
Finding Embedded Network Rows
in Linear Programs I: Extraction Heuristics

by

Robert E. Bixby1

and

Robert Fourer2

Technical Report 86-18, August 1986.

1Mathematical Sciences Department, Rice University, Houston, Texas 77251.

2Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60201.

Finding Embedded Network Rows
in Linear Programs I: Extraction Heuristics

Robert E. Bixby
Department of Mathematical Sciences

Rice University, Houston, TX 77251

Robert Fourer
Department of Industrial Engineering and Management Sciences

Northwestern University, Evanston, IL 60201

July 1986

Abstract. An embedded network within a linear program is, roughly speaking, a
subset of constraints that represent conservation of flow. In this paper, we examine three
broad classes of heuristic techniques-row-scanning deletion, column-scanning deletion,
and row-scanning addition-for the extraction of large embedded networks. We describe
a variety of implementations, and compare their performance on varied test problems.
The success of our tests depends, in part, on several preprocessing steps that scale the
constraint matrix and that set aside certain rows and columns. Efficiency of the subsequent
network extraction is dependent on the implementation, in predictable ways. Effectiveness
is harder to explain; the more sophisticated and expensive implementations seem to be
more reliable, but much simpler implementations sometimes find equally large networks.
The largest networks are obtained by applying a final augmentation phase, which is studied
in the second part of this paper.

This research was supported in part by the following:
For Robert E. Bixby: Air Force Office of Scientific Research grant AFOSR82-0004

to Northwestern University; Exxon Corporation grant to Northwestern University; the
Alexander von Humboldt Foundation and the Institut fur Okonometrie und Operations
Research der Universitat Bonn (while on leave from Rice University); and National Science
Foundation grant DCR-8416187 to Rice University.

For Robert Fourer: Exxon Corporation grant to Northwestern University; National
Science Foundation grant DMS-8217261 to Northwestern University; AT&T Bell Labora­
tories (while on leave from Northwestern University).

1. Introduction

A linear program contains an embedded network if, roughly speaking,
some subset of its constraints can be interpreted as specifying conservation
of fl.ow. In this paper and its successor, we evaluate a variety of heuristic
algorithms for finding large embedded networks within linear programs.

Embedded networks are of interest for two reasons. The presence of
network constraints usually suggests a useful interpretation of a linear pro­
gram in terms of some network in the underlying application. The presence
of many network constraints also often allows a linear program to be solved
faster than other LPs of comparable size, provided that the structure of
the network constraints is exploited to advantage. Simplex algorithms for
embedded-network linear programs have been the subject of particular in­
vestigation (Hartman and Lasdon 1972; Chen and Saigal 1977; Gupta 1978;
Glover and Klingman 1981; Ahn 1984; McBride 1985).

Network-finding heuristics are primarily of interest because they may
identify large embedded networks cheaply. In principle, a person who is fa­
miliar with an LP's formulation should know which constraints are network
flows, and should be able to communicate this information to a computer
system that solves embedded-network LPs. In practice, however, LPs of­
ten have complex structures that tend to obscure their networks. Thus
our algorithms sometimes find a reasonably large network where none is
immediately obvious in the original application. Even when a substantial
embedded network is known in advance, our algorithms may identify it
more efficiently and reliably than a human analyst.

The embedded-network problem also offers a case study of the difficul­
ties that are likely to be encountered in devising heuristics for any structural
analysis of matrices. The problem is NP-complete and offers enough com­
plications to be interesting; yet it is sufficiently straightforward that we
were able to try many combinations of heuristic approaches and implemen­
tations.

We have evaluated our algorithms for both efficiency and effectiveness:
for the time they take to find an embedded network, and for the size of the
network they find. On test problems from a variety of applications, we have
found that efficiency is the more predictable criterion. Effectiveness varies
considerably from one implementation to another and from one LP to an­
other; in a sizable minority of cases, seemingly sophisticated algorithms find
fewer network constraints than simpler and faster methods. However, sim­
pler algorithms do tend to be less stable; in that minor changes-scanning
the rows or columns in a different order, for example---sometimes substan­
tially affect the number of network constraints found.

1

For most of the LPs we have investigated, our best results depend on a
series of heuristic steps: several rounds of preprocessing, initial extraction
of an embedded network subset, and then augmentation of the network.
The preferred combination of preprocessing steps, detection algorithm and
augmentation algorithm is seen to vary from one LP to the next. Thus
we recommend that a computer system for network identification be de­
signed to encourage experimentation with different combinations of heuris­
tics. The system that we have built for our tests is set up in this way, and
systems for other structural analyses may benefit from a similar design.

The next part of this introduction defines more precisely the embedded
networks that we seek. We then briefly describe our data structures for
the LP constraint matrix, and the test problems that are used in all our
experiments. Finally, we give an outline of the rest of this paper and of its
successor.

Definitions

We consider a linear program (LP) of m equations and inequalities in
n bounded variables:

i = 1, ... ,m

j = 1, . .. ,n

The coefficients of the equations define an m x n matrix, A.
An LP represents a pure network flow problem if each column of A

contains at most one +1 and one -1, and is otherwise all zeroes. For
purposes of this paper, an embedded network is defined to be a subset of the
rows of A such that each column contains at most one +1 and one -1 within
that subset, and is otherwise all zeroes within that subset. An embedded­
network linear program can be interpreted as imposing conservation of flow
at the nodes of a certain network (defined by the network rows) plus other
conditions on the flows (as specified by the non-network rows).

We permit two kinds of constraint transformations that may create
larger embedded networks. Most important, we consider scaling the rows
and columns of A to produce more rows whose nonzero values are all +1
or -1; only these "±1 rows" can possibly be in an embedded network.
We also allow for the addition of certain generalized "bounding rows" (or
their negatives) to other rows, in a way that allows any bounding row to
be included in any embedded network. These transformations leave the
solution to the linear program essentially unchanged, though any scaling of
the columns will cause a compensating scaling in the values of the variables.

2

All of our network-finding heuristics are designed to operate upon the
±1 rows, and to skip over any others. Our task is complicated, however,
by the fact that any ±1 row remains a ±1 row when it is scaled by -1:
every +1 becomes a -1, and every -1 becomes a +l. The operation of
scaling by -1, or reflection, can be crucial to whether a row satisfies the
network conditions in some column. Thus all of our methods must provide
for optional reflection of any rows that they process.

Our goal is to quickly find a large number of ±1 rows, reflected as neces­
sary, that comprise an embedded network. To this end, our algorithms are
heuristics that do not necessarily find the largest possible network. Indeed,
since the problem of finding a maximum network is NP-complete (Brown
and Wright 1984) we would not expect any algorithm to consistently find
the largest possible network in less time than is needed to solve the linear
program.

Our algorithms do find a maximal embedded network that cannot be
enlarged by adding any one non-network row to the network subset. There
can be many maximal embedded networks for a given LP, however, and
their size can be vary considerably, as our results will show.

Data structures

If A has a sizable embedded network then it must be mostly zeroes.
Thus we represent A by a column-list structure (Greenberg 1978) that is
widely used in large-scale LP software. The column list uses an integer and
a real array of length equal to the number of nonzeroes in A, and an integer
array of length n + l:

XVALUE(k) is the kth nonzero value in the column list.

XINDEX(k) is the index of the row in which the kth nonzero value lies.

XP0INT(j) points to the last component of column j - 1 within the
column list, with XP0INT(l) = 0.

The jth column thus has nonzero components XVALUE(k) in rows XINDEX(k),
fork= XP0INT(j) + 1, XP0INT(j) + 2, ... , XP0INT(j + 1).

To execute most of our algorithms efficiently, we must be able to scan
individual rows of A. Thus we also set up a row-list representation in
arrays YVALUE, YINDEX, and YPOINT. The data in YVALUE is the same as
in XVALUE, except that the nonzeroes are ordered by row; YINDEX holds
the corresponding column indices, and YP0INT(i) is the position of the last
component of row i - 1 within the row list.

We speak of the nonzero values in a row or column as its elements. A
row i and a column j intersect if aij =/= 0.

3

Rows Columns

Free Eqty Ineq Total Free Fix Reg Bdd Total Nonzeroes

ENERGY0 1 0 2262 2263 0 553 6315 2986 9854 29063
GIFFPINC 1 548 68 617 0 0 834 258 1092 3467
GREENBEAb 7 2202 191 2400 4 150 4998 291 5443 32120
PIES 1 480 182 663 0 175 1240 1508 2923 13988
SCAGR25 1 300 171 472 0 0 500 0 500 2029
SCRS8 1 384 106 491 0 0 1169 0 1169 4029
SHIP12L 14 1045 106 1165 0 0 5427 0 5427 21597
SIERRA 1 528 699 1228 0 0 20 2016 2036 9252
STANDATA 1 268 199 468 0 16 955 104 1075 3686

a 1590 free rows deleted
b 105 free rows deleted

Table 1-1. Linear programs used in the computational experiments. Rows are classified
as nonconstraining (Free), equality (Eqty) or inequality (Ineq) according to their definition
in the ROWS section of the MPS file. Columns may be unrestricted (Free), fixed at one
value (Fix), regular nonnegative (Reg) or otherwise bounded (Bdd) according to their
treatment in the BOUNDS section of the MPS file ..

Test problems

To compare different methods for finding embedded networks, we started
by examining about 30 linear programs from a variety of applications. For
the detailed tests reported in this paper, we chose 9 LPs that had the
largest embedded networks, in either total rows or proportion of network
rows. Table 1-1 gives summary statistics for these problems; Appendix A
provides further information and references.

All of our test problems are distributed in the standard MPS format.
Two of the test problems have numerous "free" (type N) rows that do not
constrain the linear program. Although our preprocessing routines set aside
such rows, they remain in the data structure, and their elements must be
skipped whenever columns are scanned. Thus the presence of these free
rows tends to obscure the behavior of the network-finding algorithms; we
deleted most of them directly from the MPS file, as indicated in Table 1-1.

Outline

Section 2 describes the major preprocessing steps that precede all
network-finding algorithms. A series of reduction steps first identify rows
and columns that can be set aside, including the generalized bounding rows
mentioned above. Several scaling steps then attempt to increase the num­
ber of ±1 rows.

Sections 3, 4 and 5 present three different approaches to extraction of

4

embedded networks. The deletion methods of Sections 3 and 4 start with
the full set of ±1 rows, and progressively delete rows until the remaining
ones constitute an embedded network; then rows are reinserted, if necessary,
to make the network maximal. Section 3's methods examine one row at a
time, and decide to delete or reflect the row based on current information
about its relationship to other rows. Section 4's methods examine each
column once, and delete all but one or two rows intersecting that column.
The addition methods of Section 5, in contrast, start with an empty set, and
add rows until a maximal network has been built. All of these approaches
are based upon established ideas; references are provided at the beginning
of each section.

Results of our computational experiments are presented throughout Sec­
tions 2-5 as appropriate. A comparison of all network extraction algorithms
is then given in Section 6, along with some tentative conclusions. Details
of the test problems and procedures are collected in Appendices A and B,
respectively.

The successor to this paper investigates several algorithms that augment
a known embedded network, by deleting some network rows to allow the
addition of others. We report numerous test runs in which one of the net­
work extraction heuristics is followed by one of the augmentation heuristics.
For most of the LPs, these runs find the largest networks of which we are
aware; often the results come quite close to certain easily computed upper
bounds on the size of any network. We conclude with summary statistics
on the identified networks and with remarks on alternatives and extensions.

5

2. Preprocessing

Certain columns of A, such as those that possess only one nonzero
value, have no bearing on whether any row subset is an embedded network.
Certain rows of A also need not be considered by our algorithms. Rows that
contain values other than +1, -1 and O cannot possibly be in an embedded
network; other rows, such as ones that represent some kinds of bounds, can
be included in any network subset. We set aside some of these inessential
rows and columns at several stages in our implementations.

This section describes two collections of preprocessing steps that set
aside parts of A. Reduction steps look for many simple kinds of inessential
rows and columns. Scaling steps rescale rows and columns to increase the
number of rows in which all elements are +1 or -1. We have applied
first reduction and then scaling to all of our test problems for all runs.
Many of our algorithms subsequently make their own preprocessing passes
to identify other kinds of inessential rows and columns, as explained in
Sections 3-5.

To keep track of rows and columns that have been set aside as inessen­
tial, we maintain arrays YSTATS and XSTATS of m and n integers, respec­
tively. Typically YSTATS(i) or XSTATS(j) is 1 for an essential row i or column
j; other values indicate rows or columns that have been set aside for various
reasons.

When we begin, the sets of indices of the essential rows and columns are
just IE = {l, ... , m} and JE = {l, ... , n }; we initialize all of YSTATS and
XSTATS to 1. To make the reduction steps efficient, we also set up two arrays
to hold the numbers of nonzero elements in the rows and columns: initially
YCOUNT(i) = YPOINT(i + 1) - YPOINT(i) and XCOUNT(j) = XPOINT(j + 1) -
XPOINT(j).

Reduction

Any reduction in the numbers of essential rows and columns will permit
our network-finding heuristics to operate more efficiently. Some reductions
can also help the heuristics to find a larger proportion of embedded network
rows, by setting aside columns that have two or more elements, and rows
that intersect such columns. Many kinds of reductions are possible, as
indicated for example by Brearly, Mitra and Williams (1975) and by Brown
and Wright (1981). We have implemented several that are simple and fast,
and one that takes advantage of the special properties of certain bounding
constraints in embedded networks.

To begin, the following kinds of rows and columns can be set aside as

6

inessential because they need not appear explicitly in the constraints of the
linear program:

Rows that have no elements
Columns that have no elements

Rows specified as free (type N)
in the ROWS section of the MPS input

Columns that have nonzeroes only in free rows

Columns specified as fixed (type FX)
in the BOUNDS section of the MPS input

Rows that have nonzeroes only in fixed columns

We detect empty rows and columns by checking for YCOUNT(i) = 0 or
XCOUNT(j) = 0 at initialization. Subsequently, as each free row is removed
from I, we scan its elements and decrement their entries in XCOUNT; if any
XCOUNT(j) falls to zero then all elements of column j must be in free rows.
Fixed columns are handled similarly by decrementing YCOUNT.

Next, a more complicated reduction can be based on the observation
that, if YCOUNT(i) = 1 for a row i defined as an equality (type E) in the
MPS form, then the row only serves to fix a variable. Thus the row and
its one intersecting column are inessential. We scan such a row to find the
column, and then we scan the column to decrement the YCOUNT entries for
its elements. If any YCOUNT(i') falls to zero as a result, then row i' meets
only fixed columns and is also inessential. The counts of other equality
rows may also fall to one, in which case they fix some other columns. To
account for all of these possibilities, we use the following inner loop:

Repeat for all i E IE:
IfYCOUNT(i) = 0 then set IE - IE\{i}.
Else if YCOUNT(i) = 1 and row i is an equality, then:

Find the column j intersecting row i.
Set IE - IE\{i}, JE - JE\{j}.
Set YCOUNT(l) - YCOUNT(l) - 1 for all/ E IE such that ll/j f:. 0.

This loop is itself repeated until some pass leaves IE unchanged.
Finally, if a row intersects at most one column whose count is greater

than 1, then it can be regarded as a generalized bound. Common instances
include simple bounds represented as constraint rows (rather than in the
BOUNDS section of the MPS form) and rows that are not connected to other
eligible rows by any intersecting columns.

Generalized bound rows are inessential because any network can be
transformed to include them. In network terms, a generalized bound on an
arc is imposed by substituting an appropriate series-parallel construction
for that arc. The old arc runs between, say, node i 1 and node i 2 ; the

7

substitution creates a new node k, an arc between i1 and k, and one or
more arcs between k and i2 •

In matrix terms, a precise justification can be given as follows. Suppose
first that an equality row i has been set aside as a generalized bound, and
that a network subset N has been found within the remaining rows of IE.
Lett be the index of the intersecting column (if any) that has count greater
than one. Row i may be made to have only +1 and -1 elements, by suitably
scaling just the row and its !-count columns; if column t exists, then ait

can be made either +1 or -1, by properly setting the sign of the scale on
row i. Thus we can consider the following transformations:

If there is no column t: Scale row i as above.

