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Abstract 
Network trafjc exhibits drastically different statistics, rang- 
ing froni nearly Gaussian marginals and long range de- 
pendence at v e v  large time scales to highly non-Gaussian 
murginais and muhifractal scaling on small scales. 7Ris 
behavior can be explained by decomposing trafic into two 
components according to the connection bandwidth: the 
small bandwidth component absorbs most tra$c and is Gaus- 
sian, while large bandwidth component constitutes virtually 
all of the small scale bursts. Based on this understanding, 
we propose a novel trafjc model that parsimoniously ac- 
counts for user behavior, network topology, and the hetero- 
geneous distribution of network bandwidths. 

1. Introduction 

Numerous studies have found that aggregate traffic exhibits 
fractal or self-similar scaling behavior, that is, the traffic 
“looks statistically similar” on all time scales [I] .  This dis- 
covery led to new fractal aggregate traffic models. Frac- 
tional Gaussian noise (fGn), the most widely applied fractal 
model, is a Gaussian process with strong scaling behavior. 
A strong argument for fGn in networks is that often aggre- 
gate traffic can be viewed as a superposition of a large num- 
ber of independent individual ON/OFF sources that transmit 
at the same rate but with heavy-tailed ON durations [2,3]. 
In the l i t  of infinitely many sources, the ON/OFF model 
converges to fGn. The long range dependence LRD in the 
resulting process stems from the heavy-tailed nature of the 
ON durations. 

Unfortunately, fGn is unrealistic for bursty non-Gaussian 
traffic. For instance, when the standard deviationof the traf- 
fic exceeds its mean, a considerable portion of an fGn traffic 
synthesis is negative. These failings have motivated more 
complicated models for aggregate traffic such as multifrac- 
tals and infinitely divisible cascades [4,5]. However, while 
more statistically accurate, these models lack network rele- 
vance in their parameterizations. In particular, they do not 
account for why bursts occur in network traffic. 
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The aggregated total load in the ON/OFF model con- 
verges to fBm as the number of sources go to infinity first, 
followed by letting the time interval for aggregation of load 
go to infinity. However, if we reverse the order and con- 
sider the limit where the time interval tends to infinity first 
and then the number of sources, we get a LCvy stable mo- 
tion [61, a process with independent and stationary incre- 
ments but with infinite variance. See [7] for an overview. 
We argue through a careful analysis of several real world 
traces that network traffic is a mixture of both limits. 

In this paper, we present the alphaheta model in which 
the fGn part of traffic constitutes the beta component, and 
the Uvy part of traffic constitutes the alpha component. 
We show that the alpha and beta components are linked to 
the connection level information and hence have network- 
ing relevance. Alpha component comes from connections 
that have large files to send and have high available band- 
width. Beta component comes from connections that have 
small available bandwidth and/or small files to transfer. We 
explain the alphaheta model through the heterogeneity of 
connection bandwidths and round-uip times (RTT). We also 
suggest a fast scheme using wavelets to separate the alpha 
and beta components. Finally, we present a multiscale non- 
Gaussianity analysis on the alpha and beta components. 

2. Separation of ‘Ikaffic 

2.1. Alpha and beta components of traffic 

Connection-level information enables us to conduct a re- 
fined analysis of traffic bursts. In Gaussian aggregate traf- 
fic models (such as the classical ONlOFF model [31), traffic 
bursts arise from a large number of connections transmitting 
bytes or packets simultaneously. That is, bursts stem from 
a kind of “consmctive interference” of many connections. 
With connection-level information, we can test this hypoth- 
esis. If it were true, then we should observe in real traffic 
traces a large number of active connections during bursts. 
However, Figure. l(a) and (b) demonstrate that this is not 
the case. Bursts in bytes-per-time generally do not coincide 
with large values of connections-per-time. 

Quite to the conlrary, a careful analysis of many real 
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Fig. 1. (a) Bytes-per-time and (b) number of connections-per 

traces [9] reveals that generally very few high-rate connec- 
tions dominate during a burst. In fact in most cases only 
one connection dominates. This motivates us to propose a 
connection-level separation of network traffic. We aggre- 
gate the dominant connections and call it the alpha com- 
ponent of traffic. The remaining connections aggregate to 
give the beta component of traffic. ' Our procedure thus 
decomposes an aggregate traffic trace into 

total traffic = alpha traffic + beta traffic. (1) 

See Figure 2 for real data example. 
We have applied the alphaheta traffic decomposition to 

many real-world traffic traces, from Auck [SI to LBL [lo] 
and found tremendous consistency in our results [9].  The 
statistical propenies of lhc components can be summarized 
as follows. 

