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1 Introduction 

In this paper, we describe a characteristic-Galerkin finite element method (CGFEM) 

for modeling contaminant transport with nonlinear, non-equilibrium adsorption ki­

netics. The CGFEM, also known as the modified method of characteristics, Lagrange­

Galerkin, or Euler-Lagrange method, has been used extensively in the modeling of 

linear and nonlinear flows; see, for example, [10, 14, 15, 16]. The method was first 

analyzed in [4] for advective flow problems in one space dimension, and improvements 

and extensions of these estimates were derived in [5]. These estimates were proved 

primarily for linear problems; however, certain types of smooth nonlinearities were 

also considered. 

Here we consider the application of the CGFEM to a nonlinear system of equa­

tions which arises in contaminant transport, and derive an a priori error estimate. 

The primary difficulty in these equations is the presence of possibly non-Lipschitz 

nonlinearities, which require special treatment in the analysis. The presence of such 

nonlinearities also reduces the regularity of the solution; thus, the expected rates of 

convergence are possibly suboptimal when approximating by piecewise polynomials. 

Error estimates for a Galerkin finite element procedure for solving these types 

of equations have recently been derived in [l]. The approach given there involves 

approximating the solution to a regularized problem, obtained by replacing the non­

Lipschitz function </> (given by (3.9) below) with a Lipschitz approximation </>., and 

allowing E to approach zero. The estimates obtained for this procedure in the norm 

L00 (0, T; L2(0)) appear to give the same or a slighly improved rate of convergence 
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than that derived below for the CGFEM, depending on the choice of c However, the 

authors are able to obtain a better rate of convergence in the L2 (0, T; L2(0)) norm. 

Numerical comparisons of the two approaches remains to be done. We note that our 

approach is better suited for convection-dominated transport. 

In the next section, we give some basic notation. In Sections 3 and 4, the physical 

problem is described, and existence and uniqueness of weak solutions, and regularity 

of solutions are discussed. In Section 5, we describe the application of the CGFEM 

method, and in Section 6, the method is analyzed, assuming optimal regularity of the 

solution. 

2 Notation 

For Y a measurable space or space-time domain, let LP(Y), 1 ::; p ::; oo, denote the 

standard Banach space on Y, with norm 11 · I ILP(Y). For O a bounded spatial domain 

in IR,d, 1 ::; d ::; 3, denote by Wf (0) the standard Sobolev space on O with norm 

II· Ilk- We denote the L2(0) norm by 11 · II-

Let (a, /3] C (0, T] denote a time interval, where T > 0 is a fixed constant, and let 

X = X(f!) denote a normed space. Denote by II· IILP(cx,/3;X) the norm of X- valued 

functions f with the map t-+ llf(·, t)llx belonging to LP(a, /3). 

Letting QT = 0 x (0, T], we denote by ½1
'
0

( QT) the Banach space consisting of 

elements having a finite norm 

lulQT = llullL00 (0,T;L2(n)) + llv7ullL2(0,T;L2(0))· 
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We denote by Wi'1(QT) the Hilbert space with scalar product 

( u, V )wJ,l(QT) = /4T (UV+ Vu. Vv + UtVt)dxdt. 

For </> : (0, oo) ---+ (0, oo ), the notation </> E CP((0, oo) ), p E (0, 1) means </> is 

Holder continuous in its argument with exponent p. We denote by ccx,f3(QT), where 

a and /3 are positive numbers, the standard Holder space defined on QT (12]. Here a 

represents smoothness in space and /3 represents smoothness in time. 

3 Statement of the Problem 

When chemical species are dissolved in groundwater they may undergo adsorption or 

exchange processes on the surface of the porous skeleton. Knowledge about the influ­

ence of these chemical processes on the transport of the solutes when the groundwater 

is moving is of fundamental importance to understand, for instance, how pollutants 

spread in space and time through the soil. 

Below we present the mathematical formulation for a one-species system in which 

the chemicals undergo non-equilibrium adsorption reactions. Certain types of two­

species systems of binary ion exchange can also be put into this framework. In 

particular this is the case when a conservation property allows for the reduction to a 

one-species system. In [8), details of this reduction are given, as well as a fundamental 

discussion of adsorption processes in porous media and related references. 

The domain n is occupied by a porous material through which an incompressible 

fluid, say water, flows. The related specific discharge if.( m/ s ), with components Qi, i = 
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1, ... , d and length l111, satisfies the equation 

f)() 
-+v'·q-=O at ' (3.1) 

which expresses conservation of fluid volume. In this equation, () (dimensionless) 

denotes the water content. 