If the network has only a + 1 (or -1) in column t: Scale row i so that
ait = -1 (or + 1).

If the network has a +1 and a -1 in column t: Scale row i so that
ait = + 1 (or -1), then subtract row i from the row s E N such that
a st = + l (or -1).

It is easy to verify that NU { i} is an embedded network after any of these
operations.

If an inequality row i is set aside as a generalized bound, then it may
be converted to an equality by adding a slack variable to the LP. The
corresponding slack column has just one element, soi remains a generalized
bound row, and the above transformations can then be applied.

To set aside all generalized bounds, we use the following inner loop:

Repeat for all i E LE:

If XCOUNT(j) = 1 for all j such that aij =f 0,
except possibly for one t such that ait =/= 0:

If t exists, set XCOUNT(t) +- XCOUNT(t) - 1
Set LE+- LE\{i}, JE = JE\{j: aij =;f 0, j :;ft}

At least part of every row i E IE must be scanned to check the counts
of the intersecting columns. The rows that are generalized bounds must
be scanned a second time to remove the !-count columns from .:IE (by
setting XSTATS(j) = 0 for these columns). The decrementing of XCOUNT may
create new !-count columns, and hence further generalized bounds; thus the
above loop is itself executed repeatedly until XCOUNT is unchanged at some
pass. (After the embedded network is found, the above transformations are
applied to the generalized bound rows in the reverse of the order in which
they were set aside.)

8

Row deletions Column deletions

Empty Free Fixed

ENERGY 25 1 2
GIFFPINC 1
GREENBEA 3 7
PIES 1
SCAGR25 1
SCRS8 1
SHIP12L 109 14
SIERRA 1
STANDATA 1 1

Rows

Empty All-zero
Free
Fixed
1-Row
Bound

Type FR in MPS input
Meets only fixed columns
1-count equality
Generalized bound

1-Row Bound Empty Free Fixed

394 20 553
26
75 53 3 150

8 8 175
1 129

25 16
204

39 16

Columns

Empty All-zero
Free
Fixed
1-Row
Bound

Meets only free rows
Type FX in MPS input
Fixed by 1-count row
1-count column in

generalized bound row

1-Row

26
75
8
1

25
204

Table 2-1. Inessential rows and columns.

Reduce
Rows Columns Nonzeroes time

ENERGY 1841 (81%) 7739 (79%) 18488 (64%) 0.61
GIFFPINC 590 (96%) 1066 (98%) 2325 (67%) 0.08
GREENBEA 2262 (94%) 5162 (95%) 30064 (94%) 0.49
PIES 646 (97%) 2740 (94%), 13054 (93%) 0.16
SCAGR25 341 (72%) 492 (98%) 1410 (69%) 0.07
SCRS8 449 (91%) 1135 (97%) 3047 (76%) 0.12
SHIP12L 838 (72%) 5223 (96%) 15558 (72%) 0.26
SIERRA 1227 (100%) 2036 (100%) 7302 (79%) 0.11
STANDATA 427 (91%) 1059 (99%) 3583 (97%) 0.08

Bound

1542

53

7
9

Table 2-2. Test problems after reduction. The percentages are relative to the comparable
values before reduction. The last column gives the time (in seconds) for execution of all
reduction routines.

Results of the reductions are shown in Table 2-1. Each of the two loops
described above was able to remove some rows for 6 of the 9 test problems;
each was executed more than twice for two of the problems.

Statistics for the reduced LPs are summarized in Table 2-2. The per­
centage of remaining nonzeroes is sometimes much smaller than the per­
centage of rows times the percentage of columns, due to the elimination
of a fairly dense free row that represents the objective function. (Problem
SIERRA is a particularly striking example of this phenomenon.)

9

Scaling

Since we seek embedded pure networks, our next step is to scale the
rows and columns of the matrix A so that many rows have only +1 and -1
elements. We then set aside the remaining rows, which cannot be in the
network.

We do not attempt to update XVALUE or YVALUE when a row or column is
scaled. Instead we maintain supplementary real arrays XSCALE and YSCALE
such that the current value of aij is given by YSCALE(i) * aij * XSCALE(j).
Initially YSCALE(i) = 1.0 and XSCALE(j) = 1.0 for all i E LE and j E JE·
To scale row i by ai (multiplying each of its elements by ai) we replace
YSCALE(i) by ai * YSCALE(i); columns are scaled similarly. To account for
inaccuracies due to rounding, we use a tolerance, €: aij is considered to be
+1 or -1 if the magnitude of YSCALE(i) * aij * XSCALE(j) lies between 1 - €

and 1 + €. For the scalings reported below, we took € = 10-5
•

To determine whether a ±1 scaling exists for all rows i E IE, we can
apply the following myopic algorithm that scans each row and each column
once. The sets Is and .J's hold rows and columns whose scales have been
determined; the subsets IQ C Is and JQ C .:ls are queues of rows and
columns that have been scaled but that remain to be checked for consistency
with previously-assigned column or row scales.

Induced scaling

Initialize Is +- 0 and :Ts +- 0.
Repeat until Is= IE and :Ts = :TE:

Select any i E IE\Is or j E :lE\:Ts.

If i E IE\Is is selected, initialize IQ+- {i}, :JQ +- 0.
If j E :lE\:ls is selected, initialize :JQ +- {j}, IQ +- 0.

Repeat until IQ = 0 and :JQ = 0:
Select any i E IQ or j E :lQ­

If i E IQ is selected,
Repeat for all j E :TE such that a;i -=/ 0:

If j E :Ts then
if ia;i I -=/ 1 then stop: no scaling exists.

Otherwise j <t :Ts:
scale column j so that ia;j I = 1, and
set :Ts +- :Ts U {j}, :JQ +- :JQ U {j}.

If j E :JQ is selected,
Repeat for all i E IE such that a,j -=/ 0:

If i E Is then
if ia,j I -=/ 1 then stop: no scaling exists.

Otherwise i ¢ Is:
scale row i so that ia,ji = 1, and
set Is+- Is U {i}, IQ+- IQ U {i}.

10

The outermost loop is needed because the submatrix defined by i E IE,
j E JE may be disconnected. In general, this submatrix has a block­
triangular form,

A(K)
E

such that each block A~) is a connected submatrix; the outer loop is ex­
ecuted once for each block. One row or column scale in each block is left
arbitrarily at 1.0, after which the rest are forced; the inner loops either de­
termine the forced scales or find a contradiction implying that no complete
±1 scaling is possible. The selection of i E IQ or j E JQ may be made in
any convenient way; our implementation alternates between selecting rows
from IQ until IQ is empty, and columns from JQ until JQ is empty (in
effect, a breadth-first search).

All of our test problems are in fact connected prior to scaling. Only
two, GIFFPINC and SIERRA, can be scaled completely; they derive from the
same commodity-flow application, as indicated in Appendix A.

A slightly modified induced scaling algorithm may be applied to the
seven LPs that cannot be completely scaled. At the two places where the
original algorithm finds a contradiction in scales ("stop: no scaling exists")
the modified algorithm continues; we have tried two variations, one that
rescales the contradicting row or column and one that leaves it unchanged.
Either way, however, the performance of the modified algorithm is unsat­
isfactory. In various runs with different initial choices of i E IE or j E JE,
we find that it usually reduces the number of ±1 rows.

Thus we are led to apply a more elaborate series of heuristics to try
to increase the proportion of ±1 rows. In general terms, these algorithms
proceed as follows:

(1) Set aside empty and single-element columns: Let .:JE be the set of
j E JE such that aii =/ 0 for at least two i E IE.

(2) Tentatively scale the rows: Scale each row i E IE, if necessary, to
maximize the number of columns j E JE such that laijl = 1.

(3) Tentatively scale the columns: Look for columns j E JE in which all
elements have the same magnitude, Of either laiil = ai or aii = 0
for every i E IE. Scale each of these columns by l/ai.

11

(4) Improve the scaling: For each i E IE, let Pi be the number of columns
j E .:Tf such that laijl =J. 0 or 1. Let uk be the number of rows i E IE
such that Pi = k. Repeat as long as possible:

Scale a column j so that the vector u = (u0 , u1 , u2 , •••) is lexico­
graphically increased.

(5) Extend to a maximal scaling: Repeat for each row i that has not been
successfully scaled to have all elements ±1:

If possible, adjust the scales so that i becomes a ±1 row, while
all current ± 1 rows remain so.

We describe briefly how these steps are efficiently implemented, and then
discuss how well they worked.

Step (1) sets aside columns that obviously can always be scaled to have
all elements be +1 or -1. It requires only the column counts that are
available from the reduction passes.

Step (2) finds the most common magnitude ai > 0 in row i, and scales
by 1/ai if ai =J. l. One or more partial passes through the elements of
each row are required. An array of the values Pi for step (4) is also most
conveniently initialized by this step.

Step (3) scans the elements of each column until it has encountered two
elements of different magnitude. If all elements are found to have the same
magnitude O'.j =J. 1, then the column is scaled by 1/aj, and appropriate
values of Pi are adjusted accordingly.

In step (4), the vector u need not be maintained explicitly. Instead,
define pfn to be the smallest Pi for any element in column j:

pfn = min{pi : i E'IE, aij =J. O}

Then rescaling column j will effect a lexicographic increase in u if and only
if either

(i) some row i E IE has Pi= pfn but laiil =J. 0 or 1; or

(ii) there is a magnitude ai such that { i E IE : Pi= pfn + 1, laijl = aJ
has more members than {i E IE: Pi= pfn, laiil = l}.

Several full or partial passes through column j may be necessary to deter­
mine whether either of these conditions holds. If (i) holds then we choose
an O'.j =J. 1 such that { i E IE : Pi = pfn, laiil = O'.j} is as large as possible;
otherwise we try to find O'.j as defined in (ii). If O'.j is found in either case
then column j is scaled by 1/ai. A final pass of the column sets Pi= Pi+ 1
for elements that have laijl = 1, and Pi = Pi - 1 for elements that have

laiil = O'.j.

12

After step (4), there is a subset Is = { i E IE : Pi = 0} of successfully
scaled rows. Step (5) must test, for each l E IE\Is, whether the rows in
Is U { l} can be successfully scaled. Whenever the answer is yes, l is added
to Is (by resetting Pl = 0).

To carry out step (5) efficiently, we determine a block-diagonal permu­
tation of the submatrix defined by rows in Is and columns in JE· Given
some l E IE\Is, we permute row l to conform. If there are J{ connected
blocks in the permutation, the submatrix and row l can be represented as
follows:

A(t)
s 0 0 0

0 A~) 0 0

0 0 A(K)
s 0

(1)
a1

(2)
al

(K)
al

(K+l)
a1

Existence of the desired scaling has the following characterization:

The submatrix defined by rows in Is U { l} and columns in JE admits
a ± 1 scaling if and only if, for each block k = 1, ... , I{, the elements
within the subvector a?) all have the same magnitude.

If all elements within each subvector do have the same magnitude, then
the desired scaling is easily constructed. The converse follows from the
observation that, for any connected block A~), the ±1 scaling is unique
up to multiplication of all row scales by some constant and division of all
column scales by the same constant.

Our implementation of step (5) initially finds the diagonal blocks A~)
by a breadth-first search that alternately scans rows in Is and columns in
JE· The column indices of each block are represented as a linked list,

JBLOCK list of indices of all columns in any block

JSTART(k) position within JBLOCK of first column of the kth block

JLINK(j) position within JBLOCK of the next .column
that is in the same block as JBLOCK(j)

The main loop considers each l E IE\Is once. The magnitudes of the
elements of row l within each block are checked in a single pass. If all
elements have the same magnitude within each block, then l is added to
Is and the column scales are adjusted appropriately; the block structure
is updated by merging all blocks that have columns intersecting row l,
together with all columns that intersect row l but that were previously in
no block.

13

Heuristic Maximal
No scaling scaling scaling

ENERGY 1050 (57%) 1163 (63%) 1325 (72%)
GIFFPINC 264 (45%) 590 (100%)
GREENBEA 396 (18%) 886 (39%) 963 (43%)
PIES 166 (26%) 232 (36%) 278 (43%)
SCAGR25 172 (50%) 172 (50%) 243 (71%)
SCRS8 35 (8%) 238 (53%) 313 (70%)
SHIP12L 828 (99%) 828 (99%) 830 (99%)
SIERRA 1161 (95%) 1227 (100%)
STANDATA 298 (70%) 341 (80%) 351 (82%)

Table 2-3. Rows that have only elements of +1, -1 and 0. Heuristic scaling includes
steps (1)-(4) in the text, and maximal scaling also includes step (5), except for GIFFPINC
and SIERRA where the induced scaling algorithm found a complete scaling. The two figures
in each column are the absolute number of ±1 rows and the percentage of essential rows
successfully scaled.

Heuristic Maximal
scaling scaling

Added Time Added Time

ENERGY 110 2.01 163 4.27
GREENBEA 490 4.39 76 3.13
PIES 66 1.41 46 0.43
SCAGR25 0 0.11 71 0.18
SCRS8 198 0.32 76 0.21
SHIP12L 0 0.83 6 0.63
STANDATA 43 0.29 10 0.17

Table 2-4. Effectiveness and efficiency of scaling routines. Figures on the left are for
steps (1)-(4), and on the right are for the subsequent execution of step (5). In each case,
the first column indicates the number of additional ±1 rows created, and the second gives
the time for execution.

In the interest of efficiency, current row scales are not maintained; they
are easily deduced from the correct column scales. Operations on the linked
lists are aided by the maintenance of two auxiliary arrays:

BSIZE(k)

BNAME(j)

number of columns in the kth block

identifying number of the block ,
to which column j belongs, or O if it belongs to no block

Merging of blocks is a disjoint set union problem, whose solution we imple­
ment in an obvious way. (The more sophisticated and theoretically faster
algorithm analyzed by Tarjan (1975) could also have been used.)

Table 2-3 shows the number of ±1 rows in each test problem before
scaling, after steps (1)-(4), and after step (5). Both the scaling heuristics

14

Heuristic then Maximal
Maximal scaling scaling alone

Added Time Added Time

ENERGY 273 6.28 256 5.15
GREENBEA 566 7.52 494 13.53
PIES 112 1.84 128 0.97
SCAGR25 71 0.29 71 0.20
SCRS8 274 0.53 281 0.52
SHIP12L 6 1.46 6 0.86
STANDATA 53 0.46 53 0.57

Table 2-5. Comparison of combined heuristic and maximal scaling algorithms with max-
imal scaling alone. Figures on the left are for steps (1)-(5), summed from Table 2-4, and
on the right are for application of step (5) only. Format is the same as in Table 2-4.

and the maximal scaling algorithm have a substantial effect in most cases.
Indeed, for six of the nine test problems, the number of embedded network
rows eventually found in the matrix exceeds the number of ±1 rows that
existed before scaling.

We used a straightforward but inefficient implementation of the scaling
routines to produce the results in Table 2-3, which were used as a starting
point for the heuristics in Sections 3, 4 and 5. Later we implemented much
faster versions, for which timings are given in Table 2-4. These versions do
not always yield the same number of scaled rows as shown in the previous
table, but the differences are slight; after maximal scaling, the greatest
changes are 313 to 309 for SCRS8, and 830 to 834 for SHIP12L.

The maximal scaling algorithm can also be applied directly to an un­
scaled matrix. In the cases of GIFFPINC and SIERRA, this algorithm neces­
sarily finds a complete scaling; but the previously-described induced scaling
algorithm took only 0.09 seconds for GIFFPINC and 0.24 for SIERRA, whereas
the maximal algorithm took 1.47 and 1.44. Results on other test problems
were mixed, as shown in Table 2-5.