Beta rrafic: At time-scales coarser than the R'IT, the 
beta component is very nearly Gaussian and strongly LRD 
(Le., approximately fGn), provided a sufficiently large num- 
ber of connections are present. Moreover, the beta compo- 
nent carries the same fractal scaling (LRD) exponent as the 
aggregate traffic [91 . 

Alpha rrafic: The alpha component constitutes a small 
fraction of the total workload but is entirely responsible for 
the bursty behavior. Alpha traffic is highly non-Gaussian. 

It is notable that this decomposition in networking terms 
(based on connection-level information) achieves a separa- 
tion in statistical terms. 

2.2. Fast alphabeta separation using wavelets 

The computationally intense connection-level separation of 
alpha and beta traffic does not lend itself to massive data 

'By analogy to the dominaling d p l u  and submissive bera members of 
the animal !h,ndom. 
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processing or on-line monitoring [9]. Fortunately, approxi- 
mate separation of alpha and beta traffic can be done using 
a wavelet-based thresholding scheme that does not require 
explicit connection information. This scheme is based on 
the fact that we can treat the beta component as "noise" and 
the alpha component as the "signal", and use well-known 
denoising techniques to separate the two. We use wavelet 
based denoising techniques, with coefficient thresholding. 
For colored denoising (since beta traffic is colored noise, 
f i n ) ,  we use different thresholds for wavelet coefficients at 
different scales. Kaplan and Kuo [ 1 I] have shown that for 
Haar wavelet, the variance progression of the wavelet trans- 
form of fGn with Hurst parameter H satisfies a power-law 
decay: 

In a colored denoising scheme, the threshold at each scale 
is made proportional to the expected standard deviation of 
the wavelet coefficients at that scale. Thus, knowing the 
Hurst parameter, we can fix the threshold at each scale us- 
ing equation (2 ) .  Johnstone et a1 1121 have shown that this 
thresholding scheme is optimal for colored denoising. For 
more details, see [9] . 

3. Origins of Alpha and Beta TratXc 

We now argue that the end-to-end bandwidth is a crucial 
factor that determines whether a connection dominates or 
not. We define a/pha groups as those end-to-end groups 
which contain at least one alpha connection. Let us focus 
for a moment on the top row of Figure 4, which shows three 
alpha groups. For each connection in a group, we determine 
the peak rate, i.e., its maximum sending rate for the time pe- 
nod T under study, by sliding a moving window along the 
connection duration. We observed that typically a/l connec- 
tions of an alpha group with a suficfcienrly large transfer load 
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Fig. 2. Decomposition of the traffic trace into the sum of a bursty alpha component (LCvy) and a Gaussian beta component 
(SO). 

Fig. 3. (a) Isolared bursts io the real t a m  (b) BUrsrs isolated using the wavelet sep&ation scheme. 

are alpha connections. Thus, we verified that alpha con- 
nections naturally group according to their end-to-end host 
pairs. This leads us to conclude that bursts emerge indeed 
from end-to-end properties. 

For the beta-groups (see bottom row of Figure 4) the 
connections with large loads are obviously not getting as 
much bandwidth as they could consume. This provides fur- 
ther confirmation to our claim that heterogeneity in bottle- 
neck bandwidths is the cause of hurstiness in traffic. 

In summary, we conclude that all burst causing connec- 
tions are due to largefile transfers with a large bottleneck 
boiidwidrh in its end-lo-end path. 

Connection bandwidth is determined by the connection 
pipe size and RTI' through 

bandwidth = pipe size / RTT. ( 3 )  

To see whether the heterogeneity in connection bandwidths 
is primarily due to heterogeneity in pipe size or RTT, we 
look at how the RTI' correlates with the peak rate. For 
the trace under consideration, the correlation coefficient be- 
tween 1RTI' and peak rate is 0.75, and the correlation co- 

efficient between pipe size and peak rate is 0.10. Consistent 
results show that RTT plays a major role. 