In what follows we shall consider () and q as given quantities which are determined 

independently of the concentration of the dissolved chemicals. Thus, we implicitly 

assume here that concentrations occur only at tracer levels and hence do not influence 

the flow. 

Let c(mol/m3
) denote the concentration of adsorbate in solution and A(mol/kg 

porous medium) the adsorbed concentration. Conservation for the chemical species 

gives the equation 

a at (0c + pA) + v' · (qc - 0Dv'c) = 0, (3.2) 

in which p = p(x) (kg porous medium/m3
) denotes the density of the porous medium 

(bulk density), and D(m2 
/ s) the hydrodynamic dispersion matrix which incorporates 

the effects of molecular diffusion and mechanical (velocity-dependent) dispersion. In 

most transport models for porous media D takes the form, e.g. see [2] 

where Dmol ( m 2 
/ s) is the molecular diffusivity of the adsorbate in the fluid (incorpo­

rating the tortuosity effect) and o:T(m) and o:L(m) are the transverse and longitudinal 

dispersion lengths, respectively. 

Next we turn to the adsorption process. In this paper we assume that the reactions 
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are relatively slow compared to the flow of the fluid. This makes it necessary to 

consider non-equilibrium adsorption. In addition, the adsorbent surface of the grains 

may be heterogeneous. Consider a subdivision of a representative grain surface (i.e. 

rescaled grain surface, e.g. the unit sphere) into m chemically different collections of 

adsorption sites corresponding to i E {1, ... , m }; let Ai be their relative size at the 

representative grain surface and Si the corresponding adsorbed concentration. Then 

(3.4) 

and 
m 

A= L AiSi. (3.5) 
i=I 

Each component Si is related to the dissolved concentration c through an adsorption 

reaction which is described by the first order equation 

asi at= kfi(c,si) with i E {1, ... ,m}. (3.6) 

In these equations k > 0 (1/ s) is the rate constant, and Ji is the rate function 

describing the adsorption reactions at sites i. In principle, k and A1 , ... , Am could 

be spatially dependent; however, for simplicity, we assume they are constant in space 

and time and k is independent of i. For the rate function in (3.6) we use the explicit 

form 

i E {l, ... ,m}, (3.7) 

which, in a heuristic approach, is widely used in contaminant transport models, e.g. 

see [3]. The functions <pi in (3. 7) are called the adsorption isotherms. They are the 
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adsorbed concentrations in the equilibrium, i.e. fast reaction case, as k --+ oo. Typical 

examples are the Langmuir isotherm 

(3.8) 

and the Freundlich isotherm 

K3 > 0 ,P > 0. (3.9) 

In the last example one usually takes p E (0, l]. For p < 1, the nonlinearities are 

not Lipschitz continuous up to c = 0. This results in the finite speed of propagation 

property for the concentration c as c t 0, and thus gives rise to a free boundary as 

the boundary of the support of c. 

Thus, together with the transport equation (3.2), with A given by (3.5), we have 

to solve for the m-O.D.E.'s 

OS· 
oti=k(</>i(c)-si) with iE{l, ... ,m}. (3.10) 

We consider (3.1), (3.2), (3.5) and (3.10) in the cylinder Qr= n x (0, T]. 

For all unknowns c and Si we need to specify initial conditions. Thus 

c(· ,0) = Co and Si(· ,0) = Soi lil n, (3.11) 

for i E {1, ... , m }. In addition we prescribe for c conditions along the boundary 

S = an of n. Letting a= -n · if., we distinguish an inflow boundary S1 where a~ 0 

and an outflow /no flow boundary S2 where a ::; 0. Here S1 U S2 = S and n denotes 

the outer unit normal. Then we impose 

(0Dv'c-qc) · n = F on S1r = S1 x (0,T], 
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(0D\1c) · n = 0 on S2r = S2 x (0, T]. (3.13) 

In (3.12), the function F = F(x, t), with (x, t) E S1r, denotes the flux of solute 

entering the flow domain across S1 at time t > 0. 

Equations (3.1)-(3.13) define the Contaminant Transport Model, which we shall 

refer to as Problem CTM. In defining a weak solution or a weak formulation for 

Problem CTM we follow the usual definition for linear problems, e.g. see [12] and 

[11]. In particular we use the space Vl·0 (Qr). Then we have the following definition. 