15

3. Row-scanning deletion algorithms

A deletion algorithm starts with a set of matrix rows, and deletes rows
one by one until those remaining are a network. A row-scanning algorithm
examines one row at a time, and takes an action according to certain prop­
erties of the elements in that row.

This section presents our experience with row-scanning deletion algo­
rithms for extracting embedded networks. We begin by describing an al­
gorithm and an implementation that work in two phases; the first phase
performs enough deletions to identify a network, and the second restores
enough deleted rows to make the network maximal. We subsequently dis­
cuss four strategies for making the algorithm faster, which give rise to nine
further implementations. Test data pertinent to particular implementations
are presented throughout this section; overall comparisons of effectiveness
(size of network) and efficiency (run time) are made at the end. Our re­
sults show that very efficient implementations need not sacrifice much in
effectiveness.

Throughout this section we let I 0 ~ {1, ... , m} and Jo~ {1, ... , n} be
the sets of essential rows and columns that are determined by the reduction
and scaling operations of Section 2. Our implementations perform their
own preprocessing as appropriate, reducing the essential sets to I~ I 0 and
J ~ Jo. Thus we describe all implementations as applying to rows in I and
columns in J, with the goal being a subset N C I of network rows. Since
these are implementations of deletion algorithms, they initialize N +- I,
and delete elements from N until it is a network subset. The full network
extracted by the algorithm, taking its own preprocessing into account, is
given by NU (Io \I).

Principles

The implementations presented in this section are descendants of the
deletion heuristics proposed by Senju and Toyoda (1968) for the knapsack
problem. These heuristics were specialized by Bready, Mitra and Williams
(1975) to find large generalized upper bound (or GUB) row subsets (within
which each column has at most one nonzero element). In their computa­
tional tests, Brearly, Mitra and Williams found the Senju-Toyoda methods
superior to all of the many others they considered. The same approach
was subsequently adapted by Brown and Wright (1981,1984) to the prob­
lem of extracting embedded networks, and by Brown, McBride and Wood
(1985) to the corresponding problem for generalized networks. Our imple­
mentations are based on the Brown-Wright heuristic, which we begin by

16 ·

describing.
Two rows may be considered to have a conflict wherever both have a + 1

or both have a -1 in the same column. Conflicts prevent the appearance
of certain pairs of rows in the embedded network; thus we assign each row
a penalty equal to the number of conflicts in which it participates. If Cj
and c-; are the numbers of +l's and -l's in column j, the penalty for row
i may be expressed as

Pi L (c3 -1) + L (c-; -1)
jE.:T:a;j=+ 1 jE.:T:a;j=-1

A similar formula gives the penalty for the reflection of row i (the result of
scaling it by -1):

E cj +
jE.:T:a;j=+l

If Pi = 0 for all rows i E N, then N defines a network. Otherwise some
row in N must be reflected, or some row must be deleted from N.

Since the goal is to reduce all penalties to zero, it makes sense to reflect
row t if Pt> Rt, or to delete row t if Rt~ Pt> 0. The algorithm based on
these observations can be outlined as follows:

Row-scanning deletion

For j E :J: Compute cj, c1 = number of +l's, -l's in column j

For i EI: Compute Pi= L;e.7:a,;=+l (cf - 1) + L;e.7:a,;=-l (c; - 1).

Initialize N .- I.

Repeat while there exist rows i E N such that Pi > 0:

Select any t EN such that Pt > 0.

Compute Rt = Lje.7:a,;=+l c1 + Lje.7:a,;=-l Cj
If Rt < Pt then reflect row t:

For each at; = +1, j E :1: set cj .- cj - 1 and c1 .- c1 + 1
For each at;= -1, j E :1: set c1 .- c1 - 1 and cj .- cj + 1

Otherwise Rt?: Pt, so delete row t: N .- N\{t}
For each at;= +1, j E :J: set cj .- cj - 1
For each at;= -1, j E :J: set c1 .- c1 -1

For all i EN: update Pi, if necessary,
to take account of the new Cj and c1 values.

As the algorithm proceeds, Cj and c-; are the numbers of +l's and -l's
left in column j within the rows of N; Pi is the number of conflicts between
row i and other rows of N, and R; is the number of conflicts between the
reflection of row i and other rows of N. Each pass of the main loop either
reflects or deletes one row. When the algorithm stops, Pi= 0 for all i EN,
so the rows remaining in N are a network.

17

To see that the number of passes must be finite, consider the total P of
all conflicts within the rows i E N. Since exactly two rows participate in
each conflict,

P - l"""' D, - 2 ~ r,
iEN'

Deleting row t removes all the conflicts in which it participates, and so
reduces P by Pt> 0. Reflecting row t also removes all the conflicts in which
it participates, but adds all the conflicts in which its reflection participates,
so that P is reduced by Pt -Rt > 0. Either way, the total conflict is reduced
at every pass. Eventually it falls to zero and the algorithm halts.

The particular network that is found will depend on the particular
method that is used to choose row t in each pass. The original Brown­
Wright algorithm chooses t so that Pt is as large as possible:

Nevertheless, the resulting network can fail to be maximal as defined in
Section 1. The algorithm can only guarantee that, when row tis deleted by
a pass, it must conflict with one or more other rows in N. At subsequent
passes, those others may also be deleted. Thus, following deletion, Brown
and Wright (1981) suggest applying a second algorithm that attempts to
restore deleted rows:

Reinsertion

Repeat for each t in 'I\N:

If Cj = 0 for all at;= +1, j E 3; and c1 = 0 for all at;= -1, j E 3:

Restore row t: 'I +-- 'I U { t}

For each at;= +1, j E 3: set Cj +-- l
For each at;= -1, j E 3: set c1 +-- 1

If cj = 0 for all at;= -1, j E J; and c1 = 0 for all at;= +1, j E 3:

Reflect and restore row t: 'I +-- 'I U { t}

For each reflected at; = +1, j E 3: set Cj +-- l
For each reflected at;= -1, j E 3: set c1 +-- 1

There is just one pass for each deleted row. At the end, the network subset
must be maximal: every tr/; N conflicts with some row in N.

We next describe an efficient implementation of the the Brown-Wright
algorithms above. The remainder of this section can then compare four
ideas for improvement:

• Use a heap to reduce the cost of selecting the largest penalty in the
Brown-Wright deletion heuristic.

• Scan only some of the penalties at each pass, even though the largest
one may not always be chosen.

18

• Set aside rows whose penalty is initially zero, or whose penalty falls
to zero after some pass.

• Do not update the penalties, except when a row is reflected.

These ideas lead to implementations that are expected to achieve greater
speed at little or no loss in effectiveness.

Implementation

Prior to the main deletion loop, two scans of the matrix are needed to
initialize arrays. A column-wise scan computes Cj and c-; (we actually store
Cj - l and CJ - 1) and a row-wise scan computes Pi. Two bookkeeping
arrays are also set up, to record the rows in N and the rows that have been
reflected.

In the course of the setup scans, we can cheaply identify certain rows
in I 0 and columns in Jo that become inessential as a result of the scaling
described in Section 2. During the column-wise scan we set aside columns
that have fewer than two nonzeroes in the ±1 rows, since there can be
no conflicts within these columns. The remaining columns comprise J.
During the row scan we then set aside rows that intersect no columns in
J, since these rows cannot conflict with any others; the remaining rows
comprise I. The columns in Jo \J are temporarily given a special marking
in the XSTATS array (Section 1) and the rows in I 0\I are marked specially
in the aforementioned bookkeeping array. Table 3-1 shows that significant
numbers of inessential columns and rows exist in many of our test problems.

Columns set aside Rows set aside

O's l's Total

ENERGY 689 4429 5118 (66%) 121 (9%)
GIFFPINC 0 2 2 (0%) 0 (0%)
GREENBEA 429 2804 3233 (63%) 38 (4%)
PIES 989 1327 2316 (85%) 80 (29%)
SCAGR25 99 202 301 (61%) 0 (0%)
SCRS8 53 797 850 (75%) 16 (5%)
SHIP12L 0 96 96 (2%) 0 (0%)
SIERRA 0 0 0 (0%) 0 (0%)
STANDATA 6 151 157 (15%) 0 (0%)

Table 3-1. Preprocessing prior to row-scanning deletion. Columns set aside have no
elements or one element within the ±1 rows; rows set aside intersect only those columns.

19

We next invoke the deletion algorithm. To streamline the determination
of the maximum penalty at each pass, we represent N as a linked list, stored
1n an array:

LINK(i) index of the row that follows row i

To select t we scan this entire list at each pass, checking the penalty of each
row against the largest penalty seen so far.

Using the current values of Cj and c-;, computation of Rt requires just a
scan of row t. The remaining work lies in updating the counts and penalties.
Fortunately, each iteration affects only the penalties of the rows that have
conflicts with row t, and possibly with its reflection; penalties of the other
rows are unchanged. So if row t is deleted, we can carry out the update as
follows:

For each atj = +1, j E 3:
Update ct <- ct - 1

J J
For each a;i = +1, i EN: update P; <- P; - 1

For each atj = -1, j E 3:
Update c~ <- c~ - 1

J J
For each a;j = -1, i EN: update P; <- P; - 1

If row t is reflected then some penalties may also increase:

For each ati = +1, j E 3:
Update ct <- ct - 1 and c~ <- c~ + 1

J J J J
For each a;i = +1, i EN: update P; <- P; - 1
For each a;j = -1, i E N: update P; <- P; + 1

For each atj = -1, j E 3:
Update c1 <- c1 - 1 and cj <- cj + 1
For each a;i = -1, i E N: update P; <- P; - 1
For each a;i = +1, i EN: update P; <- P; + 1

In either of these cases, our outer loop is a scan of the elements of row t.
For each atj in the row we update Cj and c-;; then we scan the elements
of column j, and for each intersecting network row i we update Pi. Thus
both the row and column lists of nonzeroes are used in the update.

Since the algorithm is normally applied to a matrix that has a substan­
tial embedded network, many of the rows remain in N at every pass, and
the work of finding the maximum penalty is roughly proportional to m.
By comparison, the work of updating the penalties depends only on the
number of elements in all columns intersecting row t; this number does not
necessarily increase as LPs become larger.

The reinsertion algorithm involves just one fast scan through part or all
of each deleted row, plus a second scan if the row is restored. We keep a
linked list of deleted rows, sharing space in LINK, and attempt to reinsert
them in the reverse of their order of deletion.

20

Selection of rows from a heap

To speed the selection of row t at each pass, we consider partially sorting
the initial penalties of the rows into a binary heap (Knuth 1973) with
the largest penalty at the top. Formation of the heap is an extra but
inexpensive operation, whose cost grows linearly in the number of rows.
Two complementary arrays keep track of the heap relationship:

HEAP([)

HPOS(i)
row index of the [th heap entry

heap position of the ith row: HEAP(HPOS(i)) = i

The entries in HEAP have the customary heap order: for each l, the penalty
of HEAP(l) is greater than or equal to the penalty of HEAP(2l) and the penalty
of HEAP(2l + 1).

At each pass of the algorithm, t is set to HEAP(l), and the remaining
steps are carried out as previously described. Elements of HEAP and HPOS
must also be adjusted, however, to maintain the heap ordering as the penal­
ties change. If row t is deleted, the top entry of the heap is removed, and Pt
entries have their penalties decreased by one; if t is reflected, the penalty
of the top entry is decreased from Pt to Rt, Pt other entries have their
penalties decreased by one, and Rt entries have their penalties increased by
one.

The heap ordering is maintained by fast operations of "sifting down"
(when the top is removed or a penalty is decreased) and "sifting up" (when
a penalty is increased). Deletion or reflection of the top element requires
only the information in HEAP, but HPOS is needed when the penalties of
other elements are changed. Thus HPOS must be updated whenever HEAP is
modified.

Although the heap-sifting operations are inherently fast, many may be
required, particularly at the earlier passes when the maximum penalty is
still large. Hence the success of a heap implementation depends upon the
speed of the updates. We used separate (though similar) code in each place
where the heap was updated, to take advantage of the special features of
particular cases. For example, when a penalty is decreased by one, we
expect that the heap order is often left undisturbed. Thus, in such a case,
our code does a fast check whether the penalty of HEAP(HPOS(i)) has become
less than the penalty of HEAP(2 * HPOS(i)) or HEAP(2 * HPOS(i) + 1); if not,
the sift-down loop can be skipped entirely.

Our implementation decrements Pi once for each conflict between row
i and row t; if t is reflected, we also increment Pi once for each conflict
between row i and the reflection of row t. Thus P; may be modified several
times, with the result being a net increase, a net decrease, or no change
at all. We could keep the number of heap-sifts to a minimum by first
determining the total change in each Pi, then sifting HPOS(i) up or down

21

just once for each i whose penalty shows a change. However, we expect
that any gains to be achieved by this arrangement would be balanced by
the extra overhead of determining the total change in penalties. Thus we
sift HPOS(i) separately for each conflict.

Since the heap contains only rows remaining in I, a linked list of deleted
rows can share space in HPOS. The reinsertion of rows is carried out as
before.

Partial selection of rows

We were motivated to use a heap because we wanted to select a max­
imum penalty Pt cheaply. We next consider an alternative approach, in
which the selection step is made more efficient by weakening the criterion
for row t. In particular, we explore two implementations that use a simple
scan of the penalties, but that maximize the penalty at each pass over a
suitably chosen subset of the rows in N.

Our implementations employ a linked list of rows in N, as previously
described, but with the "last" entry in the list circularly linked back to the
"first". At the initial pass, a row t(l) of largest penalty is selected. At each
subsequent pass k, however, the list entries are scanned only until some row
t(k) is deemed to have a sufficiently large penalty, according to one of the
rules described below. We then record the index of the last entry that was
scanned, and proceed with the rest of the pass. At pass k + l, we start the
scan where it left off, with the entry that follows the last one scanned at
pass k. Thus, at the beginning of any pass, all rows remaining in N have
been previously scanned about the same number of times.

Our first stopping rule is based on the observation that, in almost all
our runs, the number of passes is substantially larger than the size of the
maximum penalty. Thus the maximum will often be the same from one pass
to the next; it may even increase at some passes, following a reflection. Let
Af(k-I) be the penalty that t(k-I) has at the (k - l)st pass; at the kth pass,
we search the linked list as follows:

Partial selection, rule 1

Set M(k) +-- 0.
Repeat for rows i EN:

If Pi> M(k) then set t(k) +-- i, M(k) +-- Pi.
If M(k) 2: M(k-l) then exit.

A scan of all rows in the list is forced only at the relatively rare passes
where Af(k) < Af(k-l). If the maximum ever increases then Af(k) may be
less than the maximum at some passes, but any discrepancy is unlikely to
be large or to remain for long.

22 ·

Our second stopping rule derives from the expectation that all rows
having "sufficiently large" penalties will eventually be deleted. At the out­
set, we specify a threshold M > 0; as soon as the scan encounters a row
whose penalty meets or exceeds M, it selects that row and stops. When the
maximum penalty M(k) finally falls below M, we reset M to M(k). Thus
the scan at the kth pass is as follows:

Partial selection, rule 2

Set M(k) +- 0.
Repeat for rows i EN:

If P; 2 M then set t(k) +- i and exit.
If P; > M(k) then set t(k) +- i, M(k) +- P;.

If no P; 2 M was found, set M +- M(k)_

The reflected penalty Rt(k) is computed as before, but now row t(k) is deleted
unless Rt(k) < M as well as Rt(k) < Pt(k).

When there are many rows whose penalty is greater than M, rule 2
should require significantly less scanning than rule 1. Once M has been
reset to M(k), however, the two rules are much alike. The only difference
occurs when Pt(k) > Pt(k-1); at pass k + l, rule 1 will use M(k) = Pt(k) as its
threshold for exiting the loop, but rule 2 will use the same M < Pt(k) that
it had at pass k. The threshold for pass 1 may thus temporarily increase,
whereas the threshold for pass 2 is nonincreasing.

