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Abstract

Mathematical modeling at the level of the full cardiovascular system requires the numerical 

approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a 

single vessel. This model is often simulated by computationally intensive methods like finite 

elements and discontinuous Galerkin, while some recent applications require more efficient 

approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple 

cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty 

quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the 

time step needed for stability in explicit schemes. We address both cost and stability by presenting 

an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear 

hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our 

method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the 

proposed method by implementing it on small and large arterial networks of vessels whose elastic 

and geometrical parameters are physiologically relevant.
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1. Introduction

Recent research on hemodynamic models utilizes a set of equations describing blood flow in 

a single vessel. In this model, the variables of interest are the vessel cross-sectional area A = 
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A(x, t) and the average blood velocity in the axial direction x given as u = u(x, t). 

Conservation of mass and balance of momentum respectively result in the following system 

of equations:

(1)

We call (1) the (A, u)–system, where p = p(A) is the fluid pressure defined below in (2). 

Here ρ is the density of blood and ν is its kinematic viscosity. The assumptions of this model 

include the following: blood is an incompressible, viscous fluid flowing in a straight 

cylinder with compliant walls, and the characteristic length of the vessel (along the axial 

direction) is much larger than the characteristic radius. A further assumption involves the 

functional form of the velocity profile: for the left hand side of the momentum balance 

equation, a flat profile is assumed, whereas a parabolic profile is specified for the viscous 

term on right side. Other types of profiles for the viscous term may be used, see for example 

[1]. We follow the assumptions of [2, 3, 4, 5]. This typical simplification, although 

inconsistent, is important since one may explicity compute the Riemann invariants of the 

system, and the viscous term remains finite. For further details and a discussion of the 

related (A, Q ≔ Au) model, see for example the works of Canic–Kim [6], Formaggia et al. 

[7, 8] and Sherwin et al. [5]. We choose to work with the (A, u) system since our 

discontinuous Galerkin formulation is based on the work of Sherwin et al.

To close the system, the functional relationship for the pressure p is provided by the state 

equation

(2)

where pext is the external pressure and A0 is the vessel cross-sectional area for vanishing 

transmural pressure difference. The coefficient β depends on the thickness, Young’s 

modulus, Poisson’s ratio and the unperturbed radius of the vessel [5, 3, 4]. The above 

equation of state, which neglects viscoelasticity, renders the hyperbolicity of the system (1)–

(2). Since the method of characteristics is heavily reliant on hyperbolicity, we are not able to 

deal with viscoelastic effects in this paper. For detailed studies on the modeling and effects 

of viscoelasticity, see [2, 9, 10, 11].

These equations appear in recent literature for simulations of blood flow in a network of 

connected vessels, where system (1) models flow in each vessel and appropriate 

transmission conditions between vessels are specified. As an example, vessel-network 

models of the full cardiovascular system provide important insight into different clinical and 

physiological questions. Clinicians and engineers interested in the fluid dynamics around the 

heart may couple a 2d or 3d model of fluid flow close to the heart to a 1d network model of 

the arterial tree (and perhaps the venous tree). This modeling approach has several benefits: 
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first, the high fidelity 1d model of the arterial tree replaces overly simplistic lumped 

parameter models. Second, one may interrogate the 1d arterial tree model to better 

understand fluid flow in the peripheral circulation and the reflection of pressure waves. 

Lastly, simulations of variants of the 1d model align well with experimental data from single 

tube, arterial model, and in vivo studies (see e.g. [12, 13, 9, 10, 14]). For some examples of 

1d models derived from system (1) or the (A, Q) system coupled to higher dimensional 

models see [15, 16, 17]. Other clinical applications include stent flow simulations, models of 

fetus and neonate circulations, and surgical planning [8, 1, 18, 5]. This collection of 

references, although not comprehensive, is meant to emphasize the versatility of (1).

