
A Related-Key Cryptanalysis of RC4

Alexander L. Grosul and Dan S. Wallach
Department of Computer Science

Rice University

June 6, 2000

Abstract

In this paper we present analysis of the RC4 stream cipher and show
that for each 2048-bit key there exists a family of related keys, differing in
one of the byte positions. The keystreams generated by RC4 for a key and
its related keys are substantially similar in the initial hundred bytes before
diverging. RC4 is most commonly used with a 128-bit key repeated 16
times; this variant does not suffer from the weaknesses we describe. We
recommend that applications of RC4 with keys longer than 128 bits (and
particularly those using the full 2048-bit keys) discard the initial 256 bytes
of the keystream output.

1 Introduction
RC4, a fast output-feedback cipher, is one of the most widely used cryptosys-
tems on the Internet, commonly used as the default cipher for SSL/TLS connec-
tions [DA99]. Ron Rivest designed RC4 in 1987 for RSA Data Security, Inc.,
which only made it available under nondisclosure. In September, 1994, the al-
gorithm was posted anonymously to the Internet and is now available for public
analysis [Sch96, chapter 17]. RC4 is currently being standardized by the IETF un-
der the name “Arcfour” [KT99]. Our analysis is based on Schneier’s description
of RC4.

This work was partially supported by DARPA through USAFRL grant F30602-97-2-298.

1

Given RC4’s popularity and simplicity of design, we felt it would be valuable
to study how susceptible RC4 is to attacks based on related keys [KSW96]. Two
keys are “related” if they differ in some small number of bits from each other,
where the attacker can choose these differences. If related keys result in similar
keystreams, this would imply a weakness in the cipher. Section 2 describes how
RC4 works. Section 3 presents our analysis of the algorithm followed by exper-
imental results in section 4. Finally, section 5 presents some related work and
section 6 presents our conclusions.

2 Description of RC4
RC4 is an output-feedback mode cipher. Its keys are 2048 bits long, and its in-
ternal state consists of two counters i and j (each within 0 255) plus an array
of 256 8-bit bytes, called the S-box. If a cryptography system wishes to use a
shorter key, the key is repeated as many times as necessary to fill the 2048-bit
key. Once the S-box is initialized with the key, the RC4 algorithm is a loop that
updates the internal state of the S-box and returns a byte of keystream. Normally,
this keystream is XOR-ed with the plaintext message to produce the ciphertext.
As with any output-feedback cipher, RC4 only protects the secrecy of a message,
not its integrity. Other measures, such as the use of cryptographic checksums, are
commonly used along with RC4.

The S-box is initialized using the key K as follows:

for i = 0 to 255
S(i) = i
j = 0

for i = 0 to 255
j = (j + S(i) + K(i)) mod 256
swap S(i) and S(j)

i = 0
j = 0

Each next byte b of the keystream produced using:

i = (i + 1) mod 256
j = (j + S(i)) mod 256

2

swap S(i) and S(j)
b = S(S(i) + S(j)) mod 256

3 Analysis of RC4
Our analysis focuses on how the S-box initialization responds to a single-byte
difference in its input. Assume K i K i except when i t, where K t
K t . In this case, j j S i K i mod 256 will result in different values of
j, and the initialization’s state will be different thereafter. If t is close to zero, the
resulting S-boxes will be completely different. If t is close to 255, however, the
S-boxes will be substantially similar because the first t 1 iterations through the
initialization loop performed exactly the same work. For clarity, we will use ji to
signify the value of j after the i’th iteration of the initialization loop with K and j i
to refer to j after the i’th iteration with K . Likewise, Si and Si refer to the S-boxes
after the i’th iteration. We can now restate the RC4 initialization as follows:

ji ji 1 Si 1 i K i mod 256

n 0 255 : Si n
Si 1 ji if n i
Si 1 i if n ji
Si 1 n otherwise

We observe that we can make two complementary changes in the key with the
goal of not disturbing the S-box initialization. If K t K t δ and K t 1
K t 1 δ, then jt jt δ and jt 1 is likely to be the same as jt 1. The δ
and δ added to K cancel out each other’s effects, with the exception that the
t iteration will perform a different swap for K than it did with K. When we derive
K from K in this fashion, we refer to K as being twiddled from K at position t,
and we say K and K are related keys.

