMO Detector Architecture

3.1 Trellis-Search Algorithm

3.1.1 Trellis Graph . .

3.1.2 Multiple Shortest Paths Problem

3.1.3 Trellis Traversal Strategies .

3.1.4 Simulation Result

3.1.5 Discussions on Sorting Complexity

3.1.6 Discussions on Search Patterns

3.2 n-Term-Log-MAP Algorithm ...

3.3 Iterative Detection and Decoding

3.4 VLSI Architecture for The Trellis-Search Detector .

3.4.1

3.4.2

Fully-Parallel Systolic Architecture

Path Reduction :Unit (PRU)

vi

30

30

31

32

33

40

46

48

49

52

58

58

60

3.4.3 Path Extension Unit (PEU) 66

3.4.4 Path Selection Unit (PSU) . 66

3.4.5 • LLR Computation Unit (LLRC) . 67

3.4.6 Throughput Performance of The Systolic Architecture. 69

3.4. 7 Folded Architecture . 69

3.5 Summary 71

4 High-Throughput Turbo Detector for LTE/LTE-Advanced

System 73

4.1 LTE/LTE-Advanced Turbo Codes . 75

4.2 QPP Interleaver 76

4.2.1 Algebraic Description of QPP Interleaver . 76

4.2.2 QPP Contention-Free Property 78

4.2.3 Hardware Implementation of QPP Interleaver 80

4.3 Sliding Window and Non-Sliding Window MAP Decoder Architecture 83

vii

4.3.1 QPP Interleaving Address Generator for SW-MAP Decoder 87

4.3.2 QPP Address Generator for Radix-4 SW-MAP Decoder. 90

4.3.3 QPP Address Generator for NSW-MAP Decoder 94

4.3.4 QPP Address Generator for Radix-4 NSW-MAP Decoder. 96

4.3.5 MAP Decoder Comparison. 96

4.4 Top Level Parallel Thrbo Decoder Architecture

4.4.1 Throughput-Area Tradeoff Analysis .

4.5 Summary

5 High-Throughput LDPC Decoder Architecture

5.1 Structured QC-LDPC Codes .

5.2 Layered Decoding Algorithm .

5.3 Block-Serial Scheduling Algorithm .

5.4 Min-sum LDPC Decoder Architecture .

5.4.1 Flexible Permuter Design

5.4.2 Pipelined Decoding for Higher Throughput .

5.5 Log-MAP LDPC Decoder Architecture

100

104

105

109

110

112

114

116

119

120

121

5.5.1 Low-Complexity Implementation of The Log-MAP Algorithm 121

5.5.2 Radix-2 Log-MAP SISO Decoder 122

5.5.3 Radix-4 SISO Decoder via Look-Ahead Transform . 123

5.5.4 Top Level Log-MAP LDPC Decoder Architecture 125

5.5.5 Performance Evaluation 127

5.6 Multi-Layer Parallel LDPC Decoder Architecture 127

5.6.1 Multi-Layer Decoding Performance Evaluation . 131

5.6.2 Double-Layer Parallel Decoder Architecture for IEEE 802.11n

LDPC Codes . 132

5. 7 Discussion on the Similarities of LDPC Decoders and Thrbo Decoders 139

5.8 Flexible and Configurable LDPC/Thrbo Decoder 140

.
~.

5.8.1 Flex-SISO Module

5.8.2 Flex-SISO Module to Decode LDPC Codes .

5.8.3 Flex-SISO Module to Decode Thrbo Codes .

5.8.4 Design of A Flexible Functional Unit

5.8.5 Design of A Flexible SISO Decoder .

5.8.6 LDPC/Thrbo Parallel Decoder Architecture Based on

Multiple Flex-SISO Decoders

5.9 Summary

6 ASIC and FPGA Implementation Results

6.1 Decoder Accelerator Design for WARP Testbed ..

6.2 VLSI Implementation Results for MIMO Detectors

6.2.1 Trellis-Search MIMO Detector, M = 1

6.2.2 Trellis-Search MIMO Detector, M = 2

6.3 VLSI Implementation Results for LTE Thrbo Decoders

6.3.1 Highly-Parallel LTE-Advanced Thrbo Decoder

6.4 VLSI Implementation Results for LDPC Decoders

6.4.1 IEEE 802.1ln LDPC Decoder

6.4.2

6.4.3

Variable Block-Size and Multi-Rate LDPC Decoder

An IEEE 802.11n/802.16e Multi-Mode LDPC Decoder

Vlll

140

143

145

150

157

162

163

164

164

169

169

170

175

175

178

178

179

181

6.4.4 LDPC Decoder Implementation Using High Level Synthesis Tool183

6.4.5 Multi-Layer Parallel LDPC Decoder for IEEE 802.11n 186

6.5 VLSI Implementation Results for LDPC/Thrbo Multi-Mode Decoder 187

6.5.1 Implementation Results for The Flexible Functional Unit 187

6.5.2 Implementation Results for The Flex-SISO Decoder . . . 188

6.5.3 Implementation Results for The Top-level LDPC/Thrbo Decoder189

6.6 Discussions on the Iterative Receiver Design and Implementation 195

6.7 Summary . 197

7 Conclusion and Future Work

7.1 Conclusion of The Current Results

7.2 Future Work

Bibliography

ix

199

199

200

202

Illustrations

1.1 Simplified MIMO system block diagram. 3

2.1 Block diagram for a spatial-multiplexing MIMO system with Nt

transmit and Nr receive antennas. 15

2.2 An example tree structure for a MIMO system . 18

2.3 Turbo encoder structure 21

2.4 Traditional Turbo decoding procedure using two 8180 decoders 22

2.5 Implementation of LDPC decoders .. 27

2.6 A block structured parity check matrix 28

3.1 A trellis graph for the 4 x 4 4-QAM system 32

3.2 Flow of the path reduction algorithm 35

3.3 Path reduction example for a 4 x 4 4-QAM trellis 36

3.4 An example data flow of the path extension algorithm . 39

3.5 Path extension example for one node 41

3.6 Frame error rate performance of a coded 4 x 4 16-QAM MIMO system 43

3.7 Frame error rate performance of a coded 4 x 4 64-QAM MIMO system 44

3.8 Bit error rate performance of a coded 4 x 4 16-QAM MIMO system 45

3.9 Frame error rate performance for one-pass trellis search algorithm 49

3.10 Error performance of then-Term-Log-MAP detection algorithm 53

3.11 Iterative MIMO receiver block diagram 54

3.12 Error performance of an iterative detection and decoding system, M = 1 56

Xl

3.13 Error performance of an iterative detection and decoding system, M = 2 57

3.14 A pipelined fully-parallel "systolic" architecture for the PPTS detector 59

3.15 Block diagram of the PRU . 61

3.16 Block diagram of the MFU . 62

3.17 Block diagram of the CMP unit

3.18 Block diagram of the PCU . . .

3.19 Block diagram of the PEDC unit

3.20 Block diagram of the PEU

3.21 Block diagram of the PSU

3.22 Block diagram ofthe LLRC unit.

3.23 Eight-term log-sum unit.

3.24 Folded architecture for the PPTS detector.

3.25 Detection timing diagram for a 4 antenna system using the folded

62

65

65

66

67

68

68

70

architecture. 71

4.1 Structure of rate 1/3 Turbo encoder in the LTE/LTE-advanced system. 75

4.2 An example of the contention-free interleaving 79

4.3 Forward QPP address generator circuit diagram, step size = d. . 82

4.4 Backward QPP address generator circuit diagram, step size = d. 83

4.5 Simulation result for a rate of 0.95 LTE Turbo code using two

different sliding window algorithms. 86

4.6 Two recommended MAP decoding algorithms for LTE Turbo codes 88

4.7 SW-MAP decoder architecture. 89

4.8 Interleaver addressing scheme for the SW-MAP decoder . 90

4.9 Interleaver for the SW-MAP algorithm 91

4.10 Interleaver for the Radix-4 SW-MAP algorithm 92

4.11 NSW-MAP decoder architecture. 93

4.12 Interleaver for the NSW-MAP algorithm 95

xii

4.13 A hardware architecture for generating interleaving addresses for the

Radix-4 NSW-MAP decoder.. 96

4.14 Multi-MAP parallel decoding algorithm . 98

4.15 Area of a NSW-MAP decoder and a SW-MAP decoder. . 99

4.16 AT complexity of a SW-MAP decoder and a NSW-MAP decoder. 101

4.17 AT complexity of a Radix-4 SW-MAP decoder and a Radix-4

NSW-MAP decoder. 101

4.18 Parallel decoder architecture . 102

4.19 Area-throughput tradeoff analysis for Radix-2 Turbo decoder . 106

4.20 Area-throughput tradeoff analysis for Radix-4 Turbo decoder. 107

5.1 Parity check matrix and its factor graph representation 111

5.2 Parity check matrix for block length 1944 bits, code rate 1/2,

sub-matrix size Z = 81, IEEE 802.11n LDPC code. 112

5.3 Block-serial (BS) scheduling algorithm 116

5.4 Top level min-sum LDPC decoder architecture . 117

5.5 Processing Engine (PE) 118

5.6 A 4 x 4 Barrel shifter network 119

5.7 Pipelined decoding 120

5.8 Radix-2 (R2) SISO decoder architecture 123

5.9 Pipelined decoding schedule 124

5.10 One level look-ahead transform off(-) recursion 124

5.11 Radix-4 (R4) SISO architecture 125

5.12 Log-MAP LDPC decoder architecture with scalable datapath. 126

5.13 Performance comparison of different LUT configurations. . . . 128

5.14 Example of the data conflicts when updating LLRs for two layers. 131

5.15 Simulation results for multi-layer parallel decoding algorithm. 133

5.16 Macroblock structure . 134

xiii

5.17 MB-serial LDPC decoder architecture for the double-layer example. 135

5.18 Block diagram for the pipelined Min-sum unit (MSU). 136

5.19 R-Regfile organization. 136

5.20 Pipelined decoding data flow for the double-layer example. 139

5.21 Flex-8180 module. 142

5.22 LDPC decoding using Flex-8180 modules 143

5.23 LDPC decoder architecture based on the Flex-8180 module. 145

5.24 Traditional Turbo decoding procedure using two 8180 decoders 146

5.25 Modified Turbo decoding procedure using two Flex-8180 modules 147

5.26 Turbo decoder architecture based on the Flex-8180 module. 150

5.27 Turbo ACSA structure 151

5.28 Trellis structure for a single parity check code. 152

5.29 A forward-backward decoding flow to compute the extrinsic LLRs for

single parity check code. 153

5.30 MAP processor structure for single parity check code. 154

5.31 Circuit diagram for the LDPC If(a, b)l functional unit. 156

5.32 Circuit diagram for the flexible functional unit (FFU) for

LDPC/Turbo decoding. 157

5.33 Flexible 8180 decoder architecture. 158

5.34 Data flow graph for Turbo decoding. 160

5.35 Flexible 8180 decoder architecture in LDPC mode. 161

5.36 Parallel LDPC/Turbo decoder architecture based on multiple

Flex-8180 decoder cores. 163

6.1 WARP testbed, including the custom Xilinx FPGA board and the

radio daughtercards. 165

6.2 FEC encoder (verilog black-box) integration with WARP

MIMO-OFDM System Generator model. 167

~-

x.iv

6.3 FEC decoder (verilog black-box) integration with WARP

MIMO-OFDM System Generator model. 168

6.4 VLSI layout view of the folded trellis-search MIMO detector (M = 1). 170

6.5 VLSI layout view of the systolic trellis-search MIMO detector (M = 2). 172

6.6 VLSI layout view of an LTE-advanced Thrbo decoder. 178

6. 7 VLSI layout view for a variable block-size and multi-rate LDPC

decoder. 180

6.8 VLSI layout view of an IEEE 802.11n/802.16e multi-mode LDPC

decoder. 182

6.9 Two power reduction techniques . 183

6.10 VLSI layout view of the LDPC decoder created from high level

synthesis. 184

6.11 Simulation results for a rate 1/2, length 2304 WiMAX LDPC code. 191

· 6.12 Comparison of the convergence speed. 192

6.13 Simulation results for 3GPP-LTE Thrbo codes with a variety of block

sizes. 193

6.14 Area estimation for iterative receiver. 196

6.15 Power estimation for iterative receiver. 197

Tables

1.1 Major mobile telecommunication standards. 2

2.1 Commonly used FEC codes in mobile wireless standards. 20

3.1 Sorting complexity comparison. 48

4.1 QPP interleaver parallelism. 79

4.2 MAP decoder architecture comparison. 97

5.1 LUT approximation for g(x) = log(1 + e-lxl) 155

5.2 L UT implementation 155

5.3 Functional description of the FFU . 158

6.1 Architecture comparison with existing MIMO detectors 171

6.2 Fixed point design parameters for the 4 x 4 16-QAM MIMO system 171

6.3 Architecture comparison with two independent works 174

6.4 Architecture comparison with two internal works. 175

6.5 Thrbo decoder ASIC comparison 177

6.6 IEEE 802.11n LDPC decoder design statistics 179

6.7 Variable-size LDPC decoder comparisons ... 180

6.8 IEEE 802.11n/802.16e LDPC decoder comparison 181

6.9 LDPC decoder comparisons, HLS v.s. manual design. 185

6.10 SpyGlass power estimates with and without clock gating ..

6.11 Throughput performance of the multi-layer parallel decoder

6.12 LDPC decoder comparison for IEEE 802.11n .

6.13 Synthesis results for different functional units

6.14 Flex-SISO decoder area distribution.

6.15 Performance of the unified LDPC/Turbo decoder.

xvi

185

187

187

188

189

190

6.16 Architecture comparison with existing flexible LDPC/Turbo solutions. 195

1

Chapter 1

Introduction

1.1 Motivation

Mobile wireless connectivity is a key feature of a growing range of devices from laptops

and cell phones to digital homes and portable devices. Many applications, such as

digital video, are driving the creation of new high data rate multiple antenna wireless

algorithms with challenges in the creation of area - time - power efficient architectures.

The mobile telecommunication system has evolved from several Kbps low data­

rate 1G (for "first generation") analog systems to the current 10-100 Mbps enhanced

3G (3.5G, 3.75G, 3.9G) generation. This is soon expected to be followed by 4G with

a target data rate of 1 Gbps. Table 1.1 shows a representative set of mobile wireless

standards to highlight their differences in data rates.

As an example of the next generation wireless system, 3GPP Long Term Evolution

(LTE) [1], which is a set of enhancements to the 3G Universal Mobile Telecommuni­

cations System (UMTS) [2], has received tremendous attention recently and is con­

sidered to be a very promising 4G wireless technology. For example, Verizon Wireless

has decided to deploy LTE in their next generation 4G evolution. One of the main

advantages of 3GPP LTE is high throughput. For example, it provides a peak data

2

Table 1.1 : Major mobile telecommunication standards.

I Generation Technology I Data rates Year

1G AMPS, TACS 14.4 Kbps "'1981

2G GSM, CDMA, TDMA 144 Kbps "'1995

2.5G, 2.75G GPRS, EDGE, CDMA2000 "'200 Kbps "'2000

3G W-CDMA, CDMA2000 1xEV-DO 384 Kbps "'2002

3.5G, 3.75G, 3.9G HSDPA, LTE, WiMAX 10-100 Mbps "'2007

4G IMT-Advanced, LTE-Advanced 1 Gbps 2012+

rate of 172.8 Mbps for a 2 x 2 antenna system, and a 326.4 Mbps for a 4 x 4 antenna

system for every 20 MHz of spectrum. Furthermore, LTE-Advanced [3], the further

evolution of LTE, promises to provide up to 1 Gbps peak data rate.

In order to~provide higher data rates, wireless systems are adopting multiple an­

tenna configurations with spatial multiplexing to support parallel streams of wireless

data. As an example, the Vertical Bell Laboratories Layered Space-Time (V-BLAST)

system has been shown to achieve very high spectral efficiency [4]. There is an in­

creasing demand for Gbps wireless systems. For example, 3GPP LTE-Advanced,

IEEE 802.16m WiMAX, IEEE 802.11ac WLAN, and WIGWAM [5] target for Gbps

throughput with MIMO technology.

In order to enable reliable delivery of digital data over unreliable wireless channels,

the sender encodes the data using an error-correcting code prior to transmission. The

additional information (or redundancy) added by the code is used by the receiver to

3

recover the original data. Error-correcting codes are widely used in MIMO wireless

communications. The most commonly used error correcting codes in modern systems

are convolutional codes, Turbo codes, and low-density parity-check (LDPC) codes.

As a core technology in wireless communications, FEC (forward error correction)

coding has migrated from the basic 2G convolutional/block codes to more powerful

3G Turbo codes, and LDPC codes forecast for 4G systems.

Figure 1.1 shows a block diagram of a MIMO system and highlights the Detection

and Decoding blocks that are used to recover the multiple transmitted streams. The

number of transmit antennas and transmit streams is typically two or four but could

be as many as 8 or 12 in future systems. The complexity of the detection and decoding

algorithms can vary greatly depending on the number of antennas, modulation, and

channel code used in the system.

MIMO
Encoder

Figure 1.1 : Simplified MIMO system block diagram.

An MIMO detector is used to recover and detect the multiple transmitted streams.

Soft-output MIM 0 detection poses significant challenges to the MIM 0 receiver design

as the computational complexity increases exponentially with the number of antennas.

4

The optimal soft-decision detector, the maximum a posteriori (MAP) detector, will

consume enormous computing power and require tremendous computational resources

which makes it infeasible to be implemented in a practical MIMO receiver. As such,

there is a great need for efficient MIMO algorithms to reduce the MIMO detection

complexity.

A channel decoder is used to process the soft information generated by the MIMO

detector and reconstruct the original error-free data. Among all those channel de­

coders, LDPC decoders and Thrbo decoders are two of the most important decoders

that are widely used in wireless communication systems. Two major challenges of

the decoder design are high throughput and flexibility. To support multi-Gbps data

rate, we need to develop efficient algorithms and architectures. To support multi­

ple communication standards, we need to develop flexible decoding algorithms and

architectures.

As two of the most complex blocks in a wireless receiver, the MIMO detector and

the channel decoder consume a significant portion of the silicon area in a wireless re­

ceiver SoC (system-on-chip). Thus, it is very important to develop high-throughput

low-complexity MIMO detectors and channel decoders to reduce the overall complex­

ity of a wireless SoC.

5

1.2 Scope of The Thesis

Scope of this thesis is from algorithm to VLSI architecture to ASIC/FPGA implemen­

tation. The central part of the thesis is the development of a novel MIMO detection

algorithm and architecture, and a flexible LDPC/Thrbo decoder architecture. We

propose a low-complexity trellis-search algorithm for MIMO detection. We use a trel­

lis graph to represent the search space of the MIMO signal and convert the detection

problem into a shortest path problem.

We propose an area-efficient layered decoder architectures for LDPC decoding. We

further propose a multi-layer parallel decoding algorithm and architecture for multiple

Gbps high throughput decoding of LDPC codes. We propose parallel MAP algorithms

for Thrbo decoding. By unifying the message passing algorithms of the LDPC codes

and the Thrbo codes, we develop a configurable LDPC/Thrbo architecture.

1.3 Thesis Contribution

This thesis work has generated 20 technical papers, 2 book chapters, and 3 U.S.

patent applications.

High-Throughput MIMO Detector [6, 7, 8, 9, 10]: To reduce the MIMO

detection complexity, we propose a parallel MIMO detection algorithm and its high­

speed VLSI architecture. The proposed detection algorithm is based on a novel

path-preserving trellis-search (PPTS) method.

We use a novel trellis graph as an alternative to the tree graph to represent

6

the search space of the MIM 0 signal. Based on the trellis graph, we convert the

soft MIMO detection problem into a shortest path problem. The proposed PPTS

algorithm is a multiple shortest paths algorithm on the condition that every trellis

node must be included at least once in this set of paths so that the soft information for

every possible symbol transmitted on every antenna is always available. Compared

to the traditional tree-search based algorithm, the proposed trellis-search algorithm

will have a significantly lower complexity.

The PPTS algorithm is a search-efficient algorithm based on a path-preserving

trellis search approach. We introduce a path reduction and a path extension algorithm

to reduce the search complexity while still maintaining sufficient soft information

values to form the log-likelihood ratios (LLRs) for the transmitted bits. We avoid

the missing counter-hypothesis problem by keeping multiple paths during the trellis

search process.

The PPTS algorithm is a very data-parallel algorithm because the searching oper­

ations at multiple trellis nodes can be performed simultaneously. Moreover, the local

search complexity at each trellis node is kept very low to reduce the processing time.

Simulation results show that the PPTS algorithm can achieve very good error per­

formance with a low search-complexity. Compared with the conventional tree-search

based detectors, the proposed trellis-search detector has a significant improvement

in terms of detection throughput and area efficiency. The trellis-search detector has

great potential to be applied for the next generation Gbps wireless systems by achiev-

7

ing very high throughput and good error performance.

Iterative Detection and Decoding: We investigate an iterative detection and

decoding algorithm for MIMO communication systems. We modify our trellis-search

MIMO detection algorithm to incorporate the a priori information from the outer

channel decoders, e.g. LDPC decoder and Turbo decoder. Not like the traditional

iterative detection and decoding scheme which only performs MIMO detection once,

in our scheme, however, we re-run the MIMO detection for each outer iterations to

achieve a better performance.

High-Throughput Turbo Decoder [11, 12, 13]: The Turbo decoding algo­

rithm is a sequential algorithm, which makes it very hard to be parallelized. We

propose an efficient VLSI architecture for the 3GPP LTE/LTE-Advanced Turbo de­

coder by utilizing the algebraic-geometric properties of the quadratic permutation

polynomial (QPP) interleaver. Turbo interleaver is known to be the main obstacle to

the decoder parallelism due to the collisions it introduces in accesses to memory. The

QPP interleaver solves the memory contention issues when several MAP decoders are

used in parallel to improve Turbo decoding throughput. In this thesis, we propose

a low-complexity QPP interleaving address generator and a multi-bank memory ar­

chitecture to enable parallel Turbo decoding. Design trade-offs in terms of area and

throughput efficiency are explored to compare the architectures.

High-Throughput LDPC Decoder (14, 15, 16, 17, 18, 19]: We propose a

multi-layer parallel decoding algorithm and VLSI architecture for decoding of struc-

8

tured quasi-cyclic low-density parity-check (QC-LDPC) codes. The layered decoding

algorithm is known to be very memory-efficient and it can achieve a faster convergence

speed than the standard two-phase flooding decoding algorithm. In the conventional

layered decoding algorithm, the block-rows of the parity check matrix are processed

sequentially, or layer after layer. The maximum number of rows that can be simultane­

ously processed by the conventional layered decoder is limited to the sub-matrix size.

To remove this limitation and support layer-level parallelism, we extend the conven­

tional layered decoding algorithm and architecture to enable simultaneous processing

of multiple (K) layers of a parity check matrix, which will lead to a K-fold through­

put increase. With the proposed decoding algorithm and architecture, a multi-Gbps

LDPC decoder is feasible.

ASIC and FPGA Implementation: We have implemented a flexible multi-rate

Viterbi decoder for our WARP FPGA testbed. We have also implemented various

detectors and decoders on ASICs for throughput, area and power analysis. We have

compared the performance of our detectors and decoders against state-of-the-art so­

lutions.

1.4 Thesis Outline

In chapter 2, we will introduce the background of MIMO detection and LDPC and

Turbo decoding. We will review the related work in these fields. In chapter 3,

we will introduce a trellis-search MIMO detection algorithm and its parallel VLSI

9

architecture. In chapter 4, we will present a parallel Turbo decoder architecture for

LTE/LTE-Advanced system. In chapter 5, we will describe layered LDPC decoding

algorithms and architectures for the decoding of the structured QC-LDPC codes. We

will further present a flexible LDPC/Turbo joint decoder architecture. In chapter 6,

we will summarize the ASIC and FPGA implementation results of various detectors

and decoders and compare with existing solutions. Finally, chapter 7 summaries this

thesis.

1.5 List of Symbols and Abbreviations

Here, we provide a summary of the abbreviations and symbols used in this thesis:

ACSA: Add compare select add.

AMPS: Advanced mobile phone system.

APP: A posteriori probability.

ASIC: Application-specific integrated circuit.

AWGN: Additive white Gaussian noise.

BICM: Bit interleaved coded modulation.

BPSK: Binary phase shift keying.

CDMA: Code division multiple access.

CDMA2000 lxEV-DO: CDMA evolution-data optimized.

CMP: Comparison.

CMOS: Complementary metal-oxide-semiconductor silicon technology .

.
~.

dB: Decibel.

DVB-S: Digital Video Broadcasting - satellite.

DVB-T: Digital Video Broadcasting - terrestrial.

EDGE: Enhanced data rates for GSM evolution.

FEC: Forward error correction.

FER: Frame error rate.

FFU: Flexible functional unit.

FPGA: Field-programmable gate array.

Gbps: Gbit/s.

GPRS: General packet radio service.

GSM: Global system for mobile communication.

HDL: Hardware description language.

HLS: High level synthesis.

HSDPA: High-speed downlink packet access.

MAP: Maximum A Posteriori.

Mbps: Mbitjs.

MIMO: Multiple-input, multiple-output.

ML: Maximum likelihood.

MFU: Minimum finder unit.

MMSE: Minimum mean square error.

Nil: Next iteration initialization.

10

NSW: Non-sliding window.

LDPC: Low-density parity-check.

LLR: Log-likelihood ratio.

LTE: Long-Term Evolution.

LUT: Look-up table.

OFDM: Orthogonal frequency-division multiplexing.

PCM: Parity check matrix

PE: Processing engines.

PED: Partial Euclidean distance.

PEU: Path extension unit.

PICO: Program-in chip-out.

PPTS: Path-preserving trellis-search.

PRU: Path reduction unit.

PSU: Path selection unit.

QAM: Quadrature amplitude modulation.

QC: Quasi-Cyclic.

QPP: Quadratic permutation polynomial.

RF: Radio frequency.

RTL: Register transfer level.

SISO: Soft-input soft-output.

SMP: State metric propagation.

11

SNR: Signal-to-noise ratio.

SoC: System-on-chip.

SRAM: Static random access memory.

Sysgen: Xilinx system generator synthesis tool.

TACS: Total access communication system.

TDMA: Time division multiple access

TSMC: Taiwan semiconductor manufacturing company.

UMTS: Universal mobile telecommunications system.

VLSI: Very-large-scale integration.

WCMA: Wideband code division multiple access.

WiMAX: Worldwide interoperability for microwave access.

WLAN: Wireless local area network.

12

H: Channel matrix in MIMO detection or Parity check matrix in LDPC decoding.

Me: Number of bits per constellation point.

Nt: Number of transmit antennas.

Nr: Number of receive antennas.

n: Noise vector.

s: Transmitted symbol vector in a MIMO transmitter.

y: Received vector in a MIMO receiver.

H: Superscript denoting the conjugate transpose of a matrix.

T: Superscript denoting the transpose of a matrix.

a: Forward state metrics in Thrbo decoding.

{3: Backward state metrics in Thrbo decoding.

13

14

Chapter 2

Background and Related Work

2.1 MIMO Detection

2.1.1 System Model

In this thesis, we consider a spatial-multiplexing MIMO system with Nt transmit

antennas and Nr receive antennas (Nr ~ Nt), which is shown in Fig. 2.1. The bit­

interleaved coded modulation (BICM) is used at the transmitter, where the data bits

are multiplexed onto Nt parallel streams. The MIMO transmission can be modeled

as a linear sys€em:

y = Hs+n, (2.1)

where H is a Nr x Nt complex matrix and is assumed to be known perfectly at

the receiver, s = [so s1 ... sNt_1JT is an Nt x 1 transmit symbol vector, y is an

Nr x 1 received vector, and n is a vector of independent zero-mean complex Gaussian

noise entries with variance a 2 per real component. A real bit-level vector xk =

[xk,o Xk,l ... Xk,B-I]T is mapped to a complex symbol sk as sk = map(xk), where

the b-th bit of Xk is denoted as xk,b and B is the number of bits per constellation

point. Through this thesis, symbol sk and its associated bit vector xk will be used

interchangeably.

Input
bit stream

Antenna Antenna

Nt transmit antennas Nr receive antennas

15

Decoded
bit stream

Figure 2.1 : Block diagram for a spatial-multiplexing MIMO system with Nt transmit
and Nr receive antennas.

2.1.2 Maximum Likelihood (ML) Detection

The maximum likelihood detector tries to make a hard-decision on the transmitted

signal by finding an s which minimizes II y - H · s 11 2 . ML detection is often used for a

MIMO system without an outer error-correcting code, or an un-coded MIMO system.

2.1.3 Maximum A Posteriori (MAP) Detection

For a coded MIMO system with an outer error-correcting code, e.g. LDPC code, a

soft decision of the transmitted signal is required. The optimal MAP detector is to

compute the log-likelihood ratio (LLR) value for the a posteriori probability (APP) of

each transmitted bit. Assuming there is no a priori information for the transmitted

bit, the LLR APP of each bit Xk,b can be computed as [20]:

16

L P(yls) L exp (- 2~2 IIY- H · sll2)
LLR(xk b) = ln P[xk,b = Oly] = ln s:xk,&=O = ln s:xk,&=O 1 .

' P[xk,b = 1ly] L P(yls) L exp (- 2a211Y- H. sl12)
s:xk,&=l s:xk,&=l

(2.2)

With the Max-Log approximation [20], (2.2) is simplified to:

Note that to form LLR for bit Xk,b, both the hypothesis-0 and the hypothesis-1 of

bit Xk,b are required. Otherwise, the magnitude of the LLR will be undetermined. If

a (sorted) QR decomposition of the channel matrix according to H = QR is used,

where Q and R refer to a Nr x Nt unitary matrix and a Nt x Nt upper triangular

matrix, respectively, then (2.3) is changed to:

(2.4)

where the Euclidean distance, d(s), is defined as:

Nt-1

d(s) = II:Y- R · sll 2 = L I(Y)k- (Rs)kl 2· (2.5)
k=O

In the equation above, y = QHy, and (·)k denotes the k-th element of a vector.

2.1.4 Conventional Tree-Search Based MIMO Detection Algorithm

The MIMO detection problem can be approximately solved using linear algorithms

such as zero-forcing detection and minimum mean square error (MMSE) detection.

17

However, the linear algorithms suffer from significant performance loss compared to

the non-linear algorithms. In this thesis, we mainly focus on the non-linear MIMO

MAP detection algorithms.

Conventionally, the MIMO detection problem is usually tackled based on tree­

search algorithms. The Euclidean distance in (2.5) can be computed backward re­

cursively as dk = dk+l + ek, where ek = IYk- E~~~ Rk,jsj1 2
• Because of the upper

triangular structure of the R matrix, one can envision this iterative algorithm as a

tree traversal problem where each level of the tree represents one k value. Each node

has Q children, where Q is the QAM modulation size. Fig. 2.2 shows an example

tree-graph. In order to reduce the search complexity, a threshold, C, can be set to

discard the nodes with distanced> C. Therefore, whenever a node with ad> Cis

reached, any of its children can be pruned out.

The tree-search algorithms can be often categorized into the depth-first search

algorithm and the breadth-first search algorithm. The sphere detection algorithm

[21, 22, 23, 24, 25] is a depth-first tree-search algorithm to find the closest lattice

point. To provide soft information for outer channel decoders, a modified version of

the sphere detection algorithm, or soft sphere detection algorithm, is introduced in

[20]. There are many implementations of sphere detectors, such as [26, 27, 28, 29,

30, 31, 32, 33, 34, 35]. However, the sphere detector suffers from non-deterministic

complexity and variable-time throughput. The sequential nature of the depth-first

tree-search process significantly limits the throughput of the sphere detector especially

18

Root node

~

Tree Level Nt-1 1 0

Figure 2.2 : An example tree structure for a MIMO system. The tree has Nt levels.
Each tree node has Q children or branches.

19

when the SNR is low. The K-Best algorithm is a fixed-complexity algorithm based

on the breadth-first tree-search algorithm [36, 37, 38, 39, 40, 41]. But this algorithm

tends to have a high sorting complexity to find and retain the best candidates, which

limits the throughput of the detector especially when K is large. There are some

other variations of the K-Best algorithm, which require less sorting than the regular

K-best algorithm, e.g. [42, 43, 44, 45, 46], but it is still very difficult for the K-Best

detector to achieve 1+ Gbps throughput.