Finite element, finite volume, discontinuous Galerkin, and other methods arising from weak 

formulations are successfully used for the spatial discretization of the (A, u) or (A, Q) 

systems [19, 2, 5]. Although these methods maintain attractive mathematical properties, they 

are computationally intensive, and this complexity is magnified in simulations of vessel 

networks. For instance, the speed of pressure waves in blood vessels dictates the time step 

required for stability in explicit schemes. Unfortunately, for physiologically relevant choices 

of parameters, this speed may be much larger (at least one order of magnitude) than the 

velocity of blood flow. Moreover, this wave speed displays increasing variability as the 

arterial tree branches out [18]. This implies that the inclusion of smaller arteries in the model 

(to obtain more realistic and accurate simulations) may result in a more stringent stability 

condition. For a side–by–side comparision of several methods, see the recent paper by Wang 

et al. [11]. These authors compare methods for simulating (1) based on several metrics, 

including running time for one cardiac cycle.

In some instances, a more expensive discretization from a weak formulation is appropriate. 

But for our applications, we envision a 1d vessel–network model as a component in clinical 

decision support systems requiring simulation of multiple cardiac cycles. Fast iterative or 

repeated simulations are also needed for uncertainty quantification or to solve inverse 

problems via optimization [20]. In these cases, close to real-time simulation is essential, and 

as such, the method for approximating solutions to (1) must be efficient and unconditionally 

stable. Fortunately, system (1)–(2) has explicitly defined characteristic variables, and under 

the assumption of strict hyperbolicity, we may apply a numerical method of characteristics 

(NMC) for solving these equations. The method we propose is explicit in time (which makes 

it computational efficient) and unconditionally stable.

Many methods for numerically solving differential equations based on the characteristics 

have been proposed in the past. Some address the transport of a certain solvent or 

convection–dominated diffusion equations [21, 22, 23, 24, 25, 26, 27]. Other works deal 

with approximations for Navier–Stokes equations in the absence of fluid–structure 

interaction [28, 29, 30] where the convective–derivative of the fluid velocity is treated with 

the method of characteristics. The concept behind the numerical method of characteristics 

also constitutes a main ingredient in the CIP method developed in [31, 32, 33, 34]. 

Furthermore, variants of this method have very recently been applied in the hemodynamics 

context [35, 36, 37]. Unfortunately, these latter publications do not rigorously address 

stability and convergence. Wang and Parker [38] also propose a method of characteristics 

for simulating circulation in the arterial network. However, in contrast to our work, they 
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consider a fully linearized approach where the nonlinearities arising from convection and the 

pressure dependent wave speed are neglected. For a quantification of these nonlinear effects, 

see [3, 39] and references therein.

This manuscript details the application of the NMC to fully nonlinear blood flow (Sections 

2–3) and develops the standard numerical analysis including stability and convergence 

(Section 4). Our analysis is supported with numerical experiments to confirm the proven rate 

of convergence and to compare the NMC with a discontinous Galerkin (dG) discretization of 

(1). We conclude with an application of the NMC method to an arterial network of vessels 

(Section 6).

2. Characteristics for one-dimensional blood flow

In this section, we recapitulate some useful mathematical properties of (1). First, let us 

consider a general system of the form:

(3)

where U ∈ ℝ2 (U = (u1, u2)T). This system may be written in a quasilinear form, namely

(4)

where ∇UF is the 2 × 2 Jacobian matrix of F and the source function may change to include 

some terms from differentiating F. As we shall see, (1) may be expressed in this form. Let 

the left eigenvectors of ∇UF be given as {l1(U), l2(U)} with eigenvalues {λ1(U), λ2(U)} (we 

will henceforth drop the notation indicating their dependence on U). The system (3) is 

strictly hyperbolic provided the Jacobian matrix has real distinct eigenvalues.

The general idea for the method of characteristics is to transform system (3) by 

diagonalizing the principal part of the differential equation in the hope that one finds 

functions remaining constant along particular curves. With this in mind, consider Zi : ℝ2 → 

ℝ whose gradient ∇UZi is parallel to li; these are called Riemann–invariants (see e.g. [40, p. 

637]). Now, define functions V1 and V2 from Z1 and Z2 like

(5)

(6)

where ki are arbitrary constants of integration, that is, ∇Uki = 0. We refer to V1 and V2 as the 

characteristics variables of system (3). From the chain rule combined with (4), V1 and V2 

satisfy

(7)
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(8)

The next statement is important for our method. It is easy to see that the following holds.