Of course, it’s possible the swap on the t iteration could effect the value of
jt on any subsequent iteration if jt t. The probability of this occurring is
256 t 256. Immediately following the twiddle, unless either jt t 1 or
jt t 1, jt 1 jt 1. We call this a good twiddle, meaning only three members
of St will be different from St (which will occur with probability 255 256 2).

Following a good twiddle, the RC4 initialization will proceed in lock step for
both K and K until Si 1 i Si 1 i . At this point, ji ji and the initialization
will diverge.

3

At the end of initialization both i and j are set to 0. As with initialization, the
output will be identical between two runs until S i S i . Following our earlier
example, we restate the output generation of RC4 as follows:

ji ji 1 Si 1 i mod 256

n 0 255 : Si n
Si 1 ji if n i
Si 1 i if n ji
Si 1 n otherwise

bi Si Si i Si j mod 256

As with the initialization phase, the RC4 output for the original key and the related
key will proceed in lock step (i.e., bi bi) until Si 1 i Si 1 i . This results in
ji ji. At this point, we say the two RC4 systems have derailed. The number of
identical bytes produced from the two related keys before the derailment is called
the derailment length.

We will also use the term similarity to refer to the number of output bytes
where bi bi.

4 Experiments
RC4 is normally used in a mode where 16-byte (128-bit) keys are repeated sixteen
times. In our experiments we use full 256-byte keys. For a given key, the total
number of keys differing in at most one twiddle is 255 256 65280. We will
consider these keys first.

4.1 Observable effects of single twiddles
As an example, we chose a random key and encrypted the first 256 characters of
Schneier’s description of RC4. We then decrypted the message with the same key
except we performed a twiddle with t 254 δ 1. The result is:

RC4*is a variable-key-size stream cipher developed in 1987
by*Ron Ri*est for RSA Data Security, Inc. For seven years it
was*proprietary, and *etails of the alg*rithm were only available
after signing a*no*disclosure agreement. In September, 1994
som*******

4

Figure 1: The state of S-boxes S and S before hitting a bump.

Figure 2: The state of S-boxes S and S after hitting a bump.

We use the “*” symbol for characters which were decoded incorrectly. There
are eight stand-alone and seven consecutive undecoded characters. Close exami-
nation of the states of S-boxes helps us understand appearance of “*”s.

The derailment length is 249. At this point S i249 S i249 , so j249 j249,
and the RC4 streams derail. This is exactly the reason for consecutive “*”s at the
end of our example output above.

It is interesting to note that there are some “*”s in the text before the derailment
at the 249th character. We call these locations where bi bi bumps, since the two
RC4 keystreams continue together after what could have been a derailment. To
explain bumps, we need to look at how each keystream byte is generated. bi is
dependent on the values of Si i , Si j , and Si indexed by their sum. the next
keystream byte is different and a bump or derailment will occur.

An an example of a bump, figure 1 shows the state of S-boxes S and S just
before a bump occurs. Then the following steps are performed:

i3 3, i3 3;

5

i4 i3 1 4, i4 i3 1 4;

j4 j3 S i4 251, j4 j3 S i4 251;

swap S i4 and S j4 , swap S i4 and S j4 – see figure 2;

for S return S S i4 S j4 S 243 209 mod 256 S 196 218;

for S’ return S S i4 S j4 S 254 209 mod 256 S 207 215
– a bump.

At this point, despite the bump, we see most things stayed the same:

i4 i4 4

j4 j4 251

S j4 S j4 209

The only noticeable difference is that S i4 S i4 . This difference has no effect
on the next byte of output because i is incremented. This example represents the
most common effect from applying twiddles to an RC4 key. We can see that RC4
is resilient to small errors in the S-box, so long as S i S i . Otherwise, the
resulting values of j will differ, and the RC4 keystreams derail from each other.

4.2 Measured derailment lengths
Our next experiment will measure the expected derailment length for RC4 be-
tween S-boxes initialized with keys related by a single twiddle.