Generally, to make a soft decision for a bit x, a maximum-likelihood (ML) hy­

pothesis and a counter-hypothesis of this bit are both required to form the LLR. A

major problem for almost all the "conventional" tree-search algorithms is that the

counter-hypotheses for certain bits are missing due to tree pruning. As a consequence

of missing counter-hypotheses, the magnitude of the LLRs for certain bits can not be

determined, which will lead to performance degradation.

2.2 Error-Correcting Codes

Practical wireless communication channels are inherently "noisy" due to the impair­

ments caused by channel distortions and multipath effects. Error correcting codes are

widely used to increase the bandwidth and energy efficiency of wireless communication

systems. Table 2.1 summarizes the commonly used forward error correction (FEC)

codes in mobile wireless standards. As a core technology in wireless communications,

FEC coding has migrated from basic convolutional codes to more powerful Turbo

20

codes and LDPC codes. Thrbo codes, introduced by Berrou et al. in 1993 [47], have

been employed in 3G and enhanced 3G wireless systems, such as UMTS/WCDMA

and 3GPP Long-Term Evolution (LTE) systems. As a candidate for a 4G coding

scheme, LDPC codes, which were introduced by Gallager in 1963 [48], have recently

received significant attention in coding theory and have been adopted by some ad-

vanced wireless systems such as the IEEE 802.16e/802.16m WiMAX system and IEEE

802.11n WLAN system.

Table 2.1 : Commonly used FEC codes in mobile wireless standards.

I Generation I Technology FEC codes

2G GSM Convolutional codes

3G W-CDMA, LTE, WiMAX (802.16e) Thrbo codes

4G LTE-Advanced, WiMAX (802.16m) LDPC codes, Thrbo codes
"

2.2.1 Turbo Codes

Thrbo codes are a class of high-performance capacity-approaching error-correcting

codes [47]. As a break-through in coding theory, Thrbo codes are widely used in

many 3G/4G wireless standards such as CDMA2000, WCDMA/UMTS, 3GPP LTE,

and IEEE 802.16e WiMax.

A classic Thrbo encoder structure is depicted in Figure 2.3. The basic encoder

consists of two systematic convolutional encoders and an interleaver. The information

21

sequence u is encoded into three streams: systematic, parity 1, and parity 2. Here

the interleaver is used to permute the information sequence into a second different

sequence for encoder 2. The performance of a Turbo code depends critically on the

interleaver structure [49].

r------------------------------.x
r---~+H~----------~H-~~

u

(a) (b)

Figure 2.3 : Turbo encoder structure. (a) Basic structure. (b) Structure of Turbo
encoder in 3GPP LTE.

The traditional Turbo decoding procedure with two SISO decoders is shown in

Fig. 2.4. The definitions of the symbols in the figure are as follows. The information

bit and the parity bits at time k are denoted as uk and (Pk1), Pk2), ... , Pkn)), respectively,

with uk,Pki) E {0, 1}. The channel LLR values for uk and Pki) are denoted as Ac(uk)

and Ac(Pki)), respectively. The a priori LLR, the extrinsic LLR, and the APP LLR

In the decoding process, the SISO decoder computes the extrinsic LLR value at

~-

22

Figure 2.4 : Traditional Turbo decoding procedure using two SISO decoders, where
the extrinsic LLR values are exchanged between two SISO decoders.

time k as follows:

(2.6)

The a and j3 metrics are computed based on the forward and backward recursions:

ak(sk) = mk{ ak-1(sk-1) + !'k(sk-1, sk)} (2.7)
Sk-1

(2.8)

where the branch metric /'k is computed as:

(2.9)

The extrinsic branch metric t'k in (2.6) is computed as:

n

t'k = LP~i) · Ac(P~i)). (2.10)

The max*(·) function in (2.6-2.8) is defined as:

m~x(a, b) =max(a, b)+ log(l + e-la-bl). (2.11)

23

The soft APP value for uk is generated as:

(2.12)

In the first half iteration, SISO decoder 1 computes the extrinsic value A!(uk) and

pass it to SISO decoder 2. Thus, the extrinsic value computed by SISO decoder 1

becomes the a priori value A~ (uk) for SISO decoder 2 in the second half iteration. The

computation is repeated in each iteration. The iterative process is usually terminated

after certain number of iterations, when the soft APP value A0 (uk) converges.

The random interleaver is the main obstacle to the parallel Turbo decoding. To

facilitate high speed decoding, new wireless standards are adopting contention-free

parallel interleavers. In the literature, many decoder architectures have been ex­

tensively investigated for the older 3G Turbo codes [50, 51, 52, 53, 54, 55, 56, 57].

Recently, several Turbo decoders have been developed for the newer 3GPP LTE stan­

dard [58, 59, 60, 61]. However, the throughput of those decoders is still below 100

Mbps. As the 4G system standard is pushing for 1 Gbps data rate, it is very important

to develop a highly-parallel Turbo decoder architecture.

2.2.2 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes [62] have received tremendous attention in

the coding community because of their excellent error correction capability and near­

capacity performance. Some randomly constructed LDPC codes, measured in bit

error rate (BER) performance, come very close to the Shannon limit for the AWGN

24

channel (within 0.05 dB) with iterative decoding and very long block sizes (on the

order of 106 to 107). The remarkable error correction capabilities of LDPC codes have

led to their recent adoption in many standards, such as IEEE 802.11n, IEEE 802.16e,

and IEEE 802 10GBase-T.

A binary LDPC code is a linear block code specified by a very sparse binary M x N

parity check matrix:

H·xT =0
'

(2.13)

where x is a codeword and H can be viewed as a bipartite graph where each column

and row in H represents a variable node and a check node, respectively. It should

be noted the symbol H used here is different from the symbol H used for the MIM 0

channel.

Two-phase Flooding Decoding Algorithm

The basic LDPC decoding algorithm, which is often referred to as the two-phase

flooding decoding algorithm, is summarized as follows. We define the following nota-

tion. The a posteriori probability (APP) log-likelihood ratio (LLR) of each bit n is

defined as:

Pr(n = 0)
Ln =log p () . rn=1

(2.14)

The check node message from check node m to variable node n is denoted as Rm,n·

The variable message from variable node n to check node m is denoted as Qm,n· The

decoding algorithm is summarized as follows.

25

Initialization: The variable message Qm,n is initialized to the channel LLR input

from the MIMO detection described in Section 2.1.3. The check message Rm,n is

initialized to 0.

Phase 1) Parity Check Node Update: For each row m, the new check node

messages R'm,n, corresponding to all variable nodes j that participate in this parity-

check equation, are computed using the belief propagation algorithm:

(2.15)

where N m is the set of variable nodes that are connected to check node m, arid N m \ n

is the set Nm with variable node n excluded. The non-linear function w(x) is defined

as:

\li(x) =-log [tanh ('~I)]. (2.16)

To reduce the implementation complexity, the sub-optimal min-sum algorithm [63, 64]

can be used to approximate the non-linear function w(x). The scaled min-sum and

the offset min-sum algorithms are the two most often used algorithms. For the scaled

min-sum algorithm with a scaling factor of S, equation (2.15) is changed to:

(2.17)

For the offset min-sum algorithm with an offset value of {3, equation (2.15) is changed

to:

(2.18)

26

Phase 2) Variable Check Node Update: The APP LLR messages Ln are

computed as:

Ln = L Rj,n,
jEMn

(2.19)

where Mn is the set of check nodes that are connected to variable node n. The

variable message is computed as:

Qmn = Ln- Rmn·
' '

(2.20)

Verification: If all the parity checks are satisfied, the decoding process is finished,

otherwise go to phase 1) to start a new iteration.

Hardware Implementation

The hardware implementation of LDPC decoders can be serial, semi-parallel, or fully-

parallel. As shown in Fig. 2.5, a fully-parallel implementation has the maximum

number of processing elements to achieve very high throughput. A semi-parallel

implementation, on the other hand, has a less number of processing elements that

can be re-used, e.g. z number of processing elements are employed in Figure 2.5(b). In

a semi-parallel implementation, memories are usually required to store the temporary

results. In many practical systems, semi-parallel implementations are often employed

to achieve several hundred Mbps throughput with reasonable complexity [18, 65, 66,

17, 67, 16, 68].

27

Soft Soft Soft Soft Soft

lriOut In/Out lriOut In/Out In/Out

{a) (b)

Figure 2.5 : Implementation of LDPC decoders, where CN denotes check node and
VN denotes variable node. (a) Fully-parallel. (b) Semi-parallel.

2.2.3 Block-structured Quasi-Cyclic (QC) LDPC Codes

Non-zero elements in H are typically placed at random positions to achieve good

coding performance. However, this randomness is unfavorable for efficient VLSI im-

plementation that calls for structured design. To address this issue, block-structured

quasi-cyclic LDPC codes are recently proposed for several new communication stan-

dards such as IEEE 802.11n, IEEE 802.16e, DVB-82 and DMB-T. As shown in

Fig. 2.6, the parity check matrix can be viewed as a 2-D array of square sub rna-

trices. Each sub matrix is either a zero matrix or a cyclically shifted identity matrix

Ix. Generally, the block-structured parity check matrix H consists of a j x k array

of z x z cyclically shifted identity matrices with random shift values x (0 ::::; x < z).

Table 1 summarizes the design parameters for H in the IEEE 802.11n, IEEE 802.16e,

and DMB-T standards.

.
~.

28

Figure 2.6: A block structured parity check matrix with block rows (or layers) j = 4
and block columns k = 8, where the sub-matrix size is z x z.

Table 1: Design parameters for H in several standards

LDPC Code IEEE 802.11n IEEE 802.16e DMB-T

j 4-12 4-12 24-48

k 24 24 60

z 27-81 24-96 127

29

Flexible LDPC Decoder Architecture

In the recent literature, there are many LDPC decoder architectures [69, 70, 71, 18,

72, 73, 74, 75, 76, 16, 77, 78, 79], but few of them support variable block-size and muti­

rate decoding. For example, in [69] a 1 Gbps 1024-bit, rate 1/2 LDPC decoder has

been implemented. However this architecture just supports one particular LDPC code

by wiring the whole Tanner graph into hardware. In [80], a code rate programmable

LDPC decoder is proposed, but the code length is still fixed to 2048 bits for simple

VLSI implementation. In [81], a LDPC decoder that supports three block sizes and

four code rates is designed by storing 12 different parity check matrices on-chip.

2.3 Summary and Challenges

MIMO detectors and LDPC/Thrbo decoders are very complex signal processing

blocks in a wireless receiver SoC. The main challenges of the detector and decoder

design are high throughput and flexibility. To address these challenges, in chapter

3, we will introduce a low-complexity detection algorithm based on a trellis-search

method. We will also present a high-speed VLSI architecture for the trellis-search

based MIMO detector. In chapter 4, we will present a high-throughput Turbo de­

coder for the LTE-Advanced system. In chapter 5, we will describe a multi-mode

high-throughput LDPC decoder architecture. In chapter 6, we will assess the hard­

ware implementation tradeoffs for VLSI system design.

30

Chapter 3

High-Throughput MIMO Detector Architecture

In this chapter, we propose a novel path-preserving trellis-search (PPTS) algorithm

and its high-speed VLSI architecture for soft-output MIMO detection. We represent

the search space of the MIMO signal with an unconstrained trellis graph. Based

on the trellis graph, we convert the soft-output MIMO detection problem into a

multiple shortest paths problem subject to the constraint that every trellis node

must be covered in this set of paths. The PPTS detector is guaranteed to have

soft information for every possible symbol transmitted on every antenna so that the

log-likelihood ratio (LLR) for each transmitted data bit can be accurately formed.

Simulation results show that the PPTS algorithm can achieve near-optimal error

performance with a low search complexity. The PPTS algorithm is a hardware­

friendly data-parallel algorithm because the search operations are evenly distributed

among multiple trellis nodes for parallel processing.

3.1 Trellis-Search Algorithm

Because the conventional tree-search algorithm is slow and difficult to be parallelized,

we propose a search-efficient trellis algorithm to solve the soft MIMO detection prob­

lem. The trellis-search algorithm is a data-parallel algorithm that is more suitable

31

for high-speed hardware implementations.

3.1.1 Trellis Graph

The Euclidean distance in (2.5) can be computed backward recursively. To visualize

the recursion, we create a trellis graph. As an example, Fig. 3.1 shows the trellis

graph for the 4 x 4 4-QAM system. In this graph, nodes are ordered into Nt vertical

slices or stages, where stage k corresponds to symbol sk transmitted by antenna k.

In other words, the trellis is formed of columns representing the number of transmit

antennas and rows representing values of transmitted symbols. The trellis starts with

a root node and ends with a dummy sink node. The stages are labeled in descending

order. In each stage, there are Q = 2B different nodes, where each node maps to a

constellation point that belongs to a known alphabet. Thus, any transmitted symbol

vector is a particular path through the trellis. The trellis is fully connected, so there

are QNt number of different paths from root to sink. The nodes in stage k are

denoted as< k, q >,where q = 0, 1, ... , Q- 1. The edge between nodes< k, q >and

< k- 1, q' >has a weight of ek_1(q(k-1)):

NT-1

ek-1(q(k-1)) = jYk-1- L Rk-1,j • Bj j
2
,

j=k-1

(3.1)

where q(k-1) is the partial symbol vector q(k-1) = [qk_1 qk ... qNt_1JT, and Sj is the

complex-valued symbol Sj =map(%)· We define the path weight as the sum of the

edge weights along this path. Then the weight of a path from root to sink is an

Euclidean distance IIY- R · sll 2 . Define a (partial) path metric dk as the sum of the

32

edge weights along this (partial) path. Then the path weight is computed backward

recursively as:

(3.2)

where dNT(·) is initialized to 0, and do(·) is the path weight (or Euclidean distance).

Figure 3.1 : A trellis graph for the 4 x 4 4-QAM system. Each stage of the trellis
corresponds to a transmit antenna. There are Q = 2B nodes in each stage, where
each node maps to a constellation point that belongs to a known alphabet.

3.1.2 Multiple Shortest Paths Problem

We transform the soft MIMO detection problem into a multiple shortest paths prob-

lem. A similar technique of shortest path to cover different states in a state space has

33

been investigated in the graph theory application [82]. In this thesis, we apply the

shortest path algorithm to the MIMO detection problem.

In the trellis graph, each trellis node < k, q > maps to a complex symbol sk such

that any path from root to sink maps to a particular symbol vectors. A path weight

is a measurement of the soft probability (P(yjs)) for nodes (symbols) on this path.

To make a soft decision for every transmitted bit Xk,b, finding one shortest path is not

enough. We want to find multiple paths which cover every node in the trellis graph.

The multiple shortest paths problem is defined as follows. For each node < k, q >

in the trellis graph, find a shortest path from root to sink that must include this node

< k, q >. The corresponding shortest path weight is related to the symbol probability

(P(yjsk)). If we can find such a conditional shortest path for each node in the trellis,

we will then have one soft information value for every possible symbol transmitted

on every antenna. As a result, we will have sufficient soft information values to avoid

the missing counter-hypothesis problem. Thus, the LLR for every data bit can be

formed accurately based on these soft information values.

3.1.3 Trellis Traversal Strategies

Because of the unconstrained trellis structure, there are QNt different paths from

root to sink that need to be evaluated. In order to reduce the search complexity,

we propose a greedy algorithm that approximately solves the multiple shortest paths

problem defined above. In this search algorithm, the trellis is pruned by removing the

34

unlikely paths. However, we always preserve a predefined number of paths at each

trellis node so that there is enough soft information to compute LLRs. We refer to

it as the path-preserving trellis-search (PPTS) algorithm. It is a two-step algorithm

which is summarized as follows.

Step 1: Path Reduction

The path reduction algorithm is used to prune the unlikely paths in the trellis by

applying the M-algorithm [83] locally at each node. Fig. 3.2 illustrates the basic

data flow of the path reduction algorithm. Note that Fig. 3.2 illustrates only three

successive stages, k, k- 1, and k- 2 among the Nt stages. Each node receives QM

incoming path candidates from nodes in the previous stage of the trellis and, then,

and the (M) paths are preserved from these QM candidates. Next, the number M

survivors are fully extended to the right so that each node will have the best QM

outgoing paths forwarded to the next stage of the trellis.

We define the following notation to help explain the algorithm. Let f3km) (j, i)

denote the QM incoming path candidates for node< k,i >,and aim)(i) denote the

M surviving path metrics selected by node < k, i >. In Fig. 3.2, the stages of the

trellis are labeled in descending order, starting from Nt- 1 and ending with 0. In

stage k, each node < k, i > evaluates its Q M incoming path candidates f3km) (j, i) and

selects the best M paths from f3km)(j, i), where the m-th best path metric is aim)(i).

The a metrics are sorted so that ai0)(i) < ai1)(i) < ... < aiM-l)(i). Next, each of the

35

surviving paths is fully extended for the next stage so that there are Q M outgoing

paths leaving from each node < k, i >, which are ,et~ (i, j). This search process

repeats for every stage of the trellis. The details of the path reduction algorithm are

summarized in Algorithm 1.

Stage k Stage k-1 Stage k-2

Figure 3.2 : Flow of the path reduction algorithm, where each node evaluates all its
incoming paths and selects the best M paths.

As an example, Figure 3.3 shows 4 x 4 4-QAM trellis graph after applying the

path reduction procedure, where each node preserves only M = 2 best incoming

paths, the one with the least cumulative path weights. The path reduction procedure

can effectively prune the trellis by keeping only the number M of the best incoming

paths at each trellis node. As a result, each node in the last stage, i.e. stage 0, has the

36

Algorithm 1 Path Reduction Algorithm
0) Initialization: Set loop variable k = Nt- 1. For each node < k, i >, initialize

{3(m)(· i) = { iYk- Rk,ksk(i)j 2 , j, m = 0.
k J, +oo, j,m =f 0.

1) Main Loop:
1.a) Path Selecti~n: For each node< k,i >,select the best M paths akm)(i) from

the QM path candidates f3km)(j,i).
1. b) Path Calculation:

for (0::; i::; Q- 1)
for (0 ::; m ::; M - 1)

for (0 ::; j ::; Q - 1)
{3(m) (. ") _ (m) (") + (m) (•(k-1))

k-1 't, J - ak 't ek-1 J '
where ek~i(j<k- 1)) is the edge weight as defined in (3.1).
1.c) Loop Update: Set k = k- 1. If k =f 0, goto 1.a).
2) Final Selection: For each node < 0, i >, select the best M paths a~m)(i) from

the QM path candidates f3am)(j,i).

Antenna3·
(Stage 3)

Antenna2
(Stage2)

Antenna!
(Stage I)

AntennaO
(Stage 0)

Figure 3.3 : Path reduction example for a 4 x 4 4-QAM trellis, where M = 2 incoming
paths are preserved at each node.

37

number M shortest paths (a~m) (i)) through the trellis. Recall that each trellis node in

stage k maps to a possible symbol skin a constellation. Thus, we have obtained a soft

information value for every possible symbol s0 , the symbol transmitted by antenna

0. This is sufficient to guarantee that both the ML hypothesis and the counter­

hypothesis in the Max-Log LLR calculation of (2.4) are available for every data bit

xo,b transmitted by antenna 0. Then, the LLRs for data bits xo,b, b = 0, 1, ... , logQ-1,

can be computed as:

However, other than the trellis nodes in the last stage, the algorithm can not

guarantee that every trellis node will have the number M shortest paths through the

trellis. For example, in Figure 3.3, nodes < 2, 1 > and < 2, 3 > have only uncompleted

paths. Thus, we may not have enough soft information values to calculate the LLRs

for data bits xk,b transmitted by antenna k =/:- 0 because the counter-hypotheses for

these bits can be missing. Although we can use LLR clipping [20] to saturate the

LLR values, there will be some performance loss. To preserve enough soft information

values for each data bit, we next introduce a path extension algorithm to fill in the

missing paths for each trellis node q in stage k.

Step 2: Path Extension

To obtain soft information for every possible symbol sk, we need to make sure every

node in stage k is included in a path from root to sink. To extend node < k, i >,

38

we start to travel the trellis from this node and try to find the M most likely paths

from this node to the sink node. This is achieved by extending the paths stage

by stage, where the best M extended paths are selected in every stage. Fig. 3.4

shows an example data flow for the path extension for one node < k, i >. Note that

instead of waiting for the entire path reduction operation to finish, we will start the

path extension operation for antenna k as soon as the path reduction algorithm has

finished processing stage k of the trellis. In Fig. 3.4 for example, to detect antenna

k, we first perform path reduction from stage Nt -1 to stage k, and next we perform

path extension from stage t (t = k- 1) to stage 0. Note that only one node's path

extension process is shown in this figure. In fact, we will extend all the nodes in stage

k simultaneously.

We define the following notation to help explain the algorithm. Let ()(m) (k, i, t, j)

denote the QM extended path candidates from node < k, i > to nodes < t,j >,

where j = 0, 1, ... , Q- 1 and m = 0, 1, ... , M- 1. Let "Y(m)(k, i, t) denote the M

surviving paths selected in stage t, where m = 0, 1, ... , M- 1. To extend node

< k, i >, we first retrieve data ,eti (i, j) computed in the path reduction algorithm,

and use it to initialize ()(m)(k,i,t,j) = J3k~i(i,j), where t = k -1. Next, the best M

extended paths "Y(m) (k, i, t) are selected from (}(m) (k, i, t, j). Then, "Y(m) (k, i, t) are fully

extended for the next stage to form ()(m) (k, i, t - 1, j). Again, the best M extended

paths "Y(m)(k, i, t-1) are selected from ()(m)(k, i, t-1, j). This process repeats. Finally,

"Y(m)(k, i, 0) are the result M extended paths from node < k, i > to the sink node.

- -------------------------

39

Stagek+1 Stagek Stage t (t=k-1) Stage t-1

Path Reduction Path Extension

Figure 3.4 : An example data flow of the path extension algorithm for extending one
node < k, i >, where M paths are extended from this node to each of the following
stages (t, t- 1, ... , 0, where t = k- 1). All the nodes< k, i >, i = 0, 1, ... , Q- 1, can
be extended in parallel.

40

The path extension algorithm is summarized in Algorithm 2.

Fig. 3.5 shows an example to extend node< 2,1 > in a 4 x 4 4-QAM trellis. We

can see that M = 2 paths are extended from this node to the sink node. It should

be noted that nodes< k, 0 >, < k, 1 >, ... , < k, Q- 1 > can be extended in parallel

since there is no data dependency between them. After the path extension is finished,

every node in stage k will be included in a path from root to sink. Thus, we have

obtained a soft information value for every possible symbol sk, the symbol transmitted

by antenna k. This is sufficient to guarantee that both the ML hypothesis and the

counter-hypothesis are available for every data bit xk,b· Then, the LLRs for data bits

transmitted by antenna k =I= 0 can be computed as:

LLR(xk,b) =!._2 (.min 'Y(m)(k, i, t)- _min 'Y(m)(k, i, t)) , where t, m = 0. (3.4)
2a ~=b=-1 ~=b=+l

Note that although we keep M paths for each node< k, i > in every extension step,

we only use the final smallest path weight for each node, i.e. 'Y(m=O)(k,i,t = 0), in

(3.4) to compute the LLR. However, keeping multiple paths in the intermediate steps

helps to improve the accuracy of the LLR values.

3.1.4 Simulation Result

In this section, we evaluate the error performance of the proposed PPTS detector

through computer simulations. The floating-point simulations are carried out for

4 x 4 16-QAM and 4 x 4 64-QAM systems where the channel matrices are assumed

to have independent random Gaussian distributions. A sorted QR decomposition

41

Algorithm 2 Path Extension Algorithm for Antenna k, k = Nt-1, Nt-2, ... , 1
0) Initialization: Set loop variable t = k- 1. For each node < k, i >, initialize

()(m)(k, i, t, j) = fJt~i (i, j).

1) Main Loop:

1.a) Path Selection: For each node< k,i >,select the best M paths '"Y(m)(k,i,t)

from the QM path candidates ()(m)(k, i, t,j).

l.b) Path Calculation:

for (0 ~ i ~ Q- 1)

for (0 ~ m ~ M- 1)

for (0 ~ j ~ Q - 1)

()(m)(k, i, t- 1,j) = '"'((m)(k, i, t) + e~~£(j(t- 1)),

where etiO(t-1)) is the edge weight as defined in (3.1).

l.c) Loop Update: Set t = t- 1. If t =/:- 0 goto 1.a).

2) Final Selection: For each node< k,i >,select the best M paths '"Y(m)(k,i,O)

from the QM path candidates ()(m)(k,i,O,j).

Stage 3 Stage 2 Stage l Stage 0

Path Reduction Path Extension

Figure 3.5 : Path extension example for one node < 2, 1 >, where M = 2 paths are
extended from this node to the sink node.

42

of the channel matrix is used. The soft-output of the detector is fed to a length

2304, rate 1/2 WiMax layered LDPC decoder, which performs up to 20 LDPC inner

iterations. Figures 3.6 and 3. 7 show the frame error rate (FER) performance of

the PPTS detectors for different M values. As a reference, we also show the error

performance of a Max-Log MAP detector with exhaustive search criterion, and a soft

K-Best detector with K = 4Q. In the error performance comparison, the Max-Log

MAP detector with full search criterion is considered as the baseline reference. We

also show a bit error rate (BER) performance for the 4 x 4 16-QAM system in Figure

3.8.

For a 4 x 4 16-QAM system, when M = 1, the PPTS detector shows about 1 dB

performance loss at FER 10-3 compared to the baseline reference. When M = 2,

the PPTS detector shows about 0.35 dB performance degradation. When M = 3,

the PPTS detector shows only 0.15 dB performance degradation. When M = 4, the

PPTS detector achieves a performance almost the same as the baseline reference.

Compared to the K-Best detector with K = 32, the PPTS detectors with M = 2, 3, 4

significantly outperform the K-Best detector.

For a 4x4 64-QAM system, when M = 1, the PPTS detector shows about 0.75 dB

performance loss at FER 10-3 compared to the baseline reference. When M = 2, the

PPTS detector shows about 0.3 dB performance degradation. When M = 3, 4, the

PPTS detector achieves a performance that is very close to the baseline reference.

Compared to the K-Best detector with K = 64, the PPTS detector with M = 1

~
~ e
w
CIJ
E
!!!
u..

4x4 16-QAM MIMO System with Rate 1/2 LDPC Code
10°1r.~~~~~~.~ .. ~.~ .. ~ .. T.,.~ .. ~ .. ~.~ .. ~ .. ~ .. T,,===c==~==c=~===c==~~

1 0-2 . : : : : :::: : : . : :· : : : : : ::: ...
·············'·····

..........., Trellis detector, M=1
-+ K best detector, K=64
--*'-Trellis detector, M=2
-Trellis detector, M=3
-e- Trellis detector, M=4
--*-Max-log detector, full search

....
...... • •

10-3L-~---L---L--~--~--~-U--~~-L--~--~L-L-~--~
8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2 1 0.4 10.6 1 0.8 11

Eb/N0 (dB)

43

Figure 3.6 : Frame error rate performance of a coded 4 x 4 16-QAM MIMO system
using the PPTS detection algorithm with different M values.

2l
/1. g
w
cu
E
~
u..

44

4x4, 64-QAM, Rate 1/2 LDPC outer-code

10° ~~~~~~-~--~--~--~--~--~--~--~-~--~-.~~~====~========~========~
· · · · · · · · · · · · · · · · ·:::........ _.,_Trellis detector, M=1
. -+- K best detector, K=256

· · · · · · · · · · · · · · ·_.Trellis detector, M=2
-Trellis detector, M=3
-e- Trellis detector, M=4
-M- Max-Log-MAP detector, full search

10-2 .••.....
. ·,· : ..

13 13.5 14 14.5 15

Figure 3. 7 : Frame error rate performance of a coded 4 x 4 64-QAM MIMO system
using the PPTS detection algorithm with different M values.

45

4x4 16-QAM MIMO System with Rate 1/2 LDPC Code

10° F:·~--~--~--~--~;~:~:~::~::~::~:~=:~::~:~:;~;;~::~:~~~==~====c===~=··=··=··=··=··E··=·=··~··
· -4-- Trellis detector, M=1

............ K best detector, K=64
--*-- Trellis detector, M=2

10 -Trellis detector, M=3
-e-Trellis detector, M=4
...,.._ Max-log detector, full search

.. : ·

·---------------·:::··::::-:······
--------··················· , ,

10--4 ::::::::::::::::::

..· . ~ . . .

·--:---·······:- ··············

8.4 8.8 9.2 9.6 10 10.4 10.8 11.2
E tfN0 (dB)

Figure 3.8: Bit error rate performance of a coded 4 x 4 16-QAM MIMO system using
the PPTS detection algorithm with different M values.

.
~-

46

performs similarly to the K-Best detector, but the PPTS detectors with M = 2, 3, 4

significantly outperform the K-Best detector.

3.1.5 Discussions on Sorting Complexity

- The trellis-search algorithm is a variation of the K-best tree-search algorithm. In

the K-best tree-search algorithm, K global candidates are selected in each level of

the tree. One limitation of the K-Best tree-search algorithm is that it may not pre­

serve enough soft information for every transmitted bit x. Thus the missing counter­

hypothesis problem may occur, which will lead to significant performance loss. On

the other hand, the trellis-search algorithm always guarantees that for each transmit­

ted bit x, there will be a ML-hypothesis and a counter-hypothesis so that the LLR

for transmitted bit x can be more reliably formed.

Sorting is often the bottleneck in the K-best detectors. Now we compare the

sorting cost of the proposed PPTS detector with that of the K-best detector. Both

PPTS and K-best detectors need to carry out a (s, t) sorting operation: find the

smallest s values out of t candidates. From the above simulation results, we know

that the error performance of the K-best detector with K = 4Q is worse than the

proposed PPTS detector with M = 2. To have a fair comparison, we compare the

(s, t) sorting complexity of the more complex PPTS detector with M = 2 and the

K-best detector with K = 4Q.

Table 3.1 summarizes the sorting complexity comparisons. The sorting complex-

47

ity is measured by the number of pairwise comparisons. Generally, to find the s

smallest values from t candidates requires at least t- s + Et+l-s<j:o::;t flogjl pair­

wise comparisons [84]. This bound is only achievable for s = 1, 2. For the PPTS

detector, Q concurrent (M, QM) sorting operations are required at each trellis stage.

For the K-best detector, one global (K, QK) sorting operation is required at each

tree level. The (s, t) sorting complexity of the K-best algorithm is approximated by

4(t- 1) + (s- 1) log2 t when applying the typically used heap sort algorithm [38].

From Table 3.1, we can see that the PPTS detector has a significantly lower sorting

complexity than the traditional K-best detector especially for the higher modulation

systems. In addition, the PPTS detector can employ Q concurrent smaller sorters

which will lead to a significant processing speedup.

The PPTS detector compares favorably than the sort-free detectors, such as the

flex-sphere detector [85] and the SSFE detector [44]. These sort-free detectors use a

simpler algorithm to avoid the expensive sorting operations at a cost of some perfor­

mance degradation. It should be noted that even the sort-free detectors avoid the

sorting, they still can not achieve more than 300 Mbps throughput for the 4 x 4 16-

QAM system. On the other hand, our trellis-based detector uses a sort-light algorithm

to achieve near-optimal performance and multi-Gbps throughput.

48

Table 3.1 : Sorting complexity comparison

4 x 4 16-QAM MIMO System

K-Best, K = 64 Trellis, M = 2

Sorting complexity per (64, 1024) "' 4722 (2, 32) = 35

tree level/trellis stage One global sorter 16 sorters in parallel

Processing speedup 1 135 times faster

Required SNR for 10-3 FER 10.0 dB 9.9 dB

4 x 4 64-QAM MIMO System

K-Best, K = 256 Trellis, M = 2

Sorting complexity per (256,16384)=69102 (2,128)=133

tree level/trellis stage One global sorter 64 sorters in parallel

Processing speedup 1 520 times faster

Required SNR for 10-3 FER 14.4 dB 14.3 dB

3.1.6 Discussions on Search Patterns

In the proposed trellis-search algorithm, we need to perform a multi-pass search

operations. In the first-pass, the trellis is pruned by only keeping the best M incoming

paths at each node. Next, the trellis is re-visited to fill in the uncompleted paths.

One variation of this algorithm is to only visit the trellis once by keeping both M

incoming paths and M outgoing paths at each node during the sweep. This algorithm

reduces the search complexity at a cost of some performance loss because the edge

weight changes as the path changes. Fig. 3.9 compares the frame error performance of

the one-pass trellis-search detector with that of the multi-pass trellis-search detector.