Consider a scenario where a relatively small number of 
hosts locate close to the measured link while the majority 
of hosts are far away. As a consequence, the distribution of 
RTI' is bimodal: a small number of connections with small 
RTI's and the remaining with large RTTs. See Figure 5 for 
a real trace example. Let us further assume that the TCP 
congestion windows of all connections are equal. 

Applying the superposition ON/OFF model or the in- 
finite source Poisson model [7] to thekenario above, we 
obtain the following results. The alpha traffic is composed 
of the few connections with small RTTs and, therefore, high 
sending rates. The TCP clock ticks faster for these sources, 
therefore we approximate this component as the ON/OFF 
limit at infinite time, i.e., by i.i.d. Ltvy stable noise. So the 
alpha traf!ic brings in burstiness but not LRD. 

The beta traffic is made up from the bulk of remaining 
connections with large R'ITs and low rates and is well ap- 
proximated by the ONIOFF limit at infinite source number, 
i.e., by fGn. It inflicts LRD on the overall traffic hut is not 
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Fig. 4. Plot of peak rate and total transfer for all connections which share the same pair of source and destination hosts. Note the high peak 
rates in the top row (alpha connections). Notice the starvation of connections in the groups of the bottom row and the overall low peak rate 
(beta connections) 

as bursty as the alpha traffic. 
We conclude that both connection RlT and pipe size 

are behind the heterogeneity in connection bandwidths, and 
RTT plays a much bigger role. Therefore, network traffic 
burstiness is due to a small number of high-bandwidth con- 
nections (alpha connections) which transmit large files and 
have small RTTs. 

4. Multiscale analysis of Network Traffic 

In this section, we present a mutiscale analysis on the net- 
work traffic components. We use the well-known Gaussian- 
ity measure, kurtosis, to measure the deviation from Gaus- 
sianity of the signal at different time-scales. Kurtosis of a 
random variable X is defined as the ratio of its fourth cental 
momeni to the square of its variance 

kurtosis(X) = E(X - fi)* 
U4 . (4) 

The kurtosis for Gaussian random variable is 3. Random 
variables that have slower decay of tails have a kurtosis 
greater than 3, and those that have faster decay of tails have 
kurtosis less than 3. 

l Z o o 7  

5 

Fig. 5. RTT histogram for the Auck-2 trace; connections in 
the first 300,000 packets. 

Figure 6 indicates that neither an additive model nor 
a multiplicative cascade model provides a satisfactory fit 
of Gaussianity across time scales compared with the real 
trace. We plot the kurtosis curves for alpha, beta, as well 
as the overall traffic. Due to inherent Gaussianity, the kur- 
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Fig. 6. Kurtosis-time-scale curves for (a) real trace; (b) Multiplicative cascade; (c) Additive cascade model 

tosis curves for the additive model are constant at 3 (within 
simulation error tolerance) at all time scales. While for the 
multiplicative model, the kurtosis curves are notably higher 
the those of the real trace, showing a lower decay of tail 
distribution compared with the real traffic data. 

The analysis motivates additive-multiplicative mixture 
models for the components of network traffic. As pan of our 
future work, we are investigating different mixture models 
to capture the multiscale kurtosis behavior of network traf- 
fic. 

5. Conclusions 

We have proposed a framework for analyzing and modeling 
networktraffic that takes into account the crucial connection- 
level information that aggregate analysis ignores. The topo- 
logical variability of the network enters through the distri- 
bution of RTTs and bottlenecks link speeds. In a real world 
situation these distributions will depend on the particular lo- 
cation where the measurements are taken. Client behavior 
will determine both the LRD component as well as how of- 
ten large files are transferred over large bottlenecks. The 
alpha-beta traffic model has implications not only for mod- 
eling, but also for simulation, synthesis, estimation, predic- 
tion, performance evaluation and understanding of traffic 
dynamics. This approach also opens a clear alley towards 
studying the influence of Rl? distributions on network traf- 
fic dynamics which is currently under way. 

As future work, we intend to study the impact of alpha 
and beta components in queueing behavior. We have shown 
that the alpha component contributes to large build-up of 
queues. This suggests scope for AQM [13] techniques that 
treat alpha and beta packets differently. Another area of 
future work is to link the alphaheta model to the network 
topology. 
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