Proposition 1

The function  is constant along the curve (γi(s), s) satisfying

We derive the characteristic variables for system (1) by following equations (5) – (8) with 

Proposition 1. Assuming constant β, we rewrite the system with the Jacobian of F as 

follows,

where the perturbed and unperturbed wave speeds are given by

(9)

The left eigenvectors and eigenvalues for ∇UF are

(10)

(11)

If we set ∇UZ1 = l1 and ∇UZ2 = l2, then with U = (A, u)T we have
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For convenience we choose k1 = −4c0 and k2 = 4c0. Integrating, we obtain:

(12)

(13)

where these variables satisfy the system

(14)

One may recover the cross-sectional area (and hence the pressure or wave speed) and 

velocity from the characteristic variables, and vice versa. Specifically,

(15)

The above derivation reveals that the characteristic variables propagate at speeds u±c, where 

u is the velocity of blood. For physiologically relevant parameter values, c ≫ |u|. In 

particular, this relationship between u and c implies that λ1 > 0 and λ2 < 0, that is, the 

characteristic variables propagate in opposite directions.

Most explicit time discretizations require a CFL–type restriction on the timestep determined 

by c despite the fact that the speed of blood u is much smaller. To avoid this strong 

restriction, we propose a method that is stable regardless of the chosen timestep.

3. Algorithm

For the presentation of the algorithm, let us focus on the following initial value problem,

(16)

(17)

(18)

(19)

defined on intervals x ∈ [a, b] and t ∈ [0, T], and augmented by periodic boundary 

conditions of the form
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Now we introduce some notation. We use the following supremum norms in our analysis:

(20)

Let dashes denote derivatives in space and dots denote derivatives in time, i.e. p′ ≔ ∂p/∂x 

and ṗ ≔ ∂p/∂t. For the spatial discretization, let Gh ≔ {xj = a + j(b − a)/M, j = 0, … M}, i.e. 

the collection of uniformly spaced points between a and b with spacing h ≔ (b−a)/M. 

Define [a, b] to be the space of continuous functions on [a, b], and h[a, b] to be the subset 

of continuous functions that are linear when restricted to each interval [xj, xj+1] for j = 0, … 

M − 1. For the temporal discretization, given a positive integer N, define the timestep Δt ≔ 

T/N and tn ≔ nΔt.

In what follows, Vi refers to the exact solution whereas Wi refers to the approximate 

solution. The numerical method of characteristics for solving (16) – (19) is based on the 

following idea: to obtain an approximation Wi to Vi given information on the grid Gh, follow 

the movement of the points in Gh along the characteristic curves back in time, and then 

assign values at the current time via spatial interpolation of the solution. More explicitly, 

from Proposition 1 with γi(t+Δt) = x ∈ Gh one has

(21)

With this in mind, we have the following set of definitions. For each x ∈ [a, b] define the 

characteristic curve γi(x, tn+1; t) : [tn, tn+1] → ℝ passing through point x at time tn+1 as the 

solution to the following final value problem:

(22)

Definition 1

Let n = 1, 2, …, N. For x ∈ [a, b], let  (i = 1, 2) be an approximation to the quantity

(23)

in the sense that

(24)
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where  is a “pseudo–quadrature rule” for the integral  computed with the 

approximate solution Wi. Define  to be this same pseudo–quadrature rule computed with 

the exact solution Vi. As we will see below, the rule we define is equivalent to a linearization 

of the characteristic curve. An illustration of the definition of gn(x) and and g̃n(x) is 

displayed in Figure 1. Note that  and  may not lie in the interval [a, b], but its 

definition can be easily adjusted to handle the periodic boundary condition.

Take x ∈ [a, b] and consider the characteristic curve within the time interval [tn, tn+1] on 

which x lies at time tn+1, i.e. γi(x, tn+1, t). To declutter notation, define  for 

all n. By Definition 1 and (22) we have . In turn, for the solution Vi one 

has

We have shown the following lemma which is nothing more than rewriting (21) in more 

compact notation.

Lemma 1.