To determine a reasonable value for M, we have collected the distribu­
tions of penalties shown in Table 3-2. We do not consider just the Pi values
because, for some of the test problems, certain rows can be reflected to a
much lower penalty. Instead we show the minimum of Pi and the reflected
penalty, Ri, computed for each row i prior to the first pass. (The value
of Ri is not normally computed except for the one selected row during a
pass. We ran a specially modified version of our program to generate these
numbers.)

For each LP, the upper line in Table 3-2 shows the distribution of
min(Pi, Ri) over all i E I. The lower line has been determined from the
upper one by removing all entries for rows that are deleted by the algorithm
(using the rule 1 above); thus the lower line shows the distribution of the
penalties that the network rows originally had, before the non-network rows
were deleted. In a majority of the problems, all penalties are quite small.
In the remaining ones, moreover, virtually all of the rows that started off
with min(Pi, Ri) > 10 are eventually deleted. Thus we initialized M = 10
in our test of the second rule.

23

rows 0 1 2 3 4 5 6 7 8 9 10 >10

ENERGY all 923 230 44 2 3 1 0 0 0 1 0 0
net 916 188 24 1 1 1 0 0 0 0 0 0

GIFFPINC all 332 122 88 2 34 0 12 0 0 0 0 0
net 332 75 44 1 17 0 6 0 0 0 0 0

GREENBEA all 776 74 24 19 17 0 2 3 0 0 0 10
net 763 66 17 15 14 0 1 1 0 0 0 0

PIES all 92 9 33 31 7 18 6 2 0 0 0 0
net 92 5 12 16 4 3 0 0 0 0 0 0

SCAGR25 all 94 4 42 0 0 0 0 0 0 0 0 0
net 70 1 0 0 0 0 0 0 0 0 0 0

SCRS8 all 215 56 18 3 1 4 0 0 0 0 0 0
net 213 47 9 2 0 0 0 0 0 0 0 0

SHIP12L all 0 0 0 0 0 0 192 362 168 10 2 96
net 0 0 0 0 0 0 192 362 168 10 1 0

SIERRA all 46 160 365 50 330 0 0 0 20 60 20 176
net 46 160 255 0 330 0 0 0 0 0 0 12

STANDATA all 129 53 105 21 39 1 0 0 0 0 0 3
net 127 26 87 9 22 0 0 0 0 0 0 0

Table 3-2. Distribution ofmin{P;, R;) evaluated prior to deletion. The counts are shown
first for all rows, then for rows that remained in the network after deletion (using partial
selection of tk with rule 1).

Selection of zero-penalty rows

If Pi = 0 at any pass of the deletion algorithm, then row i may be placed
unconditionally in the network. Subsequent passes need not update or scan
Pi, although the values of cj and c-; must still take row i into account. The
cost per pass may thus be somewhat reduced.

To see that the algorithm remains valid when zero-penalty rows are
treated in this way, consider the following modified statement:

24

Row-scanning deletion, zero-penalty option

For j E :J: Compute Cj, c1 =number of+ ls, -ls in column j

For i EI: Compute Pi = Lje..7:a,;=+l (cf - 1) + Lje..7:a,;=-l (c1 - 1).

Initialize N +- I, N* +- 0.
For i E N such that Pi = 0:

Optionally set N +- JI\ { i}, N* +- N* U { i}.

Repeat while there exist rows i EN such that Pi > 0:

Select any t EN such that Pt > 0.
Compute Rt = Lje..7:a,;=+l c-; + Lje..7:a,;=-l Cj
If Rt < Pt then reflect row t:

For each atj = +1, j E :J: set Cj +- Cj - 1 and c1 +- c1 + 1
For each atj = -1, j E :J: set c-; +- c-; - 1 and Cj +- Cj + 1

Otherwise Rt~ Pt, so delete row t: N +- Jl\{t}
For each atj = +1, j E :J: set Cj +- Cj - 1
For each atj = -1, j E :J: set c-; +- c1 - 1

For all i EN: update Pi, if necessary,
to take account of the new Cj and c1 values.

For any i such that P; = 0: Optionally set N +- Jl\i, N* +- N* U {i}.

Since the values of cj and c--; are not decremented when a row is moved
from N to N*, the penalty Pt (or Rt) must represent the number of conflicts
between row t (or its reflection) and other rows in NUN*. Thus the total
of all conflicts in NUN* decreases at every pass, by the argument given
previously, and the algorithm must still eventually stop.

When the algorithm does stop, Pi= 0 for any i that may remain in N;
hence no row in N can conflict with any other row in N or N*. Moreover,
no row in N* can conflict with any other row in N*, because these rows have
penalties of zero when they enter N* and are never subsequently reflected.
Thus there can be no conflicts at all within NUN*, and it must represent
a network when the algorithm terminates. (If tk E N is reflected at some
pass, then it may temporarily come into conflict with some rows in N*. The
above argument implies, however, that tk will have to be reflected again or
deleted at a later pass, in such a way t'hat no conflicts remain when the
algorithm stops.)

For our simplest implementations of this zero-penalty option, row i is
placed in N* if and only if it has Pi = 0 initially (that is, before the first
pass of the algorithm). Other rows are put in the heap or linked list, and the
main loop of the algorithm proceeds as before. This approach is equivalent
to treating { i E I : Pi = O} as a set of "prespecified network rows" in the
manner described by Brown and Wright (1984).

Checking for the initially zero penalties is done in the same row scan
that computes the penalties, at little extra cost; if Pi = 0 then row i is set
aside, in much the same way as the inessential rows described previously.

25

Rows Nonzeroes

All pi= 0 All pi= 0

ENERGY 1204 743 (62%) 5407 4144 (77%)
GIFFPINC 590 332 (56%) 2323 1125 (48%)
GREENBEA 925 706 (76%) 4194 2444 (58%)
PIES 198 92 (46%) 952 576 (61%)
SCAGR25 243 51 (21%) 476 52 (11%)
SCRS8 297 201 (68%) 617 394 (64%)
SHIP12L 830 0 (0%) 15374 0 (0%)
SIERRA 1227 30 (2%) 7302 100 (1%)
STANDATA 351 75 (21%) 2086 436 (21%)

Table 3-3. Initially zero penalties. The left-hand columns give the total ofrows in I, and
the number of rows in I such that P; = 0 initially (followed by the latter as a percentage
of the former). The right-hand columns provide analogous information for the numbers of
nonzeroes in these rows, within all columns j E :f.

For our tests, the numbers of initially zero penalties are shown in Table
3-3. The proportion of zero penalties ranges from none to three-quarters
of the rows in I; it exceeds 40% in five of the nine LPs.

A comparison of Tables 3-2 and 3-3 shows that some of the positive­
penalty rows would have an initial penalty of zero if they were reflected. We
cannot simply reflect all these rows and add them to N*, however. Each
reflection changes c-; and cj, with possible effects upon the penalties of
many other rows (and their reflections).

We also consider a more elaborate version of the linked-list implemen­
tation, in which rows may be moved from N to N* at the end of any pass.
If a row is reflected to have zero penalty, then it is moved to N* immedi­
ately. Other rows are moved when they are found to have zero penalty in
the course of scanning the linked list; although an extra cost is incurred
to check for Pi = 0 and to remove elements from the list, extra savings
are expected because the list becomes shorter. Since eventually all Pi = 0,
this implementation always stops with N = 0 and the network in N*. (A
heap-based analogue is not so attractive, because the heap updates do not
present as convenient an opportunity to search for zero penalties.)

Table 3-4 shows the success of our various linked-list implementations in
reducing the numbers of rows examined. Each pass examines some number
of penalties in determining t; the total of these numbers, over all passes, is
given in the "scans" column. The "per row" column can be interpreted as
the average number of passes at which each row in I was examined, and
the "per pass" column as the average percentage of passes at which each
row in I was examined. All of our expectations concerning these quantities
are borne out by the data. The difference between full and partial selection

26

ENERGY GIFFPINC GREENBEA

Max Pi Take per per per per per per
scan pi= 0 scans row pass scans row pass scans row pass

all no 142202 118 97.6% 68155 116 89.5% 85932 93 97.8%
part no 30751 26 21.1% 4624 8 6.1% 37844 41 43.1%
~ 10 no 17515 15 11.1% 4624 8 6.1% 14189 15 15.3%
part init 11673 25 20.9% 1876 7 5.6% 8660 40 41.6%
part yes 7594 16 13.6% 1531 6 4.6% 5688 26 27.3%
~ 10 init 6610 14 10.9% 1876 7 5.6% 3132 14 13.6%
~ 10 yes 3063 7 5.1% 1531 6 4.6% 1684 8 7.2%

PIES SCAGR25 SCRS8

Max Pi Take per per per per per per
scan pi= 0 scans row pass scans row pass scans row pass

all no 11401 58 82.3% 30164 124 88.0% 10777 36 95.5%
part no 1820 9 13.1% 1918 8 5.6% 2247 8 19.9%
~ 10 no 1820 9 13.1% 1918 8 5.6% 2247 8 19.9%
part init 900 8 12.1% 1477 8 5.5% 692 7 19.0%
part yes 870 8 11.7% 1225 6 3.9% 444 5 12.2%
~ 10 init 900 8 12.1% 1477 8 5.5% 692 7 19.0%
~ 10 yes 870 8 11.7% 1225 6 3.9% 444 5 12.2%

SHIP12L SIERRA STANDATA

Max Pi Take per per per per per per
scan pi= 0 scans row pass scans row pass scans row pass

all no 76501 92 94.1% 467507 381 81.6% 39594 113 88.1%
part no 6125 7 7.5% 16761 14 2.9% 3342 10 7.4%
~ 10 no 1562 2 1.9% 12895 11 2.2% 2381 7 5.3%
part init 6125 7 7.5% 16341 14 2.9% 2588 9 7.3%
part yes 4083 5 5.0% 13507 11 2.4% 1812 7 5.1%
~ 10 init 1562 2 1.9% 12535 10 2.2% 1848 7 5.3%
~ 10 yes 839 1 1.0% 10035 8 1.8% 1186 4 3.4%

Table 3-4. Scanning the linked list of penalties. The first data column gives the number
penalties examined in all scans of the list; the second data column is the first divided by
the number of rows initially in the linked list; and the third data column is the second
divided by the number of passes that the algorithm made.

For each LP, the first column (Max Pi scan) distinguishes implementations by how
they carried out the scan: sequentially through the entire list (all), or partially by rule 1
(part) or rule 2 (~ 10). The second column (Take Pi = 0) distinguishes implementations
by their use of the zero-penalty option: not at all (no), before the first pass only (init), or
at every pass (yes).

27

is dramatic in every case. Special handling of Pi 2 10 and Pi = 0 further
reduces the number of scans for LPs that have many large-penalty or zero­
penalty rows.

Selection without updating

Another way to reduce the cost of a pass, proposed in Ahn (1984), is
to avoid updating the penalties entirely. Instead, rows are considered for
deletion or reflection in decreasing order of their original penalties, prior to
the first pass. This ordering remains unchanged throughout the algorithm,
except to accommodate reflected rows.

The following steps serve to carry out an algorithm along these lines:

Row-scanning deletion, no updating

For j E :1: Compute Cj, c1 = number of +l's, -l's in column j

For i EI: Compute P;(D) = }:jE.1:a,i=+l(cJ -1) + }:jE.1:a,;=-l(c1 -1).

Set N* .,.._ {i EI: Pi°)= 0}, N .,.._ I\N*.
Let p = ½ }:iEAf P;(o).

Repeat while P > 0:

Select any pt(D) = max;EAf Pl0
).

Compute Pt= °EJE.1:a,;=+l(cj -1) + °E;E.1:a,;=-l(c1 -1)

Compute Rt = }:jE.1:a,i=+l c1 + }:jE.1:a,;=-l ct

If Rt < Pt and Rt < PI°), then reflect row t:
For each at; = + 1, j E :1: set Cj +-;- Cj - 1 and c1 +- c1 + 1
For each at;= -1, j E :1: set c1 +- c1 - 1 and Cj +- Cj + 1

Set P +- P - Pt + Rt.
If Rt > 0 then reset pt(o) +- Rt.
Otherwise Rt= 0, so set N +-N\{t}, N* +- N* U {t}.

Otherwise Rt~ Pt or Pt> Rt~ P?). so delete row t: N +- N\{t}
For each at;= +1, j E :1: set Cj +- ct - 1
For each at;= -1, j E :1: set c1 +- c1 -1

Set p .,.._ P-Pt.

The algorithm must maintain P, the total conflict count, so that it knows
when to stop; it cannot check directly whether the individual penalties are
zero, because it does not update them.

To determine the row t, we maintain a collection of linked lists, one for
each possible penalty. This arrangement, essentially a bucket sort of the
penalties, requires two arrays:

PTOP(p)

PLINK(i)
first row that has penalty equal top

next row that has the same penalty as row i

28

If no rows have penalty equal to p then PTDP(p) = O; if i is the last row
in its list then PLINK(i) = 0. Rows whose penalty is zero need never be
entered in the list. The value M = maxie.N" P?) can never increase and is
easily maintained; tis set to PTDP(M) at most passes, with some extra work
if PTDP(M) = 0. If a row is reflected to a positive penalty, then the linked
list is easily adjusted by setting PLINK(t) +- PTDP(Rt) and PTDP(Rt) +- t.

Comparisons

Table 3-5 reports the reflections, deletions and insertions performed
by each of our implementations on each test problem. The number of
deletions minus the number of the insertions is the number of non-network
rows, shown in the column labeled "Out". Larger values in this column
thus imply smaller networks. We prefer to count non-network rows, rather
than network rows, because the number of non-network rows is a clearer
measure of success when the network is reasonably large. As an example,
in a subset of 750 eligible rows, an embedded network of 650 would seem
to be almost as big as a network of 700; but in fact 100 non-network rows
must be deleted in the one case, whereas only 50 are deleted in the other.

On the whole, the test results are as expected. Reflections play a large
part in the operation of the algorithm, but the role of reinsertions is more
varied. The simple partial scan yields ~s large an embedded network as
the full scan, with the minor exception of two extra rows deleted from
STANDATA. The various modified partial scans generally yield the same
number of non-network rows, or just a few more.

The no-updating option, by contrast, deletes more rows than the partial
scan in all tests but one. Some of the differences are quite large: 21 for
GREENBEA and SCAGR25, 17 for SIERRA, 39 for STANDATA. However, except
in the case of SIERRA, reinsertions eventually make up for most of these
deletions.

The behavior of the heap implementations is mixed. In most of the
tests, the full-scan implementation and the two heap implementations find
networks that differ in size by three rows or less. Larger differences occur
only for GIFFPINC and SIERRA. (It might seem that the heap version­
without the zero-penalty option-should find the same embedded network
as the full-scan version, since both preprocess in the same way and both
choose a row of largest penalty. Both do not necessarily choose the same
row t, however, when more than one row achieves the largest penalty at
the same pass.)