A keystream should have the property that any value n 0 255 is equally
likely to appear in each position bi of the keystream, that is P bi n 1 256.
For two S-boxes S and S initialized with randomly chosen keys the probability
that two bytes bi and bi produced at any step will be the same is

P bi bi
255

∑
n 0

P bi n P bi n 256
1
256

1
256

1
256

(1)

Thus, the probability1 that the derailment length will be d is

P derailment d
d

∏
n 1

P bn bn P bn 1 bn 1
255
256d 1 (2)

1We expect that for i j, events bi bi and b j b j are independent.

6

Figure 3: Distribution of keys with respect to derailment length for some values
of t, the location of the twiddle.

In a simple experiment we measure the derailment length for 10000 pairs of
randomly generated 256-byte keys. 9961 key pairs produce streams that derail im-
mediately; for the other 39 pairs the derailment length is 1. This exactly supports
the formula (2).

However, the derailment length for S-boxes initialized with related keys is
different. To show this we measure the percentage of related keys, which generate
keystreams with a given derailment length. For each value of t 0 254 we
inspect 10000 pairs consisting of a randomly generated key and a corresponding
related key generated by a twiddle at t, where δ 0 255 is chosen randomly.
The results for t 0 128 176 254 are shown on Figure 3. The results for other
values of t are similar.

The vertical axis shows the percentage of cases which had the derailment
length as shown on the horizontal axis. For any t there are three spikes in the

7

graph:

In the area 0–3. For t 0 the height of this spike is approximately 60%. As
t increases, the spike decreases to about 8% for t 254. This spike appears
because the smaller the value of t, the better chance there is that S-boxes
will derail quickly.

Exactly at the points where derailment is equal to t 1. This spike ap-
pears because a number of derailments happen while generating tth byte of
keystream. This results from the twiddle, which changed S t .

The last spike shows the percentage of tests which have derailment length
greater than 255. For t 0 it is around 1.1%. As t increases, so increases
this spike, reaching 8.3% for t 254. We attribute such ’runaway’ cases
to the fact mentioned above: each time S-boxes hit a bump, the differing
elements of S-boxes are moved to another location. Thus, even though each
entry in the S-box is used during keystream generation, sometimes the dif-
fering elements themselves escape being used as input to advancing the state
of the S-box.

To estimate the number of related keys producing keystreams which derail no
earlier than the t’th output byte, we add and normalize the results of the previ-
ous experiment. The result is shown on figure 4. The vertical axis shows the
percentage of cases which have at least the derailment length represented on the
horizontal axis. For example, the graph shows that for a random key, 18.6% of
keys from the corresponding related key space (resulting from single twiddles)
result in the derailment length of at least 100.

In addition to measuring the derailment length, we also wanted to measure the
similarity in the keystreams, that is we wanted to measure the number of identical
bytes. This will help us understand the influence of bumps and different values of
t on derailment. On Figure 5 we show the result.

The horizontal axis shows the similarity between two keystreams, and the ver-
tical axis shows the percentage of cases that produced keystreams with at least
that similarity. To exhibit dependence on values of δ we show results for δ 255
(the top line), and δ 127 (the bottom line). The maximal distance between these
lines is 16.9%, and the average distance is 8.8%. The results for all other values
of δ 1 255 lay between these two lines.

The line in the middle shows the results for random values of δ. This line
is the most precise estimation of the percentage of related keys which decrypt

8

Figure 4: Percentage of keys producing keystreams with at least given derailment
length

the ciphertext with guaranteed similarity. To see how bumps affect similarity, we
compare this line to figure 4. Except for values on horizontal axis less than 3 and
greater than 246, when similarity changes sharply, it stays within 1% of the values
in figure 4. Thus, we conclude that the influence of bumps on the similarity must
be insignificant.

In addition, as in the example above, for a random key, 18.6% of related keys
generated by one twiddle result in a derailment length of at least 100. This means
that the effective key length is log2 65280 0 186 13 5 bits shorter. In figure 6,
we plot how the effective length of a key (the vertical axis) depends on the required
similarity (the horizontal axis).