The solutions Vi to (16) – (19) satisfy

(25)

To define the quadrature rule  (and hence ), we recall that λi is a function of the 

characteristic variables V1 and V2. For example, for the blood flow system (1)–(2), 

combining (10)–(11) and (12)–(13), one has,

(26)

so in accordance with our previous notation, we can write 

. In turn, we would like to approximate the integral by the 

simplest “rectangle rule”, i.e.

(27)

Let us define i,R and 𝒬̃
i,R via the rectangle rule approximation:

(28)

(29)

where  is computed with the approximate solution .
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Remark 1

If we were to take our pseudo–quadrature rule to be  and , then the 

formula to determine  becomes nonlinear and hence implicit in time, i.e.

For small enough Δt, n is a contraction. If the rectangle rule scheme is employed, g̃n(x) 

may be computed as the limit of the sequence y(k+1) = n(y(k)) with initial condition y(0) = x.

To simplify the method and have an explicit time stepping procedure, we define the rule we 

implement from the rectangle rule by replacing both  and  with x in both  and 

 respectively.

Similarly, the source term Ri may be a function of the characteristic variables V1 and V2 so 

that Ri(x, t) = Ri(V1(x, t), V2(x, t), x, t). We approximate the exact integral  using a 

similar explicit quadrature rule denoted by . More precisely, we have the following 

definition:

Definition 2

The pseudo–quadrature rules applied to the exact and approximate solutions are defined as 

follows:

The last missing piece is the specification of the spatial interpolation procedure.

Definition 3

Πh : [a, b] → h[a, b] projects a continuous function f into its piecewise linear interpolant 

Πh f at the points in Gh.

The algorithm follows below.

Algorithm 1

NMC algorithm for system (16)–(19)

Input: V1
0, V2

0 ∈ �� a, b .

Initialize W1
0 = Πh V1

0
 and W2

0 = Πh V2
0

.

for n = 1, 2, … N
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  g̃ i
n−1(x) = x − ��˜i

n−1(x) i = 1, 2

  W i
n(x) = Πh W i

n−1(g̃ i
n−1(x)) + ℛ̃i

n−1(x) i = 1, 2

end

Remark 2

Higher order interpolation and quadrature is possible. We work with piecewise linear 

interpolation for our analysis since the norm of Πh is uniformly bounded by 1 for all h which 

leads to stability. Also, the rule defined in Definition 2 allows our method to remain explicit 

in time.

Remark 3

In practice, we compute the approximate solution Wi at the points in Gh, but in the 

presentation of the algorithm above, the approximate solution is viewed equivalently as a 

piecewise linear function in h[a, b]. We use this presentation since we work with the 

continuous supremum norm for our analysis.

4. Numerical Analysis

Let V1(x, tn), V2(x, tn) and  be the exact and approximate solutions to (16) – 

(19) respectively. We make the following assumptions:

Assumption 1

The exact solutions satisfy Vi ∈ 2([0, T] × [a, b]).

Assumption 2

The eigenvalues λi = λi(V1, V2, x, t) are continuously differentiable. Also, there are positive 

constants δ and K = K(δ) so that in the domain (|V1| + |V2|) < δ the source functions Ri = 

Ri(V1, V2, x, t) are continuously differentiable and satisfy |Ri(V1, V2)| ≤ K (|V1| + |V2|).

Note that Assumption 2 regarding λi holds for the blood flow system (1)–(2) because the 

eigenvalues λi are affine functions of the characteristic variables, as verified in (26). 

Assumption 2 concerning Ri is satisfied if the cross-sectional area A(x, t) is bounded away 

from zero uniformly in space and time, which is guaranteed when ‖V1‖ + ‖V2‖ is sufficiently 

small. In turn, we need our numerical solution ( ) to satisfy the same property up to 

some finite time T so that Ri remains sufficiently smooth along the trajectory of the 

numerical solution. This is ensured by the following proposition.

Proposition 2 (Stability)

Under Assumption 2, if , then
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Proof—We rely on the fact that for piecewise linear interpolation we have ‖Πh‖ = 1. We 

proceed by induction. Assume that

and consider the following inequality,

Therefore,

where the second inequality follows by recursion and the strong inductive hypothesis. The 

last inequality follows from the assumption on the initial condition. This concludes the 

proof.