Table 3-6 summarizes timings for the test problems. There is little
variation from one implementation to the next in the cost of setting up the
penalty arrays, reinserting deleted rows, or cleaning up at the end (mostly

29

ENERGY GIFFPINC GREENBEA
Max P; Take

Refl Del Ins Out Refl Del Ins Out Refl Del Out scan P; = 0 Ins

all no 48 73 0 73 14 115 6 109 47 48 0 48
heap no 48 73 1 72 12 117 6 111 47 48 0 48
heap init 48 73 0 73 6 123 2 121 48 47 0 47
part no 48 73 0 73 14 115 6 109 47 48 0 48
part init 48 73 0 73 14 115 6 109 47 48 0 48
part yes 48 73 0 73 14 115 6 109 47 48 0 48

:s 10 no 52 79 6 73 14 115 6 109 52 48 0 48
:s 10 init 52 79 6 73 14 115 6 109 54 51 0 51
:S 10 yes 52 78 6 72 14 115 6 109 52 55 0 55
no upd yes 43 75 0 75 9 120 11 109 43 69 15 54

PIES SCAGR25 SCRS8
Max P; Take

Refl Del Ins Out Refl Del Ins Out Refl Del Ins Out scan P; = 0

all no 4 66 0 66 70 71 0 71 12 26 0 26
heap no 2 68 3 65 69 72 0 72 11 27 0 27
heap init 2 68 4 64 69 71 1 70 13 26 2 24
part no 4 66 0 66 70 71 0 71 12 26 0 26
part init 4 66 0 66 70 71 0 71 12 26 0 26
part yes 4 66 0 66 70 92 0 92 12 26 0 26

:S 10 no 4 66 0 66 70 71 0 71 12 26 0 26
:s 10 init 4 66 0 66 70 71 0 71 12 26 0 26
~ 10 yes 4 66 0 66 70 92 0 92 12 26 0 26

no upd yes 0 70 0 70 71 92 20 72 8 34 4 30

SHIP12L SIERRA STANDATA
MaxP; Take

Refl Del Ins Out Refl Del Ins Out Refl Del Ins Out scan P; = 0

all no 1 97 0 97 43 424 0 424 50 78 2 76
heap no 1 97 0 97 37 431 0 431 53 73 0 73
heap init 1 97 0 97 49 419 0 419 53 73 0 73

part no 1 97 0 97 43 424 0 424 48 80 2 78
part init 1 97 0 97 43 424 0 424 48 80 2 78
part yes 1 97 0 97 43 424 0 424 48 80 2 78

< 10 no 1 97 0 97 40 436 0 436 47 80 2 78
:S 10 init 1 97 0 97 40 436 0 436 47 80 2 78
:s 10 yes 1 97 0 97 40 436 0 436 47 80 2 78
no upd yes 1 97 0 97 40 441 0 441 24 119 30 89

Table 3-5. Effectiveness of row-scanning deletion heuristics. For each implementation,
the data columns are the number of rows reflected (Refl) and deleted (Del), the number
subsequently reinserted (Ins), and the number of non-network rows following the reinser-
tion (Out).

The first two columns are the same as in Table 3-4, with the addition of entries for the
heap implementations (heap) and the no-updating implementation (no upd).

30

Delete

Set up high low Reinsert Clean up

ENERGY 0.64 0.94 0.08 0.05 0.04
GIFFPINC 0.09 0.40 0.03 0.01 0.01
GREENBEA 0.55 0.77 0.12 0.04 0.03
PIES 0.21 0.10 0.01 0.00 0.01
SCAGR25 0.04 0.20 0.02 0.01 0.00
SCRS8 0.07 0.08 0.01 0.00 0.01
SHIP12L 0.57 1.08 0.14 0.03 0.02
SIERRA 0.26 2.80 0.14 0.04 0.01
STANDATA 0.08 0.27 0.04 0.01 0.01

Table 3-6. Efficiency of row-scanning deletion heuristics. The columns give CPU seconds
required for the initial computation and arrangement of penalties (Set up), the deletion
algorithm (Delete), the reinsertion algorithm (Insert), and housekeeping following the
algorithms (Clean up). Times for the deletion algorithm are the highest recorded, using
full scan, and the lowest recorded, using the no-update option.

scanning the bookkeeping and status arrays). Thus the table gives average
times for these activities. On the other hand, the cost of the deletion
algorithm varies widely, with the full-scan version being the most expensive
and the no-update version the least expensive in every case. Timings for
these two versions are also given in the summary table.

Table 3-7 gives detailed timings for deletion in all of the implementa­
tions. Times for five of the problems are uniformly small, and two patterns
emerge among the four largest. ENERGY .and GREENBEA have a majority of
zero-penalty rows, but their maximum penalties at each pass are relatively
difficult to find (as indicated by the data in Table 3-4). Thus the heap
takes less time than the straightforward partial-scan, but takes about the
same time as a partial scan that avoids zero-penalty rows. (The heap imple­
mentation cannot derive a comparable benefit from avoiding zero-penalty
rows; even if three-quarters of the rows have penalties of zero, their removal
reduces the depth of the heap by just two.) SHIP12L and SIERRA have few
zero-penalty rows, and their maximum penalties at each pass are relatively
easy to find. For these problems the heap takes substantially more time
than partial-scan, but little is gained by specially treating the penalties
of zero. Truncation of penalties reduced the times for all four of these
problems, though to widely varying degrees.

Because all implementations expend comparable effort on activities
other than deletion, the ratios between the deletion times of different im­
plementations are much larger than the ratios between the the total times.
Table 3-6 shows that most of the time outside deletion is spent on setup; in
some cases, setting up the arrays for the deletion and reinsertion algorithms
is more work than carrying out the algorithms.

31

ENERGY GWFPINC GREENBEA
Max Pi Take

Delete Total Out Delete Total Out Delete Total Out scan pi= 0

all no 0.94 1.67 73 0.40 0.49 109 0.77 1.39 48

heap no 0.21 0.95 72 0.07 0.18 111 0.36 1.00 48
heap init 0.20 0.93 73 0.06 0.17 121 0.36 0.96 47

part no 0.35 1.07 73 0.07 0.17 109 0.52 1.15 48
part init 0.22 0.94 73 0.05 0.15 109 0.35 0.96 48
part yes 0.21 0.92 73 0.06 0.17 109 0.35 0.96 48

< 10 no 0.27 1.01 73 0.07 0.18 109 0.34 0.95 48
:'.S 10 init 0.21 0.94 73 0.06 0.16 109 0.29 0.91 51
:'.S 10 yes 0.19 0.90 72 0.05 0.16 109 0.29 0.94 55

no upd yes 0.08 0.83 75 0.03 0.13 109 0.12 0.76 54

PIES SCAGR25 SCRS8
Max Pi Take

Delete Total Out Delete Total Out Delete Total Out
scan P; = 0

all no 0.10 0.33 66 0.20 0.25 71 0.08 0.16 26

heap no 0.05 0.27 65 0.06 0.10 72 0.02 0.10 27
heap init 0.04 0.26 64 0.07 0.11 70 0.02 0.11 24

part no 0.05 0.28 66 0.05 0.11 71 0.03 0.11 26
part init 0.05 0.27 66 0.04 0.08 71 0.02 0.11 26
part yes 0.05 0.25 66 0.05 0.09 92 0.02 0.10 26

:'.S 10 no 0.05 0.27 66 0.05 0.10 71 0.03 0.10 26
:'.S 10 init 0.04 0.27 66 0.04 0.09 71 0.01 0.10 26
< 10 yes 0.05 0.28 66 0.05 0.09 92 0.01 0.10 26

no upd yes 0.01 0.24 70 0.02 0.07 72 0.01 0.09 30

SHIP12L SIERRA STANDATA
MaxP; Take

Delete Total Out Delete Total Out Delete Total Out scan pi= 0

all no 1.08 1.70 97 2.80 3.11 424 0.27 0.37 76

heap no 0.87 1.49 97 0.54 0.86 431 0.09 0.18 73
heap init 0.86 1.49 97 0.54 0.85 419 0.09 0.18 73

part no 0.71 1.34 97 0.44 0.74 424 0.08 0.18 78
part init 0.70 1.32 97 0.44 0.73 424 0.07 0.17 78
part yes 0.68 1.29 97 0.42 0.72 424 0.07 0.16 78

:'.S 10 no 0.39 1.01 97 0.40 0.70 436 0.07 0.16 78
< 10 init 0.40 1.01 97 0.40 0.69 436 0.06 0.14 78
< 10 yes 0.40 1.02 97 0.40 0.70 436 0.06 0.16 78

no upd yes 0.14 0.75 97 0.14 0.44 441 0.04 0.13 89

Table 3-7. Efficiency and effectiveness of row-scanning deletion. For each implementa-
tion, the tables show CPU seconds required for the deletion passes alone (Delete), CPU
seconds required for all phases of the algorithm (Total), and the number of non-network
rows following deletion and reinsertion (Out). The first two columns are the same as in
Table 3-5.

32

4. Column-scanning deletion algorithms

A column-scanning algorithm examines one matrix column at a time,
and takes an action according to certain properties of the elements in that
column. Thus deletion algorithms based on column scanning operate quite
differently from the previously-described algorithms based on row scanning.

This section summarizes our experience with column-scanning deletion
algorithms for extracting embedded networks. We describe fifteen imple­
mentations that fall into two major classes, according to whether they main­
tain information about the contents of specific rows. Within each class the
implementations differ in their ordering of the columns to be scanned, and
in their priorities for choosing rows to delete.

This section is organized much like the preceding one. The principles
of the algorithm and the fundamentals of its implementation are described
first. Then particular implementations are distinguished, and their effi­
ciency and effectiveness are compared.

We also adopt the set notation of the preceding section. Subsets Io and
Jo of essential rows and columns are assumed to be available from previous
reductions and scalings. Some of our implementations further reduce Jo
to J by their own preprocessing, but in this section all take I = I 0 • The
deletion algorithms are applied to I and J; they start with N ~ I, and
reduce N until it is a network subset.

Principles

We consider a family of deletion algorithms first studied in the disser­
tation of Ahn (1984). The underlying idea is simple: for any column of the
matrix, only two of the intersecting rows may be in the embedded network.
Any other intersecting rows will have to be deleted. As a consequence, the
set of essential rows may be reduced to a network subset N by an algorithm
that scans each essential column exactly once:

Initialize N .- I.
Repeat for each j E :J:

Let Si = { i E N : aii f; 0}.

If I Si I ~ 2 then:
If possible, choose p, q E Si with apj = + 1, aqi = -1,

and delete all other rows: N .- N\{i E Sj : if; p, if; q}.

Otherwise, choose some p E Si,
and delete all other rows: N .- N\ { i E Sj : i f; p}.

Clearly the scan of column j leaves no conflicts within that column (in the
sense of Section 3) and creates no further conflicts in other columns. Thus,

33

after all columns have been scanned, the set N must represent a network.
This algorithm is easily extended to allow for the reflection of rows.

Reflection is important when, for example, a column j has two or more
+l's but no -1 's within the rows of N. As stated above, the algorithm
deletes all but one row pin Si; however, if some row q E Sj can be reflected,
then aqj becomes -1 and two rows p, q E Sj may remain in the network.
The same can be said when a column has two or more -l's and no +l's.
Even when a column does have elements of both signs, the possibility of
reflection increases the number of different pairs of rows that are eligible to
be selected.

Unfortunately, rows cannot be reflected indiscriminately as a column is
scanned. A reflection may create conflicts in other columns, as a result of
which N may fail to be a network when the algorithm stops. To get around
this problem, we distinguish "new" and "old" rows in the set N. Initially,
all rows are new; but whenever a column is scanned and two intersecting
rows remain undeleted, both become old (if they are not old already). The
full algorithm is stated as follows:

Column-scanning deletion

Initialize N +- I, and Li +- new for all i EN.

Repeat for each j E .J:
Let Si = { i E N : aii =fa O}.

If JSil ~ 2 then
If possible, choose p, q E Sj such that

Lp = new, or Lp = Lq = old and apj = +l, aqj = -1:

If apj = aqj, reflect row p.

Delete any other rows: N +- N\{i E Sj : i =fa p, i =fa q}.
Reset Lp +- old, Lq +- old.

Otherwise, choose some p E Si,
and delete all other rows: N +- N\ { i E Sj : i =fa p}.

The labeling of old and new rows guarantees that, at any pass, a new
row cannot contain an element in a previously-scanned column, unless it
contains the only element in such a column. Thus the reflection of a new row
cannot create a conflict in any previously-scanned column. After column
j has been scanned, there can be no conflicts within column j or within
columns previously scanned; so after all columns are scanned, N must
represent a network.

Following the deletion algorithm, rows are restored if necessary to pro­
duce a maximal network subset:

34

Reinsertion

For each j E .:1:
Let Cj = 0 if and only if no a;j = + 1 for any i E .N.
Let c; = 0 if and only if no aij = -1 for any i E .N.

Repeat for each t E I\.N:
If Cj = 0 for all atj = +1, j E .:J; and c; = 0 for all atj = -1, j E .:1:

Restore row t: .N +--.NU { t}

For each atj = +1, j E .:1: make Cj :f= 0

For each atj = -1, j E .:1: make c; :f= 0

If Cj = 0 for all atj = -1, j E .:1; and c; = 0 for all atj = +1, j E .:1:

Reflect and restore row t: .N +-- .NU { t}

For each reflected atj = +1, j E .:J: make Cj :f= 0
For each reflected atj = -1, j E .:1: make c; :f= 0

This algorithm is identical to the reinsertion described in Section 3, except
for some details in the handling of cj and c""j". In Section 3 we could assume
that cj and c""j" were available, because they were updated at every pass of
row-scanning deletion. Here we define these quantities explicitly.

Implementation of the deletion algorithm

We employ the same two bookkeeping arrays as in our implementations
of row-scanning deletion, one to record the rows in N and one to record the
rows that have been reflected. The initialization and preprocessing scans
are also similar, but they vary according to the row-deletion criterion and
the column ordering; we discuss them later in this section.

The only potentially expensive part of a pass in column-scanning dele­
tion is the search for the rows p and q. Since we have tried several criteria
for choosing these rows, our implementations vary in details. Nevertheless,
all are based on the same fundamental idea.

The algorithm will "take" at most two rows in the set Sj. Thus we do
not want to waste the time or space that would be necessary to store Sj
explicitly (as, say, an array of row indices). Instead, we examine each row
just once and decide immediately whether to take or delete it, based on
what has been seen previously. If the row is taken, then we may have to
delete another row that was previously taken.

As an example, consider how a column could be scanned if new rows are
preferred to old rows. Row i is a new row if Li= new; call it an "old+ row"
if Li = old and aij > 0, or an "old - row" if Li = old and aij < 0. As the
scan of column j proceeds, the algorithm may be regarded as inhabiting one
of the seven "states" listed below, depending on the number and kind of

35

rows that have already been taken. Upon encountering aij, the algorithm's
actions depend on what state it is in and on what kind of row it has found:

(a) No rows taken yet:
If i is a new row, take it and go to state (b)
If i is an old + row, take it and go to state (c)
If i is an old - row, take it and go to state (d)

(b) One new row already taken:
If i is a new row, take it and go to state (g)
If i is an old row, take it and go to state (f)

(c) One old + row already taken:
If i is a new row, take it and go to state (f)
If i is an old + row, delete it
If i is an old - row, take it and go to state (e)

(d) One old - row already taken:
If i is a new row, take it and go to state (f)
If i is an old + row, take it and go to state (e)
If i is an old - row, delete it

(e) Two old rows already taken:
If i is a new row, take it, delete one old row and go to state (f)
If i is an old row, delete it

(f) One old and one new row already taken:
If i is a new row, take it, delete the old row and go to state (g)
If i is an old row, delete it

(g) Two new rows already taken:
Delete any row

The algorithm processes column j by starting in state (a). It examines the
elements aij, j E N, in any convenient order, and proceeds to other states
depending on what it finds.

After all elements have been scanned, the final state determines whether
any rows must be reflected or changed from new to old. States (a)-(e)
require no reflections or changes. When the final state is (f), the new row
must be relabeled as old, and if the new row and the old row have elements
of the same sign in column j then the new row must be reflected. When the
final state is (g), both new rows must be relabeled as old, and if they have
elements of the same sign in column j then one of them must be reflected.

We implement each state as a separate block of statements in our pro­
gram. Thus, in processing aij, the algorithm only needs to check whether
i is a new row, an old + row or an old - row; all relevant information
about previously-scanned elements is conveyed implicitly. The transition
to another state is accomplished, if necessary, by a transfer of control to
another statement block.