As can be seen, the one-pass trellis-search has a performance loss of 0.4 dB. However,

49

the one-pass detector can save the computational operations by about 40%. Thus,

the one-pass detector is a tradeoff between complexity and performance.

4x416-QAM MIMO System with Rate 1/2 LDPC Code

10°~~~~~~~~~~~~~~~~==~~~==~==~~
:: : : : : _.._Trellis detector, one--pass, M=2
: : : : · : -+-Trellis detector, multi-pass, M=2

10-1•..

10-2 . ::::::::.:::::.: •..

9 9.2 9.4 9.6 9.8 10 10.2 10.4
EtfN0 (dB)

Figure 3.9 : Frame error rate performance for one-pass trellis search algorithm.

3.2 n-Term-Log-MAP Algorithm

As an enhancement to the conventional Max-Log-MAP algorithm, we describe an-

Term-Log-MAP approximation algorithm to achieve near-optimum MIMO detection

performance. The same trellis-search algorithm can be used to implement the n-

Term-Log-MAP approximation algorithm.

50

As we know, the optimum soft MIMO detection is based on the Log-MAP alga-

rithm, which is too complex to be implemented in a practical MIMO receiver because

the Log-MAP algorithm requires calculating log-sum of Q:: exponential terms, where

Q is the constellation size and M is the number of transmit antennas. In practice,

the Log-MAP algorithm is often approximated by the Max-Log-MAP algorithm tore-

duce complexity. However, there is still a performance gap between the sub-optimum

Max-Log-MAP detector and the optimal Log-MAP detector. Almost all the exist-

ing MIMO detector implementations are based on the sub-optimal Max-Log-MAP

approximation which limits the error performance of the detector.

In this section, we propose a. reduced-complexity Log-MAP approximation algo-

rithm for high performance MIMO detection. In the proposed algorithm, we use

a reduced nu~ber (n) of exponential terms to approximate the original Log-MAP

algorithm as:

n-1

LLR(xk,b) = ln L exp (-· 2~2 1iy- H · sll 2)-

i=O:xk,b=O

n-1

ln L exp (- 2~2 IIY- H · sll 2).

i=O:xk,b=1

(3.5)

(3.6)

The trellis search method described before can be modified to implement the n-

Term-Log-MAP algorithm. Recall that in the trellis search algorithm, each node

keeps a list of M most likely paths. So altogether Q M candidates in each stage k of

the trellis can be used to compute the LLRs for data bits transmitted by antenna k

using the n-Term-Log-MAP algorithm, where n = Q~.

51

The n-term log-sum operation can be implemented by iteratively applying the

two-term log-sum. The two-term log-sum can be computed using the advantageous

Jacobean algorithm as follows:

ln(ea + eb) =max(a, b)+ ln(l + eia-bl) = max*(a, b). (3.7)

The ln(l +eia-bl) can be approximated by using a one-dimension look-up table accessed

by Ia- bl. Then then-term log-sum can be recursively computed using the Jacobean

algorithm. The following equation shows an example to implement a four-term log-

sum:

max*(a, b, c, d) = max*(max*(a, b), max*(c, d)). (3.8)

To further reduce the complexity, we break the computation into two steps. Recall

that each stage of the trellis corresponds to a transmit antenna, and each node in a

stage is mapped to a constellation point. We can first compute a symbol reliability

metric r(q) for each node q as follows

(3.9)

The LLR for each transmitted bit is computed as:

() * (1 (!)) * (1 (!)) LLR Xkb = max --dk - max --dk .
' q:xk,b=O 2a2 q:xk,b=l 2a2

(3.10)

Since multiple exponential terms are used, this algorithm will significantly out-

perform the Max-Log-MAP algorithm. Given a modulation size Q, the local list

size M determines the decoding performance: larger M value leads to better error

performance.

.
'

52

It should be noted that then-Term-Log-MAP algorithm can not be applied to the

traditional MIMO detection algorithms such as the K-best detector and the sphere

detector because they can not guarantee that multiple exponential terms will exist

when computing LLRs. This is because in the tree search process, the tree nodes are

not grouped by their QAM values. Therefore, there is no control of how many terms

are found for each possible constellation point.

We evaluate the error performance of the proposed n-Term-Log-MAP trellis-search

detector. The floating-point simulations are carried out for a 4x4 16-QAM system

where the channel matrices are assumed to have independent random Gaussian dis­

tributions. A (2304, 1152) WiMax LDPC code is used as an outer channel code.

As references, we also plot the simulation results for the optimal Log-MAP detector,

the Max-Log-MAP detector based on the exhaustive search, and the Max-Log-MAP

detector based on the K-Best search algorithm. As can be seen from Fig. 3.10, the

n-Term-Log-MAP detector with M = 2 significantly outperforms the K-Best detector

with K = 32. Then-Term-Log-MAP detector with M = 3 outperforms the Max­

Log-MAP detector with exhaustive search criterion. Then-Term-Log-MAP detector

with M = 4 and M = 6 performs very close to the optimal Log-MAP algorithm.

3.3 Iterative Detection and Decoding

Iterative detection and decoding is a technique to combine the detection and decoding

process to further improve the performance. By exchanging information between the

~
"' a:
~ g
w
G.l
E
E u.

Simulation results for a LDPC-coded 4x416-QAM MIMO system

10° ~~~~~~~~~.~ .. ~.~ .. ~ .. ~.~ .. ~.~ .. ~ .. ~~~~====~====~==~=====l
-"k- Trellis n-Term-Log-MAP, M=2

10-1

10-2

- -4 - Full-search Max-Log-MAP
.....,.__Trellis n-Term-Log-MAP, M=4
-Trellis n-Term-Log-MAP, M=6

............. L-___:.M_:__-_O_,p_ti_m_a_l L_o.:::.g-_M_A_P ____ __,

.•........ :.~ ...
. '

' ,:
X

\

........ ··'··. ; ···\··
.... :::\:

................. , ,.; ...
. ,; ..

... ~ ...

8.2 8.4 8.6 8.8 9 9.2
EtfN0 (dB)

. . ····.·········.·················

9.4 9.6 9.8 10

53

Figure 3.10 : Error performance of a coded 4 x 4 16-QAM MIMO system using the
n-Term-Log-MAP detection algorithm with different M values.

54

detector and the decoder, an iterative receiver has a significant performance improve-

ment over the non-iterative receiver.

In a iterative detection and decoding scheme (20] as illustrated in Fig. 3.11, the

MIMO detector generates extrinsic information LE1 using the received signal y and

the a priori information LA1 provided by the channel decoder. In the first iteration,

LA1 is not available and is assumed to be 0.

MIMO
Detector

LAPPl

De-interleaver

. Interleaver

Channel Decoded Bits

Decoder

Figure 3.11 : Iterative MIMO receiver biock diagram, where the subscript "1" denotes
soft information associated with the MIMO detector and the subscript "2" denotes
soft information associated with the channel decoder.

Now the LLR value for each bit Xk,b is changed to: (20]

(3.11)

where LA(xk,b) is the a priori LLR value for bit x(k, b). With the Max-Log approxi-

mation, the LLR value of (3.11) is simplified to

(3.12)

55

where the Euclidean distance, d(s), is defined as:

" (3.13)

In a traditional iterative MIMO receiver implementation [86, 87], because the

detection block is often the bottleneck, the detection is performed only once. A list

of candidates generated by the MIMO detector are stored in a list buffer. In each

outer iteration, the soft values generated by the channel decoder are only fed back to

the list buffer to update the list and generate new soft values based on the new list.

A major drawback of this scheme is that the error performance is not as good as the

original iteration detection and decoding scheme as shown in Fig. 3.11.

However, with the proposed trellis-search algorithm, the MIM 0 detection task

can be performed very fast. Therefore, it is realistic to re-run the entire detection in

each outer iteration. The same trellis-search algorithm can be used for the iterative

MIMO detector by modifying the original edge weight function (3.1) to:

NT-1 Nt-1 B-1

ek-1(q(k-1)) = j:Yk-1- L Rk-1,j · sij 2 - u2 L L:xj,b · LA(xi,b)· (3.14)
j=k-1 j=k-1b=O

The error performance of the iterative detection and decoding scheme is evaluated

through computer simulations. The floating-point simulations are carried out for

4 x 4 16-QAM systems where the channel matrices are assumed to have independent

random Gaussian distributions. A (2304, 1152) WiMax LDPC code is used as an

outer channel code. The outer LDPC iteration is fixed to 20. The magnitude of the

extrinsic LLR LEl is saturated to 15 to avoid the large LLR values with a wrong

56

sign. Fig. 3.12 shows the error performance of the iterative receiver based on the

M = 1 trellis-search max-log-MAP detector for different outer iterations. Fig. 3.13

shows the error performance of the iterative receiver based on the M = 2 trellis-search

max-log-MAP detector for different outer iterations. As can be seen, with one outer

iteration, the FER performance can be improved by 1.5 to 2 dB. By increasing the

number of the outer iterations, the FER performance can be increased by about 2.5

to 3 dB.

.... g
w

~
e

LL

·········:·············>············:············-·-,.. 0 outer iteration
-+- 1 outer iteration
-*'-- 2 outer iteration
-M- 3 outer iteration
-II- 4 outer iteration
.....,.__ 5 outer iteration

10-3 L-----~~L__L_L __ i_ __ ~--~~-------L------~------~----~
7 7.5 8 8.5 9.5 10 10.5 11

Figure 3.12: Error performance of an iterative detection and decoding system, where
aM= 1 trellis-search max-log-MAP detector is used.

Cll ...
{2 ... e ...
w
Cll
E
~

LL

7 7.5 9

.......,.. 0 outer iteration

......,._ 1 outer iteration
., 2 outer iteration
-M- 3 outer iteration
-a- 4 outer iteration
--+- 5 outer iteration

9.5

57

10

Figure 3.13: Error performance of an iterative detection and decoding system, where
aM= 2 trellis-search max-log-MAP detector is used.

58

3.4 VLSI Architecture for The Trellis-Search Detector

In this section, we describe VLSI architectures for the proposed PPTS detector. We

introduce a fully-parallel "systolic" architecture to achieve the maximum throughput

performance, and a "folded" architecture to reduce area for lower throughput appli­

cation. For the sake of clarity, we describe a PPTS detector architecture with M = 2

for the 4 x 4 16-QAM system. It should be noted that the architecture described can

be easily scaled for other values of M and other MIMO configurations.

3.4.1 Fully-Parallel Systolic Architecture

Fig. 3.14 shows the fully-parallel "systolic" architecture for aNt= 4 antenna system.

This architecture is fully pipelined so that it can process one MIMO symbol in every

clock cycle. In this architecture, the main processing elements include 3 path reduc­

tion units (PRUs), 3 path extension units (PEUs), 4 path selection units (PSUs), and

4 LLR calculation (LLRC) units. The detailed structures of these processing elements

will be described in the following subsections.

In Fig. 3.14, three PRUs (PRU3_ 1) and one PSU (PSU0) are employed to im­

plement the path reduction algorithm. The main diagonal of the systolic array is

related to the path reduction data flow shown in Fig. 3.2. The PRU implements

one main iteration loop of Algorithm 1 by employing Q path reduction processors to

simultaneously process Q nodes in a certain stage (cf. Fig. 3.2). PSU0 implements

the final selection step of Algorithm 1 by using Q search units. The data flow for

59

R,y
ly -R s. N,-1 N,-1,N,-1 J

AntO

Stage Nr-1 Nr-2 0

Figure 3.14: A pipelined fully-parallel "systolic" architecture for the PPTS detector,
where each PRU /PEU /PSU is a cluster of Q path reduction/path extension/path
selection processors.

the path reduction is as follows. Firstly, PRU3 receives R, y, and the pre-computed

l?/3 - R 3,3sjl 2 , and it computes all the path candidates {3~m)(i,j) in parallel, which

are fed to the next PRU, i.e. PRU2 . Then, PRU2 computes f3im) (i, j), which are fed

to PRU1 , and so forth. Finally, PSU0 receives f3bm)(i,j) from PRU1 and computes

a~o) (i), which are fed to LLRC0 to compute LLR(xo,b) based on (3.3).

In Fig. 3.14, three PEUs and three PSUs (PSU3_I) are employed to implement the

path extension algorithm. Each row (but the last) of the systolic array is related to the

path extension data flow shown in Fig. 3.4. The PEU implements one main iteration

loop of Algorithm 2 by employing Q path extension processors to simultaneously

extend Q nodes in a certain stage (cf. Fig. 3.4). The PSU is used to implement the

60

final selection step of Algorithm 2. The data flow for the path extension is as follows.

To detect antenna k;:::: 1, k- 1 number of the PEUs and 1 PSU are used. Lett=

k-1. Firstly, PEUk,t receives !3k~i (i, j) from PRUk and it computes ()(m)(k, i, t-1, j),

which are fed to PEUk,t-1 . Next, PEUk,t-1 computes ()(m)(k,i,t-2,j), which are fed

to PEU k,t-2, and so forth. Finally, PSU k receives ()(m) (k, i, 0, j) from PEU k,l and

computes 'Y(o)(k, i, 0), which are fed to LLRCk to compute LLR(xk,b) based on (3.4).

Note that to detect antenna 1, only one PSU (PSU1) is required.

3.4.2 Path Reduction Unit {PRU)

The structure of the PRU is shown in Fig. 3.15. The PRU is used to implement the

path reduction algorithm (cf. Algorithm 1:main loop). The PRU employs Q = 16

path reduction processors to pr;ocess all the Q nodes in a certain stage in parallel.

Each path reduction processor contains one minimum (min) finder unit (MFU) and

one path calculation unit (PCU), where the MFU is used to select the best M paths

aim)(i) from the QM incoming path candidates J3km)(j,i) (cf. Algorithm 1-l.a), and

the PCU is used to compute the QM new extended path candidates !3k~i(i,j) (cf.

Algorithm 1-l.b).

Min Finder Unit (MFU)

The MFU is used to select the best M = 2 paths from Q M = 32 path candidates.

Fig. 3.16 shows the block diagram for the MFU unit which finds the minimum value

Z0 and the second minimum value Z1 from its 32 data inputs (/0 to / 31). The MFU

61

,J)

}=0,1, ... ,15; m=0,1 PRU

Figure 3.15 : Block diagram for the PRU, which contains Q = 16 path reduction
processors.

comprises of 16 CMP (comparison) units, 15 variable size (p: (p/2+1)) C-S (compare

and select) units, and one MIN unit. The structures of the CMP unit is shown

in Fig. 3.17(a). The CMP unit compares two data inputs A and B, and outputs

the smaller one (or the "winner"): W = min(A, B), and the larger one (or the

"loser"): L = max(A, B), and the sign: S = sign(A- B). The variable size p :

(p/2 + 1) C-S unit hasp inputs (A, U1 , U2 , .•. , Up;2-b B, ~' l/2, ... , "Vp;2- 1) and p/2 + 1

outputs (W, £ 1, £ 2 , ..• , Lp;2). The different values of p for the variable size C-S unit

are 4, 6, 8, ... , 2log(Q M). Output W of the C-S unit is the smallest data among all the

p inputs. Outputs Lb L 2 , .•. , Lp;2 of the C-S unit are p/2 candidates for the second

smallest data among all the p inputs. Fig. 3.17(b)(c) show the structures for the 4:3

C-S unit and the 6:4 C-S unit. The structures for the larger size C-S units, e.g. 8:5

C-S unit and 10:6 C-S unit, are omitted in this thesis because they have very similar

structures as the 6:4 C-S unit.

62

Figure 3.16: Block diagram for the MFU, which uses 16 CMP units, 15 variable size
C-S (compare and select) units, and 1 MIN unit to implement the (2,32) sorting.

A

ui w
A w u2

ui LI

B
B

L L2 VI
VI

Vi

(a) (b) (c)

Figure 3.17 : Block diagram for the CMP unit, the 4:3 C-S unit, and the 6:4 C-S
unit.

63

The MFU functions as follows. As shown in Fig. 3.16, the MFU takes QM = 32

data inputs and feeds them to 16 CMP units, where each CMP unit generates the

winner and the loser of its two data inputs. The connection of the computational

blocks in the MFU resembles a tree-like structure. Every two CMP units are con-

nected to one 4:3 C-S unit, where the outputs of the 4:3 C-S unit are the winner (W)

of its four data inputs, and two candidates (L1 , L 2) for the second winner. Every two

4:3 C-S units are connected to one 6:4 C-S unit, where the outputs of the 6:4 C-S unit

are the smallest data (W) among its 6 data inputs, and three candidates (L1 , L2 , L3)

for the second smallest data. Similarly, every two 6:4 C-S units are connected to

one 8:5 C-S unit, and two 8:5 C-S units are connected to a final 10:6 C-S unit. Fi-

nally, output W of the 10:6 C-S unit is the smallest data (Z0) among the 32 data

(10 , 11 , ... , / 31). Outputs L1 , L 2 , •.• , L 5 of the 10:6 C-S unit are the five candidates for

the second smallest data among the 32 data inputs. A MIN unit is used to generate

the second smallest data Z1 (Z1 = min(L1, L2 , ••. , L5)).

Path Calculation Unit (PCU)

Fig. 3.18 shows the PCU architecture which employs M = 2 partial Euclidean distance

calculation (PEDC) units to compute Q M = 32 path metrics in parallel. The partial

Euclidean distance (PED) dk-l is computed recursively as

(3.15)

The metric increment ek-I (cf. (3.1)) is computed as follows:

where

NT-1

T = L Rk-l,j. Sj- Yk-1·

j=k

64

(3.16)

(3.17)

For a given PED dk, we need to compute Q = 16 new PEDs dk-I· Instead of

computing each new PED separately, we can compute Q new PEDs in a group by

knowing that symbol Sk-I is drawn from a known alphabet: sk-I E { ±1 ± j, ±1 ±

3j, ±3 ±j, ±3 ± 3j}, and Rk-I,k-I is a real value if using a certain QR decomposition

method, e.g. Gram-Schmidt QR decomposition [88]. Let sk_1(q), q = 0, 1, ... , Q- 1,

denote the complex symbol for the q-th constellation point in the alphabet. Then

(3.16) is re-expressed as:

(3.18)

We pre-compute RL1 k-1 1sk-1 (q)l 2 for different q and save them in registers. Fig. 3.19 ,

shows the architecture for the PEDC unit, which computes Q = 16 PEDs in parallel.

In this architecture, a shift and add (SHAD) unit is used to implement the constant

multiplication A· sk-I, a multiplier (MULT) is used to implement Rk-I,k-I · T*, and

a CPX NORM unit is used to compute the 12 norm (ITI 2) of the complex signal T.

65

PCU

Figure 3.18 : Block diagram for the PCU, which employs Q = 2 PEDC units.

Figure 3.19: Block diagram for the PEDC unit, which computes 16 PEDs in parallel.

66

3.4.3 Path Extension Unit (PEU)

The PEU implements the path extension algorithm (cf. Algorithm 2:main loop). The

PEU has a very similar architecture to the PRU. Fig. 3.20 shows the block diagram

for the PEU, which employs Q = 16 path extension processors to extend Q nodes in

a certain stage in parallel. Each path extension processor contains one MFU and one

PCU, where the MFU is used to select the best M paths)'(m)(k, i, t) from QM path

candidates ()(m)(k,i,t,j) (cf. Algorithm 2-l.a), and the PCU is used to calculate the

QM new extended path candidates ()(m)(k,i, t -1,j) (cf. Algorithm 2-l.b)

,t-l,j)

j=O,l, ... ,l5; m=O,l PEU

Figure 3.20 : Block diagram for the PEU, which contains Q = 16 path extension
processors.

3.4.4 Path Selection Unit (PSU)

The PSU implements the final selection step in Algorithm 1 or Algorithm 2. As

shown in Fig. 3.21, the PSU contains only Q MFUs to realize Q concurrent sorting

(M,QM).

QMdatain

QMdatain

QMdatain

PSU

Figure 3.21 : Block diagram for the PSU, which contains Q = 16 MFUs.

3.4.5 LLR Computation Unit (LLRC)

67

The LLRC is used to compute LLRs based on (3.3) or (3.4). Fig. 3.22 shows the

block diagram of the LLRC unit. To compute log2 (Q) = 4 LLRs for antenna k in

parallel, we need 4 sets of hardware blocks shown in Fig. 3.22 to compute LLR(xk,b),

b = 0, 1, ... ,log Q- 1, for our example 16-QAM system. It should be noted that the

multiplier in Fig. 3.22 may not be required if the outer channel decoder uses a linear

decoding algorithm such as the Min-Sum algorithm [63] in LDPC decoding or the

Max-Log-MAP algorithm [89] in Turbo decoding. In that case, the multiplier can be

replaced by a simpler normalizer. To support then-Term-Log-MAP algorithm, the

LLRC block needs to be modified by replacing the MIN unit with an-input Log-sum

unit. Fig. 3.23 shows an example for the eight-term log-sum unit.

a{O)
a{l)

£(15)

68

Figure 3.22 : Block diagram of the LLRC unit.

Figure 3.23 : Eight-term log-sum unit.

69

3.4.6 Throughput Performance of The Systolic Architecture

The proposed systolic MIMO detector architecture (cf. Fig. 3.14) can provide very

high throughput performance. This architecture is fully pipelined so that it can

process one MIMO symbol in every clock cycle. Generally, if we let the clock frequency

be f elk MHz, then the throughput (Mbps) for a Nt x Nr Q-QAM system can be

expressed as:

Throughput...Systolic = Nt ·log2 Q · fclk. (3.19)

As an example, assuming a system clock of 400 MHz, the systolic arch_itecture can

provide a throughput of 6.4 Gbps for a 4 x 4 16-QAM system.

3.4. 7 Folded Architecture

For system applications that may require less throughput, we can fold the fully-

parallel systolic architecture to reduce the parallelism and hence the hardware com-

plexity. Fig. 3.24 shows the folded architecture where only one PRU and one PEU

are instantiated to save area. Note that the PRU /PEU is the most area-consuming

block in the PPTS detector.

Because we only have one PRU and one PEU, we need to schedule them sequen-

tially. Fig. 3.25 illustrates the detection timing diagram using the folded architecture

for a 4 antenna system. In this diagram, the PRU is scheduled to run the path reduc-

tion (PR) operations from t=O to t=ll, and the PEU is scheduled to run the path

extension (PE) operations from t=4 to t=15. Note that the subscripts of the PRs

.
~.

70

R,y
lA 12 -R s. YN,-l N,-l,N,-l 1

Figure 3.24 : Folded architecture for the PPTS detector.

and PEs in this diagram have the same meaning as that in Fig. 3.14. For simplic-

ity, the final path selection operations (executed in PSU) and the LLR calculation

operations are omitted in this diagram. Furthermore, as the pipeline stages for the

PRU and PEU are 4 clock cycles, we can feed four back-to-hack MIMO symbols in 4

consecutive cycles, e.g at t, t + 1, t + 2, t + 3 to fully utilize the hardware. And we can

feed the next four back-to-hack MIMO symbols at t + 12, t + 13, t + 14, t + 15 into

the pipeline, and so forth. The throughput of the folded architecture for a 4 antenna

system is given as:

4
Throughput_foldedAant = 31og2 Q · fclk. (3.20)

For a larger MIMO system with Nt ~ 4 transmit antennas, if we still use one PRU

and one PEU, the throughput for a Nt ~ 4 antenna system is estimated as:

2Nt
Throughput_folded_N = ()() log2 Q · fclk.

Nt-1 Nt-2
(3.21)

As an example, assuming a system clock of 400 MHz, the systolic architecture can

71

provide a throughput of 2.13 Gbps for a 4 x 4 16-QAM system. As a balanced

tradeoff, the folded architecture significantly reduce the area but still maintaining

high throughput performance.

Note that for larger MIMO systems (Nt > 4), the throughput is limited by the

number of the path extension operations. However, we can employ more than one

PEU in the folded architecture to match with the processing speed of the PRU.

Next set of
/symbols

-p'E;:;'-1 •.• ._ __ _J

Figure 3.25 : Detection timing diagram for a 4 antenna system using the folded
architecture.

3.5 Summary

In this chapter, we introduce a novel low-complexity trellis-search detection algorithm

and VLSI architecture. In chapter 6, we will describe an ASIC implementation of a

multi-Gbps MIMO detector based on this trellis-search architecture. In this chapter,

we also introduce an iterative detection decoding scheme which can be used to improve

the error performance of the MIMO system by around 3 dB through the use of the

72

proposed PPTS detection approach. In chapter 4 and 5, we will describe two kinds of

channel decoders (Turbo decoders and LDPC decoders) that can be used to integrate

with the MIMO detector to form an iterative receiver.

Chapter 4

High-Throughput Turbo Detector for
LTE/LTE-Advanced System

73

Turbo codes invented in 1993 [47] have attracted much attention recently because the

new wireless systems are demanding higher and higher data rate. For example, in

the LTE-Advance standard, the target data rate is 1 Gbps, which poses a significant

challenge for the Turbo decoder design. Our goal is to develop a highly-parallel Turbo

decoder architecture to achieve 1 + Gbps high data rate. We utilize the contention-free

interleaver defined in the LTE standard to enable parallel Turbo decoding without

additional data buffers.

Turbo decoders suffer from high decoding latency due to the iterative decoding

process, the forward-backward recursion in the maximum a posteriori (MAP) de-

coding algorithm and the interleaving/de-interleaving between iterations [47, 90, 91].

Sliding window architectures are often used to reduce the latency of the MAP decod-

ing. The choice of the sliding window algorithm may have a significant impact on the

decoding BER performance and parallelism. In this chapter, we will present a new

parallel sliding window algorithm and a new parallel non-sliding window algorithm

for the LTE Turbo decoding.

A high throughput Turbo decoder can be realized by parallelizing several MAP

74

decoders, where each MAP decoder operates on a segment of the received codeword

[92]. Due to the randomness of the Thrbo interleaver, two or more MAP decoders

may access the same memory at the same clock cycle which will lead to a memory

collision. As a result, the decoder has to be stalled which consequently delays the

decoding process. The Interleaver structures in the 3G standards, such as CDMA/W­

CDMA/UMTS, do not have a parallel structure. Although the memory stalls caused

by the interleaver can be partially reduced by using write buffers [93], the memory

stalls will occur more and more frequently as the parallelism degree increases. To

solve this problem, the high data rate 3GPP LTE standard has adopted a contention­

free, parallel interleaver which is called quadratic permutation polynomial (QPP)

Thrbo interleaver [94]. From an algebraic-geometric perspective, the QPP interleaver

allows analyti~al designs and simplifies hardware implementation of a parallel Turbo

decoder [95]. Based on the permutation polynomials over integer rings, every factor

of the interleaver length can be a parallelism degree for the decoder [95] which is

contention-free.

Thrbo decoder architectures in the literature are mostly based on the older matrix­

permutation interleavers, thus the parallelism level is significantly limited. In this

chapter, we will utilize the conflict-free QPP interleaving property to design a highly­

parallel Thrbo decoder for high speed wireless applications. The proposed decoder

can achieve over 1 Gbps data rate, which is significantly higher than the existing Thrbo

decoders.

75

4.1 LTE/LTE-Advanced Turbo Codes

As shown in Figure 4.1, the Turbo encoding scheme in the LTE/LTE-Advanced stan-

dard is a parallel concatenated convolutional code with two 8-state constituent en-

coders and one quadratic permutation polynomial (QPP) interleaver [94]. The func-

tion of the QPP interleaver is to take a block of N-bit data and produce a permutation

of the input data block. From the coding theory perspective, the performance of a

Turbo code depends critically on the interleaver structure [49]. The basic LTE Turbo

coding rate is 1/3. It encodes anN-bit information data block into a codeword with

3N + 12 data bits, where 12 tail bits are used for trellis termination. The initial

value of the shift registers of the 8-state constituent encoders shall be all zeros when

starting to encode the input information bits. LTE has defined 188 different block

sizes, 40 ~ N ~ 6144 .

.----------------.-.sk(Systematic)

ph (Parity 1)

Figure 4.1 : Structure of rate 1/3 Turbo encoder in the LTE/LTE-advanced system.

76

4.2 QPP Interleaver

The task of an interleaver is to permute the soft values generated by the MAP decoder

and write them into random or pseudo-random positions. Interleaving/ deinterleaving

of extrinsic information is a key issue that needs to be addressed to enable par­

allel decoding because memory access contention may occur when MAP decoders

fetch/write extrinsic information from/to memory. The QPP interleaver defined in

the new LTE/LTE-advanced standard differs from previous 3G interleavers in that it

is based on algebraic constructions via permutation polynomials over integer rings. It

is known that permutation polynomials generate contention-free interleavers [96, 95],

i.e. every factor of the interleaver length becomes a possible parallelism degree.

4.2.1 Algebraic Description of QPP Interleaver

The QPP interleaver can be expressed via a simple mathematical formula. Given an

information block length N, the x-th interleaving output position is specified by the

quadratic expression: [94]

f(x) = (hx 2 +fix) mod N, (4.1)

where parameters f1 and h are integers and depend on the block size N (0 ::;

x, fi, f 2 < N). For each block size, a different set of parameters fi and h are defined.

In LTE, all the block sizes are even numbers and are divisible by 4 and 8. Moreover,

the block size N is always divisible by 16, 32, and 64 when N >= 512, N >= 1024,

and N >= 2048, respectively. By definition, parameter !I is always an odd number

77

whereas h is always an even number. Through further inspection, we can list the

following algebraic properties for the QPP interleaver.

QPP interleaver algebraic property 1:

f(x) has the same even/odd parity as x:

f(2k) mod 2 0

f(2k + 1) mod 2 1.

QPP interleaver algebraic property 2:

The remainders of f(x)/4 ,j(x + 1)/4, f(x + 2)/4, and f(x + 3)/4 are unique:

f(4k) mod 4 = 0

f(4k + 1) mod 4 ~ { :

f(4k + 2) mod 4 = 2

f(4k + 3) mod 4 ~ { :

when (!I + h) mod 4 = 1

when (!I+ h) mod 4 = 3

when (!I+ h) mod 4 = 1

when (!I+ h) mod 4 = 3.

QPP interleaver algebraic property 3:

f(x) mod n = f(x + m) mod n, 'Vm: m mod n = 0.

Property 1 can be easily verified since parameter h is always even and parameter !I

78

is always odd by definition. Property 2 can be shown through the following equations:

f(4k)

f(4k + 1)

f(4k + 2)

f(4k + 3)

Property 3 can be verified by:

4(412k2 + hk)

4(4f2k2 + 212k + hk) + 12 + h

4(4f2k2 + 412k + hk + !2) + 2!1

4(4f2k2 + 612k + hk + 212) + 12 + 3fi.

f(x + m) = f(x) + m(212x +12m+ fi).

We will explain later that these algebraic properties are very useful in designing

memory systems for parallel Turbo decoder.

4.2.2 QPP Contention-Free Property

In general, a Turbo interleaver/de-interleaver f(x), is said to be contention-free for a

window size of L if and only if it satisfies the following constraint [95, 97, 98]

(4.2)

where 0::; x < L, 0::; i,j < P (= N/L), and i # j. The terms in (4.2) are

essentially the memory indices that are concurrently accessed by the P MAP decoder

cores. If these memory indices are unique during each read and write operation, then

there are no contentions in memory accesses. Figure 4.2 shows an example of the

contention-free memory access scheme.

79

Figure 4.2 : An example of the contention-free interleaving, where a data block is
divided into P = 4 segments (SEG 0 to SEG 3) with equal length of L = N/ P.
The contention-free property requires that for a fixed offset x at each segment, the

segment indices for the interleaving addresses lf(x1iL) J (0::; i::; P- 1) are unique

so that they can be physically mapped to different memory modules.

It has been shown in [96, 95] that every factor of the interleaver length N becomes a

possible interleaver parallelism that satisfies the contention-free requirement in (4.2).

Table 4.1 summaries the parallelism degrees (up to 64) for some of the LTE QPP

interleavers.

Table 4.1 : QPP interleaver parallelism.

N f(x) Parallelism (factors of N)

40 10x2 + 3x 1 ,2,4,5,8, 10,20

48 12x2 + 7x 1,2,3,4,6,8,12,16,24

64 42x2 + 19x 1,2,4,8,16,32

...