Remark 4

We wish to comment on the physical meaning of Assumption 2. When the characteristics 

variables (V1, V2) are sufficiently small, the cross-sectional area A is positive and the 

velocity u remains bounded. This prevents the solution from going into the vacuum state 

corresponding to A = 0, i.e. vessel collapse. Further, a sufficiently small constant δ in 

Assumption 2 can be estimated from the unperturbed wave speed c0 as δ < 8 infx c0(x).

A convergence result for the algorithm follows below.

Theorem 1 (Convergence)

Fix T > 0 and Δt = T/N for N ∈ ℕ. Under Assumptions 1 and 2, and the hypothesis from 

Proposition 2 on the initial condition ( ), the following convergence bound holds:

for some positive constant C = C(V1, V2).

Proof—We first bound . One has 

. We apply Lemma 1 to plug in 

, use ‖Πh‖ = 1, and then bound the first term as follows.
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To bound , note that for any x, we have

The first term is the quadrature error due to the rectangle rule and the second term may be 

bounded in the following way:

With this bound, one has

Now we proceed to bound the term  as follows. From Assumption 2, we get

where CR is a Lipschitz constant working for both R1 and R2. Similarly,

where the last term is obtained by approximating the integral  by the rectangle rule 

and employing the differentiability of R1 and of the exact solution Vi.
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With Assumption 1, we choose a constant C̃ that simultaneously bounds the terms involving 

CR, Cλ, ‖λi‖T and the norm of the first derivative of  for i = 1, 2 and n = 1 … N. Then we 

have,

The same argument as above provides the bound for the error in the second characteristic 

variable:

Summing the two above inequalities, and possibly increasing C̃, one obtains:

We apply the same argument to successively bound the terms  and 

conclude:

where C > 0 is a new constant, large enough such that we can take all the prefactors outside 

the parentheses. The maximum is taken over i = 1, 2 and j = 1, …, n. For the rectangle rule, 

one can show:

(30)

where CV = CV(V1, V2). For piecewise linear interpolation, we have:

(31)

With these bounds we obtain the result.

Acosta et al. Page 13

J Comput Phys. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Remark 5

Practically we take h proportional to Δt, so the error decreases linearly in both Δt and h. 

Notice that neither the Stability Proposition 2 nor the Convergence Theorem 1 are 

dependent on the choice for the constant of proportionality. In fact, in order to obtain 

convergence at a linear rate, it is only needed that h/Δt is bounded above. In other words, 

our proposed method is unconditionally stable with no need to satisfy a CFL–type condition.

5. Transmission Conditions at Branching Points

The end goal of the one-dimensional blood flow models is to simulate hemodynamics in a 

network of one-dimensional vessels representing portions of the circulatory system. These 

vessels are connected at nodes or branching points where the flow is governed by 

conservation laws. Various models have been proposed to simulate the branching flows. We 

refer to [2, Section 3.1]. We simply impose conservation of mass and continuity of the total 

pressure at each interior node of the network.

In general, let J be the number of incoming and outgoing vessels at a given node, and (Aj, uj) 

the cross-sectional area and flow velocity respectively for each vessel indexed by j = 1, …, 

J. Without loss of generality, we assume the 1d coordinates on each vessel to be such that 

blood flows out of the node for positive values of the velocities uj. Conservation of mass 

requires that

(32)

whereas continuity of total pressure is enforced by the following equations

(33)

where pj = pj(Aj) is defined by (2). The goal is to translate these physical conservation laws 

into the transmission of characteristic variables at the connecting node. Recall that on each 

branch we have a pair of characteristics, one traveling out of the node and another into the 

node. We denote them as  and , respectively, where n is the time step to be 

computed. Since  travels into the node, then it can be determined explicitly from the 

information at the n − 1 time level using the Algorithm 1. Hence, by plugging (15) into 

(32)–(33), we obtain a nonlinear system of J algebraic equations for the unknowns 

 which we solve with Newton’s method. This approach constitutes our 

numerical transmission conditions for the characteristic variables at each node of a network. 