36

Implementation of the reinsertion algorithm

The reinsertion following column-scanning deletion is implemented much
like the reinsertion following row-scanning deletion. However, before the
main loop of the algorithm can begin, we must set up two arrays to hold
cj and c-; for all j E :f:

XPOS(j) equals zero if and only if
the network has no positive element in column j

XNEG(j) equals zero if and only if
the network has no negative element in column j

We could create these arrays by again scanning the elements of all columns
j E J, or by scanning the elements of all rows i E N. However, we
prefer to avoid another possibly costly matrix scan. Instead, we use a
more complicated implementation that tentatively sets XPOS(j) and XNEG(j)
immediately after column j is scanned by the deletion algorithm, and that
makes certain corrections later if necessary.

Suppose that the deletion algorithm has just finished with column j.
All but one or two intersecting rows have been deleted, possibly one row
has been reflected, and possibly one or two new rows have been relabeled
as old. We tentatively set XPOS in one of three ways:

(i) If there is now an old + row i in column j, set XPOS(j) = i.
(ii) If there is still a new+ row i in column j, set XPOS(j) = -i.

(iii) Otherwise set XPOS(j) = 0.

The setting of XNEG is similar, but with "- row" replacing "+ row".
Two kinds of corrections may be needed. In case (i) or (ii), row i may be

deleted by the scan of some column subsequent to j. In case (ii), it also can
happen that row i is reflected as the result of a later scan. (Row i cannot
be already reflected when case (ii) occurs, since any row reflected by the
algorithm becomes an old row.) We fix up XPOS and XNEG accordingly by
running the following loop after all colurp.ns have been scanned, but before
any rows are reinserted:

For all j E J:
If XPOS(j) = ±i but row i has been deleted, set XPOS(j) +- 0.
If XPOS(j) = -i then:

If row i has been reflected, set XPOS(j) +- 0 and XNEG(j) +- i;
Otherwise set XPOS(j) +- i.

If XNEG(j) = ±i but row i has been deleted, set XNEG(j) +- 0.
If XNEG(j) = -i then:

If row i has been reflected, set XNEG(j) +- 0 and XPOS(j) +- i;
Otherwise set XNEG(j) +- i.

37

These operations require a scan of XPOS and XNEG, but not of the matrix
elements. We can also skip the second half of the loop if XNEG(j) is reset to
i in the first half. No special cost is incurred to determine whether row i
has been deleted or reflected, because this information is directly available
in the aforementioned bookkeeping arrays.

Column orderings

The column-scanning deletion algorithm can choose to scan the columns
in any order. The simplest and cheapest implementation examines the
columns j E .]' in the order assigned to them by the data structure: first
the column whose data begins at XPOINT(l) within XINDEX and XVALUE
(if 1 E .7), then the column whose data begins at XPOINT(2) (if 2 E .7),
and so forth. In our implementations, this natural order is identical to the
ordering of the columns in the MPS-form input. If the scanning order has
negligible effect upon the performance of the algorithm, then the natural
order should be preferred.

To determine what effect the column ordering does have, we also tried
the reverse of the natural order-which is equally simple and cheap-and
a random ordering. For our LP test problems, the natural order was far
from random; typically, the columns were arranged by time period or by
type of activity.

Finally, we considered orderings based on the numbers of nonzero el­
ements in the columns. It can be argued that columns of lowest count
should be scanned first, because they require the fewest deletions; or it can
be argued that columns of highest count should be scanned first, because
they contain the most information about rows that will have to be deleted.
We tried scanning in both increasing and decreasing order of column count.

Since column counts in sparse linear programs tend to be small, we
expect many ties at relatively few values. Thus, prior to the deletion, we
do a bucket sort of the columns into a collection of linked lists represented
by two arrays:

CTOP(c)

CLINK(j)

first column that has count equal to c

next column that has the same count as column j
(0 if none)

Each pass can then cheaply determine the next column to be scanned. Ties
are broken arbitrarily by the ordering of the columns within each linked
list; in our implementation, the ordering is the reverse of the natural order.

Both CTOP and CLINK are set up in one scan of the elements j E Jo.
In accumulating the counts, we disregard inessential rows i ~ Io. We also
mark as inessential any columns that have fewer than two elements within

38

the rows in I 0 ; such columns cannot affect the embedded network, and by
setting them aside we avoid having to scan them again during the deletion
algorithm.

To assess the effects of different column orderings, we have made special
runs (separate from the timing runs) that keep detailed tallies of the algo­
rithm's passage through successive states. Table 4-1 shows some results for
the example in which new rows are preferred. The different column order­
ings yield significantly different data in most instances, suggesting that the
orderings really do make a difference to ·the algorithm's behavior. Similar
differences were observed in the data collected from our other implementa­
tions.

Row-deletion criteria

If the scan of a column finds three or more elements, or two elements of
the same sign in old rows, then the algorithm must decide which rows to
delete. Like the ordering of the columns, the criterion for the deletion of
rows may be a strong influence on performance.

If the algorithm is implemented straightforwardly from the above de­
scription, then it keeps no information about the rows except whether they
are old or new. Thus the deletion criterion may take new rows in preference
to old ones, as suggested above; or, it may take old rows in preference to
new, using nearly the same states but somewhat different rules. Since nei­
ther option seems obviously preferable, we have considered both. Within
each column, our implementations scan the elements according to their or­
der in XINDEX and XVALUE; in effect, this natural ordering of the elements
serves as a tie-breaker when two or more elements would be equally pre­
ferred.

As an alternative, an implementation may maintain additional row in­
formation for use by a deletion criterion. We have adopted a suggestion
from Ahn (1984) that the desirability of a row be measured by the num­
ber of elements remaining in that row, within the columns not yet scanned.
Rows with fewer elements remaining are to preferred, because they will have
fewer chances to be deleted; a row with no elements remaining, in particu­
lar, is guaranteed to remain in N. Where more than one row has the same
number of remaining elements, the tie can be broken first by favoring either
new or old rows, and then if necessary by the natural ordering.

Our implementation uses an extra array, YELEFT, to hold the number
of elements remaining. An initial column-wise scan of the elements sets
aside all columns that have fewer than two elements, as explained above,
and initializes YELEFT(i) to be the number of elements in row i within the
remaining columns. Thus we do not penalize a row for the one-element
columns that it intersects.

39 .

ENERGY Columns scanned Elements scanned

2 Old 2 Mix 2 New 1 Old 1 New 2 Old 2 Mix 2 New

Iner cnt 1506 872 166 2185 445 30 16 2
Deer cnt 1524 800 167 2089 426 10 3 50
1. . . n 1522 788 197 2229 318 17 19 12
n ... l 1518 801 178 2115 445 9 16 32

GIFFPINC Columns scanned Elements scanned

2 Old 2 Mix 2 New 1 Old 1 New 2 Old 2 Mix 2 New

Iner cnt 492 396 97 891 153 32 1 0
Deer cnt 642 244 139 849 188 0 0 68
1 .. . n 467 482 54 914 218 0 0 0
n ... l 642 244 139 849 188 0 0 68

GREENBEA Columns scanned Elements scanned

2 Old 2 Mix 2 New 1 Old 1 New 2 Old 2 Mix 2 New

Iner cnt 949 626 122 1116 617 14 13 13
Deer cnt 647 567 126 826 562 0 4 34
1 .. . n 779 767 72 955 715 6 11 17
n ... l 782 580 126 970 569 8 16 23

PIES Columns scanned Elements scanned

2 Old 2 Mix 2 New 1 Old 1 New 2 Old 2 Mix 2 New

Iner cnt 309 65 50 347 85 12 17 34
Deer cnt 119 58 41 153 73 0 4 58
1. . . n 170 56 44 194 86 0 0 66
n ... l 309 62 53 347 85 13 17 36

SCAGR25 Columns scanned Elements scanned

2 Old 2 Mix 2 New 1 Old 1 New 2 Old 2 Mix 2 New

Iner cnt 26 87 78 28 163 28 42 1
Deer cnt 25 1 96 49 96 0 0 71
1. . . n 25 91 52 117 51 0 1 48
n ... I 13 93 75 26 155 24 57 1

Table 4-1. Effects of different column orderings, with new rows taken in preference to
old rows.

Columns scanned: number of times a column scan ended in certain states (as defined
in the text): two old rows taken (e), an old and a new row taken (f), or two new rows
taken (g).

Elements scanned: number of times, summed over all scans, that the algorithm pro-
cessed an element when it had already taken one old row (cord), one new row (b), two
old rows (e), an old and a new row (f), or two new rows (g).

40

SCRS8 Columns scanned Elements scanned

2 Old 2 Mix 2 New 1 Old 1 New 2 Old 2 Mix 2 New

Iner ent 27 209 44 50 239 8 21 11
Deer ent 22 199 43 44 229 0 16 23
1 .. . n 16 220 37 260 28 2 17 1
n ... l 26 209 44 49 241 3 17 18

SHIP12L Columns scanned Elements scanned

2 Old 2 Mix 2 New 1 Old 1 New 2 Old 2 Mix 2 New

Iner ent 4142 612 97 4838 97 633 0 25
Deer ent 4070 612 96 4766 95 625 1 26
1. . . n 1426 648 84 2770 95 13 1 14
n ... l 4125 612 97 4821 97 633 0 25

SIERRA Columns scanned Elements scanned

2 Old 2 Mix 2 New 1 Old 1 New 2 Old 2 Mix 2 New

Iner ent 750 690 251 1705 351 190 289 42
Deer ent 834 540 305 1712 256 306 217 61
1. . . n 740 700 251 1730 321 180 309 32
n ... l 834 540 305 1712 256 306 217 61

STANDATA Columns scanned Elements scanned

2 Old 2 Mix 2 New 1 Old 1 New 2 Old 2 Mix 2 New

Iner ent 610 203 74 753 137 126 17 9
Deer cnt 251 240 45 452 90 15 41 25
1. . . n 264 181 81 493 83 17 19 7
n .. . 1 460 246 34 655 118 114 15 3

Table 4-1. (continued).

The scan of a column is implemented by use of states (a) to (d) above,
plus the following:

(e) Two rows already taken; smallest YELEFT is attained in a new row

(f) Two rows already taken; smallest YELEFT is attained in an old + row

(g) Two rows already taken; smallest YELEFT is attained in an old - row

Appropriate transition rules for these states are readily determined; they
depend on YELEFT(i) for each intersecting row i E N, as well as on whether
i is a new row, an old + row, or an old - row. Th us the logic of the
scan is more complicated. Some extra cost is incurred in storing the values
of YELEFT for the one or two rows that have already been taken, and in
comparing YELEFT values for different rows. When the scan of a column is
completed, YELEFT must also be decremented by one for any taken row, at
a slight extra cost.

When either column counts are used for the column ordering, or row

41

counts are used in the deletion criterion, we compute them by an initial
column-wise scan of matrix elements. When both column counts and row
counts are used, they can be computed in the same scan. This initial scan
also serves as a preprocessing step, by setting aside columns in Jo that have
fewer than two elements within the rows in T0 • Then we let J be the set
of remaining columns, and T = T0 •

When neither row counts nor column counts are used, no initial matrix
scan is necessary. Thus we take T = T0 and J = Joi relative to the other
implementations, we avoid the cost of preprocessing and of cleanup (to reset
status vectors for columns that were set aside). The deletion algorithm may
become more costly as a result, however, because it has to scan all rows in
J, including those that have less than two elements within rows in T. The
preprocessing for reinsertion may also have more work to do, because the
set J is larger.

Comparisons

Table 4-2 lists the reflections, deletions and insertions performed by
the different implementations, in the format of Table 3-5. At first glance,
this data seems chaotic. Although there is significant variation between
implementations for every test problem, there is no obvious trend.

A somewhat clearer picture is provided by Table 4-3, which shows the
largest and smallest networks achieved with and without the use of row
counts in the deletion criterion. For some test problems, notably GIFFPINC

and SCAGR25, the row counts seem to have little value. On the whole,
however, implementations that use row counts tend to be more reliable, in
the sense that there is less variation between their best and worst results.
They never exhibit egregiously bad behavior, as is sometimes seen in the
implementations of criteria that do not use row counts. (More than half
the rows of SHIP12L and SIERRA are deleted in some cases.) The variation
would be even greater were it not for reinsertions, which naturally tend to
be more numerous when more rows have been deleted.

A preference for new or old rows makes a predictably small difference
when row counts are the primary deletion criterion. (Thus tests of a few
cases were skipped, as can be seen in Table 4-2.) When row counts are
not used, on the other hand, then the preference for new or old rows is
much more significant. No clear trend emerges, however; even in tests on
the same LP, a preference for new rows may give better results with some
column orderings but worse results with others.

The order of column scanning also sometimes accounts for large but
unpredictable differences in performance. Use of column counts is not
clearly preferable, and scanning by increasing count is not clearly bet­
ter or worse than scanning by decreasing count. Random scanning gives

42

ENERGY GIFFPINC GREENBEA
Row Col Row

Refl Del Ins Out Refl Del Ins Out Refl Del Ins Out
count order type

yes mer new 149 77 1 76 198 87 0 87 128 50 1 49
yes mer old 142 76 1 75 170 87 0 87 125 50 1 49
yes deer new 216 87 1 86 112 112 5 107 76 53 2 51
yes deer old 196 87 1 86 112 112 5 107 74 51 1 50
yes 1 .. . n new 400 89 3 86 0 129 20 109 77 56 4 52
yes n .. . 1 new 146 76 1 75 112 112 5 107 94 54 1 53
yes rand new 218 116 5 111 49 123 7 116 73 68 9 59

no mer new 107 134 13 121 202 92 0 92 192 76 6 70
no mer old 140 173 5 168 171 92 8 84 121 71 0 71
no deer new 79 87 12 75 244 80 3 77 146 86 5 81
no deer old 134 172 1 171 244 80 3 77 105 54 1 53
no 1 .. . n new 98 88 5 83 0 129 20 109 103 86 4 82
no 1 .. . n old 285 184 1 183 0 129 20 109 77 95 3 92
no n .. . 1 new 99 120 9 111 244 80 3 77 159 98 6 92
no n .. . 1 old 142 174 2 172 244 80 3 77 107 77 1 76

PIES SCAGR25 SCRS8
Row Col Row

Refl Del Ins Out Refl Del Ins Out Refl Del Ins Out
count order type

yes mer new 9 61 0 61 72 70 0 70 25 30 2 28
yes mer old 8 62 0 62 72 70 0 70 25 30 2 28
yes deer new 15 62 0 62 25 71 0 71 27 24 0 24
yes deer old 8 62 0 62 25 71 0 71 15 26 0 26
yes 1. . . n new 14 65 2 63 25 71 0 71 49 22 0 22
yes n ... l new 10 61 0 61 71 70 0 70 28 26 0 26

yes rand new 10 63 1 62 45 71 0 71 21 28 1 27

no mer new 13 71 7 64 71 71 0 71 24 49 10 39
no mer old 16 62 0 62 73 71 1 70 35 29 2 27
no deer new 20 70 0 70 49 94 23 71 18 48 7 41
no deer old 24 62 0 62 26 71 0 71 21 29 0 29

no 1 .. . n new 34 76 0 76 93 49 0 49 35 35 11 24
no 1 .. . n old 24 62 0 62 91 49 0 49 62 29 0 29
no n .. . 1 new 8 74 11 63 71 82 11 71 26 49 9 40
no n .. . 1 old 12 62 0 62 73 71 1 70 34 25 0 25

Table 4-2. Effectiveness of column-scanning deletion. Implementations are classified
according to whether they use row counts as a deletion criterion, how they order the
columns for scanning, and whether they give preference to new or old rows. The column
orderings are increasing or decreasing by number of nonzeroes (incr, deer), natural order
forwards or backwards (1 ... n, n .. . 1) and random (rand).

