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Abstract— We consider a multiple antenna system with finite
rate feedback, in which the quantized channel state information
at the transmitter is used solely for temporal power control.
We show that similar to systems without feedback, the tradeoff
between diversity order and multiplexing gain exists. However,
unlike the systems with feedback that apply both rate and power
control, systems with only power control are unable of achieving
non-zero diversity order at the maximum multiplexing gain. The
analysis is based on asymptotic behavior of the distribution of
order statistics of the eigenvalues of channel matrix, which is a
key step in evaluating the diversity order.

I. INTRODUCTION

It is now well established that channel state information
(CSI) leads to significant gains in fading channels. Representa-
tive results include improved capacity [1] and large reductions
in outages [2]. In fact, the diversity order of a system equipped
with perfect CSI at transmitter (CSIT) is exponentially more
than that of the diversity order of systems without CSIT [3].
Even with finite amount of feedback information, the diversity
order of multiple antenna systems is significantly higher than
those of systems without any instantaneous CSIT.1

In [4], we showed that much like feedback-free systems [5],
there is a tradeoff between diversity order and multiplexing
gain in multiple antenna systems with finite amount of feed-
back information. Given the results of [5] and [6], the existence
of tradeoff is not surprising for finite feedback systems, but
its specific form is. The most notable is that even with full
multiplexing, a non-zero diversity order can be achieved with
only one-bit of feedback. In contrast, without feedback the
diversity order with full multiplexing cannot be more than
zero. Thus, feedback allows the possibility of building full
multiplexing MIMO systems without having to completely
forego protection due to diversity. The key technique in the
proof (see [4] for details) was a combined rate and power
control.

In this paper, we continue our analysis of finite feedback
multiple antenna systems. Specifically, we show that the rate
control mechanism proposed in [4] appears to be the key in
obtaining a non-zero diversity order for the case of full multi-
plexing. Rate control is akin to using different codebooks for
different channel conditions. Without rate control, all feedback

1A 3×3 system with 1-bit of feedback has a diversity order of 90, compared
to no feedback diversity order of 9.

is used to adapt only the power level of the transmissions.
Since the rate of transmission is growing with SNR (R ∼
r log SNR, where r is maximum possible multiplexing gain),
time or spatial power control is unable to provide any non-
zero diversity gain. Thus, the use of at least two codebooks
like in [4] appears to be critical to avoid zero diversity gains.

We consider a multiple antenna system in which channel
is represented with finite number of bits to the transmitter
through a delay-free and error-free feedback channel. The
transmitter uses the quantized information to perform power
control (and not rate control). We address the design of channel
quantizer and evaluate the diversity order and multiplexing
gain of multiple antenna systems with finite rate feedback.
For the above system, we quantify the tradeoff between
multiplexing gain and diversity order.

The rest of the paper is organized as follows. In Section II
along with modeling the system and defining the notations,
we will explain the previous and related results. In Section III
the main result of the paper is derived analytically. A brief
summery of the results and methodology of this work with a
glance on possible future directions concludes this paper in
Section IV.

II. PRELIMINARIES

In a multiple antenna system with t transmit and r receive
antennas and block fading channel, the coherence time of
the channel is assumed to be much larger than the time
required for the transmission of a codeword. The input-output
relationship of such a system can be modeled in the matrix
notation as

Y = HX + W, (1)

where Y is an r × 1 complex vector of output signals, H ∈
Cr×t is the channel matrix with independent and identically
distributed (iid) entries each with circular complex Gaussian
distribution, X is the t × 1 vector of input signals, and W ∈
Cr×1 is the vector of additive white complex Gaussian noise
with iid entries. Furthermore, it is assumed that the channel
matrix H is perfectly known at the receiver, and an error/delay
free feedback link exists between the sender and the receiver.

At the receiver, a finite rate channel quanitzer maps the
channel matrix H into a finite number, L, of subsets. Then
the quantized channel is being represented with B = log2(L)



bits at the transmitter. Based on the received information about
the channel state, transmitter adopts a transmission strategy
that optimizes the desired metric. The metrics that we are
considering in this paper are multiplexing gain as defined in [5]
and given by

r = lim
Pav→∞

R(Pav)
log(Pav)

(2)

and diversity order defined as

d = lim
Pav→∞

− log[Π(R(Pav), Pav)]
log(Pav)

. (3)

Multiplexing gain r shows how fast the maximum achievable
rate R(Pav) grows with average available power Pav . The
diversity order d indicates how fast the outage probability
Π(R(Pav), Pav), which is equivalent to the probability of
codeword error, decays as the average available power in-
creases.