6016 94x2 + 23x 1,2,4,8,16,32,47,64

6080 190x2 + 47x 1 ,2,4,5,8, 10, 16,19 ,20,32,38,40,64

6144 480x2 + 263x 1,2,3,4,6,8,12,16,24,32,48,64

80

4.2.3 Hardware Implementation of QPP Interleaver

Based on the algebra analysis in [96], the QPP interleaver is guaranteed to always

generate a unique address which greatly simplifies the hardware implementation. In

MAP trellis decoding, the QPP interleaving addresses are usually generated in a

consecutive order (with step size of d). By taking advantage of this fact, the QPP

interleaving address can be computed in a recursive manner. Suppose the interleaver

starts at xo, we first pre-compute f(xo) as:

f(xo) = (hx~ + hxo) mod N. (4.3)

In the following cycles, as xis incremented by d, f(x +d) is computed recursively as

follows:

f(x +d)

where g(x) is defined as:

(h(x + d) 2 + h(x +d)) mod N

(J(x) + g(x)) mod N,

Note that g(x) can also be computed in a recursive manner:

g(x +d) = (g(x) + 2d2 h) mod N

(g(x) + (2d2f2 mod N)) mod N.

The initial value g(x0) needs to be pre-computed as:

g(xo) = (2df2xo + d2 h + dh) mod N.

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

81

The modulo operation in (4.5) and (4.8) can be difficult to implement in hardware

if the operands are not known in advance. However, by definition we know that both

f(x) and g(x) are less than N, and parameters fi and h are both less than N too.

Thus, the modulo operations in (4.5) and (4.8) can be simply realized by additions

and subtractions. In the LTE standard, the value N is between 40 and 6144.

In the proposed method, three numbers need to be pre-computed: (2d2 h) mod N,

f(x0), and g(x0). Figure 4.3 shows a hardware architecture to compute the interleav-

ing address f (x), where x starts from x0 and is incremented by d on every clock cycle.

For example, by setting d to 1, this circuit can generate interleaving addresses at each

step of 1. If n consecutive interleaving addresses are required at each clock cycle, this

circuit can be replicated n times with n different initial values: x0 , x0 + 1, ... , and

Xo +n -1.

The circuit in Figure 4.3 can generate interleaving address in a descending order

as well by setting d to be a negative number, eg. d = -1. But g(x0) needs to

be recomputed for negative d. To be able to generate both forward and backward

addresses using the same f(x) and g(x) functions, we now describe a method to

generate the QPP interleaving address in the descending order. By substituting x

with x- din (4.5) and reorganize (4.5), we can get:

f(x- d)= (f(x)- g(x- d)) mod N. (4.10)

Similarly, substitute x with x- din (4.8) and reorganize (4.8), we can get:

g(x- d)= (g(x)- (2d2 h mod N)) mod N. (4.11)

.
~.

82

g(x)

Figure 4.3 : Forward QPP address generator circuit diagram, step size= d.

Based on (4.10)(4.11), Figure 4.4 shows a hardware architecture to compute the QPP

address f(x) in the descending order (backward generating), where x starts from x0

and is decremented by don every clock cycle. The three pre-computed values are the

same as those in the forward QPP address generator (cf. Figure 4.3).

As can be seen from Figure 4.3 and 4.4, the proposed QPP interleaver pattern

generator consumes very few resources. The complexity of this circuit is an order

of magnitude smaller than the previous 3G interleavers. For example, a circuit with

about 30K gate count is reported in [99] to generate the interleaving addresses for

Turbo codes in the previous 3G standard (3GPP Release-4), and a UMTS hardware

interleaver with 10.5K gate count is presented in [100]. The low complexity of the

proposed QPP interleaver is achieved due to the fact that the addresses are calculated

83

sequentially, not randomly.

Figure 4.4 : Backward QPP address generator circuit diagram, step size= d.

4.3 Sliding Window and Non-Sliding Window MAP Decoder

Architecture

MAP decoder architectures have been studied by many researchers [101, 102, 103,

104, 101, 105, 106]. Several factors, such as interleaver structure and sliding window

scheme, must be considered when choosing an appropriate MAP decoder for LTE

Turbo decoding. In this section we modify two low-latency MAP decoder architec­

tures and propose a low-complexity QPP interleaving address generator to operate

full-speed with the MAP decoder.

Due to the double recursion in the MAP decoding algorithm [91], the MAP decoder

84

suffers from high decoding latency. To reduce the decoding latency, the sliding window

algorithm is often used [107]. However, the problem of the sliding window approach is

the unknown backward (or forward) state metrics which are required in the beginning

of the backward (or forward) recursion. We refer to the state metrics at sliding

window length distance as stakes. These stakes can be estimated by using a training

calculation [107], which will result in an additional decoding delay depending on the

training length. For LTE Thrbo codes, we do not recommend this traditional sliding

window method when the Thrbo coding rate is high. Because many parity bits will

be removed after the base Thrbo code is punctured to a higher code rate, the training

length has to be increased to accurately estimate the state metrics at those stakes

which consequently delays the decoding process.

For LTE Thrbo decoding, we suggest to use a low-latency decoding method, re­

ferred to as state metric propagation (SMP) method, where the state metrics at stakes

are initialized with stakes from the previous iteration [108]. In the very first iteration,

uniform state metrics can be used for initialization. This method avoids the training

calculation by propagating the state metrics to the next iteration. This method is

especially useful when the Thrbo coding rate is high. Based on our simulation results,

the performance degradation caused by the window truncation in the SMP method

is smaller than that in the traditional training based sliding window method in the

case of high Thrbo code rate. To compare the decoding performance using these two

sliding window algorithms for high rate LTE Thrbo codes, we perform floating point

85

simulations using BPSK modulation over AWGN channel. The LTE rate match­

ing algorithm [94] is used for code puncturing. Figure 4.5 shows the floating-point

simulation result for a rate of 0.95 Turbo code. Because of the high code rate, the

maximum number of iterations is set to 10. In the figure, we show the block error

rate (BLER) curves for the SMP based sliding window algorithm and the traditional

training based sliding window algorithm. In the traditional training algorithm, we

assume the training length is equal to the window length. As can be seen, the BLER

performance of the SMP algorithm with window length W = 64 is better than that

of the training algorithm with window length W = 64, and is close to that of the

training algorithm with W = 96. The SMP algorithm with W = 96 and the training

algorithm with W = 128 perform close to the optimal case when there is no window

effect. Because of the good decoding performance and low decoding delay, we adopted

the SMP algorithm in our Turbo decoder design.

The SMP based sliding window (SW) MAP algorithm (SW-MAP) has a window

overhead of W (c.f. Figure 4.6(a)), which will lead to additional decoding delays.

To eliminate this window overhead, we also consider a non-sliding window (NSW)

based MAP algorithm (NSW-MAP) which is shown in Figure 4.6(b). To be more

general, we consider the case of decoding a segment of the code block where the

segment length is L = N / P. In the SW algorithm, a sliding window is applied to the

backward recursion where the stakes are initialized from the previous Turbo iteration.

If the window length is W, then (L /W) x 2 stakes need to be saved (note that MAP

.... g
w
~
u
0

Ci5

. - . . . -
.

...... -: •. : ..

.._._ Traning, W=64
-+-SMP,W=64
~ Traning, W=96
-*- SMP, W=96
-1!111- Traning, W=128
- - - No window

10~L_ ____ L_ ____ ~----~----~----_L ____ _L ____ _L ____ ~----~----~

4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6
E b/N0 {dB)

86

Figure 4.5 : Simulation result for a rate of 0.95 LTE Turbo code using two different
sliding window algorithms.

87

1 can only be initialized with stakes from MAP 1, not from MAP 2, resulting in twice

the amount of stake memory). In the NSW algorithm, no sliding window is applied to

the backward recursions. So only the stakes at the end of the recursion needed to be

saved. It should be noted that the memory bandwidth of the NSW-MAP algorithm

is higher than the SW-MAP algorithm since two LLRs are read and two LLRs are

written in one cycle. When the decoder parallelism is high, i.e. Pis large, the NSW-

MAP algorithm has throughput advantage over the SW-MAP algorithm. There are

many other varieties of the MAP algorithms. See [109] for a thorough analysis of the

MAP decoder architectures. In this thesis, we primarily focus on these two simple but

effective MAP algorithms, and we will present QPP interleaving address generator

architectures for these two MAP algorithms.

4.3.1 QPP Interleaving Address Generator for SW-MAP Decoder

Figure 4.7 shows the recommended SW-MAP decoder architecture. The SW-MAP

decoder requires one set of a unit, (3 unit, branch unit, and LLRC unit because of

the single flow structure. It employs fully parallel add-compare-select-add (ACSA)

[110] units to calculate the state metrics in the a and (3 recursion processes. A

SMP buffer was used to save the stakes for use in the next Turbo iteration. In the

SW algorithm, the channel LLRs (systematic L8 and parity Lp) are loaded from the

symbol memory in the sequential order. A priori information LLR(in) are loaded

from the LLR memory in the sequential order for the first half iteration, and in

.
\.

r-
1 I

: I I~
I I

~
0

,.0

~i
~""
ll

lrJit

~~
~ 0.5 Turbo iteration

..... J ... •

time
(a) SW-MAP

r-

g~
:0 ~I I it

(!.) I

!1
ll
~ I I I • < ~Init Propagate

~0.5 Turbo iteration
..... J ... •

time
(b)NSW-MAP

0 Stakes initializing from the previous iteration
• Stakes propagating for the next iteration

88

Figure 4.6: Two recommended MAP decoding algorithms for LTE Turbo codes. (a)
SW-MAP decoding algorithm. (b) NSW-MAP decoding algorithm.

the interleaving order for the second half iteration. The soft information LLR(out)

are written to the LLR memory in the backward sequential order during the first

half iteration, and in the backward interleaving order for the second half iteration.

To avoid loading interleaving systematic LLRs from the symbol memory during the

second half iteration, we have modified the MAP algorithm to combine the systematic

LLR with the extrinsic LLR in the first half iteration.

In this algorithm, the interleaving addresses must be generated during the second

half iteration to provide read and write addresses to the LLR memory. In the SW

algorithm, the read operation is in the forward direction, whereas the write operation

is in the backward direction and is always behind the read operation. Figure 4.8(a)

Symbol L. ,Lp
Memory

LLR(in)

Branch
Unit

LIFom
+W+

y

SMP
Buffer

P-unit
SW -MAP Decoder

LLRMemory
(Two-port)

First_ half _iteration
First_ halt:_ iteration

Figure 4.7: SW-MAP decoder architecture.

89

LLR(out)

shows an example of the addressing scheme for W = 4 and x0 = 0. Figure 4.8(b)

shows a hardware architecture for generating interleaving read/write addresses by

using one forward QPP generator (cf. Figure 4.3) and one last-in first-out (LIFO)

buffer.

When the sliding window length is large, using a LIFO can be costly. We will now

propose another method to generate the interleaving write addresses. As depicted

in Figure 4.9(b), a forward QPP address generator and a backward QPP address

generator are used to recursively generate the read addresses f(x) and write address

f(y), respectively. The initial values f(x0) and g(x0) for the forward QPP generator

need to be pre-computed. However, the initial values for the backward QPP address

90

Init with f{xo), g(xo) Forward Q fP generation

Read indexx (~ f~Jil MJ&~csW,J 4 5 6 7 j ...
.----w·---•

Write indexy I~"""". ·=at:TI'I=iz= .. ···•··•··""l=i=· •.••.•• T"]=n...,rlr--7 -.--6----r-5~-4...,1· ..

(a)

Read address

(b) .-w-. Write address j{y)

Figure 4.8 : (a) An example of the interleaver addressing scheme for the SW-MAP
decoder, where W = 4, x0 = 0. (b) Architecture for generating QPP interleaving
read/write addresses.

generator are obtained from (synchronized with) the forward QPP address generator

every W cycles and then a backward recursion is performed on the next W - 1 cycles

to generate the next W- 1 write address. Figure 4.9(a) gives an example of this

algorithm for W = 4 and x0 = 0.

4.3.2 QPP Address Generator for Radix-4 SW-MAP Decoder

Radix-4 MAP decoding [52, 104] is a commonly used technique to achieve a higher

trellis processing speed. For binary Turbo codes, eg. LTE Turbo codes, the trellis

cycles can be reduced 50% by doing Radix-4 processing. In the Radix-4 processing,

during the second half iteration two LLRs for information bit vector {ux, Ux+I} are

needed to be fetched/writen from/to the LLR memory at addresses f(x) and f(x+1).

Thus, two read and two write interleaving addresses need to be generated in each clock

In it

Read indexx

Forward QPP generation

Write indexy

Sync

(a)

(b)

Backward
QPP generation

Sync Backward
QPP generation

91

Figure 4.9 : (a) An example of the forward/backwoard data flow in SW-MAP algo­
rithm, where W = 4. (b) A hardware architecture to generate interleaving read and
write addresses for SW-MAP decoder.

92

Init Forward QPP generation (d=2)

Two read x=2k+ 1 1 3

index: x=2k 0 2

Backward QPP generation (d=2)

Two write y=2j + 1 5 3 1

index: y=2j 4 2 0

(a)

Sync+ LLRMemory

(b)

Figure 4.10 : (a) An example of the forward/backwoard data flow in Radix-4 SW­
MAP algorithm, where W = 4. (b) A hardware architecture to generate read/write
interleaving addresses for the Radix-4 SW-MAP decoder.

93

cycle. Figure 4.10(a) shows an example of the read/write addressing scheme where

a sequence is partitioned into even and odd sub-sequences. Figure 4.10(b) shows a

hardware architecture to generate the interleaving read and write addresses for the

Radix-4 SW-MAP decoder. Two forward QPP address generators (with step d = 2)

are used to generate the interleaving read addresses, and two backward QPP address

generators (with step d = 2) are used to generate the interleaving write addresses.

Based on the QPP algebraic property 1, the LLR memory can be partitioned into

even and odd indexed banks to avoid collisions.

LLR(in)

First_ half_ iteration

SMP
Buffer

LLRMemory
(Two-port)

First_ half_ iteration

Figure 4.11 : NSW-MAP decoder architecture.

~-

94

4.3.3 QPP Address Generator for NSW-MAP Decoder

In the NSW algorithm, forward and backward recursions are performed simultane­

ously by processing data from both ends of the sub-trellis. After the middle point,

soft LLRs are calculated in both forward and backward directions. Figure 4.11 shows

the NSW-MAP decoder architecture. Note that the NSW-MAP decoder requires two

branch metric calculation units and two LLR calculation (LLRC) units because of the

double-direction data processing. Figure 4.12(a) shows the forward/backward data

flow in the NSW-MAP decoding process. Because both the forward and the backward

processes need to access memory, we propose to use a two phase memory accessing

scheme to support double-direction data processing. As shown in Figure 4.12(b), in

phase 0, the forward MAP process is allowed to read two data at addresses f (x) and

f (x + 1) from the LLR memory. In the next clock cycle (phase 1), the backward

MAP process is allowed to read two data at addresses f(y) and f(y- 1) from the

LLR memory. And then this process repeats. For the write operation, it is the same

as the read operation. Also, the write address is just a delayed version of the read

address. The number of delay cycles depends on the pipeline delays in the LLRC

unit in the MAP decoder which is typically several clock cycles. Figure 4.12(c) shows

a hardware architecture to implement this two-phase memory accessing algorithm,

where the LLR memory is partitioned into even and odd indexed banks to avoid

collisions. Each bank is a two-port memory module.

lnit

:t
Fotward read I 0
indexx

lnit

Backward read :t
indexy 7

Phase 0

········l~t!lllll·•· tJeneiit9t•······

.~~R;\lQ:f:f
benei'liiir

I 1 I

6

1

Phase

95

Fotward QPP generation
A

I I I I I] 2 3 4 5 6 7

Backward QPP generation
A

5 4 I 3 I 2 0]
(a)

0 1
(b)

FW addresses

>-..... f(_x_)_, f(_x_+_1_>-.. .• ~ 2 Read addresses
r--------.

f(2k),j{2k+ 1)

LLRMemory

(c)

Figure 4.12 : (a) Forward/backward data flow in the NSW-MAP decoding process.
(b) Two-phase memory accessing scheme. (c) A hardware architecture for generating
interleaving addresses for the NSW-MAP decoder.

96

4.3.4 QPP Address Generator for Radix-4 NSW-MAP Decoder

The two-phase memory accessing scheme shown in Figure 4.12(b) can be extended

to support Radix-4 NSW-MAP decoding as well, where four data at addresses f(x),

f(x+ 1), f(x+2), ~nd f(x+3) are needed to be generated in each clock cycle. Based

on the QPP algebraic property 2 that the four consecutive interleaving addresses

taking modulo 4 will lead to unique values, so the memory can be partitioned into

four banks to allow four concurrent memory accesses in each clock cycle without

any collisions. Figure 4.13 shows a hardware architecture for generating interleaving

addresses for the Radix-4 NSW-MAP decoder.

FgrwardQPP
Generator x2

BacltWIIt!lQPP
Generiit6ix2

Forward addresses
x),j(x+ 1),./(x+ 2),./(x+ 3)

Backward addresses
·./{y),./{y-1),fly-2),fly-3)

Phase

4 read addresses
j(4k),j(4k+ 1)
j(4k+2),j(4k+3)

4 write addresses
j(4j),j(4i+ 1)
j(4j+ 2),j(4j+ 3)

Banko

Bankl

Bank2

Bank 3

LLRMemory

Figure 4.13 : A hardware architecture for generating interleaving addresses for the
Radix-4 NSW-MAP decoder.

4.3.5 MAP Decoder Comparison

Table 4.2 compares the resource usage and decoding latency for a SW-MAP decoder

and a NSW-MAP decoder, in which W is the sliding window length in the SW

97

algorithm, L is the segment length L = N / P, Ba. and B'Y are the total bit widths for

the a state metrics (8 states in total) and the 1 branch metrics, respectively.

Table 4.2: MAP decoder architecture comparison.

SW-MAP NSW-MAP

a unit 1 1

{3 unit 1 1

Branch unit 1 2

LLRC 1 2

QPP address generator 2 2

State-buffer (bit) Ba. X w Ba. XL

')'-buffer (bit) B'Y X w 0

SMP-buffer (bit) Ba. X 2L/W Ba. X 4

Processing time (cycles) W+L L

The sub-block size W depends on the parallelism level P in a parallel Thrbo

decoder architecture where multiple MAP decoders are employed. Figure 4.14 illus-

trates the two parallel decoding algorithms based on the SW-MAP decoder and the

NSW-MAP decoder. In this particular example, P = 4 number of MAP decoders are

used.

To compare the area for these two types of MAP decoder architectures, we have

synthesized them in a TSMC 65-nm CMOS technology for a 400 MHz clock frequency.

The fixed point word lengths for the channel LLRs, extrinsic LLRs, and state metrics

are 6, 7, and 10 respectively [12]. For the SW-MAP architecture, the sliding window

~
(.,)

,Q
,D

-~ --~
E-<

~ -8 I - ~ ,D
rll ·-= Q)

~

time

(a) SW-MAP parallelization (b) NSW -MAP parallelization

0 Stakes initializing from the previous iteration
• Stakes propagating for the next iteration

98

Figure 4.14: An example of a multi-MAP parallel decoding approach with P = 4. (a)
Parallel SW-MAP algorithm with state metric propagation. (b) Parallel NSW-MAP
algorithm with state metric propagation.

99

length W is assumed to be 64. Consider decoding of a segment of a code block where

the code length is N = 6144 and the segment length is L = N / P, Figure 4.15 shows

the area cost for these two types of MAP decoders. As can be seen, as the decoder

parallelism P increases, the area cost of the NSW-MAP decoder reduces quickly and

comes closer to the area cost of the SW-MAP decoder.

2.5 [TT---,------,-----,-----,------;::::===========:-l

I-&- NSW-MAP Decoder!
..........- SW-MAP Decoder I

2 ... · ..

-1.5
'E
E

0.5

I~

8 16 32
Parallelism (P}

64

Figure 4.15: Area of a NSW-MAP decoder and a SW-MAP decoder.

To compare the efficiency of these two architectures, we define an efficiency metric

as area x time, or AT, where area is one MAP decoder area and time is the

processing time for a sub-trellis for a half Thrbo iteration. Figure 4.16 plots the

.
~.

100

AT complexities for different P, where the AT value is displayed on a logarithmic

scale. Clearly, when the parallelism degree P is small, the NSW-MAP architecture

has a higher AT complexity than the SW-MAP architecture because a large number

of state metrics have to be buffered. On the other hand, as P increases, the NSW­

MAP architecture will become more efficient due to the fact that the double-flow

NSW-MAP decoding has no sliding window overhead, whereas the single-flow SW­

MAP decoding has a sliding window overhead of (N/;'+W)" As a design tradeoff, we

adopted the SW-MAP architecture in our final hardware implementation to save area

while still achieving 1Gbps throughput.

Figure 4.17 compares the AT complexities of a Radix-4 SW-MAP decoder and

a Radix-4 NSW-MAP decoder for a 250 MHz clock frequency. One observation is

that the Radix-4 transform can effectively reduce the AT complexity of the NSW­

MAP decoder when P is small. However, Radix-4 transform will not necessarily

reduce the AT complexity of the SW-MAP decoder. This is due to the fact that the

Radix-2 decoder can run at a faster clock frequency, and has a lower complexity than

the Radix-4 decoder (assuming full LogMAP implementation). We will compare the

Radix-2 and the Radix-4 architectures in more detail in the next section.

4.4 Top Level Parallel Turbo Decoder Architecture

Decoder parallelism is necessary to achieve the LTE/LTE-Advance high throughput

requirement which is up to 1 Gbps. In order to increase the throughput by a factor

1ifiTT~~~~ .. ~.~~~~~~~------.-.. -... -.-.. -.. -.. -.. -.. ----~ ..

-e- NSW Architecture
-T- SW Architecture

...... ············ -...... -~ -

. • •

-2 ...

10 012 4 8 16

·············

...... ·······- . ···················-...............................

32
p

64

101

Figure 4.16: AT complexity of a SW-MAP decoder and a NSW-MAP decoder.

1ifn.~.~--~----~ .. -.. -.~.~---~-~--.-.. -.. -.-... -.. -.-.~ .. -.. ~ .. -.. -.. -.. -.-.. -.~ .. ~ .. ~ ... ~ .. ~ .. ~.~ .. -.. -.. -. -.. ~ .. ~ .. ~ .. ~.
···················
:.::::::::::.:::::: ::::::::::::::::::: -e-NSW Radix4Architecture :
··· · · · · · · · · ··· · · · · · · · · · ·· :. · · _,._ SW Radhc:4 Architecture

.. •'• ········-··············

10-012 4 8 16

. . . . -·· -•..•................. -....... .

.

32
p

.... ... ------- ·············

64

Figure 4.17 : AT complexity of a Radix-4 SW-MAP decoder and a Radix-4 NSW­
MAP decoder.

102

~

.§.
8 e;>';; I

Cl., ~~
"5 Q)"t::

s ~~

~ .._,

"' ts
QJ

§
G

....

§ "':"-. ~ ~
c:-·;;- ~ ti ~ ..s ~:g]~ ta
~~ ~ = "' ,0 "'

"' t.a "' e ~ Ql'tl
u ~ <

Figure 4.18: The proposed parallel decoder architecture with P SW-MAP decoders.
P memories are used to support contention-free memory accessing. Crossbar inter­
connects are used to permute the memory read/write data.

103

of P, an information block can be divided into P segments with equal length Land

then each segment is processed independently by a dedicated MAP decoder [111, 112,

113, 114, 103, 115, 116, 117, 12, 53, 58]. In this scheme, each of the P MAP cores

processes the data sequentially and fetches/writes the data simultaneously always

at the same offset x to each segment. The interleaver structure in the current and

previous 3G standards do not have a parallel structure which makes it difficult to

realize the parallelization of the MAP decoders. Expensive write buffers have to be

used to reduce the memory collision caused by the interleaver [93, 118]. However,

when the parallelism degree increases, the collisions can not be effectively resolved

by using write buffers. The LTE QPP interleaver, however, has an inherent parallel

structure that supports contention-free memory accesses which result in a large design

space for the selection of appropriate levels of decoder parallelism.

In this section, we will present a highly-parallel Thrbo decoder architecture based

on the QPP conflict-free interleaver and give an analysis of the complexity and the

throughput. Figure 4.18 shows a hardware architecture for implementing the pro­

posed parallel SW-MAP algorithm. In this architecture, P sets of QPP interleavers

are used to generate the inter leaving addresses f (x), f (x + L), ... , and f (x + (P- 1) L)

concurrently, where Lis the segment length L = N/ P. Based on the QPP contention­

free property, these P addresses will be mapped to different memory modules 0 to

P- 1 without any collisions. Thus, no write buffers are required. A crossbar network

is used to permute the data between the MAP decoders and the memory modules.

104

Furthermore, based on the QPP interleaver algebraic property 3, this architecture

can be modified to support the Radix-4 SW and NSW MAP decoding algorithms

by setting the following constraints. To support the Radix-4 SW-MAP decoding, L

needs to be divisible by 2, and each memory module needs to be partitioned into even

and odd indexed banks. To support the Radix-4 NSW-MAP decoding, L needs to be

divisible by 4, and each memory module needs to be partitioned into four banks.

4.4.1 Throughput-Area Tradeoff Analysis

High throughput is achieved by using multiple MAP decoders and multiple mem-

ory modules/banks. In this section, we will analyze the impact of parallelism on

throughput and area. The maximum throughput is measured as:

SW Throughput = Decod:g time ~ I. (%; ~~+ W)

NSW Throughput = 1! . ~ N ~ f ,
Decodmg time I · (N / P)

where N = N, W =Win the case of Radix-2 decoding, and N = N/2, W = W/2 in

the case of Radix-4 decoding. I is the total number of half iterations performed by

the Turbo decoder. f is the operating clock frequency.

To analyze the area and throughput performance for different QPP parallelism

degrees, we describe a Radix-2 and a Radix-4 SW parallel Turbo decoder in Verilog

HDL and synthesize these decoders for a 65 nm CMOS technology using Synopsys

Design Compiler. The tradeoff analysis result is given in Figures 4.19 and 4.19 which

plots the area and the throughput for different parallelism degrees and clock rates. As

105

can be seen, a 1 Gbps throughput is achievable with 64 Radix-2 MAP decoder cores

running at a 310MHz clock frequency or 32 Radix-4 MAP decoder cores running at

a 250MHz clock frequency.

For a parallel Turbo decoder which consists of multiple MAP units, the MAP

units tend to dominate the silicon area especially when the parallelism is high. From

Figures 4.19 and 4.20, we can see that given the same throughput target, the Radix-2

architecture provides a lower area cost than the Radix-4 architecture for most of the

cases and especially when Pis large. This is mainly due to the fact that the Radix-2

MAP unit can run at a faster clock frequency, and has a lower complexity than the

Radix-4 MAP unit (assuming full LogMAP implementation). However, it should be

noted that the Radix-2 decoder may need a higher partitioning of the code block than

the Radix-4 decoder to achieve the same throughput target. As a design tradeoff, we

adopted the Radix-2 architecture in our final hardware implementation to save area

while still meeting the 1 Gbps throughput target.

4.5 Summary

We have presented a highly-parallel Turbo decoder architecture for LTE-Advance

system. By utilizing the new contention-free interleaver, we designed a 64-MAP

parallel decoder to achieve 1 + Gbps data rate. Compared to the existing 3G or 4G

Turbo decoders, the proposed Turbo decoder has a signific~nt throughput advantage

while still maintaining low area cost and low power consumption. In Chapter 6, we

.
~.

85~~--~--~--~~--~--~--~~~~--~--~~

8 · · :

75 ---- ·,· -:- ~ :- -:-

7
--.-- ... ,

65 ····························

6

55 . ' . . . ----------- .. ·: ·.· .. -. ·.· : ·.· ·.· : ..

. ·. ~ . . - . . ·.· ·.- ..

m 4
~

..... · · :

- 35
-- : ·.-- .. . · : .. -- _._--- -

' '

3 :. - ... -:- ; : .. -.- . . . ' . --.- ·.· : ·.·

.

2:••··u~•••••••:•.••••·•••••••••••••••••• . .
15 ··~ . ··········.······:·····'·····:--····:······

1·~···.·····:·····.-·····.·····.····;·····:······:·····:

0.5 -.. - ~-- ... : :. . . - ., ' , , '

e P=64
111111 P=32
..Ia P=16

• P=8
""""""~""""""P=4

--P=2

* P=1
OL_-L~--~~--~~--L--L __ L__c~c=~~

0 1 00 200 300 400 500 600 700 800 900 1 000 11 00 1200 1300
Throughput (Mbps)

Figure 4.19 : Area-throughput tradeoff analysis for Radix-2 Thrbo decoder

106

20~--~~--~----~----~----~----~----~----~

19 --- - -. .

18 ·- ..
17 -

16 .. ------.: : ----.--

15

14
-: - .· ... - -·-
. .

- - - . - - . . ~ - - '. -

---.- ·'·.--- - - -··.---.-- ·'·
. .

. ---- ·.· .. - ·.-- - - --- .. -. .

8
7 ,-------,

e P=64
1111 P=32 .. P=16 .. P=8

6 ' ' '· .. .

5 : .. ~ : ..

4········.~·····:········:·······
. . .

t · P=4
P=2

* P=1

3 : : ..

2:: .. ~····:··.··: ... •
1··~·:········<·········:···········
o~--~----~----~----~----~----~----~----~

0 200 400 600 800 1 000 1200
Throughput (Mbp$

1400 1600

Figure 4.20 : Area-throughput tradeoff analysis for Radix-4 Thrbo decoder.

107

108

will present the ASIC implementation results for the proposed Turbo decoder in more

details. To support iterative detection and decoding scheme, this Turbo decoder can

be configured to output soft LLR values to the detector.

109

Chapter 5

High-Throughput LDPC Decoder Architecture

LDPC codes have inherent large parallelism that can be exploited to design a high-

speed decoder. In theory, a random LDPC code with infinite block size will achieve

near-capacity performance. However, it is very complex to implement such a decoder

because of the random parity check matrix. To reduce implementation complexity

while still maintaining good error protection capability, new wireless standards are

adopting structured quasi-cyclic LDPC (QC-LDPC) codes. These structured QC-

LDPC codes typically have a block size of several thousands bits and can be either

regular codes and irregular codes. If the parity check matrix of a LDPC code has

the same row and column degree, this LDPC code is called a regular LDPC code.

Otherwise, it is an irregular LDPC code.

Partial-parallel architectures are often used for the decoding ofthese structured

QC-LDPC codes. The main challenge of the partial-parallel architecture is to de-

velop a flexible decoder architecture to support multiple codes. The existing LDPC

decoders are developed mostly for a particular standard which lacks the flexibility

'"

to be reconfigured to support multiple standards. In this chapter, we describe high-

throughput low-density parity-check (LDPC) decoder architectures that support vari-

able block sizes and multiple code rates. Various techniques are used to reduce the

110

implementation complexity of the LDPC decoders. We first present a Min-sum algo­

rithm based LDPC decoder. Next, we present a more powerful Log-MAP algorithm

based LDPC decoder. To achieve multi-Gbps decoding throughput, we propose a

multi-layer parallel decoder architecture. Furthermore, we propose a flexible decoder

architecture that can support both LDPC codes and Turbo codes with a low hardware

overhead.

5.1 Structured QC-LDPC Codes

In chapter 2, we have introduced the general LDPC codes. Almost all the practical

wireless systems currently use the QC-LDPC codes. In this chapter, we mainly focus

on the decoder design for the structured QC-LDPC codes. As shown in Fig. 5.1(a)(b),

for a QC-LDPP code, the parity check matrix (PCM) is constructed from an M x N

seed matrix by replacing each '1' in the seed matrix with a Z x Z cyclically shifted

identity sub-matrix, where Z is an expansion factor. A corresponding Tanner factor

graph representation of this M Z x N Z generated PCM is shown in Fig. 5.1 (c). It

divides the variable nodes and the check nodes into clusters of size Z such that if

there exists an edge between variable and check clusters, then it means Z variable

nodes connect to Z check nodes via a permutation (cyclic shift) network.

As an example, Fig. 5.2 shows the parity check matrix for the block length 1944

bits, code rate 1/2, sub-matrix size Z = 81, IEEE 802.11n LDPC code. In this matrix

representation, each square box with a label Ix represents an 81 x 81 cyclicly-shifted

111

) LayerO

) ~ayer 1

10101100

0 1 0 1 0 1 1 0 Expand by z
~~ 10101011

11011001)~ayerM1
(a) M x N seed matrix

z
~ Z x Zldentity matrix
W = cyclically shifted by x D = Zero matrix

(b) MZ xNZ generated PCM

D = Olecknode cluster(sizeZ) 0 = Variable node cluster(sizeZ)

(c) Factor graph representation of a1 MZ xNZ PCM

Figure 5.1 Parity check matrix and its factor graph representation

~-

112

identity matrix with a shifted value of x, and each empty box represents an 81 x 81

zero matrix.