In our numerical implementation of these transmission conditions, we use 

 as the initial guess for Newton’s method, and we stop the iterative 

process when the relative difference between two consecutive iterations falls below a certain 

tolerance. In the simulations described in the next section, we select the tolerance to be 10−8 

which is much smaller than the expected error introduced by the discretization of the spatial 

and temporal domains.
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6. Numerical Experiments

6.1. Convergence rate and unconditional stability

We compute the convergence rate of our method by comparing our numerical solution to the 

exact solution

with boundary conditions A = A0 = 1 cm2 on the inlet and outlet. The spatial variable x ∈ [0, 

L] for L = 20 cm. The time variable t ∈ [0, T] where T = 1 sec. The characteristic variables 

V1 and V2 are then derived from (12) – (13). Recall that V1 propagates to the right and V2 to 

the left, so we impose a boundary condition for V1 at x = 0 and for V2 at x = L. Since A = A0 

at the boundary points x = 0 and x = L, then c = c0 at those two points, and the appropriate 

boundary condition for the numerical variables are obtained from (15) as follows,

where  and  are explicitly given from the previous time step using the 

Algorithm 1.

Following the test case presented in [4], the parameters are chosen as β = 229674 dyne/cm3 

and ν = 0. Using the standard approach, we derive the source terms for this exact solution 

and then compute a numerical approximation with NMC.

To highlight the perfomance of the method beyond the traditional CFL limitation, let us 

consider the following constant

(34)

Here c0 approximates the speed of pressure waves. Explicit methods require KCFL to be 

bounded (typically less than 1) for stability, but our method requires no such restriction. In 

this light, we set KCFL = 2n to investigate the convergence behavior of the method as n 

increases. Table 1 displays relative error in the supremum norm (over space and time) and 

convergence rate for different values of KCFL, and h = L/23+m and Δt = KCFLh/c0 for m = 1, 

…, 6.

6.2. Single uniform vessel

In this section, we compare the numerical method of characteristics applied to (16)–(19) for 

approximating (V1, V2) to a discontinuous Galerkin (dG) discretization applied to (1)–(2) for 
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approximating (A, u) (as described by Sherwin et al. [5]). The computational domain is a 

single vessel of length 20 cm. The vessel parameters are again derived from the test case 

presented in [4]; A0 = 1 cm2, β = 229674 dyne/cm3 and density ρ = 1.06 g/cm3. Further, we 

set the viscosity ν = 0 so that we can attribute any possible diffusion to the numerical 

method itself. An initial Gaussian pressured pulse in time is prescribed at the left inlet of the 

vessel with functional form

(35)

The parameters α = 102 or 103 dyne/cm2, ξ = 0.015 s, σ = 0.003 s remain the same for each 

numerical experiment in this section. The procedure for prescribing incoming boundary 

conditions for the dG method is described in [5]. For the NMC, from the pressure profile 

(35), one derives the prescribed area A at the inlet from the state equation (2) (or 

equivalently the local wave speed c from (9)). From (15) then we obtain the inlet boundary 

condition  where  is explicitly obtained from the information at 

the n − 1 time level using the Algorithm 1. The outlet boundary condition is of absorbing 

type, that is, the waves are allowed to leave the domain without reflection by setting 

at x = L for all n = 1, …, N.

As a metric for comparing the approximate solutions obtained from NMC and dG, define the 

vectors pdG and pNMC as the pressures computed from each method with each component 

corresponding to a pressure value at a point in the NMC grid Gh. Then the relative 

difference is given by ‖pdG − pNMC‖2/‖pdG‖2, where ‖ · ‖2 is the vector two-norm. Figure 2 

displays the approximate solutions to both methods for α = 102 (no shock) and α = 103 

(shock) respectively. Visually, they appear to agree well, modulo some small diffusion in 

the NMC solution. Table 2 displays the relative difference between the dG and NMC 

solutions at each of the times t = 0.03, 0.045, and 0.06, and confirms the agreement of the 

solutions. The two methods agree less well in capturing the shock, but we note that shock 

formation is not physiological for normal blood flow.