In this section first we explain the power allocation strategy
and the choice of parameter that represents the channel matrix
in Section II-A. In Section II-B we find a suboptimum but
more tractable channel quantizer which performs close to the
optimum one. Through an asymptotic analysis in Section II-
C we find the properties of the quantized parameter that will
help us in characterizing the outage behavior of the system.

A. Choice of Quantized Parameter

The optimum combination of the quantizer class (scalar
or vector) and the quantized parameter (such as eigenvalues,
eigenvectors, space of complex matrices Cr×t,. . . ) that opti-
mizes a given performance metric is still an open problem.
For design simplicity we consider an scalar quantizer which
quantizes one of the eigenvalues of the Wishart matrix Z
defined by Z = HH† if r < t and Z = H†H otherwise.
Although the selection of an scalar quantizer is arbitrary in
here, the choice of parameter requires some justification.

Let m = min(t, r) and n = max(t, r). We can represent
the channel matrix H by its singular value decomposition as
H = UD1/2V †, where U ∈ Cr×m and V † ∈ Cm×t are
unitary matrices and D = D1/2D1/2 is a diagonal matrix
with the eigenvalues of Z, λi for i ∈ {1, 2, . . . ,m}, on its
main diagonal. Since the channel matrix H is known at the
receiver, the effect of U can be compensated by multiplying
the received signal by U† from left. So we get an equivalent
model for the system as

Ỹ = D1/2V †X + W̃ . (4)

The modified model of (4) suggests that ideally transmitter
needs the information about both D and V matrices. Knowl-
edge of D enables the sender to perform temporal power
allocation, and information about V enables transmitter on
spatial power allocation or beamforming. As it is shown
in [7], the beamforming neither changes the diversity order
nor the multiplexing gain of the system. Hence, one might as
well adopts a fixed spatial power allocation, such as equally
distributing power on all the transmit antennas, and reduce
the complexity of the feedback. Let assume that at time k

power Pk(H), corresponding to channel matrix realization H ,
is being equally divided on the t transmit antennas, and signals
on the transmit antennas are iid with Gaussian distribution,
then for the covariance of the input signal we have

Q = E{XX†} =
Pk(H)

t
It, (5)

where It is the t× t identity matrix. The instantaneous mutual
information expression for the MIMO system with above input
distribution is derived in [8] and is given by

I(X;Y ) = log det
[
Ir + HQH†]

= log det
[
Ir +

Pk(H)
t

HH†
]

a= log det
[
Ir +

Pk(H)
t

D1/2(D1/2)†
]

= log det
[
Ir +

Pk(H)
t

D

]

=
m∑

i=1

log
[
1 +

Pk(H)
t

λi

]
, (6)

where (a) is obtained by replacing H with its singular value
decomposition.

For a given rate R(Pav) the outage probability is given by

Π(R(Pav), Pav) = Pr{I(X;Y ) < R(Pav)}. (7)

Replacing Equation(6) into (7) results in

Π(R(Pav), Pav) = Pr

{
m∑

i=1

log
[
1 +

Pk(H)
t

λi

]
< R(Pav)

}
.

(8)
Equation(8) shows that when power is equally divided on all
the transmit antennas, only the knowledge of the eigenvalues
of the Wishart matrix Z is sufficient to prevent outage. On
the other hand since we are using a scalar quantizer we focus
our attention in the case when only one of the eigenvalues is
being quantized. In doing so, we consider the order statistics
of eigenvalues, that is 0 < λ1 < λ2 < · · · < λm. Then we
evaluate the diversity order and multiplexing gain of a system
with finite rate feedback, when λi, i ∈ {1, 2, . . . ,m}, is being
fedback to the transmitter.

B. Quantizer Design

In the rest of the paper we denote the parameter to be quan-
tized by λ, the power allocation by P (λ), and the boundaries
of the quantizer intervals by indexed γ’s. We aim to design
a quantizer that minimizes the outage probability given in (8)
subject to a long term power constraint. The long term power
constraint is expressed by

lim
T→∞

1
T

T∑
k=1

Pk(λ) ≤ Pav. (9)

Assuming that λ is a first order ergodic process, then the time
average on the LHS of (9) is equal to the ensemble average.
Therefore (9) can be rewritten as

E{P (λ)} ≤ Pav, (10)



where the expectation is taken with respect to the distribution
of λ.