Is? /,_o /11 I so /79 /1 Io
/3 /2s Io Iss /7 Io Io
ho /24 /37 ls6 /14 Io Io
h2 ls3 ls3 h l3s Io Io
/4o ho 166 h2 ~2S /o /o

/o Is /4') II so Is /o /o

/69 /79 ~79 ls6 ls2 Io Io Io
l6s /3s Is? In /27 Io Io
h4 /14 ls2 /30 /32 Io Io

l4s /70 Io /77 /9 Io Io
/2 ls6 Is? l3s ~12 Io Io
/24 /61 /60 /27 ls1 /16 /1 Io

Figure 5.2: Parity check matrix for block length 1944 bits, code rate 1/2, sub-matrix
size Z = 81, IEEE 802.11n LDPC code.

5.2 Layered Decoding Algorithm

A good tradeoff between design complexity and decoding throughput is partially

parallel decoding by grouping a certain number of variable and check nodes into a

cluster for parallel processing. Furthermore, the layered decoding algorithm [70] can

be applied to improve the decoding convergence time by a factor of two and hence

increases the throughput by two times.

The layered decoding algorithm [71] is described as follows. We define the following

notation. The a posteriori probability (APP) log-likelihood ratio (LLR) of each bit

113

n is defined as:

Pr(n = 0)
Ln =log p () , rn=l

(5.1)

where Ln is initialized to be the channel input LLR. The check node message from

check node m to variable node n is denoted as Rm n- The variable message from ,

variable node n to check node m is denoted as Qm,n· The conventional layered

algorithm, or single-layer algorithm, assumes that the rows are grouped into layers

where the parity check matrix for this layer has at most a column-weight of one.

The single-layer algorithm only handles one layer at a time, i.e. the maximum row

parallelism is limited to the sub-matrix size Z. Each layer is processed as a unit,

one layer after another. For each non-zero column n inside the current layer, variable

node messages Qm,n that correspond to a row mare formed by subtracting the check

node message Rm,n from the APP LLR message Ln:

Qmn = Ln- Rmn· , , (5.2)

For each row m, the new check node messages R'm n' corresponding to all variable ,

nodes j that participate in this parity-check equation, are computed using the be-

lief propagation algorithm. In this work, we use the scaled min-sum approximation

algorithm (with scaling factor of S) to compute the R value:

(5.3)

where Nm is the set of variable nodes that are connected to check node m, and Nm \n

is the set Nm with variable node n excluded. The non-linear function w(x) is defined

114

as:

w(x) = -log [tanh c~l)] . (5.4)

To reduce implementation complexity, the min-sum algorithm [63, 64] can be used to

-
approximate the non-linear function w(x). By applying the scaled min-sum algorithm

with a scaling factor of S, equation (5.3) is changed to:

R'm,n ~ S · IT sign(Qm,j) · . ~,in\ \Qm,j\,
)EJvm n

jENm\n

(5.5)

where Nm is the set of variable nodes that are connected to check node m, and Nm \n

is the set N m with variable node n excluded. After the check nodes messages are

computed, the new APP LLR messages L~ are updated as:

L~ = Ln + R'm,n - Rm,n· (5.6)

The layered decoding algorithm is often used to decode the structured QC-LDPC

codes. In chapter 2, we have introduced the layer decoding algorithm in detail. We

summarize the layered decoding algorithm in Algorithm 3.

5.3 Block-Serial Scheduling Algorithm

To implement Algorithm 3 in hardware, we propose a block-serial (BS) scheduling

algorithm as shown in Fig. 5.3. In this algorithm, one full iteration is divided into M

sub iterations. A processing element (PE) is applied to each layer in sequence. Each

Z x Z sub-matrix is treated as a macro within which all the involved parity checks

Algorithm 3 Layered belief propagation algorithm
Initialization:

V(m, n) with H(m, n) = 1, set Rmn = 0, Ln = ~

for iteration i = 1 to I do

for layer l = 1 to L do

1) Read:

V(m,n) with H 1(m,n) = 1:

Read Ln and Rmn from memory

2) Decode:

Qmn = Ln- Rmn

Rr;::: = njENm\nsign(Qmj)w(L:jENm\n w(Qmj))

Lnew = Q + Rnew n mn mn

3) Write back:

Write Lnew and Rnew back to memory n mn

end for

end for

Decision making: Xn = sign(Ln)

115

116

are processed in parallel using Z number of PEs. Each PE is independent from all

others since there is no data dependence between adjacent check rows.

AO Al A2 A3 BO Bl B2 B3 CO Cl C2 C3 DO D1 D2 D3

Sub-iteration 1 Sub-iteration 2 Sub-iteration M

Figure 5.3 : Bl~ck-serial (BS) scheduling algorithm

5.4 Min-sum LDPC Decoder Architecture

Fig. 5.4 shows the block diagram of the decoder architecture based on the layered

min-sum decoding algorithm. In each sub-iteration, a cluster of APP messages and

check messages are fetched from APP and Check memory, and then the APP messages

are passed through a flexible permuter to be routed to the correct Processing Engines

(PEs) for updating new APP messages and check messages. The PEs are the central

processing units of the architecture that are responsible for updating the check node

and variable node messages. The number of PEs determines the parallelism factor

of the design. For a certain block-size code, only Z PEs are working while the rest

are in a power saving mode. As shown in Fig. 5.5, the PE inputs wr elements of Ln

117

ln. new from PEs Rmn new from PEs

APPMemory Addr CHECK Memory

Ln new

Figure 5.4: Top level min-sum LDPC decoder architecture

~-

118

and Rmn, where wr is the number of nonzero values in each row of the PCM. Qmn

is calculated based on (5.2). The sign and magnitude of Qmn are processed based

on (5.5) to generate new Rmn· Then the Qmn are added to the Rmn to generate

new Ln (wr of them) based on (5.6). The outputs (Ln and Rmn) of all the Z PEs

are concatenated and stored in one address of the APP and Check memories. For

each layer's sub-iteration, it takes about 2wr clock cycles to process, so the decoding

throughput is:

Th h N X Z X Rate X fclkmax
roug put~ . .

2 x E x zteratwns

where Rate is the code rate and E is the total number of edges between all variable

nodes and check nodes in the seed matrix. Clearly, the throughput would be linearly

proportional to the expansion factor Z for a given seed matrix.

Ln_new

Figure 5.5 : Processing Engine (PE)

119

5.4.1 Flexible Permuter Design

One of the main challenges of the LDPC decoder architecture is the permuter design

that is responsible for routing the messages between variable nodes and check nodes.

However for QC-LDPC codes, the permuter is just a barrel shifter network (size-Z) for

cyclically shifting the node messages to the correct PEs. Fig. 5.6 gives an example

of a size-4 barrel shifter network. The hardware design complexity of this type of

network is O(Zflog2 Zl) as compared to O(Z2) for the directly connected network.

For large size Z (e.g. 128), the barrel shifter network needs to be partitioned into

multiple pipeline stages for high speed VLSI implementation.

Traditionally a de-permuter would be ne~ded to permute the shuffied data back

and save it to memory, which would occupy a significant portion of the chip area [80].

However, due to the cyclic shift property of the QC-LDPC codes, no de-permuter

is needed. We can just store the shuffied data back to memory and for the next

iteration we should then shift this "shuffled data" by an incremental value ~ =

(shiftn- shiftn-1) mod Z.

0

I

2

3

3

0

1

2

Barrel shifted by 1

Figure 5.6 : A 4 x 4 Barrel shifter network

-- -----------------------

120

5.4.2 Pipelined Decoding for Higher Throughput

Data depency
Index 0 1 2 3 4 5

Layer i Read.Min-sum
Layer i X X X

Layer i+t Write back Layer i+1 X X

(a) Two layer pipelined decoding (b) Two adjacent layers of the matrix

Clock cycle I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 1101111121131
R= Read

Layer i w = Write

Layer i+1
ST =Stall

Two memory read stalls due to data depency

(c) Pipelining data hazard

Figure 5.7 : Pipelined decoding

The decoding throughput can be fqrther improved by overlapping the decoding

of two layers using a pipelined method. The decoding of each layer of the parity

check matrix is performed in two stages: 1) Memory read and min-sum calculation

and 2) Memory write back. However, due to the possible data dependence between

two consecutive layers (there is no data dependency inside each layer because the

column weight is at most 1 in each layer), a pipelining data hazard might occur.

Fig. 5.7 shows an example of pipelined decoding. In Fig. 5.7(c), at clock cycle 6,

layer (i + 1) is trying to access APP memory address 3 which will not be updated by

layer i until clock cycle 7, hence two pipeline stalls need to be inserted. Moreover, a

horizontal rescheduling algorithm can also be applied to help reduce pipeline stalls.

121

For example, in Fig. 5.7, layer (i + 1)'s reading can be rescheduled from the original

sequence 1-3-4 to 1-4-3 to reduce pipeline stalls. This way, the decoding throughput

will be increased to

N x Z x Rate x fclk
Pipelined Throughput ~ E x I ,

where I is the number of iterations.

5.5 Log-MAP LDPC Decoder Architecture

5.5.1 Low-Complexity Implementation of The Log-MAP Algorithm

Conventionally, function w(x) = -log(tanh(lx/21)) is used for the decoding oper-

ations in Algorithm 3. However, the w(x) function is prone to quantization noise

and can be numerically unstable [119). Alternately, a different and numerically more

robust way to compute the Rmn is shown as

Rmn = L B3Qmj = (L B3Qmj) E3 Qmn,
jENm\n jENm

(5.7)

where the B3 and E3 operations are defined as a B3 b ~:;. f (a, b) = log 1e"t~;i,b and a E3

b ~:;. g(a, b) = log ~-;.e_:;,t [120)[121). This computation method is especially suitable

for the proposed BS scheduling algorithm in which the macro blocks are processed

in sequential order. For hardware implementation, !(·) and g(·) functions can be

122

simplified to

f(a, b) =sign(a) sign(b) (min(lal, lbl) +

log(1 + e-(lal+lbl)) -log(1 + e-llal-lbll)),
(5.8)

g(a, b) = sign(a)sign(b) (min(lal, lbl) +

log(1- e-(lal+lbl)) -log(1- e-llal-lbll)).

In hardware, the non-linear correction terms log(1 +e-x) and log(1 -e-x) in (5.8)

are approximated using low-complexity 3-bit lookup tables (LUTs) [121].

5.5.2 Radix-2 Log-MAP SISO Decoder

Fig. 5.8 shows the proposed soft-input soft-output (SISO) decoder architecture for

generating Rmn· We refer to it as Radix-2 (R2) recursion architecture since only one

element can be processed in one clock cycle. The R2-SISO core consists of one f (·)

recursion unit followed by one g(·) unit. Note that the g(·) unit would have the same

structure as the/(·) unit but with a different LUT.

Fig. 5.9 shows the decoding schedule for check row m. During the first dm * cycles,

the incoming variable messages Qmn ('Vn E Nm) are fed to the decoder sequentially

and the/(·) unit is reused dm times to obtain the intermediate EB sum Sm. Then, the

outgoing messages Rmn ('Vn E N m) are generated in a sequential order by the g(·) unit.

Though the decoding is sequential for each check row, multiple (Z) check rows within

one layer can be processed in parallel by employing multiple (Z) SISO decoders, which

* dm is the number of non-zero elements in check row m.

123

increases the throughput by a factor of Z (see Fig. 5.3). Furthermore, the decoding

throughput can be improved by overlapping the decoding of two layers as shown in

Fig. 5.9. This scheduling would require dual-port memory for simultaneous read and

write operations. Typically data dependencies between layers will occasionally stall

the pipeline for one or more cycles. However the pipeline stalls can be avoided by

shuffling the order of the layers [68].

a
/(·)Unit

Min(lal, lbl)

Sign(a) A Sign(b)

Figure 5.8 : Radix-2 (R2) SISO decoder architecture

5.5.3 Radix-4 SISO Decoder via Look-Ahead Transform

To increase the throughput of the R2-SISO decoder, a look-ahead transform can be

used for the f (·) recursion. This transform leads to an increase in the number of

data processed in each cycle as shown in Fig. 5.10, where two elements are processed

124

Layer '

Qml, Qm2, Qm3 ··· (1) Read

Sm= ~Qmj Rmn = Sm E3 Qmn
jEN,, (n =1, 2, 3, ...)

(2)Decode

Rmt, Rm2,Rnu ... (3) Write back

+--dmcycl..., dmcycle

Layer

--------------1+1=
1 Read : .. _____________ _
r-------------J-------------
1 Decoding Stage 1 Decoding Stage 2 : .. _____________ --------------

r--------------
1 Write back : L--------------

Figure 5.9 : Pipelined decoding schedule

in one clock cycle. We refer to this transform as Radix-4 (R4) recursion. Fig. 5.11

shows the corresponding Radix-4 SISO decoder architecture. Since two elements can

be processed in each cycle, it has a throughput speed up of 2. Table 2 summarizes

the synthesis results (90nm CMOS technology) for the R4 and R2 SISO decoders. To

compare these two architectures, we define an efficiency factor T/ as the throughput

speed-up with R4-SISO divided by the area overhead. As can be seen, R4-SISO

achieves throughput-area efficiency gains especially at lower clock frequency.

~2n+l•--~------------~

~2n)

.-------~---. y(2n)

...........,,........y(2n+l)

Figure 5.10: One level look-ahead transform off(·) recursion

R4-SISO Core

Qm,2n+l-+------,

Qm,2n

Figure 5.11 : Radix-4 (R4) SISO architecture

Table 2: Comparison of two SISO decoder architectures

450 MHz 325 MHz 200 MHz

R2 SISO area 6978 p.m2 6367 p.m2 6197 p.m2

R4 SISO area 12774 p.m2 10077 p.m2 8944 p.m2

_ s2eedue
'fJ - Area overhead 1.09 1.26 1.39

5.5.4 Top Level Log-MAP LDPC Decoder Architecture

L2n+l

Rm,2n+l

125

Fig. 5.12 shows the Log-MAP LDPC decoder architecture. In the proposed BS

scheduling algorithm, the parallelism factor is equal to the sub-matrix size Z. Since

parameter Z varies from code to code, i.e. 19 different sizes of Z are defined in

WiMax, we must design a datapath that is modular and scalable to support different

code types. This is achieved by employing distributed SISO decoders and memory

banks as shown in Fig. 5.12. This architecture can also reduce the overall power

consumption by deactivating the memory banks and SISO decoders that are not be-

126

ing used. The L messages, on the other hand, are stored in a central memory bank

for parallel accessing by Z SISO decoders. This is achieved by grouping [1 x Z] L

messages (associated with each sub-matrix) into one memory word.

The decoding flow for one sub-iteration is as follows: at each cycle, [1 x Z] L

messages are first fetched from the L-memory and passed through a circular shifter

to be routed to z SISO decoders. The soft input information Qmn is formed by

subtracting the old extrinsic message Rmn from the APP message Ln. Then the

SISO decoder generates a new extrinsic message Rmn and APP message Ln, and

stores them back to the R-memory and the £-memory, respectively.

Circular Shifter
ZxZ

Figure 5.12 : Log-MAP LDPC decoder architecture with scalable datapath

By designing proper control logic, the decoder can be dynamically reconfigured to

support multiple block-structured LDPC codes. With this partial-parallel architec-

ture, the pipelined (Radix-4) decoding throughput is approximately equal to:

2 x N x Z x Rate x f elk
EX I

127

(5.9)

where N is the number of block-columns in H, Z is the sub-matrix size, R is the code

rate, E is the total number of non-zero sub-matrices in the parity check matrix, and

I is the number of full iterations.

5.5.5 Performance Evaluation

The number of entries in the look-up-table determines the decoding performance

and was analyzed in Fig. 5.13. We use two cases of IEEE 802.11n LDPC codes

for simulation, and assume BPSK modulation and an AWGN channel with a (7.3)

quantization scheme (7 total bits with 3 fractional bits). From Fig. 5.13, we can see

that a 32-entry LUT has nearly no performance loss compared with the floating point

belief propagation (BP). And a 24-entry LUT only has about 0.02dB performance

loss compared with floating point BP. However a 16-entry LUT suffers about 0.05dB

performance degradation. As a comparison, we also depict the performance of the

offset min-sum approximation algorithm [63] which suffers 0.3 to 0. 7dB performance

degradation compared to floating point BP.

5.6 Multi-Layer Parallel LDPC Decoder Architecture

The conventional layered decoder architecture [71, 109] is initially developed to pro-

cess the parity check matrix layer by layer, where each layer corresponds to a block-

a::
w
CD

LDPC Codes, BPSK on AWGN Channel @ 15 Iterations

1if~~··~··~~~:0~~~~~~~~~ .. ~ .. ~ .. ~.~·~··~··~··~··~··~·~··~··~··~==~====~==~ · · · · · · · · · · : : : : : : : : :: · : : : : · · · ~ · · : : : : : ::: : : : : : : : : : : : : : : : : : ::: : : : : : : : ::: - - - Floating point BP
...........••••••• :••• ··:·· ••••••• : •••••••• •:•• •••••• •:• -e-LU"F-32

· · - · · · · · · · · -· · . . · · · · .: · · · · · · · · · :. -iF- LU"F-24
········<··········:··· ···:·········:· --*"-LU"F-16

.....
·······:·········.

·······:·········:· N=1296 .
· · · · ·> Rate=1/2

·······<·········:··········:········-:
. '

. . '
'''''''''''''0000000000 OOOOOOOOOOOOOOOOOOOOOOOMOOOOO~OOO

' ' ' ····-·····················

· · · · · · :· -e- Offset Mh-sun

.

----·--. :
.. ·. N=1296

Rate=2/3: · ·

10~~~----L---~-----L----~----L---~-----L----~----L---~L---~
0.6 OB 12 1.4 1.6 1B 2 22 2.4 2.6

Eb/NO (dB)

Figure 5.13 : Performance comparison of different L UT configurations.

128

129

row of the parity check matrix. Since the column-weight of each layer is typically 1

in many applications, such as IEEE 802.11n and IEEE 802.16e, this greatly simplifies

the decoder design. To further improve the throughput, the two consecutive layers'

data processing can be partially overlapped through a pipelined schedule [17, 65),

where the data conflicts between two layers can be resolved by stalling the pipeline.

The maximum row parallelism for the conventional layered algorithm is equal to the

sub-matrix size Z, i.e. we can employ Z parallel check node processors to process Z

rows in parallel. With this amount of parallelism, the conventional layered decoder

can typically offer 100-1000 Mbps throughput [65, 68, 17, 122, 123].

To go beyond 1-Gbps throughput, the layered architecture needs to be extended

to provide higher parallelism. One natural extension of the conventional layered

architecture is to design a multi-layer parallel architecture where multiple (K) layers

of a parity check matrix are processed in parallel. Now the maximum row parallelism

is increased to KZ, i.e. we can employ KZ check node processors to process KZ

rows in parallel. It should be noted that the multi-layer parallel decoding algorithm

would still require less memory than the two-phase flooding algorithm because there

is still no need to store the variable node messages in the multi-layered algorithm.

In this section, we propose a new multi-layer parallel decoding algorithm and

VLSI architecture for high throughput LDPC decoding. The data conflicts between

layers are resolved by modifying the LLR update rules. As a case study, we describe

a double-layer parallel decoder architecture for IEEE 802.11n LDPC codes .

.
~.

130

To support layer-level parallelism, we propose a multi-layer (K-layer) parallel

decoding algorithm, where the maximum row parallelism is increased to KZ. When

using the conventional layered algorithm to process multiple layers at the same time,

data conflicts may occur when updating the LLRs because there can be more than

one check node connected to a variable node. Fig. 5.14 shows an example of the

data conflicts when updating LLRs for two consecutive layers, where check node (or

row) m0 and check node m 1 are both connected to variable node (or column) n. To

resolve the data conflicts, we use the following LLR update rule for a K-layer parallel

decoding algorithm. For a variable node n, let mk represents the k-th check node that

is connected to variable node n. Then the LLR value for variable node n is updated

as:
K-1

L~ = Ln + L (R'mk,n- Rmk,n)· (5.10)
k=O

Compared to the original LLR update rule (5.6), the new LLR update rule combines

all the check node messages and adds them to the old LLR value. We can define a

macro-layer as a group of K layers of the parity check matrix. The multi-layer parallel

decoding algorithm is summarized as follows. For each layer kin each macro-layer l,

do the following:

R'mk,n = S · II sign(Qmk,i) · .EJ:Hin\ IQmk,il
J JVmk n

jENmk \n

K-1

L~ = Ln + L (R'mk,n - Rmk,n)·
k=O

(5.11)

(5.12)

(5.13)

131

In the above calculation, the LLR values Ln are updated macro-layer after macro-

layer. Within each macro-layer, all the check rows can be processed in parallel,

which therefore leads to a K times larger parallelism than the conventional layered

algorithm. For example, we can use K Z number of check node processors to process

K Z rows in parallel.

n

"' ' ~0
" ' ~·

Figure 5.14 : Example of the data conflicts when updating LLRs for two layers.

5.6.1 Multi-Layer Decoding Performance Evaluation

In the multi-layer parallel decoding algorithm, the layer-parallelism K will have some

negative impact on the decoding convergence speed because the LLR updates occur

less frequently than in the single-layer algorithm. To compare the performance of

the multi-layer parallel decoding algorithm against the conventional layered decoding

algorithm, we perform floating-point simulations for the block length 1944 bits, code

rate 1/2 IEEE 802.1ln LDPC code. BPSK modulation is used for an AWGN channel.

In the simulation, we collect at least 100 frame errors and the maximum iteration

number is set to 15 for all the experiments. Fig. 5.15 compares the frame error rate

(FER) performance of K-layer parallel decoders for K = 1, 2, 3, 4, 6. We also plot

132

the FER curve for the traditional two-phase flooding algorithm for comparison. As

can be seen from the figure, the double-layer parallel decoder has shown a negligible

performance loss, and the triple-layer parallel decoder has shown a small performance

loss (< 0.1 dB). Compared with single layered decoding, as K increases, the FER

performance slowly degrades as expected. Note that the performance loss can be

compensated by slightly increasing the iteration number. Nevertheless, the K-layer

parallel decoder will have a K-fold throughput increase compared to the conventional

single-layer decoder. Note that compared to the two-phase flooding decoding, the

throughput of the single-layered decoder is N times slower, where N is the total

number of the layers. Thus, a trade-off can be made between the layer-parallelism

K, the error performance, and the throughput.

5.6.2 Double-Layer Parallel Decoder Architecture for IEEE 802.11n LDPC

Codes

As a case study, we have designed a double-layer parallel decoder for IEEE 802.11n

LDPC codes. We propose a macroblock-serial (MB-serial) decoding algorithm. In

this algorithm, a Z x Z sub-matrix is considered as a block and a macroblock (MB)

contains four such blocks. Fig. 5.16(a) shows an example of an MB which contains

four blocks: A, B, C, and D. Fig. 5.16(b) shows the MB view of the first two layers of

the parity check matrix in Fig. 5.2. Because the rate 1/2 matrix is sparser than the

high rate matrix, some blocks in an MB can be zero blocks. However, for a denser

133

Block lengh 1944 bits, Code rate 112, IEEE 802.11n LDPC code

too~l::~:-::Y~Y7J+~~~~~~~ll %i · · · · -+-Two-phase decoding with 15 max. iter.
-*-Six-layer decoding with 15 max. iter.
-a-- Quad-layer decoding with 15 max. iter.
-+-Triple-layer decoding with 15 max. iter.
-+-Double-layer decoding with 15 max. iter

· · · · · · --4-- Single-layer decoding with 15 max. iter.

1.2 1.8 2 2.2

Figure 5.15 : Simulation results for multi-layer parallel decoding algorithm.

134

matrix, e.g. rate 5/6 matrix, all the four blocks in an MB are often non-zero blocks

as shown in Fig. 5.16(c).

MB

fATBl
~

(a)

MBO

/57

13 /28

MBl

I so In
Io

MB2 MB3 MB4

I so /79 It Io
Iss /7 Io Io

(b)

MBO MBI MB2 MB3 MB4 MB5 MB6 MB7 MB8 MB9 MBIO MBll

113 /48 /8o 166 14 114 h ho 116 ls2 h7 160 149 h3 ht h4 h3 h3 It Io
169 /63 h4 ls6 164 /77 ls1 165 16 lt6 lst 164 /68 19 /48 /62 ls4 /27 Io lo

(c)

Figure 5.16: (a) One MB with a dimension of 2Z x 2Z. (b) The MB view of the first
two layers of the rate 1/2 matrix in Fig. 5.2. (c) The MB view of the first two layers
of the matrix for rate 5/6, block length 1944 bits, 802.11n code.

We propose a partial parallel decoder architecture, where each MB is processed as

.
a unit. Inside each macro-layer, MB is processed in serial, from left to right. Thus, we

refer to this architecture as an MB-serial architecture. Fig. 5.17 shows the top level

block diagram for the proposed MB-serial decoder architecture. In this architecture,

the LLR memory is used for storing the initial and updated LLR values for each bit

in a codeword. For LDPC codes with M x N sub-matrices each of which being a

Z x Z shifted identity matrix, the LLR memory is organized such that Z LLR values

are stored in the same memory word and there are N words in the memory. The

LLR memory has two read-ports and two write-ports so that 2Z LLR values can be

accessed at the same clock cycle. The decoding is a two-stage procedure. During the

first stage, 2Z LLR values are read from the LLR memory at each clock cycle and

135

are passed to four permuters A, B, C, and D, which correspond to four blocks in an

MB (cf. 5.16(a)). Note that for zero blocks in an MB, the corresponding permuters

and other related logic will be disabled.

LLRMemory

Even Layer
MB Processing Unit
(Contains Z MSUs)

Odd Layer
MB Processing Unit
(Contains ZMSUs)

Figure 5.17: MB-serial LDPC decoder architecture for the double-layer example.

The 2Z permuted LLR values LnA and LnB are fed to the even-layer's MB pro-

cessing unit, and the other 2Z permuted LLR values Lnc and Lnv are fed to the odd-

layer's MB processing unit. Each MB processing unit consists of Z = 81 min-sum

units (MSUs) based on the maximum sub-matrix size defined in the IEEE 802.11n

standard. Fig. 5.18 shows the block diagram for one MSU. Each MSU can process

two LLR values at each clock cycle so that altogether Z MSUs can process 2Z LLR

values at each clock cycle. During the first stage, Q values are computed by subtract-

R-Gen

R-Regfile

R-Gen

Min Finder

X'N' XN

Ping-Pong
Register

R'-Gen

Figure 5.18 : Block diagram for the pipelined Min-sum unit (MSU).

Index = Super-layer number

0

1

M/2-1

MinO

MinO

. . .
MinO

Min1 Pos

Min 1 Pos

... . . .
Min1 Pos

Sign Array

Sign Array

. ..
Sign Array

Figure 5.19 : R-Regfile organization.

136

137

ing the R values from the LLR values based on (5.11). The R values are stored in a

compressed way. The R-Regfile is used to store the information for restoring the Rm,n

values. Fig. 5.19 shows the organization of the R-Regfile. For each row m, only the

first minimum (minO), the second minimum (min1), the position of the first minimum

(pos), and the sign bits for all Qm,ni related to row mare stored in the R-Regfile. A

R value generator (R-Gen) is used to restore the R values from the R-Regfile as:

0.75Ym, if n1 = Pm

0. 75Xm, otherwise,

(5.14)

where Xm and Ym denote the first minimum value and the second minimum value

for row m, respectively, and P m denotes the position of the first minimum value for

row m. The sign bits of the Rm,ni value are generated using the sign array. As the

scaled min-sum algorithm is used, the R value is scaled by a factor of 0. 75. A min

finder unit (MFU) is used to compare the Qm,nA and Qm,nB values against X and

Y read from the Ping-Pong register, where X andY are the first minimum and the

second minimum temporary variables and are initialized to be the maximum possible

positive values. The two new minimum values X' andY' are stored in the Ping-Pong

register. The index of the minimum Q value and sign bits for all Q values are also

updated in the Ping-Pong register. The Ping-Pong register consists of two registers

(ping and pong registers), where each register has the same organization as one word

of the R-Regfile. Two registers are required because we want to support pipelined

decoding by overlapping two macro-layers' data processing. During the second stage,

138

the R'-Gen unit gets values from the Ping-Pong register and restores the most recently

updated R' values. Another R-Gen unit gets values from R-Regfile and restores the

old R values. Then a Delta-R value, denoted as D value, is formed by:

(5.15)

The R-Regfile has two read-ports so that it can be accessed simultaneously by two

consecutive macro-layers. After the second stage, the contents of the Ping-Pong

register is written to the R-Regfile overwriting the values for the current macro-layer,

and the Ping and Pong registers switch role.

Now turning back to the top level decoder in Fig. 5.17, after the 2Z D values are

produced by each MB processing unit, the D values are de-permuted and added to

the LLR values from the FIFO .to form the updated 2Z LLR values as:

The new updated LLR values are then written back to the LLR memory.

(5.16)

(5.17)

To further increase the throughput, we can overlap the decoding process of two

macro-layers. The pipelined data flow is illustrated in Fig. 5.20. The data dependen­

cies between two macro-layers are avoided by using a scoreboard to keep track of the

read and write sequences of the LLR values. Pipeline stalls will be inserted if there is

a data dependency between two macro-layers. If one ignores the extra pipeline stalls,

which are typically small, the proposed double-layer pipelined decoder can process

139

two macro-layers of the matrix simultaneously, which leads to a significant throughput

improvement.

Stage 1 I Stage 2 I Macro-layer 0

I Stage 1 Stage 2 I Macro-layer 1 . ..
L...-_S_ta.:::.ge_1 ---~._s_ta...;:g:;...e_2___,1 Macro-layer M/2-1

______________________________________ __.time

Figure 5.20 : Pipelined decoding data flow for the double-layer example.

It should be noted that the described double-layer parallel architecture shown

in Fig. 5.17 can be generalized for a K-layer parallel architecture by employing K

macroblock processing units to process K layers in paralleL

5. 7 Discussion on the Similarities of LDPC Decoders and

Turbo Decoders

LDPC codes and Turbo codes have many similarities, e.g. they all have a trellis

structure that can be processed using a similar MAP algorithm [14]. We can develop

a specialized decoder for each family for higher performance. We can also develop

a configurable decoder for both families of codes with limited hardware overhead.

For example, we can extend the single-layered LDPC decoder architecture to s'upport

Turbo codes. Recall that in Chapter 4, we have presented a parallel Turbo decoder

based on multiple MAP units. We can develop a unified MAP unit for both LDPC

140

codes and Thrbo codes.

5.8 Flexible and Configurable LDPC/Turbo Decoder

In this section, we propose a unified decoding algorithm for both LDPC codes and

Thrbo codes. We extend the layered LDPC decoder architecture to support Thrbo

codes with a low hardware overhead.

5.8.1 Flex-8180 Module

To support both LDPC codes and Thrbo codes, usually two separate decoders are

needed. To save area, we propose a flexible soft-input soft-output (SISO) module,

named Flex-SISO module, for decoding of both LDPC and Thrbo codes. The SISO

module is based on the MAP algorithm [91]. To reduce complexity, the MAP algo­

rithm is usually calculated in the log domain [89]. In this thesis, we assume the MAP

algorithm is always calculated in the log domain.

The decoding algorithm underlying the Flex-SISO module works for codes which

have trellis representations. For LDPC codes, a Flex-SISO module was used to decode

a layer of a parity check matrix, or super-code. For Thrbo codes, a Flex-SISO module

was used to decode a component convolutional code. The iteration performed by

the Flex-SISO module is called a sub-iteration, and thus one full iteration contains n

sub-iterations.

Fig. 5.21 depicts the proposed Flex-SISO module. The output of the Flex-SISO

141

module is the a posteriori probability (APP) log-likelihood ratio (LLR) values, de­

noted as).0 (u), for information bits. It should be noted that the Flex-SISO module

exchanges the soft values .A0 (u) instead of the extrinsic values in the iterative decod-

ing process. The extrinsic values, denoted as .Xe(u), are stored in a local memory

of the Flex-SISO module. To distinguish the extrinsic values generated at differ-

ent sub-iterations, we use .Xe(u; old) and .Xe(u; new) to represent the extrinsic values

generated in the previous sub-iteration and the current sub-iteration, respectively.