Lastly, Figure 3 displays timing results for Matlab implementations of each method applied 

to the simulation of a pressure pulse in a single vessel. For both cases, Δt = 1 × 10−6 and the 

degrees of freedom (DOF) for each method are defined as follows,

We integrate the solution for 20 timesteps (the final time T = 2 × 10−5 sec.) on a laptop with 

a 2.5 GHz Intel Core i5–2520M processor. The value displayed in Figure 3 is wall clock 

time, averaged over 25 realizations, normalized by T, and then divided by DOF. As 

expected, both methods are asymptotically linear in DOF, with NMC several of orders of 

magnitude faster than dG.
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6.3. Vessel networks

In this section we demonstrate the utility of the numerical method of characteristics in 

simulating flow in a network of vessels, each modeled by (1)–(2).

First we set up a small network (5 branches and 2 interior nodes) which represents the large 

arteries in the left arm. The parameters are taken from [5]. We use this small network to 

compare the NMC with the dG method in the presence of branching points at which we 

enforce the transmission conditions of Section 5. To validate this proposed transmission 

conditions for the NMC, we compare the results obtained from the dG method and the NMC 

applied to this five vessel network. The pressure at the input node and at one of the terminal 

nodes is displayed in Figure 4, along with the relative difference between the two numerical 

solutions. From this figure we observe that both methods compare well since the relative 

difference is below the 2% mark. We take into account the blood viscosity whose value is 

set to ν = 3.3 × 10−2 cm2 / s. The spatial and temporal step sizes for the NMC are h = 1 cm 

and Δt = 2.5 × 10−3 s, respectively. For the dG method, h = 1 cm and Δt = 10−4 s, and we 

use piecewise linear polynomials.

As a second example, we set up the arterial network from [18] which contains the 64 largest 

arteries in the human body (we exclude coronary arteries). For sake of simplicity, we do not 

incorporate the influence of organs, capillary beds or the venous network. There is no 

resistance imposed at the terminal ends of this arterial model where the pressure waves are 

allowed to leave the terminal vessels without reflection. We do take into account the blood 

viscosity by retaining the zeroth order (dissipative) term of the governing system (14), 

where we set ν = 3.3 × 10−2 cm2 / s. The length and radius of each arterial segment is 

obtained from [18]. The elastic coefficient β of each segment is given by the following 

empirical formula,

where δ/r = 0.1 is the ratio of wall thickness δ to unperturbed cross-sectional radius r. The 

Poisson’s ratio is σ = 0.5, and E is the Young’s modulus of elasticity.

Figure 5 displays the input pressure profile at the Aortic root and the observed pressure at 

the left Radial artery. The simulations were carried out with quasi-uniform spatial 

discretizations parametrized by h and time step ΔtNMC. The parameters h and ΔtNMC were 

refined proportionally, but in all three cases ΔtNMC is sufficient small to appropriately 

resolve the pressure variations within one cardiac cycle. The three solid lines in Figure 5 

display the convergence behavior as the spatial and temporal steps are refined.

From the given geometry and elastic properties of this arterial tree, we obtain a pressure 

wave speed c0 varying within the following range 460 − 1300 cm/sec. As a result, for the 

chosen h and ΔtNMC, we have a maximum CFL number KCFL ≈ 6.5. On the other hand, the 

time step needed to satisfy stability for a piecewise linear explicit dG scheme is known to be
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This implies that ΔtNMC = 2 × 10−3 sec (the intermediate refinement in Figure 5) is about 12 

times larger than ΔtdG. The spatial discretization h = 1 cm leads to about 900 degrees of 

freedom (DOF) for the NMC method applied to the entire arterial tree. If we consider both 

the gain in computational speed per DOF (displayed in Figure 3) and the larger time step 

allowed by the unconditional stability of the NMC, then we conclude that the NMC is at 

least 3 orders of magnitude more efficient than the dG method for these physiological 

parameters.

7. Conclusion

In this work, we focused on the numerical approximation of solutions to a nonlinear, strictly 

hyperbolic system modeling one-dimensional blood flow. Typical physiological parameters 

lead to large pressure wave speeds and hence to a restrictive CFL condition for methods 

using explicit time stepping for the primitive governing equations. This stringent condition 

is magnified for computationally intensive methods arising from weak formulations, in 

simulations of networks of vessels, and for simulations required over multiple cardiac 

cycles.