In [6] we showed that regardless of the distribution, f(λ),
of the quantized parameter λ, dividing the power equally2 over
the quantization bins is asymptotically (in the feedback rate)
optimum, and the outage performance of this suboptimum
channel quantizer matches the outage performance of the
system with optimum quantizer. The power allocated at all
the quantization bins, except the first bin, guarantees outage
free communication. The power allocated to the first bin, P (0)
can not satisfy all channel conditions in the first bin, [0, γ1).
Thus there exists3 a γ0 ∈ [0, γ1) such that I(X;Y ) < R(Pav)
for λ < γ0. Therefore, the probability of outage is fully
characterized by γ0 as

Π(R(Pav, Pav)) = Pr(λ < γ0) (11)

The equal total power division explained in this section, pro-
vides a systematic algorithm for design of channel quantizer at
the receiver, which is asymptotically optimum, and is simple
to analyze. We will show in Section III how a simple recursive
algorithm can be use to find the diversity order of the system
for a given channel parameter λ.

Since equal spatial power allocation (divide the total power
equally on all the transmit antennas) does not require informa-
tion about the matrix of eigenvectors, V , then one can further
simplify the system model given in (1) to

Ỹ = D1/2X̃ + W̃ . (12)

Furthermore, there exists a space-time code that achieves the
mutual expression in (6). The significance of (12) is that
it enables us to view the channel as m parallel channels
corresponding to m eigenvalues of the Wishart matrix Z.
Therefore, if by power allocation one can guarantee a reliable
communication on the channel corresponding to the ith largest
eigenvalue, then reliable communication is also available on
all channels with larger eigenvalues. Thus, in order to achieve
a multiplexing gain of r, it is sufficient to have a multiplexing
gain of one on the channel corresponding to the rth largest
eigenvalue.

From the above observation it follows that in order to fully
characterize the diversity order and multiplexing gain, we only
need to determine the diversity order when the rth largest
eigenvalue is chosen to be quantized.

C. Asymptotic Properties of CDF of Eigenvalues

The results of this section are proved in [4] and presented
here for the sake of completeness. Throughout this paper we
assume the order statistics of the eigenvalues of the Wishart
matrix Z, defined in Section II-A. The joint distribution of the

2By dividing power equally we mean that if there are L quantization bins,
and total available power is Pav , then the power allocated to the ith bin is
given by: P (i − 1) Pr{γi−1 ≤ λ ≤ γi} = Pav

L
, for i = 1, 2, . . . , L.

3With channel inversion power allocation we have γ0 = k
P (0)

, where

k = (2R(Pav) − 1)/σ2, and σ2 is the variance of the additive noise.

ordered eigenvalues, 0 < λ1 < λ2 < · · · < λm, is given in
[9] by

f(λm, λm−1, . . . , λ1) = e−
m
i=1 λi

m∏
i=1

λn−m
i

∏
i<j

(λi − λj)2.

(13)
Let λi be the ith smallest eigenvalue of Z, then the marginal
distribution of λi can be obtained by integrating (13) over all
λj’s, j �= i. That is

f(λi) =
∫ ∞

0

∫ λm

0

· · ·
∫ λi+2

0

∫ λi

0

· · ·
∫ λ2

0

f(λm, . . . , λ1)dλ1 . . . dλi−1dλi+1 . . . dλm. (14)

Define Fλi
(x) to be cumulative density function of λi on the

interval [0, x] and be given by

Fλi
(x) =

∫ x

0

f(λi)dλi. (15)

Although the marginal distribution4 of λi, for all i ∈ 2, . . . , m,
is not known, the following lemma is a key result in derivation
of the diversity order. Note that for simplicity in integration,
the analysis so far has assumed an ascending order for
eigenvalues. From now on, however, we assume a descending
order for the eigenvalues in which λ1 represents the largest
eigenvalue and λi the ith largest.

Lemma 2.1: The cumulative density function of the ith

largest eigenvalue of a Wishart matrix, Fλi
(x), admits Taylor

series expansion of

Fλi
(x) = βx(n−i+1)(m−i+1)+o(xk), k > (n−i+1)(m−i+1).

(16)
around origin (x = 0), for some constant β.

An immediate consequence of the Lemma 2.1 is on the
diversity order derived from the expression for outage and is
given in the next corollary.