The soft input values .Xi(u) are the outputs from the previous Flex-SISO module, or

other previous modules if necessary. Another input to the Flex-SISO module is the

channel values for parity bits, denoted as .Xc(P), if available. For LDPC codes, we

do not distinguish information and parity bits, and all the codeword bits are treated

as information bits. However, in the case of Turbo codes, we treat information and

parity bits separately. Thus the input port .Xc(P) will not be used when decoding of

LDPC codes. At each sub-iteration, the old extrinsic values, denoted as Ae(u; old),

are retrieved from the local memory and should be subtracted from the soft input

values .Xi (u) to avoid positive feedback.

A generic description of the message passing algorithm is as follows. Multiple

Flex-SISO modules are connected in series to form an iterative decoder. First, the

Flex-SISO module receives the soft values .Xi(u) from upstream Flex-SISO modules

and the channel values (for parity bits) .Xc(P) if available. ~he .Xi(u) can be thought

of as the sum of the channel value .Xc(u) (for information bit) and all the extrinsic

.
~.

142

values .Xe(u) previously generated by all the super-codes:

(5.18)

Note that prior to the iterative decoding, Ai(u) should be initialized with Ac(u). Next,

the old extrinsic value Ae (u; old) generated by this Flex-SISO module in the previous

iteration is subtracted from .Xi (u) as follows:

(5.19)

Then, the new extrinsic value Ae (u; new) can be computed using the MAP algorithm

based on At(u), and Ac(P) if available. Finally, the APP value is updated as

(5.20)

Then this updated APP value is passed to the downstream Flex-SISO modules. This

computation repeats in each sub-iteration.

Soft values for
information bits

Channel values for
parity bits

Ac(p)

:·\: ·.. ::::;:;.:/·:·:

A~ U) { ~i~I~$I~O Ao(U}
.·.·.·.·.Module>

APP values for
information bits

Old extrinsic values le(u;old) le(u;new) New extrinsic values
for information bits r----'------. for information bits

Memory

Figure 5.21 : Flex-SISO module.

143

5.8.2 Flex-SISO Module to Decode LDPC Codes

In this section, we show how to use the Flex~SISO module to decode LDPC codes.

Because QC-LDPC codes are widely used in many practical systems, we will primarily

focus on the QC-LDPC codes. First, we decompose a QC-LDPC code into multiple

super-codes, where each layer of the parity check matrix defines a super-code. After

the layered decomposition, each super-code comprises z independent 2-state single

parity check codes. Fig. 5.22 shows the super-code based, or layered, LDPC decoder

architecture based on the Flex-SISO modules. The decoder parallelism at each Flex-

SISO module is at the level of the sub-matrix size z, because these z single parity

codes have no data dependency and can thus be processed simultaneously. This

architecture differs from the regular two-phase flooding LDPC decoder in that a

code is partitioned into multiple sections, and each section is processed by the same

processor. This scheduling algorithm is similar to the layered scheduling algorithm

[71]. The convergence rate can be twice faster than that of a regular decoder.

Flex-SISO 1 Flex-SISO 2 Flex-SISO n

•••

Figure 5.22 : LDPC decoding using Flex-SISO modules where a LDPC code is de­
composed into n super-codes, and n Flex-SISO modules are connected in series to
decode.

144

Since the data flow is the same between different sub-iterations, one physical Flex-

8180 module is instantiated, and it is re-used at each sub-iteration, which leads to

a partial-parallel decoder architecture. Fig. 5.23 shows an iterative LDPC decoder

hardware architecture based on the Flex-8180 module. The structure comprises an

APP memory to store the soft APP values, an extrinsic memory to store the extrinsic

values, and a MAP processor to implement the MAP algorithm for z single parity

check codes. Prior to the iterative decoding process, the APP memory is initialized

with channel values Ac(u), and the extrinsic memory is initialized with 0.

The decoding flow is summarized as follows. It should be noted that the parity

bits are treated as information bits for the decoding of LDPC codes. We use the

symbol uk to represent the k-th data bit in the codeword. For check node m, we use

the symbol Um,k to denote the ko.th codeword bit (or variable node) that is connected

to this check node m. To remove correlations between iterations, the old extrinsic

message is subtracted from the soft input message to create a temporary message At

as follows

(5.21)

where Ai(uk) is the soft input log likelihood ratio (LLR) and Ae(um,k; old) is the old

extrinsic value generated by this MAP processor in the previous iteration. Then the

new extrinsic value can be computed as:

Ae (Um,k; new) = :2}l.At (Um,j),
j:jfk

(5.22)

145

where the ffi operation is associative and commutative, and is defined as [120]

(5.23)

Finally, the new APP value is updated as:

(5.24)

For each sub-iteration l, equations (5.21-5.24) can be executed in parallel for check

nodes m = lz to lz + z - 1 because there are no data dependency between them.

A.;(u)

Ae(u;old)

APP
Memory

Ae(u;new)

Extrinsic
Memory

Figure 5.23 : LDPC decoder architecture based on the Flex-SISO module.

5.8.3 Flex-SISO Module to Decode Turbo Codes

In this section, we show how to use the Flex-SISO module to decode Turbo codes. A

Thrbo code can be naturally partitioned into two super-codes, or constituent codes.

In a traditional Thrbo decoder, where the extrinsic messages are exchanged between

146

two super-codes, the Flex-SISO module can not be directly applied, because the

Flex-SISO module requires the APP values, rather than the extrinsic values, being

exchanged between super-codes. In this section, we made a small modification to

the traditional Turbo decoding flow so that the APP values are exchanged in the

decoding procedure.

The traditional Turbo decoding procedure with two SISO decoders is shown in

Fig. 5.24. The definitions of the symbols in the figure are as follows. The information

bit and the parity bits at time k are denoted as uk and (pi1) ,pi2), ... ,pin)), respectively,

with uk,Pii) E {0, 1}. The channel LLR values for uk and Pii) are denoted as Ac(uk)

and Ac(Pii)), respectively. The 0: priori LLR, the extrinsic LLR, and the APP LLR

Figure 5.24 : Traditional Turbo decoding procedure using two SISO decoders, where
the extrinsic LLR values are exchanged between two SISO decoders.

In the decoding process, the SISO decoder computes the extrinsic LLR value at

time k as follows:

(5.25)

147

Figure 5.25: Modified Turbo decoding procedure using two Flex-SISO modules. The
soft LLR values are exchanged between two SISO modules.

The o: and f3 metrics are computed based on the forward and backward recursions:

(5.26)

(5.27)

where the branch metric "/k is computed as:

(5.28)

The extrinsic branch metric 'Yk in (5.25) is computed as:

n

"/~ = 2:P~i) · Ac(P~i)). (5.29)

The max*(·) function in (5.25-5.27) is defined as:

m~x(a, b) =max(a, b)+ log(1 + e-la-bl). (5.30)

The soft APP value for uk is generated as:

(5.31)

.
~.

148

In the first half iteration, 8I80 decoder 1 computes the extrinsic value .A!(uk) and

passes it to 8I80 decoder 2. Thus, the extrinsic value computed by 8I80 decoder 1

becomes the a priori value .A~ (uk) for 8I80 decoder 2 in the second half iteration. The

computation is repeated in each iteration. The iterative process is usually terminated

after a certain number of iterations, when the soft APP value A0 (uk) converges.

Modified Turbo Decoder Structure Using Flex-SISO Modules

In order to use the proposed Flex-8I80 module for Turbo decoding, we modify the

traditional Turbo decoder structure. Fig. 5.25 shows the modified Turbo decoder

structure based on the Flex-8I80 modules.

It should be noted that the modified Turbo decoding flow is mathematically equiv­

alent to the original Turbo decoding flow, but uses a different message passing method.

The modified data flow is as follows. In the first half iteration, Flex-8180 decoder

1 receives soft LLR value .At(uk) from Flex-8180 decoder 2 through de-interleaving

(.A}(uk) is initialized to channel value Ac(uk) prior to decoding). Then it removes the

old extrinsic value .A!(uk; old) from the soft input LLR .A}(uk) to form a temporary

message .Ai(uk) as follows (for brevity, we drop the superscript "1" in the following

equations)

(5.32)

To relate to the traditional Turbo decoder structure, this temporary message is math­

ematically equal to the sum of the channel value Ac(uk) and the a priori value Aa(uk)

149

in Fig. 5.24:

(5.33)

Thus, the branch metric calculation in (5.28) can be re-written as:

(5.34)

The extrinsic branch metric ('yk) calculation, and the extrinsic LLR (Ae (uk)) calcu-

lation, however, remain the same as (5.29) and (5.25-5.27), respectively. Finally, the

soft APP LLR output is computed as:

(5.35)

In the Flex-8180 based iterative decoding procedure, the soft outputs .\~(u) com-

puted by Flex-8180 decoder 1 are passed to Flex-8180 decoder 2 so that they be-

come the soft inputs AI(u) for Flex-8180 decoder 2 in the second half iteration. The

computation is repeated in each half-iteration until the iteration converges. Since

the operations are identical between two sub-iterations, only one physical Flex-8180

module is instantiated, and it is re-used for two sub-iterations.

Fig. 5.26 shows an iterative Turbo decoder architecture based on the Flex-8180

module. The architecture is very similar to the LDPC decoder architecture shown in

Fig. 5.23. The main differences are: 1) the Turbo decoder has separate parity channel

LLR inputs whereas the LDPC decoder treats parity bits as information bits, 2) the

Turbo decoder employs the MAP algorithm on anN-state trellis whereas the LDPC

decoder applies the MAP algorithm on z independent 2-state trellises, and 3) the

150

interleaver/permuter structures are different (not shown in the figures). But despite

these differences, there are certain important commonalities. The message passing

flows are the same. The memory organizations are similar, but with a variety of sizes

depending on the codeword length. The MAP processors, which will be described in

the next section, have similar functional unit resources that will be configured using

multiplexors for each algorithm. Thus, it is natural to design a unified SISO decoder

with configurable MAP processors to support both LDPC and Turbo codes.

..

APP
Memory

Turbo
MAP Processor

A.e(u;new)

Extrinsic
Memory

Figure 5.26 : Turbo decoder architecture based on the Flex-SISO module.

5.8.4 Design of A Flexible Functional Unit

The MAP processor is the main processing unit in both LDPC and Turbo decoders as

depicted in Fig. 5.23 and Fig. 5.26. In this section, we introduce a flexible functional

unit to decode LDPC and Turbo codes with a small additional overhead.

151

MAP Functional Unit for Turbo Codes

In a Turbo MAP processor, the critical path lies in the state metric calcula~ion unit

which is often referred to as add-compare-select-add (ACSA) unit. As depicted in

Fig. 5.27, for each state m of the trellis, the decoder needs to perform an ACSA

operation as follows:

a~= m;,x(ao + ')'o, a1 + '/'1), (5.36)

where a 0 and a 1 are the previous state metrics, and ')'o and ')'1 are the branch metrics.

Fig. 5.27(b) shows a circuit implementation for the ACSA unit, where a signed-input

look-up table "LUT-S" was used to implement the non-linear function log(1 + e-lxl).

This circuit can be used to recursively compute the forward and backward state

metrics based on eq. (5.26)(5.27).

(a) (b)

Figure 5.27: Turbo ACSA structure. (a) Flow of state metric calculation. (b) Circuit
diagram for the Turbo ACSA unit.

152

MAP Functional Unit for LDPC Codes

In the layered QC-LDPC decoding algorithm, each super-code comprises z indepen-

dent single parity check codes. Each single parity check code can be viewed as a

terminated 2-state convolutional code. Fig. 5.28 shows an example of the trellis

structure for a single parity check node.

uO ul u2 u3

uO +ul +u2+u3 = 0 (GF2)

Figure 5.28 : Trellis structure for a single parity check code.

An efficient MAP decoding algorithm for a single parity check code was given in

[124]: for independent random variables u0, ub ... , u1 the extrinsic LLR value for bit

uk is computed as:

.X(uk) = ~Ai(ui),
"'{uk}

(5.37)

where the compact notation ""{ uk} represents the set of all the variables with uk

excluded. For brevity, we define a function f(a, b) to represent the operation .Xi(u1) I:E

Ai (u2) as follows

(5.38)

where a e:. .Xi(u1) and b e:. Ai(u2). Fig. 5.29 shows a forward-backward decoding flow

153

to implement (5.37). The forward (a) and backward ((J) recursions are defined as:

(5.39)

(5.40)

where 'Yk = Ai(uk) and is referred to as the branch metric as an analogy to a Turbo

decoder. The a and (3 metrics are initialized to +oo in the beginning. Based on the

a and (3 metrics, the extrinsic LLR for uk is computed as:

(5.41)

Forward Recursion: a1ct1 =f (ak, Yk)

Figure 5.29 : A forward-backward decoding flow to compute the extrinsic LLRs for
single parity check code.

Fig. 5.30 shows a MAP processor structure to decode the single parity check code.

Three identical f(a, b) units are used to compute a, (3, and A values. To relate to

the top level LDPC decoder architecture as shown in Fig. 5.23, the inputs to this

MAP processor are the temporary metrics At(um,k), and the outputs from this MAP

processor are the extrinsic metrics Ae (Um,k; new).

.
~-

Input stream lti /(.)~a
... Y2Yl yo ~ - D

DII~ orr~--.r--~
Stack Stack

Output stream
A.o A.1 A2 ...

Figure 5.30 : MAP processor structure for single parity check code.

154

To compute (5.38) in hardware, we separate the operation into sign and magnitude

calculations:

sign(!(a, b))= sign(a) sign(b),

if(a, b)i = min(iai, lbl) + log(1 + e-(lal+lbl))

-log(1 + e-llal-lbll).

Compared to the classical "tanh" function used in LDPC decoding

w(x) = -log(tanh(lx/21)),

(5.42)

(5.43)

the f (·) function is numerically more robust and less sensitive to quantization noise.

Due to its widely dynamic range (up to +oo), the w (x) function has a high com-

plexity and is prone to quantization noise. Although many approximations have been

proposed to improve the numerical accuracy of w(x) [125, 126, 72], it is still expensive

to implement the w(x) function in hardware. However, the non-linear term in the

155

f (·) function has a very small dynamic range:

0 < g(x) 6 log(1 + e-lxl) < 0.7,

thus the f(-) function can be more easily implemented in hardware by using a low

complexity look-up table (LUT). To implement g(x) in hardware, we propose to use

a 4-value LUT approximation which is shown in table 5.1. For fixed point implemen­

tation, we propose to use 2 fractional bits to implement the LUT. Table 5.2 shows

the proposed LUT implementation. It should be noted that g(x) is the same as the

non-linear term in the Turbo max*(·) function (c.f. eq. (5.30)). Thus, the same

look-up table configuration can be applied to the Turbo ACSA unit.

Table 5.1 : LUT approximation for g(x) = log(1 + e-lxl)

lxl lxl =0 0 < lxl:::; 0.75 0.75 < lxl:::; 2 lxl > 2

g(x) 0.75 0.5 0.25 0

Table 5.2: LUT implementation

lxl 0 1 2 3 4 5 6 7 8 >8

g(x) 3 2 2 2 1 1 1 1 1 0

Fig. 5.31 depicts a circuit implementation for the LDPC if(a, b) I functional unit

using two look-up tables "LUT-S" and "LUT-U", where LUT-S and LUT-U imple-

156

ment log(1 + e-llal-lbli) and log(1 + e-(lal+lbl)), respectively. The difference between

LUT-8 and LUT-U is that: LUT-8 is a signed-input look-up table that takes both

positive and negative data inputs whereas LUT-U is an unsigned-input look-up table

(half size of LUT-8) that only takes positive data inputs.

lal-4--l...r~

-1 hi ---+--i~
1---r-----+1

Figure 5.31 : Circuit diagram for the LDPC if(a, b)\ functional unit.

Unified MAP Functional Unit

If we compare the LDPC if(a, b)l functional unit (c.f. Fig. 5.31) with the Thrbo

AC8A functional unit (c.f. Fig. 5.27), we can see that they have many commonalities

except for the position of the look-up tables and the multiplexor. To support both

LDPC and Thrbo codes with minimum hardware overhead, we propose a flexible

functional unit (FFU) which is depicted in Fig. 5.32. We modify the look-up table

structure so that each look-up table can be bypassed when the bypass control signal

is high. A select signal was used to switch between the LDPC mode and the Thrbo

157

mode. The functionality of the proposed FFU architecture is summarized in Table

5.3.

bypass I

X + y bypass2

bypass I

v + w
MSB +

0 D

Figure 5.32 : Circuit diagram for the flexible functional unit (FFU) for LDPC/Turbo
decoding.

5.8.5 Design of A Flexible SISO Decoder

Built on top of the FFU arithmetic unit, we introduce a flexible 8180 decoder architec-

ture to handle LDPC and Turbo codes. Fig. 5.33 illustrates the proposed dual-mode

8180 decoder architecture. The decoder comprises four major functional units: alpha

unit (a), beta unit (/3), extrinsic-1 unit, and extrinsic-2 unit. The decoder can be

reconfigured to process: i) an 8-state convolutional Turbo code, or ii) 8 single parity

check codes.

In the Turbo mode, all the elements in the Flex-8180 decoder will be activated.

For Turbo decoding, we use the Next Iteration Initialization (Nil) sliding window

158

Table 5.3 : Functional description of the FFU

Signals LDPC Mode Turbo Mode

select 1 0

bypass1 0 1

bypass2 1 0

X Ia I o:o

y lbl /o

v Ia I 0:1

w -lbl /1

z If(a, b)l max:*(o:o + /o, 0:1 +/I)

Flex-SISO Decoder

Figure 5.33 : Flexible SISO decoder architecture.

159

algorithm [108, 127] as described in Chapter 4. The Nil approach can avoid the cal-

culation of training sequences as initialization values for the {3 state metrics, instead

the boundary metrics are initialized from the previous iteration. As a result, the de-

coding latency is smaller than the traditional sliding window algorithm which requires

a calculation of training sequences [107, 110], and thus only one {3 unit is required.

Moreover, this solution is very suitable for high code-rate Turbo codes, which require

a very long training sequence to obtain reliable boundary state metrics. Note that

this scheme would require an additional memory to store the boundary state metrics.

A dataflow graph for the Nil sliding window algorithm is depicted in Fig. 5.34,

where the X-axis represents the trellis flow and the Y-axis represents the decoding

time so that a box may represent the processing of a block of L data in L time

steps, where Lis the sliding window size. In the decoding process, the a metrics are

computed in the natural order whereas the {3 metrics and the extrinsic LLR (.Xe) are

computed in the reverse order. By using multiple FFUs, the a and {3 units are able to

compute the state metrics in parallel, leading to a real time decoding with a latency

of L.

The decoder works as follows. The decoder uses the soft LLR value Ai(u) and

old extrinsic value Ae(u; old) to compute At(u) based on (5.32). A branch metric

calculation (BMC) unit is used to compute the branch metrics 7(u,p) based on (5.34),

where u,p E {0, 1}. Then the branch metrics are buffered in a 'Y stack for backward

({3) metric calculation. The a and {3 metrics are computed using (5.26)(5.27). The

.
~.

160

Trellis L 2L 3L 4L ...
~
§'
('!)

Figure 5.34 : Data flow graph for Thrbo decoding.

boundary {3 metrics are initialized from an Nil buffer (not shown in Fig. 5.33). A

dispatcher unit is used to dispatch the data to the correct FFUs in the a/ {3 unit.

Each a/ {3 unit has fully-parallel FFUs (8 of them), so the 8-state convolutional trellis

can be processed at a rate of one-stage per clock cycle.

To compute the extrinsic LLR as defined in eq. (5.25), we first add {3 metrics

with the extrinsic branch metrics "'t(p), where le(p) is retrieved from the 1 stack, as

le(O) = 0, 1e(1) = 1(0, 1) = Ac(p). The extrinsic LLR calculation is separated into

two phases which is shown in the right part of Fig. 5.33. In phase 1, the extrinsic-1

unit performs 8 ACSA operations in parallel using 8 FFUs. In phase 2, the extrinsic-2

unit performs 6 max*(a, b) operations and 1 subtraction. Finally, the soft LLR A0 (u)

is obtained by adding Ae(u; new) with At(u), where At(u) is also retrieved from the 1

stack, as At(u) = 1(1,0).

161

In the LDPC mode, a substantial subset (more than 90%) of the logic gates will

be reused from the Turbo mode. As shown in Fig. 5.35, three major functional units

(a unit, {3 unit, and the extrinsic-1 unit) and two stack memories are reused in the

LDPC mode. The extrinsic-2 unit will be de-activated in the LDPC mode. The

decoder can process 8 single parity check codes in parallel because each of the a unit,

{3 unit, and extrinsic-1 unit has 8 parallel FFUs.

Flex-SISO Decoder
(LDPCMode)

From r stack: Af..u)

Figure 5.35 : Flexible SISO decoder architecture in LDPC mode.

The dataflow graph ofthe LDPC decoding (c.f. Fig. 5.29) is very similar to that of

the Thrbo decoding (c.f. Fig. 5.34). The decoder works as follows. The decoder first

computes At(u) based on (5.21). In the LDPC mode, the branch metric 'Y is equal to

At(u). Prior to decoding, the a and {3 metrics are initialized to the maximum value.

We assume that the check node degree is L. In the first L cycles, the a unit recursively

computes the a metrics in the forward direction and stores them in an a stack. In

the next L cycles, the {3 unit recursively computes the {3 metrics in the backward

162

direction. At the same time, the extrinsic-1 unit computes the extrinsic LLRs using

the a and {3 metrics. While the {3 unit and the extrinsic-1 unit are working on the

first data stream the a unit can work on the second stream which leads to a pipelined
'

implementation.

5.8.6 LDPC /Turbo Parallel Decoder Architecture Based on Multiple Flex-

SISO Decoders

For high throughput applications, it is necessary to use multiple SISO decoders work-

ing in parallel to increase the decoding speed. For parallel Turbo decoding, multi-

ple SISO decoders can be employed by dividing a codeword block into several sub-

blocks and then each sub-block is processed separately by a dedicated SISO decoder

[112, 113, 114, 103, 12]. For LDPC decoding, the decoder parallelism can be achieved

by employing multiple check node processors [17, 65, 66, 67, 76].

Based on the Flex-SISO decoder core, we propose a parallel LDPC/Turbo decoder

architecture which is shown in Fig. 5.36. As depicted, the parallel decoder comprises

P Flex-SISO decoder cores. In this architecture, there are three types of storage.

Extrinsic memory (Ext-Mem) is used for storing the extrinsic LLR values produced

by each SISO core. APP memory (APP-Mem) is used to store the initial and updated

LLR values. The APP memory is partitioned into multiple banks to allow parallel

data transfer. The Turbo parity memory is used to store the channel LLR values

for each parity bit in a Turbo codeword. This memory is not used for LDPC de-

163

coding (parity bits are treated as information bits for LDPC decoding). Finally, two

permuters are used to perform the permutation of the APP values back and forth.

Turbo
ParityMem

Figure 5.36: Parallel LDPC/Thrbo decoder architecture based on multiple Flex-SISO
decoder cores.

5.9 Summary

In this chapter, we have presented high-throughput LDPC decoderarchitectures for

QC-LDPC codes. We propose a multi-layer parallel LDPC decoding algorithm and

describe a multi-layer LDPC decoder architecture to achieve 3 Gbps decoding speed.

To support both LDPC and Thrbo codes, we propose a unified decoder architecture

which can be dynamically configured for both codes with a small hardware overhead,

based on combining some of the architecture concepts from Chapter 4 on Thrbo

decoding with the current chapter on LDPC decoding.

164

Chapter 6

ASIC and FPGA Implementation Results

In this chapter, we present the ASIC (application-specific integrated circuit) and

FPGA (field-programmable gate array) implementation results of various MIMO de­

tectors and channel decoders. The algorithms and architectures were presented in

Chapters 3, 4, and 5, with Chapter 3 focusing on MIMO detection, Chapter 4 fo­

cusing on Turbo decoders, and Chapter 5 focusing on LDPC and joint LDPC/Turbo

decoders. First, we will present results on our Rice WARP testbed which is an efficient

verification environment before the creation of a VLSI ASIC acceleration design.

6.1 Decoder Accelerator Design for WARP Testbed

We have implemented a channel decoder accelerator for the Rice WARP Wireless

Research Platform [128, 129]. The Rice Wireless Research Platform is reconfigurable

and consists of DSP and FPGA devices along with RF radios and high speed AD and

DA converters. Experiments on the testbed can be performed to allow for algorithm

and partitioning verification, identification of unforeseen bottlenecks, and over the air

bit and frame error rate determination. The programmable transceiver hardware is

connected to a general purpose host computer for control and interfacing. The testbed

platform currently utilizes Mathworks Simulink environments for coordination and

165

execution scheduling. Wireless algorithm design and mapping to parallel architecture

prototypes on the FPGA boards is done via the Xilinx System Generator design tools.

Additional modules can be created in Verilog HDL and either synthesized for ASIC

analysis or mapped to FPGA for inclusion in the Xilinx System Generator design flow.

The testbed uses the custom WARP board with Xilinx Virtex-II Pro and Virtex 4

FPGA devices. WARP allows for rapid prototyping with the integrated Maxim/Sharp

2.4 GHz radio unit daughtercards for end-to-end laboratory experiments. Fig. 6.1

shows the block diagram of the WARP testbed.

Figure 6.1 : WARP testbed, including the custom Xilinx FPGA board and the radio
daughtercards.

We have implemented an FEC codec (convolutional encoder + Viterbi decoder)

for the WARP OFDM reference design (http:/ jwarp.rice.edu/trac/wifi/

OFDMReferenceDesign). The most recent version of the OFDM reference design is

v15.0. All of the PHY components are open-source and are available in the repository

(with revision 1580 for FPGA v1 and svn revision 1585 for FPGA v2).

166

The design is built using the 10.1 release of the Xilinx tools (ISE 10.1.03 + IP3,

Sysgen 10.1.3.1386). In this design, a K=7 convolutional code is used. The code

structure and the puncture pattern are compliant with the IEEE 802.1la standard.

The FEC codec supports all three modes of the current WARP OFDM PHY: 1)

SISO mode, 2) 2 x 2 MIMO mode, and 3) 2 x 2 or 2 x 1 Alamouti mode. The FEC

codec supports three modulation types: 1) BPSK, 2) QPSK, and 3) 16-QAM. The

coding can be turned on and off by programming the control register. The coding rate

can be changed by modifying the second byte of the packet header. Four different

code rates are supported: 1/2, 2/3, 3/4, and 1.

The FEC encoder was implemented with Verilog and was integrated into the

Sysgen model as a black-box, which is a standard port to include alternate HDL

blocks. Fig. 6.2 shows the connection between the encoder and the rest of the Sys­

gen blocks. As can be seen, the encoder sits between the "data_buffer" block and

the "PktBuffer_CRC1" block. The encoder will pre-fetch the data (scrambled infor­

mation data) from the "PktBuffer_CRC1" block and encode it. The encoded bits

are stored into a local small buffer. When this buffer is full, the encoder will stop

fetching data from the "PktBuffer_CRC1" block. When the encoder sees a new data

byte request from the "data_buffer" block, it will return a coded data byte to the

"data_buffer" block. When the coding is turned off, the encoder will bypass the

scrambled information data to the "data_buffer" block.

The FEC decoder was also implemented with Verilog and is integrated into Sysgen

167

as a black-box. Fig. 6.3 shows the connection between the FEC decoder and the other

Sysgen blocks. The FEC decoder takes I and Q data and produce the decoded data

in bytes. The decoded data are then sent to the "Data Buffer" block for further

processing, e.g. CRC error checking.

The FEC codec takes about 12% of the slices in the Virtex-2 Pro FPGA device.

The Verilog codes will be uploaded to the repository once they are fully tested. The

FEC encoder and decoder support real-time encoding and decoding with a very low

latency (the encoder has zero latency and the decoder has less than 50 clock cycles

latency).

control

Latency = 2

a

Figure 6.2: FEC encoder (verilog black-box) integration with WARP MIMO-OFDM
System Generator model.

168

fec_decoder

Start

Figure 6.3 : FEC decoder (verilog black-box) integration with WARP MIMO-OFDM
System Generator model.

169

6.2 VLSI Implementation Results for MIMO Detectors

6.2.1 Trellis-Search MIMO Detector, M = 1

In chapter 3, we have described the VLSI architectures for the trellis-search MIMO

detectors. To evaluate the hardware complexity of the proposed MIMO detector

architecture, we implemented a M = 1 trellis-search MIMO detector (cf. Section

3.1) using Verilog HDL [6, 7, 8]. To save area, this detector is based on the folded

architecture as described i~ Chapter 3.

This 4 x 4 16-QAM soft MIMO detector has been synthesized (using Synopsys De­

sign Compiler), placed and routed (using Cadence SoC Encounter) for a TSMC 65nm

CMOS technology. Figure 6.4 shows the VLSI layout view of the MIMO detector.

The fixed-point bit precision for R andy are 10 bits. The LLR outputs are repre­

sented in 7 bits. Based on the fixed-point simulation results, the finite word-length

implementation leads to negligible performance degradation (about 0.1dB) from us­

ing the floating-point representation. The maximum achievable clock frequency is 450

MHz based on the post-layout simulation. The corresponding maximum throughput

is 600 Mbps.

Table 6.1 compares the detection throughput and hardware complexity of the

proposed detector versus two state-of-the-art detectors from the literature: depth-first

soft sphere detector with 256 search operations from [28], and soft K-best detector

from [39]. In [39], a real QR decomposition is used with a small K=5. Compared to

solutions [39, 28], our solution can achieve a faster throughput because we avoid the

170

Figure 6.4: VLSI layout view of the folded trellis-search MIMO detector (M = 1).

sorting operation which is very expensive in the hardware implementation.

6.2.2 Trellis-Search MIMO Detector, M = 2

As shown in Chapter 3, Fig. 3.6 and Fig. 3. 7, we know that the trellis-detector with

M = 2 achieves a better performance than the basic trellis-detector with M = 1.

As a good balance between complexity and performance, we have implemented a

trellis-detector with M = 2.

Fixed-Point Design for 4 x 4 16-QAM System

In a 4 x 4 16-QAM MIMO transmission, typically the QAM symbol sk is scaled by

v'l~Nt =)win the transmitter for the transmitted symbol to have unit energy. In the

171

Table 6.1 : Architecture comparison with existing MIMO detectors

Garrett [28] Guo [39] This work

Algorithm Depth-First K-Best PPTS (M = 1)

Configuration 4 X 4 16-QAM 4 X 416-QAM 4 X 4 16-QAM

Throughput 38.8 Mbps 106 Mbps 600 Mbps

Core Area 10mm2 0.56 mm2 0.79 mm2

Gate Count 1100 K 97 K 550 K

Max Frequency 122.88 MHz 200 MHz 450 MHz

Technology 180 nm 130 nm 65nm

Gates {KG) 28.4 0.92 0.91 Throughput (~bps)

trellis-search MIMO detector, instead of working on the scaled Bk signal, we scale each

element in the R matrix by "ll~Mt =)wand use the original QAM symbol skin the

computation. We use the notation Q[QI].[QF] to represent a fixed point number with

QI number of integer bits and QF number of fractional bits so that the total word

length is QI + QF. Table 6.2 summarizes the fixed point design parameters for the

scaled R, received f), PED, and LLR, where the PEDis rounded to 10 bits between

computational blocks. This fixed-point detector has about 0.1 dB performance loss

compared to the floating-point detector.

Table 6.2 : Fixed point design parameters for the 4 x 4 16-QAM MIMO system

Signal Scaled R Received f) PED LLR

Q[QI].[QF] Q1.9 signed Q4.6 signed Q4.6 unsigned Q4.2 signed

.
~.

172

ASIC Implementation Result and Architecture Comparison

As a proof of concept, we have implemented a systolic trellis-search MIMO detector

with M = 2, and a folded trellis-search MIMO detectors with M = 2 for a 4 x 4

16-QAM system. The two detectors have been described using Verilog HDL, and

have been synthesized for a 1.08V TSMC 65nm CMOS technology using Synopsys

Design Compiler. Fig. 6.5 shows the VLSI layout view of the systolic detector.

Figure 6.5 : VLSI layout view of the systolic trellis-search MIMO detector (M = 2).

Table 6.3 compares the throughput and the hardware complexity of the proposed

detectors wit h two independent works from the literature: a more recent work on

depth-first soft sphere detector from [33], and a soft K-Best detector from [39]. Table

6.4 compares the proposed detectors with two related works in our group and our

collaborator: a bounded soft sphere detector (BSSD) from [86], and a modified metric

173

first soft sphere detector (MMF -SSD) from [87].