Definition 3.1 The functions c, Si : Qr --+ [O, oo) for i E { 1, ... , m} form a weak 

solution of Problem CTM if the following holds: 

(i) c E Vi1 '
0 (Qr), </Ji(c) E L2 (Qr) for i E {1, ... , m}; 

(••) 8si L2(Q ) t . { } .. Si, at E r ;oriE 1, ... ,m; 

(iii) 

(iv) 

- [ ( ec,,, )(- ' 0) - / 0c 817 + [ p (t ).i asi) 'TJ 
lo }QT at }QT i=l at 

+ f (ODVc - ijc) · VTJ = f FTJ + f ac'TJ, hT kT ~T 
for all TJ E Wi'1 (Qr) which vanish at t = T; 

8s· ati = k{</Ji(c)-si}, i E {1, ... ,m}, (x,t) E Qr; 

(v) c(· ,0) = Co and Si(· ,0) = soi, i E {1, ... ,m}, (x,t) E Qr. 

(3.14) 

Throughout this paper we take S to be piecewise smooth. With respect to the coef­

ficients and functions appearing in Definition 3.1 we shall assume that the following 

structural and regularity conditions are satisfied; see also [6] and [11 ]. 
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(Hla) For each i E {1, ... , m} the isotherms </Ji : [0, oo) ---+ [0, oo) are nondecreasing; 

(Hlb) There are constants v,µ > 0 such that fore E rn,d, (x,t) EQT, 

the Dij are measurable in QT, 8tDij E L 00 (QT) for i,j = 1, ... ,d, 

B D is symmetric; 

(Hlc) There exists B0 > 0 such that 

B(x, t) ~ B0 for (x, t) E QT , 

(Hld) qi E L00 (QT) for i = 1, ... ,d, v' · ij E L00 (QT), ij · n exists in the sense of 

trace and ij· ii E L00 (ST), Band ij satisfy equation (3.1); 

(Hle) F E L 00 (S1T ), Co, Soi ~ 0 and Co, Soi E L2(n) for i E {1, ... 'm }; 

(Hlf) p E L00 (n), p ~ p. > 0, for some positive constant p •. 

4 Some Analytical Observations 

Weak solutions of Problem CTM, in the sense of Definition 3.1, were studied in [6] 

and [11). The main, and nonstandard, difficulty for this problem lies in the fact that 

one of the isotherms </Ji may be non-smooth at c = 0. This happens for instance when 

it is of Freundlich type, see (3.9). Then a situation may occur where the set { c > 0} 

spreads at finite speed through the flow domain n. A free boundary or interface arises 
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as the boundary of the support of c, i.e. 8{ c > 0}. Across the free boundary c will 

have limited smoothness, even though the coefficients in (3.2) may be C00
• The free 

boundary aspect of the problem was studied for a I-dimensional flow situation in [6] 

and further, for the special case of travelling wave solutions, in [7, 9). 

To prove uniqueness and stability for weak solutions only the monotonicity of the 

isotherms <Pi is required. There are three essential steps needed which we outline 

briefly below. In a later section about the convergence estimates they will reappear 

in discrete form. 

Let ( = c1 - c2 and /3i = s1i- s2i, i E {l, ... ,m}, where (c1,s1i) and (c2,S2i) are 

two weak solutions of Problem CTM. First, set 

{ 

0, 
17(x, t) = 

((x, t), 

t E (T, T], 

t E (0,T), 
(4.1) 

where T E (0, T). Note that 'f/ is not in WJ·1( QT), because of the lack of smoothness 

of c1 and c2 in time, and because of the discontinuity at t = T. Thus, it is not a valid 

test function for (3.14). This difficulty can be circumvented, however, by introducing 

Steklov means as described in [12]. Using the Steklov mean of 77 in (3.14) leads to an 

expression that contains the term 

( 4.2) 

Next, multiplying (3.10) by 77 defined by (4.1) gives 

(4.3) 

where we have used the monotonicity of the isotherms. Then ( 4.2) can be estimated 
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from below by 

Thirdly, in (3.14), we set 

ry(x, t) = 
{ 

0, 

-lr ((x, s )ds, 

t E (r, T], 

t E (O,r). 

( 4.4) 

(4.5) 

This gives an expression which contains a term similar to ( 4.4 ). After some techni­

calities and a Gronwall argument we obtain [6, 11]: 

Theorem 4.1 Let hypothesis (HJ) be satisfied. Then Problem CTM has a unique 

weak solution. 

At the expense of some additional conditions it is possible to extend the uniqueness 

proof and to obtain a Lipschitz stability result for the difference in the ½1
'
0

( QT) norm. 

Assume 

(H2a) 
ao 

ij_ and at are independent of time; 

(H2b) :t (OD) is positive definite a.e. in QT and %t0 ~ 0 in n. 