Corollary 2.2: Consider a system with finite rate feedback
in which the ith largest eigenvalue, λi, is quantized at the
receiver and fedback to the transmitter. Then as the average
available power increases unboundedly, the probability of
outage is given by

Π(R,Pav) = Pr{λ < γ0}
= Fλi

(γ0)

≈ γ
(n−i+1)(m−i+1)
0 . (17)

In Section III we will show that how γ0 depends on the Pav.
Doing so, enables us to completely characterize the diversity
order for a given multiplexing gain.

III. MAIN RESULT

In this section we use the suboptimum quantizer developed
in [6] to evaluate the diversity order for a given multiplexing
gain. As mentioned in Section II-B, if a multiplexing gain of

4The distribution of the λ1 corresponding to the smallest eigenvalue is
derived in [9]



1 is achievable on the channel corresponding to the ith largest
eigenvalue, then a multiplexing gain of 1 is also achievable
on channels 1, . . . , i − 1. Thus a total multiplexing gain of
i is achievable by controlling the multiplexing gain of the
ith channel. The outage probability, when the ith largest
eigenvalue is quantized, is given in (17). In order to find the
multiplexing gain, we need to find γ0 as a function of Pav .
Lemma 3.2 establishes such relation.

Before stating the lemma we should define and fix the frame
work of the system that we are considering through out the
paper.

Definition 3.1: Let system parameters t, r,m, n, feedback
parameters L,B, and Wishart matrix Z, all defined in previous
sections. Furthermore, consider the general feedback case in
which the ith largest eigenvalue of Z is the quantization
parameter, and a multiplexing gain of α ∈ [0, 1] is achieved on
the corresponding channel. That is the rate at the channel of
the ith largest eigenvalue is asymptotically (in Pav) is given
by R(Pav) = α log(Pav).

Lemma 3.2: Consider a system with parameters given by
definition 3.1. Define G(m,n, i, L) by

G(m,n, i, L) =
L−1∑
l=0

[(n − i + 1)(m − i + 1)]l. (18)

Then γ0(i) (γ0 corresponding to the quantizer of the ith largest
eigenvalue) is

γ0(i) ≈ ci

P
(1−α)G(m,n,i,L)
av

(19)

for large values of Pav , and some constant ci.
Proof: Analyzing the suboptimum quantizer, as described

in Section II-B, with equal total power at each quantization
bin, and beginning from the last quantization bin we have

Pav

L
= P (L − 1)Pr{γL < λi < ∞}
a=

2R(Pav) − 1
γL

[Fλi
(∞) − Fλi

(γL)]

b=
Pα

av

γL
[1 − Fλi

(γL)] (20)

where (a) is obtained by replacing power allocated to the Lth

bin5, P (L − 1), by its channel inversion equivalent and (b)
is obtained by having R(Pav) = α log(Pav). Solving (20) we
have

γL ≈ c1

P 1−α
av

(21)

Note that having γL from (21), the expression of power
allocated at the L − 1st bin given by

Pav

L
= P (L − 2)Pr{γL−1 < λi < γL}, (22)

is only a function of γL−1. Solving (22) and repeating the
procedure for all the bins sequentially toward the first bin
yields the statement of the lemma.

5Note that quantization bins and corresponding power levels are denoted by
[0, γ1), [γ1, γ2), . . . , [γL,∞) and P (0), P (1), . . . , P (L − 1) respectively.

It is enough to replace (22) into (17) to obtain the rela-
tion between probability of outage, average power, and the
multiplexing gain. The resulting probability of outage is an
upper bound on actual outage probability, which can be easily
tightened by following observation.

Consider that a multiplexing gain j withj ∈ {1, 2, . . . , i −
1}is desired, when the maximum achievable multiplexing is i.
Then the outage probability in (17), is the probability of outage
of the channel corresponding to λi. Whereas we only need
that the first j channel, corresponding to λm, . . . , λm−j+1 not
being in outage. Hence the probability of outage is given by

Π(R(Pav), Pav) = Pr{λj < γ0(i)}
= γ0(i)(n−j+1)(m−j+1)

=
(

β

P
(1−α)G(m,n,i,L)
av

)(n−j+1)(m−j+1)

(23)

From Equation(23) the relationship between multiplexing gain
and the diversity order can be extracted. Moreover, for a given
maximum multiplexing gain of i, one can find the diversity
orders for intermediate integer multiplexing gains of j < i.
Note that when the system provides full multiplexing gain
(α = 1) the diversity order is zero, and for multiplexing
gain of j < η < j + 1, j ∈ N (which corresponds to
α = η/i) the diversity order linearly increases and there is
a discontinuity at each integer multiplexing gain. The above
deductions from (23) are illustrated in Figure 1. The overall
achievable diversity-multiplexing curve is the outer envelop of
all the curves as depicted in Figure 1 with solid line.