Since these designs have different technologies, i.e. 65nm, 130nm, 180nm, and

250nm. For a fair comparison, we need to scale these designs into a same technology,

i.e. 65nm. To compare silicon area cost, a fair metric is the gate equivalent or gate

count, which does not change much as technology node changes. To further compare

area efficiency, we define an area efficiency metric (KGate/bit) as:

A ffi . _ Gate count x Frequency
rea e c1ency - Th h roug put

(6.1)

This metric does not change much as the technology node changes, and can be used

to measure the area efficiency of the design. Similarly, to compare power efficiency,

we define an energy efficiency metric (nJ/bit) as:

Normalized power
Energy efficiency = Thr h

oug put
(6.2)

In the equation above, the normalized power is the power number that is scaled to a

same technology node, i.e. 65nm, as:

Power
Normalized power = .

technology scaling factor2
(6.3)

As can be seen, the proposed detectors achieve very high data throughput while still

maintaining a low area and energy requirement.

In terms of error performance, the proposed trellis detector with M = 2 outper-

forms the K-Best detector with K = 64 (cf. Fig. 3.6). Although the depth-first

detector with un-limited search steps achieves near-optimal performance, in a prac-

tical design, the search steps will be limited to meet the throughput requirement.

174

However, with limited search steps, the error performance of a depth-first detector

quickly degrades. For example, the depth-first MMF -SSD detector from (87] shows a

0.6-0.8 dB performance loss compared to the optimal case.

The trellis MIMO detector with M = 2 achieves a balanced tradeoff between

hardware complexity and error performance (< 0.3 dB loss). Therefore, the proposed

detector is a good solution for the Gbps MIMO detection problem as it achieves both

high throughput performance and good error performance.

Table 6 3 · Architecture comparison with two independent works

Reference Studer (33] Guo (39] Systolic Folded

Algorithm Depth-First K-Best, K=5 Trellis, M =2 Trellis, M =2

Configuration 4x4 16-QAM 4x4 16-QAM 4x4 16-QAM 4x4 16-QAM

Clock Frequency 71 MHz 200 MHz 400 MHz 400 MHz

Technology 250 nm 130 nm 65 nm 65 nm

Throughput 10-95 Mbps 106 Mbps 6.4 Gbps 2.1 Gbps

Core Area 1.9 mm2 0.56 mm2 3.19 mm2 1.18 mm2

Gate Count 56.8 K 97 K 2.22 M 820 K

Power N/A N/A 210mW 81mW

Area Efficiency 403-42 183 138 156

Energy Efficiency N/A N/A 0.03 0.04

175

Table 6.4 : Architecture comparison with two internal works

Reference Radosav. [86] Myllyla [87) Systolic Folded

Algorithm BSSD MMF-SSD Trellis, M=2 Trellis,· A1 =2

Configuration 4x4 16-QAM 4x416-QAM 4x4 16-QAM 4x4 16-QAM

Clock Frequency 200 MHz 250 MHz 400 MHz 400 MHz

Technology 130 nm 180 nm 65 nm 65nm

Throughput 72 Mbps 31-121 Mbps 6.4 Gbps 2.1 Gbps

Core Area 0.57 mm2 0.59 mm2 3.19 mm2 1.18 mm2

Gate Count 210 K 43.9 K 2.22 M 820 K

Power 43.45 mW 83mW 210mW 81mW

Area Efficiency 583 354-90 138 156

Energy Efficiency 0.15 0.09 0.03 0.04

6.3 VLSI Implementation Results for LTE Turbo Decoders

6.3.1 Highly-Parallel LTE-Advanced Turbo Decoder

A highly-parallel 3GPP LTE/LTE-Advanced Turbo decoder, which consists of 64

Radix-2 SW-MAP decoder cores (cf. Chapter 4 Section 4.4), has been synthesized,

placed and routed for a l.OV 8-metallayer TSMC 65nm CMOS technology [11]. The

decoder has scalable parallelism. The decoder can employ 64, 32, and 16 MAP units

when the block size N >= 2048, N >= 1024, and N >= 512, respectively. For small

block size N < 496, the decoder can use up to 8 MAP cores. Figure 6.6 shows the top

layout view of this ASIC which shows the core area of this decoder. The fixed-point

bit precisions are as follows: the channel symbol LLRs for systematic and parity

176

bits are represented with 6-bit signed numbers (with 2 fractional bits), the internal

a and f3 state metrics are represented with 10-bit unsigned integer numbers (mod­

ulo normalization), and the extrinsic LLRs are represented with 8-bit signed integer

numbers. Based on the fixed-point simulation result, the finite word-length implemen­

tation leads to negligible BER performance degradation from using the floating-point

representation. The maximum achievable clock frequency is 400 MHz based on the

post-layout simulation. The corresponding maximum throughput is 1.28 Gbps (at 6

iterations) with a core area of 8.3 mm2 .

We compare the proposed Turbo decoder with existing Turbo decoders from [112],

[113], [58], and [61]. In [112], a parallel Turbo decoder based on 7 MAP decoders

is presented. In order to avoid memory contention, a custom designed interleaver,

which is not s~andard compliant, is used. In [113], a 3G-compliant parallel Turbo

decoder based on the row-column permutation interleaver is introduced. In [58], a

188-mode Turbo decoder chip for 3GPP LTE standard is presented. In this decoder,

8 MAP units are used to achieve a maximum decoding throughput of 129Mbps (at

8 iterations). In [61], a Radix-4 Turbo decoder is proposed for 3GPP LTE and

WiMax standards. A maximum throughput of 186Mbps is supported by employing

8 MAP units (at 8 iterations). Table 6.5 summarizes the implementation results

of the proposed decoder and the hardware comparison with existing decoders. As

can be seen, the proposed decoder supports the 3GPP LTE-Advanced throughput

requirement (1 Gbps) at a small area cost, and achieves a good energy efficiency.

Table 6.5 : Turbo decoder ASIC comparison

This work Bougard Thul Wong

[11] [112] [113] [58]

Max. block size 6144 432 5120 6144

MAP cores 64 7 6 8

Maximum iterations 6 6 6 8

Technology 65nm 180nm 180nm 90nm

Supply voltage 0.9V 1.8V NA l.OV

Clock frequency 400MHz 160MHz 166M Hz 275MHz

Core area 8.3mm2 7.16mm2 13mm2 2.1mm2

Gate Equivalent 5.8M 587K t 1.3M + 740K tt

Arithmetic Logic 4.9M 373K N/A N/A

Throughput 1.28Gbps 75.6Mbps 60Mbps 129Mbps

Power consumption 845mW N/A N/A 219mW

Energy efficiency 0.11 1.45 1.65 0.21

(nJ /bit/iteration)

t The gate count is estimated based on the chip data in this thesis.

t The unit cell area is assumed to be 10.00 J.Lm2 for 180nm technology.

tt The unit cell area is assumed to be 2.82 J.Lm2 for 90nm technology.

177

Kim

[61]

6144

8

8 .

130nm

1.2V

250M Hz

10.7mm2

BOOK

500K

186Mbps

N/A

0.61

178

Figure 6.6 : VLSI layout view of an LTE-advanced Thrbo decoder.

6.4 VLSI Implementation Results for LDPC Decoders

6.4.1 IEEE 802.11n LDPC Decoder

An IEEE 802.11n LDPC decoder is implemented based on the single-layered offset

min-sum algorithm [18]. The decoder was implemented in Verilog HDL and syn­

thesized on a TSMC 0.13~-tm standard cell library. Table 6.6 shows a summary of

synthesis results. Complexity is measured in equivalent gates for logic and in bits

for memories. An overall complexity of 90 K logic gates is measured for the non­

pipelined implementation, plus 77,760 bits of RAM. In comparison, 195 K logic gates

is measured for the pipelined implementation, plus 77, 760 bits for memories based

on the additional register and control needed for pipelined operation.

A Verilog RTL simulation model was used to measure average throughput v.s.

179

SNR level. For instance, at a rather low SNR of 1.0 dB, the pipelined decoder can

achieve 150 Mbps. While at a higher SNR of 2.2 dB, the pipelined decoder can achieve

about 1 Gbps.

Table 6.6 : IEEE 802.11n LDPC decoder design statistics [18].

Non-pipelined Pipelined

Frequency 400 MHz 400 MHz

Area 1.3 mm2 1.9 mm2

Logic gates 90 K 195 K

Total memory 77,760 bits 77,760 bits

Throughput@2.2dB SNR 500 Mbps 1 Gbps

Throughput@l.OdB SNR 80 Mbps 150 Mbps

6.4.2 Variable Block-Size and Multi-Rate LDPC Decoder

A flexible LDPC decoder which supports variable block sizes from 360 to 4200 bits

in fine steps, where the step size can be 24 (at rate 1/4, 1/3, 1/2, 2/3, 3/4, 5/6 and

7 /8), or 25 (at rate 2/5, 3/5 and 4/5), or 27 (at rate 8/9), or 30 (at rate 9/10), was

described in Verilog HDL [17]. Layout was generated for a TSMC 0.13J1m CMOS

technology as shown in Fig. 6.7. Table 6.8 compares this decoder with two existing

LDPC decoders from [69] and [80].

180

Figure 6. 7: VLSI layout view for a variable block-size and multi-rate LDPC decoder.

Table 6.7: Variable-size LDPC decoder comparisons

This work (17] Blanksby (69] Mansour (80]

Throughput 1.0 Gbps@2.2dB 1.0 Gbps 1.3Gbps@2.2dB

Area 4.5 mm2 52.5mm2 14.3 mm2

Frequency 350 MHz 64 MHz 125 MHz

Power 740mW 690mW 787mW

Block size 360 to 4200 bit 1024 bit fixed 2048 bit fixed

Code Rate 1/4: 9/10 1/2 fixed 1/16: 14/16

Technology O.l3J-lm, 1.2V O.l6J-lm, 1.5V O.l8J-lm, 1.8V

181

6.4.3 An IEEE 802.11n/802.16e Multi-Mode LDPC Decoder

In order to support even more wireless systems than our result in Section. 6.4.2, a

multi-mode LDPC decoder which supports both IEEE 802.11n and IEEE 802.16e

has been synthesized on a TSMC 90nm l.OV 8-metallayer CMOS technology [16].

The detailed VLSI architecture has been described in Chapter 5 Section 5.5. Fig. 6.8

shows the VLSI layout view of the LDPC decoder. Table 6.8 compares this decoder

with the state-of-the-art LDPC decoders of [130] and [80]. The decoder in [130] has

the flexibility to support 19 modes of LDPC codes in the WiMax standard,. however

it will not support the higher data rates envisioned for 4G and IMT-Advanced. The

decoder in [80] has a throughput of 640 Mbps, but it does not have the flexibility to

support multiple codes. As can be seen, our decoder shows significant performance

improvement in throughput, flexibility, area and power.

Table 6.8 : IEEE 802.11n/802.16e LDPC decoder comparison

This Work [16] Shih [130] Mansour [80]

Flexibility 802.16ef.lln 802.16e 2048-bit fixed

Max Throughput 1 Gbps 111 Mbps 640 Mbps

Total Area 3.5 mm2 8.29 mm2 14.3 mm2

Max Frequency 450 MHz 83 MHz 125 MHz

Peak Power 410mW 52mW 787mW

Technology 90nm 0.13 p,m 0.18 p,m

Max Iteration 10 8 10

Algorithm Full BP Min-Sum Linear Apprx.

182

Figure 6.8 : VLSI layout view of an IEEE 802.11n/802.16e multi-mode LDPC de­
coder.

As low power design is critical for wireless receivers, in order to save power, we

have implemented a simple and effective early termination criteria for stopping the

iteration process. The decoding will stop if the following two conditions are satisfied:

1) the hard decisions for the information bits based on their LLR values do not

change over two successive iterations, and 2) the minimum of the absolute values of

the information bit LLRs is larger than a pre-defined threshold. Fig. 6.9 (a) shows the

power consumption for different SNR levels for a block size of 2304 bits LDPC code

with a maximum iteration number of 10. As shown in Fig. 6.9 (a), when the wireless

channel is good, the decoding needs fewer iterations to converge, which therefore saves

substantial power (up to 65% power reduction). Another power saving technique is

183

to use distributed SISO decoders and memory banks. Fig. 6.9 (b) shows the power

reduction from deactivating the unused SISO decoders and memory banks when the

LDPC code size is small.

450~--~----~----~----~----~

400 .

-350
~ s
c:
~ 300 .
0.
E
::J
r/)
c:
8 250

~
a_ 200

150

............... With early termination
-----Without early termination

100~--~----~----~----~----~
0 2 3

Eb/NO (dB}

(a) Early termination

4 5

450

425 .

400

~
E

........ 375
c:
0
a
§ 350 .
r/)
c:
0
()

(j) 325 .
::
0
a_

300 .

275 .

250
500 1 000 1500 2000

Block size (bit)

(b) Distributed SISO decoding

Figure 6.9 : Two power reduction techniques

2500

6.4.4 LDPC Decoder Implementation Using High Level Synthesis Tool

Because of design complexity and variation needed as shown in the thesis, there is

much research interest in using high level synthesis (HLS) tools to design LDPC

decoders. High level synthesis maps from C /C++ codes to Verilog/VHD L RTL

codes. As a case study, we created a flexible LDPC decoder which fully supports the

IEEE 802.16e WiMax standard using a high level synthesis design tool [15], the PICO

184

[131, 132) tool. The generated RTL was synthesized using Synopsys Design Compiler,

and placed & routed using Cadence SoC Encounter on a TSMC 65nm 0.9V 8-metal

layer CMOS technology. The VLSI layout view of this decoder with a core area of

1.2 mm2 (standard cells + SRAMs) is shown in Fig. 6.10. Table 6.9 compares our

decoder with the state-of-the-art LDPC decoders of [65) and [66). A fair comparison

is difficult to make because of different design parameters. However, it can be roughly

inferred that the FICO-generated decoder can achieve comparable performance with

the hand designed decoders in terms of throughput, area, and power.

Figure 6.10: VLSI layout view of the LDPC decoder created from high level synthesis.

The PICO scheduler can analyze the underlying data flow graph, and set those

idle registers' "enable" signals to "0" when the module has no activity. PICO also

185

Table 6.9: LDPC decoder comparisons HLS v s manual design
'

..
This Work [15] Rovini [65] Brack [66]

Core Area 1.2 mm2 0.74 mm2 1.337 mm2

Max Frequency 400 MHz 240 MHz 400 MHz

Max Power 180mW 235mW NA

Technology 65 nm 65 nm 65 nm

Quantization 6 5 6

Number of Iterations 10 13 25-20

Max Code Length 2304 1944 2304

Memory (SRAM) 82,944 bit 68,256 bit 0.551 mm2

Max Throughput @ R=1/2 415 Mbps 178 Mbps 333 Mbps

Max Latency@ R=1/2 2.8 J-LS 5.75 J-LS 6.0 J-LS

provides block-level clock gating which shuts off entire processing blocks to minimize

power at an architectural level. Table 6.10 compares the power consumption of a

(2304, 1/2) pipelined LDPC decoder with and without clock-gating. SpyGlass [133]

was used to conduct the gate-level power estimation (not including external SRAMs).

From Table 6.10, we can see a 29% reduction of the "sequential internal power" via

clock-gating. It should be noted that the power number shown in Table 6.10 is just

the standard cell power consumption number.

Table 6.10 : SpyGlass power estimates with and without clock gating

Power Leakage Internal Switching Total

W /clock-gating 3.43mW 46.1mW 22.5mW 72.0mW

W /0 clock-gating 3.43mW 64.5mW 22.5mW 90.4mW

186

6.4.5 Multi-Layer Parallel LDPC Decoder for IEEE 802.11n

A flexible double-layer parallel decoder which fully supports IEEE 802.11n LDPC

codes was designed in Verilog HDL [134]. The detailed VLSI architecture of this

decoder was descril_>ed in Chapter 5 Section 5.6. The fixed-point design parameters

are as follows. The channel input LLR is represented with 6-bit signed numbers with

2 fractional bits. The word lengths of the extrinsic R values and the APP LLR values

are 6 bits and 7 bits, respectively. According to the computer simulation, this fixed­

point implementation introduces only a performance loss of 0.05 dB compared to the

floating-point implementation.

We have synthesized the decoder for a TSMC 45nm CMOS technology. The

maximum clock frequency is 815 MHz and the area is 0.81 mm2 based on the Synopsys

Design Compiler synthesis result. Table_6.11 summarizes the throughput performance

of this double-layer parallel decoder for the decoding of IEEE 802.11n LDPC codes

at 15 iterations. Table 6.12 compares the implementation result of our decoder with

existing 802.1ln LDPC decoders from [65, 68, 122]. The solutions from (65, 68, 122]

are all based on the conventional single-layer decoding architecture. Compared to

those decoders, our pipelined double-layer parallel decoder achieves a much higher

throughput at low complexity.

187

Table 6.11 : Throughput performance of the multi-layer parallel decoder

Block length Rate 1/2 Rate 2/3 Rate 3/4 Rate 5/6

648 bits 380 Mbps 520 Mbps 760 Mbps 1.0 Gbps

1296 bits 750 Mbps 1.1 Gbps 1.3 Gbps 2.0 Gbps

1944 bits 1.1 Gbps 1.7 Gbps 2.2 Gbps 3.0 Gbps

Table 6.12: LDPC decoder comparison for IEEE 802.11n

This work [134] Rovini [65] Gunnam [68] Studer [122]

Technology 45 nm 65nm 130 nm 180 nm

Area 0.81 mm2 0.74 mm2 1.85 mm2 3.39 mm2

Frequency 815 MHz 240 MHz 500 MHz 208 MHz

Iter. 15 14 5 5

Throughput 3.0 Gbps 410 Mbps 1.6 Gbps 780 Mbps

6.5 VLSI Implementation Results for LDPC /Turbo Multi-

Mode Decoder

To support more wireless standards with both LDPC and Turbo coding schemes, we

have implemented a joint LDPC/Turbo decoder. This flexible decoder together with

the proposed MIMO detector can provide a solution for the more advanced iterative

detection and decoding scheme.

6.5.1 Implementation Results for The Flexible Functional Unit

The flexible functional unit (FFU) introduced in Chapter 5 (cf, Fig. 5.32) was first

synthesized. The word lengths for X, Y, V, and W are all 9 bits. To evaluate the area

188

efficiency of the proposed FFU, we have described the LDPC f(a, b) unit, the Turbo

ACSA unit, and the FFU in Verilog HDL, and synthesized them on a TSMC 90nm

CMOS technology. The maximum achievable frequency (assuming no clock skews)

and the synthesized area at two frequencies (400 MHz and 800 MHz) are summarized

in Table 6.13. As can be seen, the proposed flexible functional unit FFU has only

about 15% area and timing overhead compared to the dedicated functional units. The

area efficiency is achieved because many logic gates can be shared between LD PC and

Turbo modes.

Table 6.13 : Synthesis results for different functional units

I Functional unit'l If(a, b)l I ACSA FFU

Max frequency 920 MHz 885 MHz 815 MHz

Area (400MHz) 1192 J.tm2 1263 J.tm2 1419 f.LID2

Area (800MHz) 1882 f.LID2 2086 f.LID2 2423 JLID2

6.5.2 Implementation Results for The Flex-8180 Decoder

The Flex-SISO decoder introduced in Chapter 5 (cf, Fig. 5.33) has been synthesized

on a TSMC 90nm CMOS technology. Table 6.14 summarizes the area distribution of

this decoder. The maximum clock frequency is 500 MHz and the synthesized area is

0.098 mm2 • The Flex-SISO is a basic building block in a LDPC decoder or a Turbo

decoder, and can be reconfigured to process an 8-state trellis for a Turbo code, or 8

check rows for an LDPC code. As the baseline design, a single Flex-SISO decoder can

189

approximately support 30-40 Mbps (LTE) Turbo decoding, or 40-50 Mbps (802.16e

or 802.11n) LDPC decoding. In a parallel processing environment, multiple SISO

decoders can be used to increase the throughput.

Table 6.14 : Flex-SISO decoder area distribution.

Unit Area

a-unit 0.014 mm2

,8-unit 0.014 mm2

Extrinsic-1 unit 0.014 mm2

Extrinsic-2 unit 0.004 mm2

a and 'Y stack memories 0.045 mm2

Control logic & others 0.007 mm2

Total 0.098 mm2

6.5.3 Implementation Results for The Top-level LDPC /Turbo Decoder

We have designed a high-throughput, flexible LDPC/Turbo decoder to support the

following three codes: 1) 802.16e WiMAX LDPC code, 2) 802.11n WLAN LDPC code,

and 3) 3GPP-LTE Turbo code [14, 19]. Table 6.15 summarizes the performance and

design parameters for this decoder. The number of the Flex-SISO decoders is chosen

to be 12.

To evaluate the fixed-point decoding performance, we perform float-point and bit­

accurate fixed-point simulations for LDPC and Turbo codes using BPSK modulation

over an AWGN channel. As a good trade-off between complexity and performance,

190

Table 6.15 : Performance of the unified LDPC/Turbo decoder.

Codes Code size Parallelism Quant. Iter. Throughput Latency

LDPC 802.16e 576-2304 b z = 24-96 6.2 15 600 Mbps 1590 cycles

LDPC 802.11n 648-1944 b z = 27-81 6.2 15 500 Mbps 1620 cycles

LTE Turbo 40-6144 b 12 6.2 6 450 Mbps 6822 cycles

we use 6.2 (6 bits in total with 2 fractional bits) quantization scheme for channel LLR

inputs for fixed-point LDPC and Turbo decoders.

Fig. 6.11 shows the bit error rate (BER) simulation result for a WiMAX LDPC

code with code-rate = 1/2, and code-length = 2304. The maximum number of it­

erations is 15. As can be seen from Fig. 6.11, the fixed-point FFU solution has a

very small performance degradation (< 0.05dB) at BER level of w-6 compared to

the floating point solution. We also plot a BER curve for the scaled minsum solu­

tion [63], which is a sub-optimal approximation algorithm without using the look-up

tables. As can be seen from the figure, the look-up table based FFU solution can

deliver a better decoding performance than the scaled minsum solution. The com­

plexity of adding the look-up tables is relatively small because the word length of

the data in the look-up table is only 2-bit (cf. Chapter 5 Table 5.2). Figure 6.12

compares the convergence speed of the single-layered decoding algorithm with the

standard two-phase flooding decoding algorithm.

Fig. 6.13 shows the BER simulation result for 3GPP-LTE Thrbo codes with block

191

10° ~~~~~~~~~~~~~~~~T.===~=====r====~==~
• · • • • • • • •• • • · • • • • •. ·,_Fixed point scaled minsum

· · · · > • • -Fixed point FFU
-e- Floating point

-m

10-?L_ __ ~----~----~--~-----L----~--~L_ __ _L ____ ~----
0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4

Eb/NO [dB]

Figure 6.11 : Simulation results for a rate 1/2, length 2304 WiMAX LDPC code.

192

15

14

13

12
§ 11 ·p
e! 10 (!)

.i:;:
9

0 ... 8 (!)
,0

~ 7

(!) 6

G 5

< 4

3

2

1

0
0.75 1.25 1.5 1.75 2 2.25

Eb/No [dB]

Figure 6.12 : Comparison of the convergence speed.

sizes of 6144, 1024, 240, and ~0. The maximum number of Turbo iterations is 6

(12 half iterations). The sliding window length is 32. As can be seen from the

figure, the FFU based fixed-point decoder has almost no performance loss compared

to the floating point case. The proposed FFU solution will deliver a better decoding

performance than the sub-optimal max-logMAP solution.

For LDPC decoding, with 12 available Flex-SISO cores the decoder can process up

to 12 x 8 = 96 check nodes simultaneously. Because the sub-matrix size z is between

24 to 96 for 802.16e LDPC codes, and 27 to 81 for 802.11n, the proposed decoder

always guarantees that all of the z check nodes within a layer can be processed in

parallel.

For 3GPP-LTE Turbo decoding, the codeword can be partitioned into M sub-

~

10-1 ~~~~~ .. T.~ .. ~ .. ~ .. ~ .. ~ .. ~ .. ~ .. ~.~ .. ~.:~:~::~::~::~ .. ~ .. ~ .. r..~ .. ~ .. ~.~ .. ~ .. ~ ... ~.:~:~.~ .. ~ .. ~ .. ~ .. ~ .. ~.~ .. ~ .. "-.~ .. ~ .. ~ .. ~ .. ~.~~

'

- - - - . . . - -................................ -···

~ 10-4
. ' . . :::::::::::::::::.":::::::::::":::::::::::::::: ::::::: - · --

~
-- ... ---- -~-- ... -

....
e w 10-5 -i:D

-6
10 ::::: ::::::::::::_::::

10-7 ::::::::::::::

. \ .

---
- - -

:::::;::::::::: :\::::::.:: :::::::::::::::r-:·:~:;~;:~:;~::~:~:;~::~: ~~~~-'-'-'-'-;

:t::: · · · · --&-Floating point, N=6144 :
): -e-Fioating point, N=1024:

-Floating point, N=240
-411- Floating point, N=40

· · · · · -6- Fixed point, N=6144
- e- Fixed point, N=1024
- a - Fixed point, N=240
-~ - Fixed point, N=40

10-BL--------L--------~------~L--------L--------~------~
0 0.5 1.5 2 2.5 3

Eb/NO [dB]

193

Figure 6.13 Simulation results for 3GPP-LTE Turbo codes with a variety of block
sizes.

194

blocks for parallel processing. The LTE Thrbo code uses a quadratic permutation

polynomial (QPP) interleaver [96] so that it allows conflict free memory access as

long as M is a factor of the codeword length. There are 188 different codeword

sizes defined in LTE. For LTE Thrbo codes, all of the codewords can support a

parallelism level of 8, some of the codewords can support parallelism levels of 10 or

12. Because we have 12 Flex-SISO cores available, we will dynamically allocate the

maximum possible number of Flex-SISO cores (8 ~ M ~ 12) constrained on the QPP

interleaver parallelism. As an example, for the maximum codeword size of 6144, we

can allocate all of the 12 Flex-SISO cores to work in parallel. It should be noted that

the parallelism level has some iii.J.pact on the error performance of the decoder due to

the edge effects caused by the sub-block partitioning [135].

This flexib!e decoder has been implemented in Verilog HDL and synthesized on a

TSMC 90nm CMOS technology using Synopsys Design Compiler [14]. The maximum

clock frequency of this decoder is 500 MHz. The synthesized core area is 3.2 mm2 ,

which includes all of the components in this decoder. Table 6.15 summarizes the

features of this decoder. The decoder can be configured to support IEEE 802.16e

LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Thrbo codes. Compared

to a dedicated LDPC decoder solution [16], this flexible decoder has only about 15-

20% area overhead when normalized to the same throughput target (with the same

number of iterations). Compared to a dedicated Thrbo decoder solution [114], our

flexible decoder shows only about 10-20% area overhead when normalized to the same

---------- ----

195

technology and the same throughput and code length. Table 6.5 compares our flexible

decoder with existing LDPC/Turbo multi-mode decoder.

Table 6.16 : Architecture comparison with existing flexible LDPC/Turbo
solutions.

This work [136] [137] [138]

Technology 90nm 65nm 130nm 90nm

Clock frequency 500MHz 400MHz 200M Hz NA

Core area 3.2mm2 0.62mm2 NA NA

Throughput (LDPC) 600Mbps 257Mbps 11.2Mbps 70Mbps

Throughput (Turbo) 450Mbpst 18.6Mbpst 86.5Mbps:j: 14Mbpst

t Binary Turbo code.

+ Double-binary Turbo code.

6.6 Discussions on the Iterative Receiver Design and lmple-

mentation

With the proposed MIMO detector and LDPC/Turbo decoder, an iterative receiver

can be realized by connecting the detector to the decoder. For a channel decoder,

data buffers would be required because the decoder usually needs to receive a whole

codeword block before starting the decoding process. For a MIMO detector, data

buffers will also be required because of the channel interleaving. Fig. 6.14 and Fig. 6.15

show the area and power estimation for the iterative receivers for different antennas.

In the estimation, we assume each stream is separated coded and multiple LDPC

decoders are used for decoding multiple data streams. The detector area and power

~-

196

for 4 antenna systems are estimated based on the implementation result in Table 6.3,

and the decoder area and power for 4 antenna systems are estimated based on the

implementation result in Table 6.8. All the numbers are normalized to a same

technology, i.e. 65nm. The area and power for 2 and 8 antenna systems are estimated

based on the ASIC implementation results for 4 antenna system. Since the streams are

separated coded, the decoder complexity increases almost linearly with the number of

antennas. However, the detector complexity increases quadratically with the number

of antennas, with a complexity of O((Nt- 1)(Nt- 2)/2).

30

25

-Cl)

~ 20
:::::1
C"'
II)

E 15
E -cu
~ 10
<(

5

0

2 4

Number of Antennas

8

IIIII LDPC Decoder
lllll MIMO Detector

Figure 6.14 : Area estimation for iterative receiver.

3

2.5

~
2

...
1.5 ;

0
11.

1

0.5

0

2 4

Number of Antennas

8

1111 LDPC Decoder
1m MIMO Detector

Figure 6.15 : Power estimation for iterative receiver.

6.7 Summary

197

We have implemented a channel encoder and a channel decoder accelerator for the

Rice WARP FPGA testbed. The encoder/decoder was successfully integrated into

the WARP MIMO-OFDM System Generator model.

We have implemented various detectors and decoders on ASICs to evaluate the

implementation complexity. Compared with the existing detector and decoder solu-

tions, our architecture can achieve a higher throughput performance with reasonable

hardware resources.

A potential receiver system for 4G wireless systems could be created from the

MIMO detection in Chapter 3 and Chapter 6 connected a channel decoder support-

198

ing Turbo and LDPC codes from Chapter 4 and Chapter 5. The system could con­

figured for a single pass or for multiple iterations. Initial simulation results for this

architecture were presented in Chapter 3 Section 3.3.

199

Chapter 7

Conclusion and Future Work

7.1 Conclusion of The Current Results

In this thesis, we introduced a reduced-complexity MIMO detector based on a novel

trellis-search algorithm. We represent the search space of the MIMO signal with a trel­

lis structure and convert the MIMO detection problem into a shortest path problem.

We proposed a high-throughput VLSI architecture, which can support multiple Gbps

data rate. We presented the ASIC implementation results for the proposed MIMO

detector architecture. Compared to the existing solutions, the proposed trellis-search

based MIMO detector has a significant throughput advantage and a higher area effi­

ciency. The simulation results suggest that the error performance is very close to the

optimum MAP detector.

We proposed a parallel Thrbo decoding algorithm and architecture to achieve Gbps

data rate. We employ multiple MAP decoding units to process a codeword in parallel.

By utilizing the contention-free interleaver structure, we avoid the memory conflict

problem. We implemented a LTE-Advance Turbo decoder on an ASIC technology.

We proposed a multi-layer parallel LDPC decoding algorithm and architecture

to achieve multiple Gbps data rate. The proposed scalable LDPC decoder can be

200

configured to support different block sizes and code rates. We presented several

ASIC implementation results for LDPC decoders for various wireless standards, e.g.

IEEE 802.11n and IEEE 802.16e. We further presented a joint LDPC/Thrbo decoding

algorithm and architecture to support more wireless standards with a small hardware

overhead.

We developed an iterative detection and decoding scheme based on the proposed

trellis-search detector. In this scheme, the LLR soft values generated by the decoder

are fed to the detector, and then the detector restarts a new round of detection to

further refine the LLR soft values. The simulation results suggest that a 2.5-3 dB gain

can be achieved by such a schem~. The component detector and decoder architectures

and ASIC implementations can be combined to create this receiver.

7.2 Future Work

The following issues can be further investigated:

1. Real-value decomposition based trellis-search algorithm: The current trellis­

search algorithm is based on the complex-value decomposition of the channel matrix.