Then we obtain [6, 11]: 

Theorem 4.2 Let (c1 ,s1i) and (c2,s2;), i E {1, ... ,m} denote the weak solution of 

Problem CTM corresponding to the data { Cot, soii, Fi} and { Co2, s02i, F2}, respectively, 

and assume (H2) hold. Then there exists a constant C > 0 such that 
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Remark. Using expression (3.3) for the hydrodynamic dispersion matrix, hy­

potheses (H2) are obviously fulfilled for the case of stationary water distribution (0) 

and flow ( q). 

Existence of weak, strong, and classical solutions was also established in [6] and 

[11]. Here we make some remarks in the direction of classical solutions. When 

the isotherms satisfy in addition to the monotonicity (Hla), the conditions (for 

i E {1, ... ,m}) 

</>i(O) = 0, <Pi(s) > 0 for s > 0, 

<Pi E CP((0, oo)) n C1~c((0, oo)) for some p E (0, 1), 

(4.7) 

( 4.8) 

(such as the Freundlich isotherm (3.9) ), and if the coefficients and initial/boundary 

data in Problem CTM are sufficiently smooth (e.g. Co E C2+P(fl), soi E CP(fl), 

F = acJ with CJ~ 0 and CJ E £=(S1r), and other technical conditions), then 

( 4.9) 

Note that if one of the isotherms is of Freundlich type (3.9), then ( 4.9) is the optimal 

global regularity. Even if the coefficients in (3.2) ( 0, ¢, q and D) were c=, this would 

only imply 

c, Sj E C 00
( { C > O} n Qr) . 

For future reference, we note that ( 4.9) implies that c is continuously differentiable in 

time, and twice continuously differentiable in space, Ct and the second-order spatial 

derivatives of c are Holder continuous in time with exponent ~ and in space with 

exponent p, and the first-order spatial derivatives of c are Holder continuous in time 
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with exponent ~-

5 The CGFEM for Non-Equilibrium Adsorption 

In this section we discuss the numerical approximation of solutions to (3.2), (3.10) 

by the CGFEM. For simplicity, assume m = 1 and s1 = s, so that .\1 = 1 and A = s. 

We will make the following assumptions: 

(H3a) The data and coefficients are sufficiently smooth so that ( 4.9) holds. 

(H3b) The isotherm cp satisfies (Hla), (4.7), and (4.8). 

(H3c) S = S2, with DVc · n = 0 on S. 

(H3d) 0 and ij_ are independent of time. 

(H3e) D = D( ij_) is symmetric and positive definite. 

For convenience, we will assume Problem CTM is n-periodic; i.e., we assume 

all functions involved are spatially n-periodic. This assumption is reasonable since 

the no-flow boundary conditions (H3c) are generally treated by reflection, and we are 

primarily interested in interior flow patterns and not boundary effects. 

Let O = t0 < t1 < · · · < tM = T be a given sequence, with l:i.tn = tn - tn-1. 

Define Jn(-) = f(·, tn). Leth> 0 and Mh be a finite dimensional subspace of WJ(n) 

consisting of continuous, piecewise polynomials of degree at most one on a quasi­

uniform mesh of diameter less than or equal to h. 
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In the CGFEM, we approximate c(x, tn) and s(x, tn) by functions en and sn in 

Mh. Writing (3.2) in nondivergence form and applying (3.1), we obtain 

0ct + pst +if· Ve - V · (0DVc) = 0. (5.1) 

Let T denote the unit vector in the direction ( ij, 0) and set 

(5.2) 

Then 

(5.3) 

and (5.1) can be written as 

'1/Jcr - V · (0DVc) + pst = 0. (5.4) 

Let 

A ij(x) 
X = X - O(x),6.t, (5.5) 

and let ](x) = f(x) for a given function f. Approximate '1/Jcr by the backward 

difference 

(5.6) 

Let 

(5.7) 

and 

(5.8) 
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Then (5.4) can be written 

(5.9) 

and (3.10) can be written 

(5.10) 

Initially, set C0 = 6° E Mh, where C(x, t) is the 0-weighted L2-projection defined 

by 

(0C(·,t),x) = (0c(·,t),x), x E Mh. (5.11) 

Furthermore, set S0 = §0 E Mh, where S(x, t) is the p-weighted L2-projection 

(pS(·,t),x) = (ps(· ,t),x), x E Mh. (5.12) 

For n = l, 2, ... , M, define en E Mh, 5n E Mh by 

(o en~;·-• ,X) + (P sn ~:n-1 ,X) 

+ (0DVC\ Vx) = 0, XE Mh, (5.13) 

and 

( 
5n _ 5n-1 ) 

p /J..t 'V 
(5.14) 

Equations (5.13) and (5.14) are obtained by multiplying (5.9) and (5.10) by test 

functions x and v in Mh, respectively, integrating (5.9) by parts, and substituting en 