43

SHIP12L SIERRA STANDATA
Row Col Row

Refl Del Ins Out Refl Del Ins Out Refl Del Ins Out count order type

yes mer new 636 97 0 97 206 348 5 343 83 72 3 69
yes mer old 636 97 0 97 176 352 4 348 83 72 3 69
yes deer new 637 106 0 106 191 365 11 354 77 59 0 59
yes deer old 637 106 0 106 161 360 11 349 63 60 0 60

yes 1 .. . n new 13 144 38 106 191 368 4 364 76 83 0 83
yes n .. . 1 new 636 97 0 97 191 365 11 354 71 56 0 56

yes rand new 614 125 0 125 283 457 9 448 73 87 5 82

no mer new 613 742 636 106 346 886 205 681 73 155 15 140
no mer old 612 733 636 97 16 695 4 691 76 95 12 83
no deer new 613 735 638 97 229 873 174 699 56 87 4 83
no deer old 613 742 636 106 0 691 0 691 38 110 0 110

no 1 .. . n new 13 735 14 721 341 881 190 691 192 93 24 69
no 1. . . n old 13 742 12 730 16 698 7 691 106 65 0 65
no n .. . 1 new 613 742 636 106 229 873 174 699 64 165 19 146
no n .. . 1 old 612 733 636 97 0 691 0 691 35 83 2 81

Table 4-2. (continued).

Using row counts No row counts

Out Versions Out Versions

ENERGY best 75 iner/old, n .. . 1/new 75 deer/new
worst 86 deer/old, 1 ... n/new 183 1. .. n/old

GIFFPINC best 87 iner/new, iner/old 77 deer/new, n .. . 1/old
worst 109 1 .. . n/new 109 1 ... n/new, 1 ... n/old

GREENBEA best 49 incr/new, incr/old 53 deer/old
worst 53 n .. . 1/new 92 1 ... n/old, n .. . 1/new

PIES best 61 iner/new, n .. . 1/new 62 iner/old, 1. .. n/old
worst 63 1 .. . n/new 76 1 .. . n/new

SCAGR25 best 70 iner/new, n .. . 1/new 49 1 ... n/new, 1 ... n/old
worst 71 deer/new, 1 ... n/new 71 incr/new, n ... 1/new

SCRS8 best 22 1 .. . n/new 24 1 .. . n/new
worst 28 iner/new, incr/old 41 deer/new

SHIP12L best 97 iner/new, n ... 1/new 97 deer/new, n .. . 1/old
worst 106 deer/new, 1 ... n/new 730 1. .. n/old

SIERRA best 343 incr/new 681 incr/new
worst 364 1 .. . n/new 699 deer/new, n .. . 1/new

STANDATA best 56 n .. . 1/new 65 1. .. n/old
worst 83 1 .. . n/new 146 n .. . 1/new

Table 4-3. Sample of best and worst results extracted from Table 4-2. Where more than
two runs were tied for best or worst, only two representatives are shown.

44

generally mediocre results in the one implementation we tried (and we have
no reason to believe it would perform differently in other implementations).

Timings of the test runs showed that only two factors made a consis­
tently substantial difference: whether row counts were used in the deletion
criterion, and whether column counts were used for the scan order. The
results for all four combinations of these factors, averaged over all relevant
runs, are shown in Table 4-4.

Just as in row-scanning deletion, setting up was a major part of the
cost. The extra setup before reinsertion was relatively, but not negligibly,
inexpensive. Use of row counts in the deletion criterion led to only a small
extra cost in setup and execution.

The largest differences involve the runs that use neither row nor column
counts. These implementations avoid setup and cleanup work at the cost
of additional work elsewhere, as explained previously. Generally their total
cost was lower; the main exception was for PIES, which has the highest
proportion of zero-count and one-count columns and of rows that intersect
only such columns.

45

ENERGY Deletion Reinsertion

Row Column
Setup Delete Setup Insert Concl Total counts counts

yes yes 0.33 0.36 0.08 0.04 0.03 0.83
yes no 0.28 0.36 0.09 0.04 0.04 0.81
no yes 0.30 0.32 0.08 0.04 0.04 0.78
no no 0.59 0.14 0.04 0.77

GIFFPINC Deletion Reinsertion

Row Column
Setup Delete Setup Insert Concl Total counts counts

yes yes 0.05 0.09 0.02 0.01 0.00 0.17
yes no 0.04 0.09 0.02 0.01 0.00 0.15
no yes 0.04 0.09 0.02 0.01 0.00 0.15
no no 0.08 0.01 0.01 0.10

GREENBEA Deletion Reinsertion

Row Column
Setup Delete Setup Insert Concl Total counts counts

yes yes 0.28 0.39 0.06 0.03 0.02 0.78
yes no 0.25 0.37 0.05 0.03 0.02 0.72
no yes 0.26 0.35 0.06 . 0.03 0.02 0.72
no no 0.54 0.08 0.04 0.65

PIES Deletion Reinsertion

Row Column
Setup Delete Setup Insert Concl Total counts counts

yes yes 0.12 0.07 0.01 0.01 0.01 0.21
yes no 0.11 0.08 0.01 0.01 0.01 0.21
no yes 0.11 0.06 0.01 0.01 0.01 0.20
no no 0.24 0.04 0.01 0.28

SCAGR25 Deletion Reinsertion

Row Column
Setup Delete Setup Insert Concl Total

counts counts

yes yes 0.02 0.03 0.00 0.00 0.00 0.05
yes no 0.02 0.03 0.01 0.00 0.01 0.07
no yes 0.02 0.02 0.01 0.01 0.00 0.06
no no 0.04 0.01 0.00 0.05

Table 4-4. Efficiency of column-scanning deletion. The implementations have been col-
lected into four groups-according to whether they used row counts in the deletion cri-
terion, and whether they used column counts to determine the scanning order-and the
timings (in seconds) are averaged over these groups. (Timings for individual steps do not
always add exactly to the totals, because all averages have been rounded to two places.
Blank entries indicate steps that require zero time because they are skipped in the "no/no"
implementation.)

46

SCRS8 Deletion Reinsertion

Row Column
Setup Delete Setup Insert Concl Total counts counts

yes yes 0.04 0.04 0.01 0.01 0.01 0.09
yes no 0.04 0.04 0.01 0.01 0.01 0.10
no yes 0.04 0.03 0.01 0.01 0.00 0.08
no no 0.07 0.01 0.01 0.09

SHIP12L Deletion Reinsertion

Row Column
Setup Delete Setup Insert Concl Total counts counts

yes yes 0.27 0.51 0.08 0.04 0.02 0.92
yes no 0.22 0.46 0.07 0.06 0.02 0.83
no yes 0.23 0.48 0.09 0.13 0.02 0.96
no no 0.46 0.08 · 0.11 0.65

SIERRA Deletion Reinsertion

Row Column
Setup Delete Setup Insert Concl Total

counts counts

yes yes 0.10 0.24 0.03 0.03 0.01 0.40
yes no 0.09 0.21 0.03 0.03 0.01 0.37
no yes 0.09 0.20 0.03 0.05 0.01 0.37
no no 0.19 0.03 0.05 0.28

STANDATA Deletion Reinsertion

Row Column
Setup Delete Setup Insert Concl Total

counts counts

yes yes 0.04 0.09 0.01 0.01 0.00 0.15
yes no 0.03 0.07 0.02 0.00 0.00 0.13
no yes 0.04 0.08 0.01 0.01 0.00 0.14
no no 0.07 0.01 0.01 0.10

Table 4-4. (continued).

47

5. Row-scanning addition algorithms

An addition algorithm is the opposite of a deletion algorithm. It starts
with an empty subset, which is trivially a network, and tries to add rows
so that the subset remains a network. When no more rows can be added,
a maximal embedded network has been found.

Addition algorithms need to scan each essential row only once. We
view them as unsophisticated methods that are most attractive for their
speed and simplicity. This section first presents a straightforward addition
algorithm in general terms, then describes four implementations that add
the rows in different orders. Comparisons of the results appear at the end.

As in previous sections, we assume· that sets Io and :lo of essential
rows are available following the reduction and scaling described in Section
2. After possibly some further preprocessing, our implementations operate
upon subsets I ~ I 0 and :J ~ :]0 . All start with a network subset N = 0,
and add rows to N as they proceed.

Principles

Addition heuristics for the embedded GUB problem were studied by
Brearly, Mitra and Williams (1975), who found that they often rivaled
deletion algorithms in effectiveness. Several row-scanning addition heuris­
tics are developed for embedded generalized networks by Brown, McBride
and Wood (1985).

Our row-scanning addition algorithm is much the same as the reinsertion
algorithm in Sections 3 and 4, except that it starts with an empty network
subset instead of a subset determined by some preceding algorithm. Its
steps are as follows:

Row-scanning addition

Initialize N +- 0, and c; +- c; +- 0 for all j E 3.

Repeat for each i E I:

If ct= 0 for all a;j = +1, j E 3; and c; = 0 for all a;j = -1, j E 3:

Add row i: N +-NU {i}

For each a;j = +1, j E 3: make ct -::p 0
For each a;j = -1, j E 3: make c; -::p 0

If ct = 0 for all a;j = -1, j E 3; and c; = 0 for all a;j = +1, j E 3:

Reflect and add row i: N +-NU {i}

For each reflected a;i = +1, j E 3: make c; -::p 0
For each reflected a;i = -1, j E 3: make c1 =f:. 0

48

Each row in T need be considered for addition only once. When all rows
have been considered, N must contain a maximal network subset.

Implementation

The above algorithm may try to add the rows in any order. Our two
simplest and fastest implementations take the rows in their natural order
within the data structure, and in the reverse of their natural order. No
setup is required, except for initialization to zero of the two arrays that hold
c; and c:;; two other bookkeeping arrays that indicate network status­
whether a row is in N, and whether it has been reflected-are set by the
algorithm as it examines each row. The subsets of eligible rows are just
J = Jo and T = T0 •

We also consider two implementations that use row counts to deter­
mine an ordering. An initial column-wise pass sets aside all j E Jo that
have fewer than two elements within the rows of T0 , since these columns
are irrelevant to whether any subset is a network; the remaining columns
comprise J. The same pass counts the number of intersections between
each row i E T0 and the columns of J. Rows that have counts of zero can
then be set aside; since they intersect only one-element columns within Jo,
they can appear in any network. The remaining rows comprise T, and are
bucket sorted by count into series of linked lists:

RTOP(r)

RLINK(i)

first row that has count equal to r

next row that has the same count as row i (0 if none)

Using these lists, we can easily scan the rows in order of either increasing
or decreasing count. (Ties are broken in the reverse of the natural order,
because it is convenient to set up the linked lists in that order.)

Because N = 0 initially, the first row scanned can always be added
either reflected or unreflected. A subsequently scanned row can also be
added either way provided that it intersects no columns in J that intersect
rows in N. In these "free" cases we arbitrarily add the row unreflected. If
instead we added all such rows reflected, then the algorithm would find the
same network except with signs of all rows in N reversed.

Comparisons

Table 5-1 summarizes the algorithm's behavior. The row orderings are
seen to make a considerable difference in almost every case. Increasing
count seems generally preferable to decreasing, and one or the other of the
natural orderings is often equally good or better. Perhaps the decreasing­
count implementation tends to put several large-count rows in the network

49

at the outset, consequently blocking many small-count rows later on.

Table 5-2 summarizes the timings. Since one pass through the matrix
elements is required both for setting up the row counts and for adding
the network rows, the setup took about the same time as the addition
algorithm. Thus the runs that did not use row counts were about twice as
fast.

ENERGY GIFFPINC GREENBEA
Row Row

Unrf Refl Free Out Unrf Refl Free Out Unrf Refl Free
count order

yes mer 260 90 768 86 215 38 233 104 146 34 686
yes deer 632 144 194 234 198 204 92 96 630 81 82

no 1. . . n 491 266 374 194 297 151 51 91 156 49 685
no n ... l 392 67 771 95 264 81 152 93 560 135 168

PIES SCAGR25 SCRS8
Row Row

Unrf Refl Free Out Unrf Refl Free Out Unrf Refl Free
count order

yes mer 71 2 54 71 72 25 75 71 212 15 41
yes deer 104 12 13 69 72 48 51 72 206 15 31

no l. .. n 82 8 118 70 51 91 52 49 214 35 35
no n ... l 106 3 99 70 72 47 52 72 211 24 47

SHIP12L SIERRA STANDATA
Row Row

Unrf Refl Free Out Unrf Refl Free Out Unrf Refl Free
count order

yes mer 0 87 637 106 60 30 646 491 32 53 191
yes deer 720 1 12 97 550 40 133 504 133 68 39

no l. .. n 0 637 87 106 20 396 321 490 20 168 53
no n .. . 1 708 1 24 97 390 0 146 691 4 48 203

Table 5-1. Effectiveness of row-scanning addition heuristics. Separate counts are given
for rows that had to be added unreflected (Unrf), rows that had to be added reflected
(Refl), and rows that could have been added either reflected or unreflected (Free). The
last figure (Out) represents total rows not included in the network.

50

Out

59
132

73
100

Out

29
45

29
31

Out

75
111
110
96

ENERGY GIFFPINC
Row

Setup Add Concl Total Setup Add Concl Total
counts

yes 0.32 0.36 0.04 0.72 0.05 0.06 0.01 0.12
no 0.08 0.28 0.36 0.01 0.05 0.06

GREENBEA PIES
Row Setup Add Concl Total Setup Add Concl Total
counts

yes 0.28 0.24 0.03 0.55 0.11 0.04 0.01 0.16
no 0.05 0.22 0.26 0.02 0.06 0.08

SCAGR25 SCRS8
Row

Setup Add Concl Total Setup Add Concl Total
counts

yes 0.02 0.02 0.01 0.04 0.05 0.03 0.01 0.08
no 0.00 0.02 0.02 0.01 0.04 0.05

SHIP12L SIERRA
Row

Setup Add Concl Total Setup Add Concl Total
counts

yes 0.25 0.26 0.03 0.54 0.11 0.11 0.01 0.23
no 0.04 0.24 0.28 0.02 0.11 0.13

STANDATA
Row

Setup Add Concl Total counts

yes 0.05 0.04 0.01 0.08
no 0.01 0.04 0.05

Table5-2. Efficiency of row-scanning addition heuristics. For each LP, times (in seconds)
are averaged over all implementations that use row counts (yes) and all that do not use
rows counts (no). (Times for setup, addition and conclusion may not sum exactly to
the total, due to the effects of rounding. Blank entries indicate that a conclusion step is
unnecessary when row counts are not used.)

51

6. Summary and conclusions

Our experimental results are summarized in Figure 6-1. For each of
the nine LPs, the behavior of each implementation is plotted as a point
in two dimensions, with times along the horizontal axis and numbers of
non-network rows on the vertical axis. Thus an implementation dominates
all others that appear above and to the right. If there were a consistent
tradeoff between efficiency and effectiveness, the points would lie on a curve
stretching roughly from the upper left to the lower right; but this is clearly
seldom the case.

As expected, addition algorithms that do not sort the rows are the
fastest. Addition algorithms that do sort the rows are generally next­
fastest, though they sometimes overlap the faster column-scanning deletion
algorithms. In the cases of SCAGR25 and SHIP12L, one of the cheapest ad­
dition runs also found the largest network; but in most cases, the largest
network was found by some implementation of a deletion heuristic.

There is a curious relationship between the performance of column­
scanning and row-scanning deletion. In every case, the most successful
column-scanning runs either dominate all the row-scanning runs, or are
nearly as good as the best row-scanning runs; row scanning never dominates
column scanning. Yet the worst column-scanning runs are often far inferior
in the size of the network that is detected. This behavior suggests that
there is a fundamental difference in the nature of the two approaches.