These losses in key strength are in addition to losses from keys which generate
identical S-boxes. The S-box has the property that it always describes a one-to-one
mapping from the integers 0 255 to 0 255 . There are 256! such permutations

9

Figure 5: Percentage of related keys for a randomly chosen key having at least a
given amount of similarity in the output keystreams.

(approximately 21684). By the pigeon-hole principle, a perfect initialization of the
S-box would still translate 2 2048 1684 2364 different input keys to precisely the
same S-box state.

4.3 Limitations
Our method works well only for long keys which are not repeated during the
initialization of S-box. In systems using RC4 commercially, much shorter keys
are used, commonly 16 bytes. For such a key even a one-bit change will cause 16
changes in the key schedule. This does not mean, however, that related keys do
not exist for short RC4 keys, merely that we do not know how to construct such
keys.

An additional interesting question for future study is what information is re-
vealed by the location of the bumps, and whether some form of bumps might
occur with shorter keys.

10

Figure 6: The effective length of 256-byte keys in respect to required similarity

5 Related Work
Kelsey [KSW96] describes related-key analysis techniques for various ciphers.
Roos [Roo95] shows that RC4 has a class of detectable keys, each of which can
reveal with high probability the first 2 bytes of the key. One of the conclusions
in Roos is to “discard a number of bytes”; this agrees with our own conclusion.
Golić [Gol97] analyzes the relations between bits of an RC4 keystream using
the linear model approach and shows that RC4 can be distinguished from other
keystream ciphers and the word size can be recovered (in our model it is equal to
8 bits).

11

6 Conclusions
We have shown, that for the RC4 stream cipher, every key has a family of related
keys which result in a substantially similar keystream. The strength of the RC4
key does not grow linearly with the increase in the key length. However, the
weakness we have shown affects only the beginning of the keystream and only
manifests itself when extremely long (i.e., non-repeating) keys are used. If RC4
is deployed using keys longer than the customary 128 bits, we advise discarding
the first 256 bytes of the keystream.

Acknowledgments
This paper began as a discussion with David Wagner about how RC4 might be
useful for a class project to study encryption. All the students in the spring 1999
computer security class at Rice implemented a simpler version of the work de-
scribed here. The authors also wish to thank Sameer Siruguri, who contributed to
the original RC4 test harness used in this paper.

References
[DA99] Tim Dierks and Christopher Allen. The TLS Protocol, Version 1.0.

Internet Engineering Task Force, January 1999. RFC-2246, ftp:
//ftp.isi.edu/in-notes/rfc2246.txt.

[Gol97] Jovan Dj. Golić. Linear statistical weakness of alleged RC4
keystream generator. In Advances in Cryptology – EUROCRYPT ’97,
volume 1233 of Lecture Notes in Computer Science, pages 226–238,
Konstanz, Germany, May 1997. Springer-Verlag.

[KMP 98] Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, and
Sven Verdoolaege. Analysis methods of (alleged) RC4. In Advances
in Cryptology – ASIACRYPT 98, volume 1592 of Lecture Notes in
Computer Science, pages 327–341, Beijing, China, October 1998.
Springer-Verlag.

[KSW96] John Kelsey, Bruce Schneier, and DavidWagner. Key-schedule crypt-
analysis of IDEA, G-DES, GHOST, SAFER, and Triple-DES. In Ad-
vances in Cryptology – CRYPTO ’96, volume 1109 of Lecture Notes

12

in Computer Science, pages 237–251, Santa Barbara, California, Au-
gust 1996. Springer-Verlag.

[KT99] Kalle Kaukonen and Rodney Thayer. A Stream Ci-
pher Encryption Algorithm “Arcfour”. Internet En-
gineering Task Force, July 1999. Internet draft,
http://search.ietf.org/internet-drafts/
draft-kaukonen-cipher-arcfour-03.txt.

[Rob] Matthew J. B. Robshaw. Security of RC4. Technical Report TR-401,
RSA Laboratories. Unpublished.

[Roo95] Andrew Roos. A class of weak keys in the RC4 stream cipher.
September 1995. sci.crypt.research posting, http://
www.deja.com/getdoc.xp?AN=110586157&fmt=text.

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley and Sons, New
York, New York, 2nd edition, 1996.

13