To mitigate these challenges, we presented a numerical method of characteristics approach 

applied to this system. Unconditional stability and convergence of the method was proven. 

The unconditional stability allows for more rapid simulations beyond the traditional CFL 

limitation.

To benchmark and test our method, we computed errors and convergence rates from a 

specified exact solution. Further, solution quality for a propagating Gaussian pressure pulse 

was compared to an approximation from a discontinuous Galerkin implementation. As 

expected, numerical diffusion occurs in our method for coarse spatial discretizations, but a 

marginally more refined discretization yields much better results. Lastly, we applied the 

method to a network of vessels. From the timing results for the dG and NMC 

implementations, and due to the larger time step allowed for NMC, we conclude that NMC 

is at least 1000 times more efficient than dG.

Future work will entail clinical applications of vessel network simulations including the 

influence of organs, capillary beds, and the venous network. These full cardiovascular 

models, simulated with the numerical method of characteristics, will allow researchers and 

clinicians to investigate challenging physiological questions from a computational modeling 

perspective. Furthermore, the efficiency of our approach allows for simulations over a large 

number of heart cycles on modestly sized computers. In turn, this opens a door for a much 

more computationally tractable approach for modeling these phenomena.
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Figure 1. 
The characteristic curve and its approximation. The head of the characteristic curve is the 

grid point x, and its foot is denoted by gn(x). The approximate foot, denoted by g̃n(x), is 

obtained by a linearization of the characteristic curve given in Definition 1.
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Figure 2. 
Propagation of Gaussian pressure pulse in a single uniform vessel, simulated with 

discontinuous Galerkin (top) and numerical method of characteristics (bottom). The dG 

implementation uses 100 elements with piecewise linear polynomials and Δt = 1 × 10−5, 

while the NMC implementation uses a spatial discretization of 1 × 10−2 and Δt = 1 × 10−4. 

Time increases from the left to right with snapshots taken every 0.03 seconds, i.e. for the 

solid line, t = 0.03, for the dashed line, t = 0.045, and for the dotted-dashed line, t = 0.06. As 

expected, the NMC method exhibits some small numerical dissipation, but agrees very well 

the with dG simulation. For the figures on the right, the amplitude of the wave is an order of 

magnitude larger than in the figures on the left, leading to rapid shock formation within the 

computational domain.
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Figure 3. 
A comparison of the computational time for NMC and dG methods applied to the simulation 

of a pressure pulse in a single vessel. Both methods asymptotically scale linearly in DOF, 

with NMC substaintially faster than dG. The ‘×’ on the dG curve indicates that for this 

spatial discretization and beyond, we cannot expect the method to be stable for the chosen 

timestep.
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Figure 4. 
Left: A sketch of a small arterial network representing the left arm. The geometric and 

elastic properties of the vessels are provided in [5]. Top right: Pressure waveforms at the top 

node of the network and terminal node of the left radial artery. There is no resistance 

imposed at the terminal ends. Bottom right: Percent difference in pressure between NMC 

and dG, relative to the norm of the dG solution, |pdG − pNMC|/‖pdG‖ × 100.
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Figure 5. 
Left: A sketch of the systemic arterial network containing 64 segments and 29 interior 

nodes. The geometric and elastic properties of the vessels are provided in Table F.1 of [18]. 

Right: Pressure waveform (at the aorta (dashed) and left radial (solid) arteries) obtained 

from the simulation based on the NMC. There is no resistance imposed at the terminal ends. 

The three solid lines display the convergence behavior as the spatial and temporal steps are 

refined.
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Table 2

Relative difference in dG and NMC solutions for simulations within a single vessel.

‖pdG − pNMC‖2/‖pdG‖2

α t = 0.03 t = 0.045 t = 0.06

102 2.78 × 10−3 3.71 × 10−3 4.95 × 10−3

103 1.01 × 10−2 3.03 × 10−2 8.53 × 10−2
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