Our row-scanning heuristics use strong criteria to guide their actions.
The row penalty, in particular, can be regarded as a summary of informa­
tion about all rows that conflict with a given row (or its reflection). Each
pass must choose a row that has maximum (or almost maximum) penalty,
and must delete or reflect the chosen row according to the relative size of
its penalty and reflected penalty. As a result of these restrictions, our im­
plementations of row-scanning heuristics are about equally effective; their
variation is mainly in efficiency.

Our column-scanning heuristics use weaker criteria. Each pass chooses
a column from some simple ordering that is not directly related to net­
work properties. Only the rows intersecting the chosen column are then
considered for deletion or reflection. In deciding which intersecting rows to
delete, some of our implementations use another weak criterion; others use
a moderately strong criterion that is not specifically associated with net­
work properties (like the row penalties) but that does take account of the
nonzeroes left in all the unscanned columns. By using these simple criteria,
our column-scanning implementations all manage to be fairly efficient, but
they vary widely in effectiveness. The pattern can be seen most clearly in

52

the data for ENERGY and GREENBEA, where the row-scanning points tend
to lie along a horizontal line and column-scanning points along a vertical
line.

Given a new linear program in which an embedded network is sought,
what can we recommend? It seems that the largest network is most likely
to be found by some inexpensive addition or column-scanning deletion al­
gorithm. However, different implementations of these algorithms give the
best results for different problems. To use these methods effectively, there­
fore, it is necessary to make several runs using a variety of implementations.
If only one run can be made, then a more expensive row-scanning deletion
algorithm will more reliably give a large network.

How could we search for even larger networks? One possibility is to try
an even broader collection of implementations. For example, in the column­
scanning algorithms we could process the elements of each column in the
reverse of their natural order; in the row-scanning algorithms we could
examine the row penalties in a different order, so that ties between rows of
equal penalty would be broken differently. No doubt some larger networks
could be found in this way. More runs would be necessary, however, and
each further run would have a lower chance of success.

As an alternative, we can consider augmenting known networks. We are
motivated by the knowledge that all of the embedded networks found by our
implementations, whatever their size, are maximal. To move from a smaller
maximal network to a larger one, certain rows of the smaller one must be
deleted, permitting certain rows of the larger to be added. This suggests the
possibility of heuristics that, given an existing maximal network, attempt
to enlarge it by systematically searching for simple exchanges of network
and non-network rows.

The second part of this paper describes implementations of three ex­
change heuristics. Our experiments show that significantly larger networks
can often be found, at reasonable cost, by running first a deletion or addi­
tion algorithm and then an exchange algorithm. In most cases, the sizes of
the resulting networks nearly equal certain easily-computed upper bounds,
so that we can be sure of having found a nearly maximum embedded net­
work.

53

2-40

230
ENERGY 220

210
200

190

180 +

170 ~
160

150

1-40

130

120 +
110 +

Non- 100

network 90
li+++

80 rows +Ill dlllJ 70

60

0 0.2 0,-4 0.6 0.8

130

GIFFPINC

120 -

110 -

100 -

90 -

0

0
+t D!mJD

+ +

+

+
Non- +
network 80 -

rows +t

70
0

D Row-scanning deletion
+ Column-scanning deletion
t:.. Row-scanning addition

CPU seconds

I

0.2

CPU seconds

D D a

1.2 , .. 1,6

D

I

0.,4

Figure 6-1. Summary of embedded networks found by the extraction heuristics. The
vertical axis is the number of rows not in the network. The horizontal axis is the total
execution time, including setup, preprocessing and cleanup where appropriate.

54

140

GREENBEA 1.30 -

120 -

110 -

100 -

90 -

80 -

70 -
Non-
network

60 -

rows 50 -

40

0 0.2

80

PIES 78 -

76 -

74 -

72 -

70 -

68 -
66 -
6,4 -

62 -

60 -

58 -
Non- 56 -
network

54 -
rows

52 -

50 ' r

0 0.0,4

D Row-scanning deletion
+ Column-scanning deletion
t::. Row-scanning addition

0.,4

IJ. IJ.

I

0.08
I

A

+ +

0,6

+ +

+

++0
++

0.8

CPU seconds

A
+

IJ.

++
-t

' ' 0.12 0,16 0.2

CPU seconds

Figure 6-1. Summary of embedded networks (continued).

55

+

+

0
0

[!!O

0

+

0

D

0.2,4
I

0 [

1 .2 1,,4

a:r::c 0
D

+
+ +

I I ' 0,28 0.32

100

SCAGR25
90 -

80 -

A
70 -

60 -

Non-
network 50 -

A

rows

40 I

0

50

48 -
SCRS8

46 -
44 -

42 -
40 -

38 -
36 -

34 -

32 -
30 -

28 -
Non- 26 -

cm

t.!+t++DD 0008

++

I I I l

0.04 0.08 0.12

CPU seconds

+

+
+

D
A A -t- -t­

+
+

+

' ' 0,16

CJ
ODDO
+ network 2.4 - ++ C

rows
22 -

20 I l I

0 0.02 0,04

D Row-scanning deletion
+ Column-scanning deletion
6. Row-scanning addition

-t-

0.06 o.oa

CPU seconds

Figure 6-1. Summary of embedded networks (continued).

56

0.1

0

' ' 0.2 0,24

a

0.12 0,14 0,16

SHIP12L

Non­
network
rows

SIERRA

Non-
network
rows

800

700 -

600 -

500 -

400 -

300 -

200 -

100 -

0 I I

0 0.2

800

700 - A ~+
+

600 -

500 - A
A A

a

..00 -

-t+ +

300 I I

0 0,4

D Row-scanning deletion
+ Column-scanning deletion
b. Row-scanning addition

I I I I I

0,4 0,6 0.8

CPU seconds

'b B

I

0.8 1.2 1,6

CPU seconds

Figure 6-1. Summary of embedded networks (continued).

57

D a

I I I I I I

1.2 1.4 1,6 1,8

a

I

2 2,4 2.8 3.2

150

STANDATA 140 -

1.30 -

120 -

110 - t:.

100 -
t:.

90 -

80 -
Non- 70 -
network
rows 60 -

50

0

D Row-scanning deletion
+ Column-scanning deletion
b. Row-scanning addition

+
+

+

D

+ ++ +
D CDJO

t:.
0

+ +
+

+
+

I

0,1 0.2

CPU seconds

Figure 6-1. Summary of embedded networks (continued).

58

D

I I

0.3 0,4

Appendix A. Test problems

The linear programs for our computational tests were taken from a
variety of applications. All were supplied to us in the standard MPS form
(Murtagh and Saunders 1983) and are currently available by electronic mail
through NETLIB (Dongarra and Grosse 1985; Gay 1985).

ENERGY is one of many planning models developed at the Energy In­
formation Administration, U.S. Department of Energy; it is identified as
80BAU8B in the NAME line of the MPS file. It was supplied to us by William
Kurator.

GIFFPINC and SIERRA were developed by Helgason, Kennington and
Wong (1981) for national forest management. The underlying model is
minimum-cost multicommodity flow, but GIFFPINC incorporates only a sin­
gle commodity; SIERRA has two commodities.

GREENBEA and STANDATA are slightly modified versions of two pro­
duction and blending models, originally used by an oil refining company.
Numerous generalized upper bounds, specified in the original file for STAN­

DATA, have been converted to explicit constraints.
PIES is a model of energy supply and distribution for the United States.

It is a component of the Project Independence Evaluation System Integrat­
ing Model for energy policy studies (Hogan 1975).

SCAGR25 is a 25-period planning model for the expansion of a large dairy
farm, developed by Swart, Smith and Holderby (1975).

SCRS8 is derived from a 16-period model of the United States' options
for a transition from oil and gas to synthetic fuels. It was constructed by
Ho (1977) based on a model by Manne (1975).

SHIP12L is a 12-commodity distribution model developed by Fourer for
a producer of packaged baked goods. The non-network constraints derive
from restrictions on production and transshipment.

Appendix B. Test procedures

Implementation. All of our programs are written in Fortran. They
should run, with minor modifications, on any computer that has a Fortran
77 compiler.

We employed a separate preprocessing program to initially interpret the
MPS file for each LP used in our tests. The preprocessor's output is an
ASCII representation of the LP matrix, arranged so that it is easily read
into the data structures described by Section 1. The row and column names

59

from the MPS form are written to a second file. We used this arrangement
so that the MPS files would have to be read only once at the beginning of
our tests; the preprocessor could be combined with the rest of our system
for more routine use.

The main program is invoked by typing, say,

select scagr25

The model name following select identifies all files to be read or written;
in this case they would begin with scagr25, and would end with a suffix
that distinguishes their type.

The system is controlled interactively by making selections from a series
of menus. For example, the following choices are presented immediately
after select scagr25 has been typed:

Input format: [Matrix] LP

The first (and default) option is to read a binary representation of the con­
straint matrix data structure (discussed further below); the second option
reads the ASCII representation from the MPS form preprocessor. If the
Matrix option is chosen, the next menu is

Restore statuses and scales? [Yes] No

which offers the option of reading a binary representation of status, scale
and count vectors (as also discussed below). If the LP option is chosen, the
next menu is instead

Reduce matrix: [All] Partial Free-rows None Restore

The default option is to make all reductions described in Section 2; the
next three provide for fewer or no reductions; and the last reads the afore­
mentioned status, scale and count vectors. A one-line description of each
option can be obtained by responding to any prompt with a question mark.

After the appropriate files have been read and reductions have been
made, the system returns repeatedly to the following menu of major op­
tions:

SELECT: [Count] Scale Find Write Quit

Each option (except Quit) leads to one or more further levels of menus
for a particular purpose. Naturally, Scale performs the scalings described
in Section 2, and Find offers network-finding heuristics from Sections 3-5.
Count provides various summary statistics.

The Write option can send a binary representation of the LP data
structure to a file, and can create an accompanying file of status, scale and
count vectors. These files can be read under option LP at the beginning of

60

subsequent runs, so that setup, reduction and scaling need not be repeated.
Such a feature is most useful for testing different versions of the heuristics.

Write also offers the option of writing a new MPS file that represents
the LP after reduction and scaling, and that flags all embedded network
rows. This file can serve as input to systems that are designed to solve
embedded-network linear programs.

Timings. All tests reported in this_ paper were run on a VAX 11/785
with floating-point hardware, under version 3 of the VMS operating sys­
tem. Programs were written in Fortran 77 and were compiled under default
options, including optimization.

Test runs were made at times of relatively light system load, with the
operating system's working-set options specified as follows:

/Limit= 300 /Quota= 1024 /Extent= 1024 /Noadjust

Most timings were sensitive to these settings; in particular, the reported
times would have been lower, but less reliable, if we had used /Adjust
rather than /No adjust.

The VAX processing times, obtained by calls to the VMS routine
LIB$STAT_TIMER, are in multiples of .01 second. Typical variation of times
from run to run was less than 5%. To reduce the variation somewhat, all
timed runs of the network-finding heuristics were made twice; the reported
times are averages of the results.

Every application of a network-finding heuristic was followed by a call
to a utility routine that counted the network rows and columns. This
routine also checked that each column contained at most one +1 and one
-1 element within the network rows; thus we could be confident that the
reported sizes of the network subsets were not overstated due to program
bugs. Timings do not include this or other data-gathering routines. Most
times do include a very small amount of data collection, such as would
be involved in counting the number of passes in an algorithm. Where
data-gathering within an algorithm was substantial, as in counting different
states for column-scanning deletion or counting operations on the linked list
for row-scanning deletion, we made both a timing run that did not collect
data and a data-collection run that was not timed.

61

References

AHN, Kyu Ho, "Algorithms for Identification of Embedded Networks and Specialized Sim­
plex Methods for Embedded-Network Linear Programs," Ph.D. dissertation, Department
of Industrial Engineering and Management Sciences, Northwestern University, Evanston,
IL (1984).

BREARLY, A.L., G. Mitra and H.P. Williams, "Analysis of Mathematical Programming
Problems Prior to Applying the Simplex Algorithm," Mathematical Programming 8 (1975)
54-83.

BROWN, Gerald G., Richard D. McBride and R. Kevin Wood, "Extracting Embedded
Generalized Networks from Linear Programming Problems," Mathematical Programming
32 (1985) 11-31.

BROWN, Gerald G. and William G. Wright, "Automatic Identification of Embedded Struc­
ture in Large-Scale Optimization Models," in Harvey J. Greenberg and John S. Maybee
(Eds.), Computer-Assisted Analysis and Model Simplification, Academic Press, New York
(1981) 369-388.

BROWN, Gerald G. and William G. Wright, "Automatic Identification of Embedded Net­
work Rows in Large-Scale Optimization Models," Mathematical Programming 29 (1984).
41-56.

CHEN, S. and R. Saigal, "A Primal Algorithm for Solving a Capacitated Network Flow
Problem with Additional Linear Constraints," Networks 7 (1977) 59-79.

DONGARRA, Jack J. and Eric Grosse, "Distribution of Mathematical Software Via Elec­
tronic Mail," Technical Memorandum No. 48, Argonne National Laboratory, Argonne, IL
(1985).

GAY, David M., "Electronic Mail Distribution of Linear Programming Test Problems,"
Committee on Algorithms Newsletter 13 (1985) 10-12. (Also Numerical Analysis
Manuscript 86-0, AT&T Bell Laboratories, Murray Hill, NJ).

GLOVER, Fred and Darwin Klingman, "The Simplex SON Algorithm for LP /Embedded
Network Problems," Mathematical Programming Study 15 (1981) 148-176.

GREENBERG, Harvey J ., "A Tutorial on Matricial Packing," in Harvey J. Greenberg (Ed.),
Design and Implementation of Optimization Software, Sijthoffand Noordhoff, Alphen aan
den Rijn, The Netherlands (1978) 109-142.

GUPTA, Reeta, "Solving the Generalized Transportation Problem with Constraints,"
Zeitschrift fiir Angewandte Mathematik und Mechanik 58 (1978) 451-458.

HARTMAN, J .K. and L.S. Lasdon, "A Generalized Upper Bounding Algorithm for Multi­
commodity Network Flow Problems," Networks 1 (1972) 333-354.

HELGASON, R., J. Kennington and P. Wong, "An Application of Network Programming
for National Forest Planning," Technical Report OR 81006, Department of Operations
Research, Southern Methodist University, Dallas, TX (1981).

62

Ho, J.K., "Nested Decomposition of a Dynamic Energy Model," Management Science 23
(1977) 1022-1026.

HOGAN, William W., "Energy Policy Models for Project Independence," Computers and
Operations Research 2 (1975) 251-271.

KNUTH, Donald E., The Art of Computer Programming, volume 3: Sorting and Searching,
Addison-Wesley, Reading, MA (1973).

MANNE, Alan S., "U.S. Options for a Transition for Oil and Gas to Synthetic Fuels,"
Discussion Paper 26D, Public Policy Program, Kennedy School of Government, Harvard
University, Cambridge, MA (1975).

McBRIDE, Richard D., "Solving Embedded Generalized Network Problems," European
Journal of Operational Research 21 (1985) 82-92.

MURTAGH, Bruce A. and Michael A. Saunders, "MINOS 5.0 User's Guide," Technical Re­
port SOL 83-20, Systems Optimization Laboratory, Department of Operations Research,
Stanford University, Stanford, CA (1983).

SENJU, Shizuo and Yoshiaki Toyoda, "An Approach to Linear Programming with 0-1
Variables," Management Science 15 (1968) B-196-B-207.

SWART, William, Calvin Smith and Thomas Holderby, "Expansion Planning for a Large
Dairy Farm," in Harvey M. Salkin and Jahar Saha (Eds.), Studies in Linear Programming,
American Elsevier, New York (1975) 163-182.

TARJAN, Robert Endre, "Efficiency of a Good But Not Linear Set Union Algorithm,"
Journal of the Association for Computing Machinery 22 (1975) 215-225.

63