The diversity order and multiplexing gain of a MIMO
system with finite rate feedback developed in the above can
be summarized in the following theorem.

Theorem 3.3: Consider a MIMO system with parameters as
defined in definition 3.1. For a multiplexing gain r, when a
scalar quantizer is used at the receiver and a single codebook
is used at the transmitter, the diversity order is given by

d = max
i∈{j,...,m}

{(1 − α)(n − j + 1)(m − j + 1)G(m,n, i, L)} ,

(24)
where j = �r� and α = r/i.

Proof: Proof is straight forward by the results of
Lemma 3.2, the diversity order extracted from Equation(23),
and finding the maximum over all possible diversity orders for
a given multiplexing gain when different eigenvalue is being
quantized.

Figure 1 depicts the diversity-multiplexing curve for a
system with 1 bit of feedback, m = 3, and n = 4. Also for the
sake of comparison the diversity-multiplexing curve of system
without feedback, as given in [5], is plotted. There are three
sets of curves in Figure 1. The solid curve, dashed curves
with circle markings, and dashed with triangle. The dashed
curve with triangle markings at the bottom is the diversity-
multiplexing curve of a system without feedback. The solid
envelope is the maximum diversity-multiplexing achievable
by a system with finite rate feedback. The discontinuities at
the integer multiplexing gains are due to the switching the
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Fig. 1. Diversity and Multiplexing curve with 1 bit of feedback and without
feedback as in [5], for system with m = 3, n = 5.

channel quantizer to a smaller eigenvalue. The set of dashed
lines with circle markings can be divided into three curves.
Since m = 3, there are three eigenvalues that can be used
to design the channel quantizer. The curve with highest slope
that crosses the multiplexing axis at r = 1 corresponds to
the quantization of λ3, which is the largest eigenvalue. The
dotted curve with smaller slope that crosses the multiplexing
axis at r = 2 and has a discontinuity at r = 1 corresponds to
the quantization of λ2, the second largest eigenvalue. When
a multiplexing gain larger than 1 is desired, the outage is
determined by the realization of λ2, whereas for multiplexing
gains smaller than one it suffices to receive data reliably on the
channel corresponding to λ3. Therefore, the outage behavior is
determined by the realization of λ3. An analytical description
of the above is given in (23). Finally the dashed and dotted
curve with the smallest slope (still with circle marking) that
crosses the multiplexing axis at r = 3 corresponds to the
quantization of λ1, which is the smallest eigenvalue. Similarly
there are discontinuities at intermediate integer multiplexing
gains of r = 1, 2.

Figure 2 depicts the diversity-multiplexing curves for a
system using a single codebook (solid line) and a system with
two codebooks [4] (dashed line). As illustrated in Figure 2,
systems with single codebook have a higher diversity order
except at high multiplexing gains. The diversity order of
systems with single codebook is zero as the system exploits
all the possible parallel channels, whereas in systems with
two codebooks, a non-zero diversity order is achieved while
benefiting from the highest available multiplexing gain.

As the number of bits in feedback increases, the envelope
curve stretches vertically. Hence, one can expect that as
the number of feedback bits approaches infinity, i.e., perfect
channel state information at the transmitter, the diversity gain
approaches infinity for any arbitrary multiplexing gain.
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Fig. 2. Diversity and Multiplexing curves with m = 3, n = 5, and 1 bit of
feedback, for systems with and without rate control

IV. CONCLUSIONS

We derived the diversity order and multiplexing gain of a
MIMO system with finite rate feedback. The transmitter uti-
lizes the channel state information for power control. Analysis
results show that such a system has zero diversity order at
the maximum multiplexing gain. This is in contrast to the
diversity-multiplexing tradeoff of MIMO systems in which the
finite rate feedback at the transmitter is used for both power
and rate control. In summary, two significant factors in design
of a wireless communication system can be identified as long
term temporal power control to benefit from large diversity
order, and adaptive rate-power control to achieve non-zero
diversity order at maximum multiplexing gain.
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