A variation of this algorithm is to use the real-value decomposition of the channel

matrix and to form a real-valued trellis diagram. The number of stages and the

number of nodes in each stage will change in a real-valued trellis diagram. It would be

an interesting problem to extend the current complex-valued trellis-search algorithm

to support real-valued model and compare the complexity and the performance of


~~~~- -~~~~~-~ 

201 

these two schemes. 

2. Unified decoding architecture: It would be an interesting problem to extend 

the current joint LDPC/Thrbo decoder architecture to support more error-correcting 

codes such as LDPC convolutional codes, non-binary LDPC codes, and non-binary 

Thrbo codes. 

3. Low power design: Next generation CMOS technology would offer more low-

power features such as multiple supply voltages and multiple threshold libraries. Fur-

thermore, the 3D CMOS technology is emerging to replace the current planar CMOS 

technology. The designer can take advantage of these new technologies to reduce 

the power consumption from all aspects. Low power design is especially useful for 

hand-held devices, such as cellphones. 

. 
' 



202 

Bibliography 

[1] "Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal 

Terrestrial Radio Access Network (EUTRAN), 3GPP TS 36.300." 

[2] "General UMTS Architecture, 3GPP TS 23.101 version 7.0.0, June 2007." 

[3] S. Parkvall, E. Dahlman, A. Furuskar, Y. Jading, M. Olsson, S. Wanstedt, and 

K. Zangi, "LTE-Advanced- Evolving LTE towards IMT-Advanced," in IEEE 

Vehicular Technology Conference, Sept. 2008, pp. 1-5. 

[4] G. J. Foschini, "Layered space-time architecture for wireless communication in 

a fading environment when using multi-element antennas," Bell Labs Technical 

Journal, vol. 1, no. 2, pp. 41-59, 1996. 

[5] G. Fettweis, T. Hentschel, and E. Zimmermann, "WIGWAM- A Wireless Gi­

gabit System with Advanced Multimedia Support," in VDE Kongress, Berlin, 

Germany, Oct. 2004, pp. 18-20. 

[6] Y. Sun and J. R. Cavallaro, "High Throughput VLSI Architecture for Soft­

Output MIMO Detection Based on a Greedy Graph Algorithm," in ACM Great 

Lakes Symposium on VLSI Design, May 2009, pp. 445-450. 



203 

[7] "Low-complexity and high-performance soft MIMO detection based on 

distributed M-algorithm through trellis-diagram," in IEEE Int. Conf. Acoustics, 

Speech, and Signal Processing (ICASSP }, March 2010, pp. 3398-3401. 

[8] --, "A New MIMO Detector Architecture Based on a Forward-Backward 

Trellis Algorithm," in IEEE Asilomar conf. on Signals, Syst. and Computers, 

Oct. 2008, pp. 1892-1896. 

[9] Y. Sun, K. Amiri, M. Brogioli, and J. R. Cavallaro, "Application-Specific DSP 

Accelerators," Handbook on Signal Processing Systems (S. Bhattacharyya, E. 

Deprettere, R. Leupers, J. Takala, Eds.), 1st Edition, Springer, New York, NY, 

pp. 329-362, 2010. 

[10] M. Wu, Y. Sun, S. Gupta, and J. R. Cavallaro, "Implementation of a High 

Throughput Soft MIMO Detector on GPU," Journal of Signal Processing Sys­

tems (DOl: 10.1007/s11265-010-0523-4, On-Line-First), 2010. 

[11] Y. Sun and J. R. Cavallaro, "Efficient Hardware Implementation of A Highly­

Parallel 3GPP LTE, LTE-Advance Thrbo Decoder," Elsevier Integration, the 

VLSI Journal, Special Issue on Hardware Architectures for Algebra, Cryptology 

and Number Theory, DOI:10.1016jj.vlsi.2010.07.001, (On-Line}, July 2010. 

[12] Y. Sun, Y. Zhu, M. Goel, and J. R. Cavallaro, "Configurable and Scalable High 

Throughput Thrbo Decoder Architecture for Multiple 4G Wireless Standards," 



204 

in IEEE International Conference on Application-Specific Systems, Architec­

tures and Processors (ASAP), July 2008, pp. 209-214. 

[13] M. Wu, Y. Sun, and J. R. Cavallaro, "Implementation of a 3GPP LTE Thrbo 

Decoder Accelerator on GPU," in IEEE Workshop on Signal Processing Systems 

(SIPS), Oct. 2010, pp. 193-198. 

[14] Y. Sun and J. R. Cavallaro, "A Flexible LDPC/Thrbo Decoder Architecture," 

Springer Journal of Signal Processing Systems, Special Issue on the 2008 IEEE 

SiPS Workshop, DO!: 10.1007/s11265-010-0477-6, (On-Line First), July 2010. 

[15] --, "Scalable and Low Power LDPC Decoder Design Using High Level Algo­

rithmic Synthesis," in IEEE International SOC Conference (SoCC), Sept. 2009, 

pp. 267-270. 

[16] "A low-power 1-Gbps reconfigurable LDPC decoder design for multiple 

4G wireless standards," in IEEE International SOC Conference, Sept. 2008, pp. 

367-370. 

[17] Y. Sun, M. Karkooti, and J. R. Cavallaro, "VLSI Decoder Architecture for 

High Throughput, Variable Block-size and Multi-rate LDPC Codes," in IEEE 

International Symposium on Circuits and Systems (ISCAS), May 2007, pp. 

2104-2107. 

[18] --, "High Throughput, Parallel, Scalable LDPC Encoder/Decoder Architec­

ture for OFDM Systems," in IEEE Dallas Circuit and System Workshop on 



205 

Design, Applications, Integration and Software, Oct. 2006, pp. 39-42. 

[19] Y. Sun and J. R. Cavallaro, "Unified Decoder Architecture For LDPC/Thrbo 

Codes," in IEEE Workshop on Signal Processing Systems {SIPS), Oct. 2008, 

pp. 13-18. 

[20] B. Hochwald and S. Brink, "Achieving Near-Capacity on a Multiple-Antenna 

Channel," IEEE Transactions on Communications, vol. 51, pp. 389--399, Mar. 

2003. 

[21] U. Fincke and M. Pohst, "Improved Methods for Calculating Vectors of Short 

Length in a Lattice, Including a Complexity Analysis," Mathematics of Com­

putation, vol. 44, no. 170, pp. 463-471, April1985. 

[22] E. Viterbo and J. Boutros, "A universal lattice code decoder for fading chan­

nels," IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1639--1642, 

July 1999. 

[23] M. 0. Damen, H. E. Gamal, and G. Caire, "On maximum-likelihood detection 

and the search for the closest lattice point," IEEE Transactions on Information 

Theory, vol. 49, no. 10, pp. 2389--2402, 2003. 

[24] B. Hassibi and H. Vikalo, "On the sphere-decoding algorithm I. Expected com­

plexity," IEEE Transactions on Signal Processing, vol. 53, no. 8-1, pp. 2806--

2818, August 2005. 



206 

[25] H. Vikalo and B. Hassibi, "On the sphere-decoding algorithm II. General-

izations, second-order statistics, and applications to communications," IEEE 

Transactions on Signal Processing, vol. 53, no. 8-1, pp. 2819-2834, August 

2005. 

[26] B. Widdup, G. Woodward, and G. Knagge, "A Highly-Parallel VLSI Architec­

ture for a List Sphere Detector," in IEEE International Conference on Com­

munications, June 2004, pp. 2720-2725. 

[27] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, 

"VLSI Implementation of MIMO Detection Using the Sphere Decoding Algo­

rithm," IEEE Journal of Solid-State Circuits, vol. 40, pp. 1566-1577, July 2005. 

[28] D. Garrett, L. Davis, S. ten Brink, B. Hochwald, and G. Knagge, "Silicon Com­

plexity for Maximum Likelihood MIMO Detection Using Spherical Decoding," 

IEEE Journal of Solid-State Circuits, vol. 39, pp. 1544-1552, Sept. 2004. 

[29] Y. Zhang, J. Tang, and K. K. Parhi, "Low Complexity List Updating Circuits 

for List Sphere Decoders," in IEEE Workshop on Signal Processing Design and 

Implementation, Oct. 2006, pp. 28-33. 

[30] J. Antikainen, P. Salmela, 0. Silven, M. Juntti, J. Takala, and M. Myllyla, 

"Application-specific instruction set processor implementation of list sphere de­

tector," EURASIP Journal on Embedded Systems, vol. 2007, no. 3, pp. 1-14, 

2007. 



207 

[31] Q. Qi and C. Chakrabarti, "Sphere Decoding for Multiprocessor Architectures," 

in IEEE Workshop on Signal Processing Design and Implementation, Oct. 2007, 

pp. 50-55. 

[32] X.-M. Huang, C. Liang, and J. Ma, "System Architecture and Implementation 

of MIMO Sphere Decoders on FPGA," IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol. 16, no. 2, pp. 188-197, Feb. 2008. 

[33] C. Studer, A. Burg, and H. Bolcskei, "Soft-output sphere decoding: algorithms 

and VLSI implementation," IEEE Journal on Selected Areas in Communica­

tions, vol. 26, pp. 290--300, February 2008. 

[34] M. Myllyla, M. Juntti, and J. R. Cavallaro, "Architecture design and imple­

mentation of the increasing radius - List sphere detector algorithm," IEEE 

International Conference on Acoustics, Speech, and Signal Processing, April 

2009. 

[35] J. W. Choi, B. Shim, A. C. Singer, and N. I. Cho, "Low-complexity decoding via 

reduced dimension maximum-likelihood search," IEEE Transactions on Signal 

Processing, vol. 58, pp. 1780-1793, Mar. 2010. 

[36] K. Wong, C. Tsui, R. Cheng, and W. Mow, "A VLSI architecture of a K­

Best lattice decoding algorithm for MIMO channels," in IEEE International 

Symposium on Circuits and Systems, vol. 3, May 2002, pp. 273-276. 



208 

(37) K. Higuchi, H. Kawai, N. Maeda, M. Sawahashi, T. Itoh, Y. Kakura, A. Ushi­

rokawa, and H. Seki, "Likelihood Function for QRM-MLD Suitable for Soft­

Decision Turbo Decoding and Its Performance for OFCDM MIMO Multiplex­

ing in Multipath Fading Channel," in IEEE International Symposium Personal, 

Indoor and Mobile Radio Communications {PIMRC), vol. 2, September 2004, 

pp. 1142-1148. 

(38) Y. L. C. de Jong and T. J. Willink, "Iterative tree search detection for MIMO 

wireless systems," IEEE Transactions on Communications, vol. 53, no. 6, pp. 

930-935, June 2005. 

(39) Z. Guo and P. Nilsson, "Algorithm and implementation of the K-Best sphere 

decoding for MIMO detection," IEEE Journal on Selected Areas in Communi­

cations, vol. 24, pp. 491-503, Mar. 2006. 

(40) M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner, "K-Best MIMO 

detection VLSI architectures achieving up to 424 Mbps," in IEEE International 

Symposium on Circuits and Systems, Sept. 2006, pp. 1151-1154. 

(41) Q. Li and Z. Wang, "Improved K-Best sphere decoding algorithms for MIMO 

systems," in IEEE International Symposium on Circuits and Systems, Sept. 

2006, pp. 1159-1162. 

[42] 8. Chen, T. Zhang, andY. Xin, "Relaxed K-Best MIMO Signal Detector Design 

and VLSI Implementation," IEEE Transactions on Very Large Scale Integration 



209 

(VLSI) Systems, vol. 15, pp. 328-337, Mar. 2007. 

[43] M. Shabany, K. Su, and P. G. Gulak, "A pipelined scalable high-throughput 

implementation of a near-ML K-Best complex lattice decoder," in IEEE Inter­

national Conference on Acoustics, Speech, and Signal Processing, Mar. 2008, 

pp. 3173-3176. 

[44] R. Fasthuber et al, "Novel energy-efficient scalable soft-output ssfe mimo de­

tector architectures," in Proceedings of the 9th international conference on Sys­

tems, architectures, modeling and simulation, 2009, pp. 165-171. 

[45] S. Mondal, A. Eltawil, C.-A. Sherr, and K. N. Salama, "Design and Implementa­

tion of a Sort-Free K-Best Sphere Decoder," IEEE Transactions on Very Large 

Scale Integration (VLSI) Systems, vol. PP, pp. 1-5, Nov. 2009. 

[46] T. Cupaiuolo, M. Siti, and A. Tomasoni, "Low-complexity high throughput 

VLSI architecture of soft-output ML MIMO detector," in Design, Automation 

and Test in Europe Conference and Exhibition (DATE), Mar. 2010, pp. 1396-

1401. 

[47] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near shannon limit error­

correcting coding and decoding: Turbo-codes," in IEEE Int. Conf. Commun., 

May 1993, pp. 1064-1070. 

[48] R. Gallager, Low-Density Parity-Check Codes. Cambridge, MA MIT Pressed., 

1963. 



210 

[49] H. Sadjadpour, N. Sloane, M. Salehi, and G. Nebe, "Interleaver design for turbo 

codes," IEEE Journal on Seleteced Areas in Communications, vol. 19, pp. 831-

837, May 2001. 

[50] D. Garrett, B_. Xu, and C. Nicol, "Energy efficient turbo decoding for 3G mo­

bile," in International symposium on Low power electronics and design. ACM, 

2001, pp. 328-333. 

[51] C. Chaikalis and J. Noras, "Reconfigurable turbo decoding for 3G applications," 

Elsevier Signal Processing, vol. 84, pp. 1957-1972, Oct. 2004. 

[52] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, "A 24Mb/s 

radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wireless," in IEEE 

Int. Solid-State Circuit CfJnj. (ISSCC}, Feb. 2003. 

[53] M. Martina, M. Nicola, and G. Masera, "A Flexible UMTS-WiMax Thrbo De­

coder Architecture," IEEE Transactions on Circuits and Systems II, vol. 55, 

pp. 369-273, April 2008. 

[54] K. Loo, T. Alukaidey, and S. Jimaa, "High performance parallelised 3GPP 

turbo decoder," in IEEE Personal Mobile Communications Conference, April 

2003, pp. 337-342. 

[55] M. Shin and I. Park, "SIMD processor-based turbo decoder supporting multiple 

third-generation wireless standards," IEEE Trans. on VLSI, vol. vol.15, pp. 

pp.801-810, Jun. 2007. 



211 

[56] Y. Lin, S. Mahlke, T. Mudge, and C. Chakrabarti, "Design and Implementation 

of Turbo Decoders for Software Defined Radio," in IEEE SIPS, Oct. 2006, pp. 

22-27. 

[57] P. Salmela, H. Sorokin, and J. Takala, "A Programmable Max-Log-MAP Turbo 

Decoder Implementation," HIND A WI VLSI Design, vol. 2008, pp. 636-640, 

2008. 

[58] C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, "A 188-size 2.1mm2 reconfigurable 

turbo decoder chip with parallel architecture for 3GPP LTE system,"· in 2009 

Symposium on VLSI Circuits, June 2009, pp. 288-289. 

[59] D.-S. Cho, H.-J. Park, and H.-C. Park, "Implementation of an efficient UE de­

coder for 3G LTE system," in International Conference on Telecommunications, 

June 2008, pp. 1-5. 

[60] J. Berkmann, C. Carbonelli, F. Dietrich, C. Drewes, and W. Xu, "On 3G 

LTE Terminal Implementation- Standard, Algorithms, Complexities and Chal­

lenges," in International Wireless Communications and Mobile Computing Con­

ference, Aug. 2008, pp. 970-975. 

[61] J.-H. Kim and I.-C. Park, "A unified parallel radix-4 turbo decoder for mobile 

WiMAX and 3GPP-LTE," in IEEE Custom Integrated Circuits Conference, 

Sept. 2009, pp. 487-490. 



212 

[62] R. Gallager, "Low-density parity-check codes," IEEE Transactions on Infor­

mation Theory, vol. 8, pp. 21-28, Jan. 1962. 

[63] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X. Hu, "Reduced­

complexity decoding of LDPC codes," IEEE Transactions on Communications, 

vol. 53, pp. 1288 - 1299, Aug 2005. 

[64] D. Oh and K. Parhi, "Min-Sum Decoder Architectures With Reduced Word 

Length for LDPC Codes," IEEE Transactions on Circuits and Systems I, 

vol. 57, no. 1, pp. 105 - 115, Jan. 2010. 

[65] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, "A Scalable Decoder Archi­

tecture for IEEE 802.11n LDPC Codes," in IEEE Global Telecommunications 

Conferer~:.ce, 2007, pp. 3270-3274. 

[66] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, N. L'Insalata, 

F. Rossi, M. Rovini, and L. Fanucci, "Low complexity LDPC code decoders 

for next generation standards," in Design, Automation, and Test in Europe. 

ACM, 2007, pp. 331-336. 

[67] H. Zhong and T. Zhang, "Block-LDPC: a practical LDPC coding system de­

sign approach," Circuits and Systems I: Fundamental Theory and Applications, 

IEEE Transactions on {see also Circuits and Systems I: Regular Papers, IEEE 

Transactions on], vol. 52, no. 4, pp. 766 - 775, 2005. 



213 

[68] K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, "VLSI Architec­

tures for Layered Decoding for Irregular LDPC Codes of WiMax," in IEEE Int. 

Conf. on Commun., June 2007, pp. 4542-4547. 

[69] A. J. Blanksby and C. J. Howland, "A 690-mW 1-Gb/s 1024-b, rate-1/2 

low-density parity-check code decoder," IEEE Journal of Solid-State Circuits, 

vol. 37, pp. 404-412, Mar. 2002. 

[70] M. M. Mansour and N. R. Shanbhag, "High-throughput LDPC decoders," IEEE 

Tran. VLSI Syst., vol. 11, pp. 976-996, Dec. 2003. 

[71] D. Hocevar, "A reduced complexity decoder architecture via layered decoding 

of LDPC codes," in IEEE Workshop on Signal Processing Systems (SIPS), Oct 

2004, pp. 107-112. 

[72] D. Oh and K. Parhi, "Low complexity implementations of sum-product al-

gorithm for decoding low-density parity-check codes," in IEEE Workshop on 

Signal Processing Systems (SIPS), Oct 2006, pp. 262-267. 

[73] T. Brack, M. Alles, F. Kienle, and N. Wehn, "A Synthesizable IP Core for 

WIMAX 802.16e LDPC Code Decoding," in IEEE 17th Int. Symp. Personal, 

Indoor and Mobile Radio Communications, 2006, pp. 1- 5. 

[74] Y. Dai, Z. Yan, and N. Chen, "High-throughput turbo-sum-product decoding 

of QC LDPC codes," in 40th Annual Conf. on Info. Sciences and Syst., vol. 11, 

March . 2006, pp. 839-8446. 



214 

[75] Z. Wang and z. Cui, "Low-Complexity High-Speed Decoder Design for Quasi­

Cyclic LDPC Codes," IEEE Trans. VLSI Syst., vol. 15, pp. 104-114, 2007. 

[76] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, "VLSI Archi­

tectures for Layered Decoding for Irregular LDPC Codes of WiMax," in IEEE 

International Conference on Communications (ICC), June 2007, pp. 4542-4547. 

[77] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, "An 8.29 mm2 52 mW Multi­

Mode LDPC Decoder Design for Mobile WiMAX System in 0.13 m CMOS 

Process," IEEE Journal of Solid-State Circuits, vol. 43, pp. 672-683, Mar. 2008. 

[78] T. Mohsenin, D. Truong, and B. Baas, "Multi-Split-Row Threshold Decoding 

Implementations for LDPC Codes," in IEEE International Symposium on Cir­

cuits and Systems (ISCAS'09 ), May 2009, pp. 2449-2452. 

[79] K. Zhang, X. Huang, and Z. Wang, "High-throughput layered decoder imple­

mentation for quasi-cyclic LDPC codes," IEEE Journal on Selected Areas in 

Communications, vol. 27, no. 6, pp. 985 - 994, 2009. 

[80] M. Mansour and N. Shanbhag, "A 640-Mb/s 2048-Bit Programmable LDPC 

Decoder Chip," IEEE Journal of Solid-State Circuits, vol. 41, pp. 684-698, 

March 2006. 

[81] M. Karkooti, P. Radosavljevic, and J. R. Cavallaro, "Configurable, High 

Throughput, Irregular LDPC Decoder Architecture:Tradeoff Analysis and Im-



215 

plementation," in IEEE International Conference on Application-specific Sys­

tems, Architectures and Processors (ASAP 06 ), 2006. 

[82] F. G. Engineer, G. L. Nemhauser, and M. W. P. Savelsbergh, "Dynamic 

Programming-Based Column Generation on Time-Expanded Networks: Ap­

plication to the Dial-a-Flight Problem," Journal on computing, May 2010. 

[83] J. Anderson and S. Mohan, "Sequential Coding Algorithms: A Survey and Cost 

Analysis," IEEE Transactions on Communications, vol. 32, pp. 169-176, 1984. 

[84] D. E. Knuth, Art of Computer Programming. Addison-Wesley Professional, 

1998, vol. 3. 

[85] K. Amiri, J. R. Cavallaro, C. Dick, and R. M. Rao, "A High Throughput 

Configurable SDR Detector for Multi-user MIMO Wireless Systems," Journal 

of Signal Processing Systems (in press}, 2010. 

[86] P. Radosavljevic, Y. Guo, and J. R. Cavallaro, "Probabilistically bounded soft 

sphere detection for MIMO-OFDM receivers: algorithm and system architec­

ture," IEEE Journal on Selected Areas in Communications, vol. 27, no. 8, pp. 

1318-1330, Oct. 2009. 

[87] M. Myllyla, M. Juntti, and J. R. Cavallaro, "Implementation aspects of list 

sphere decoder algorithms for MIMO-OFDM systems," ELSEVIER Signal Pro­

cessing, vol. 90, no. 10, pp. 2863-2876, Oct. 2010. 



216 

[88] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber, and 

W. Fichtner, "Gram-Schmidt-based QR decomposition for MIMO detection: 

VLSI implementation and comparison," in IEEE Asia Pacific Conference on 

Circuits and Systems, December 2008, pp. 830-833. 

[89] P. Robertson, E. Villebrun, and P. Hoeher, "A comparison of optimal and sub­

optimal MAP decoding algorithm operating in the log domain," in IEEE Int. 

Conf Commun. (ICC), 1995, pp. 1009-1013. 

[90] C. Berrou and A. Glavieux, "Near optimum error correcting coding and decod­

ing: Thrbo-codes," IEEE Transactions on Communications, vol. 44, pp. 1261 -

1271, Oct. 1996. 

[91] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal Decoding of Linear Codes 

for Minimizing Symbol Error Rate," IEEE Tran. on Information Theory, vol. 

IT-20, pp. 284-287, Mar. 1974. 

[92] T. K. Blankenship, B. Classon, and V. Desai, "High-throughput turbo decoding 

techniques for 4G," in Int. Conf. Third Generation Wireless and Beyond, May 

2002, pp. 137-142. 

[93] P. Salmela, R. Gu, S. Bhattacharyya, and J. Takala, "Efficient parallel memory 

organization for turbo decoders," in Proc. European Signal Processing Conf., 

Sep. 2007, pp. 831-835. 

[94] "Multiplexing and channel coding, 3GPP TS 36.212 version 8.4.0, Sept. 2008." 



217 

[95] 0. Takeshita, "On maximum contention-free interleavers and permutation poly­

nomials over integer rings," IEEE Trans. Inform. Theory, vol. 52, pp. 1249-

1253, Mar. 2006. 

[96] J. Sun and 0. Takeshita, "Interleavers for turbo codes using permutation poly­

nomials over integer rings," IEEE Trans. Inform. Theory, vol. 51, Jan. 2005. 

[97] A. Nimbalker, K. T. Blankenship, B. Classon, T. E. Fuja, and D. J. 

Costello, "Contention-free interleavers for high-throughput turbo decoding." 

IEEE Transactions on Communications, vol. 56, no. 8, pp. 1258-1267, Aug. 

2008. 

[98] A. Nimbalker, Y. W. Blankenship, B. K. Classon, and K. T. Blankenship, "ARP 

and QPP Interleavers for LTE Turbo Coding," in IEEE Wireless Communica­

tions and Networking Conference, April 2008, pp. 1032-1037. 

[99] P. Ampadu and K. Kornegay, "An efficient hardware interleaver for 3G turbo 

decoding," in IEEE Radio and Wireless Conference, Aug. 2003, pp. 199-201. 

[100] G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, "Low-cost 

IP-blocks for UMTS turbo decoders," in 27th European Solid-State Circuits 

Conference, Sept. 2001, pp. 470-473. 

[101] S. S. Pietrobon, "Implementation and performance of a turbo/MAP decoder," 

International Journal of Satellite Communications, vol. 16, pp. 23 - 46, Dec. 

1998. 



218 

[102] C. Schurgers, F. Catthoor, and M. Engels, "Memory optimization of MAP turbo 

decoder algorithms," IEEE Trans. VLSI Syst., vol. 9, no. 2, pp. 305-312, April 

2001. 

[103] S.-J. Lee, N. Shanbhag, and A. Singer, "Area-efficient high-throughput MAP 

decoder architectures," IEEE Trans. VLSI Syst., vol. 13, pp. 921-933, Aug. 

2005. 

[104] Y. Zhang and K. Parhi, "High-throughput radix-4 logMAP turbo decoder ar­

chitecture," in Asilomar Conf. on Signals, Syst. and Computers, Oct. 2006, pp. 

1711-1715. 

[105] C. Schurgers, F. Catthoor, and M. Engels, "Optimized MAP turbo decoder," 

in IEEE Signal Processing Systems (SiPS), Oct. 2000, pp. 245-254. 

[106] R. Ratnayake, A. Kavcic, and G.-Y. Wei, "A High-Throughput Maximum a 

Posteriori Probability Detector," IEEE Journal of Solid-State Circuits, vol. 43, 

pp. 1846 - 1858, 2008. 

[107] A. Viterbi, "An intuitive justification and a simplified implementation of the 

MAP decoder for convolutional codes," IEEE J. Sel. Areas Commun., vol. 

vol.16, pp. pp.260-264, Feb. 1998. 

[108] J .Dielissen and J .Huisken, "State vector reduction for initialization of sliding 

windows MAP," in 2nd International Symposium on Turbo Codes and Related 

Topics, Sept. 2000. 



219 

[109] M. M. Mansour and N. R. Shanbhag, "VLSI architectures for SISO-APP de­

coders," IEEE Tran. VLSI Syst., vol. 11, no. 4, pp. 627-650, Aug. 2003. 

[110] G. Masera, G. Piccinini, M. Roch, and M. Zamboni, "VLSI architecture for 

turbo codes," in IEEE Trans. VLSI Syst., vol. 7, 1999, pp. 369-3797. 

[111] Z. Wang, z. Chi, and K. Parhi, "Area-efficient high-speed decoding schemes 

for turbo decoders," IEEE Tran. on VLSI Syst., vol. vol.lO, pp. 902-912, Dec 

2002. 

[112] B. Bougard, A. Giulietti, V. Derudder, J.-W. Weijers, S. Dupont, L. Hollevoet, 

F. Catthoor, L. Van der Perre, H. De Man, and R. Lauwereins, "A scalable 

8.7-nJ/bit 75.6-Mb/s parallel concatenated convolutional (turbo-) codec," in 

IEEE International Solid-State Circuit Conference {ISSCC), Feb. 2003. 

[113] M. J. Thul, F. Gilbert, T. Vogt, G. Kreiselmaier, and N. Wehn, "A scalable sys­

tem architecture for high-throughput turbo-decoders," Journal of VLSI Signal 

Processing, pp. 63-77, 2005. 

[114] G. Prescher, T. Gemmeke, and T. Noll, "A parametrizable low-power high­

throughput turbo-decoder," in IEEE Int. Conf. Acoustics, Speech, and Signal 

Processing, vol. 5, Mar. 2005, pp. 25-28. 

[115] R. Dobkin, M. Peleg, and R. Ginosar, "Parallel interleaver design and VLSI 

architecture for low-latency MAP turbo decoders," IEEE Trans. VLSI Syst., 

vol. 13, no. 4, pp. 427-438, 2005. 



220 

[116] M. May, C. Neeb, and N. Wehn, "Evaluation of High Throughput Thrbo­

Decoder Architectures," in IEEE International Symposium on Circuits and 

Systems (ISCAS), May 2007, pp. 277D-2773. 

[117] A. Tarable, L. Dinoi, and S. Benedetto, "Design of prunable interleavers for 

parallel turbo decoder architectures," IEEE Comm. Lett., vol. 11, pp. 167-169, 

Feb. 2007. 

[118] R. Asghar, D. Wu, J. Eilert, and D. Liu, "Memory Conflict Analysis and Im­

plementation of a Re-configurable Interleaver Architecture Supporting Unified 

Parallel Turbo Decoding," Journal of VLSI Signal Processing, July 2009. 

[119] T. Zhang, Z. Wang, and K. Parhi, "On finite precision implementation of low 

density parity check codes decoder," in IEEE Int. Symposium on Circuits and 

Systems, vol. 4, May 2001, pp. 202-205. 

[120] J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block and 

convolutional codes," IEEE Tran. on Information Theory, vol. 42, no. 2, pp. 

429 - 445, 1996. 

[121] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, "Efficient imple­

mentations of the sum-product algorithm for decoding LDPC codes," in IEEE 

GLOBECOM, Oct. 2001, pp. 1036-1036. 

[122] C. Studer, N. Preyss, C. Roth, and A. Burg, "Configurable high-throughput de­

coder architecture for quasi-cyclic LDPC codes," in IEEE Asilomar Conference 



221 

on Signals, Systems and Computers, Oct 2008, pp. 1137-1142. 

[123] Z. Cui, Z. Wang, and Y. Liu, "High-Throughput Layered LDPC Decoding 

Architecture," in IEEE Transactions on Very Large Scale Integration Systems, 

Apr. 2009, pp. 582-587. 

[124] J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block and 

convolutional codes," IEEE Tran. Info. Theory, vol. 42, pp. 429-445, 1996. 

[125] G. Masera, F. Quaglia, and F. Vacca, "Finite precision implementation ofLDPC 

decoders," in IEEE Proc. Commun., vol. 152, Dec 2005, pp. 1098- 1102. 

(126] T. Zhang, Z. Wang, and K. Parhi, "On finite precision implementation of low 

density parity check codes decoder," in IEEE Int. Symposium on Circuits and 

Systems (ISCAS}, vol. 4, May 2001, pp. 202-205. 

[127] A. Abbasfar and K. Yao, "An efficient and practical architecture for high speed 

turbo decoders," in IEEE Vehicular Technology Conference, vol. 1, 2003, pp. 

337- 341. 

[128] "WARP : https:/ /www.warp.rice.edu/." 

(129] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. Cavallaro, and A. Sabharwal, 

"Warp, a unified wireless network testbed for education and research," in IEEE 

International Conference on Microelectronic Systems Education, San Diego, 

CA, June 2007, pp. 53- 54. 



222 

[130] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, "A 19-mode 8.29mm2 52-mW 

LDPC Decoder Chip for IEEE 802.16e System," in 2007 Symposium on VLSI 

Circuits, June 2007. 

[131] Synfora PICO Extreme datasheet, http:/ /www.synfora.com, 

http://www .synopsys.com/Systems /BlockDesign/HLS /Pages/ default.aspx. 

[132] V. Kathail, et al, "PICO: automatically designing custom computers," Com­

puter, vol. 35, pp. 39- 47, 2002. 

[133] SpyGlass datasheet, http:/ /www.atrenta.com. 

[134] Y. Sun, G. Wang, and J. R. Cavallaro, "Multi-Layer Parallel Decoding Algo­

rithm and VLSI Architecture for Quasi-Cyclic LDPC Codes," 2010, submitted 

to IEEE International Symposium on Circuits and Systems. 

[135] Z. He, P. Fortier, and S. Roy, "Highly-Parallel Decoding Architectures for Con­

volutional Thrbo Codes." IEEE Tran. VLSI Syst., vol. 14, no. 10, pp. 1147-

1151, Oct. 2006. 

[136] M. Alles, T. Vogt, and N. Wehn, "FlexiChaP: A reconfigurable ASIP for con­

volutional, turbo, and LDPC code decoding," in 2008 5th International Sym­

posium on Turbo Codes and Related Topics, Sept. 2008, pp. 84-89. 

[137] M. Scarpellino, A. Singh, E. Boutillon, and G. Masera, "Reconfigurable Archi­

tecture for LDPC and Thrbo Decoding: A NoC Case Study," in IEEE 10th In-



223 

ternational Symposium on Spread Spectrum Techniques and Applications, Aug. 

2008, pp. 671---{)76. 

[138] A. Niktash, H. Parizi, A. Kamalizad, and N. Bagherzadeh, "RECFEC: A Re­

configurable FEC Processor for Viterbi, Turbo, Reed-Solomon and LDPC Cod­

ing," in IEEE Wireless Communications and Networking Conference (WCNC), 

March 2008, pp. 605---{)10. 