Existence and uniqueness of en and sn follows from standard results found in 

(13]. Let I denote the dimension of Mh, and let {1Pj(x)}J=I denote the standard nodal 
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basis. Note that (5.13) and (5.14) is equivalent to finding vectors en= {CJ}f=1 and 

determined by (5.11) and (5.12), and for n ~ I, 

(5.15) 

(5.16) 

Here <I>(en) = {(p</>(Cn),1Pi)}]=t, A1 , A1 , and A2 are mass matricies with entries 

(0Xi, Xj), (0Xi, Xj), and (PXi, Xj), respectively, and B is the stiffness matrix with 

entries (0D'vxi, 'vxj)- Note that (5.15) can be written in the form F(en) = 0. 

Since A1 + LltB is positive definite and the components of cf>( en) are continuous and 

monotone increasing, F is continuous and monotone increasing, and the existence 

and uniqueness of en follows. The existence and uniqueness of Sn then follows from 

(5.16) since A2 is also positive definite. 

6 Error Estimates 

In this section we analyze the method given by (5.11)-(5.14). In the arguments that 

follow, I< will denote a generic positive constant and E a small positive constant, 

independent of h and flt. We will also employ the well-known inequality 

1 f_ 

ab ::; 
2

E a
2 + 2 b

2 
, a, b, t E IR, t > O . 

A standard argument used in finite element analysis of parabolic equations is to 

compare the approximate solution to an elliptic projection [17]. This technique leads 
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to optimal rates of convergence in the norm L=(o, T; L2(0)) as long as the solution 

is sufficiently smooth. In particular, when approximating by piecewise polynomials 

of degree one, one must have that Ct lies in the space L2 (0, T; WJ(O)) to obtain h2 

accuracy in space. In the problem considered here, we are not guaranteed this much 

smoothness on the solution; in particular, we will only assume the smoothness given 

by (4.9). Thus, we will compare our approximate solutions to the L2-projections 

given by (5.11) and (5.12). This will reduce the provable rate of convergence from h2 

to h. 

Let ( = C-6, e = c-6, where 6 is given by (5.11), and let /3 = S-S, wheres 

is given by (5.12). Subtract (5.9) from (5.13), and (5.10) from (5.14), and use (5.11) 

and (5.12) to obtain 

( 
(n _ (n-1 ) ( (3n _ (3n-1 ) 

0 ~t ,X + (0DVC, Vx) + p ~t ,X 

( 
en fn-1 ) 

(an,x)+ 0 ~t ,X +(0DVC,Vx) 

(6.1) 

and 

(6.2) 

where an is given by (5.7) and wn by (5.8). 

We will derive an error estimate by taking X = (n in (6.1), multiplying by ~t, and 

summing on n. We must first obtain a lower bound for the /3 term in (6.1) in terms 

of(, t, w, and a. To begin, following the uniqueness arguments given in [6], we set 
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v = (n in (6.2) and note that by the monotonicity of <p: 

(6.3) 

Thus, 

M 

+ L(pwn,C)~t. (6.4) 
n=l 

Next, we seek a lower bound for the /3 term on the right side of (6.4). 

To this end, we consider ( 6.1) with a discrete time-integral test function in analogy 

with (4.5). Let x = E~n (e~t in (6.1), multiply the result by ~t, and sum on n, 

n =I, ... , M. First, we observe 

t, (o(n ~~n-l , t. (e~t) ~t 

- t, (0(". [t.,, -J,<]) ~t 

M 

- 1:(0C,C)~t, (6.5) 
n=l 
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by summation by parts ( where the sum from n + 1 to M is understood to be zero if 

n = M) and because ( 0 = 0. Similarly, since (3° = 0, 

Furthermore, 

thus 

M 

L(P/3n,(n)~t • 
n=l 

! III:~n vce~tW - III:~n+l vce~tf 
2 ~t 

1 
+2VC·VC~t; 

i; (onv,·, t, v('t,t) L'>t 

- ~(on~ VC~t, ~ VC~t) 

+1 'E(ODV(n, VC)~t2
• 

n=l 
Using (6.6), (6.1) with x = L~n V(l~t, (6.5), and (6.7), we obtain 

M 

-k L(P/3n, (n)~t 
n=l 
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+ (on<vc,-t'v,'~t) 
+ (a· +0 ((n ~r-·) 

(
(n-1 (n-1) M ) } 

+ 0 ~t + pwn, - E 'l ~t ~t 

- ki; {(0(\(n)+t(0DVC,VC)~t 

+ (0D'v(",-E 'v('~t) 

+ (an+ 0~n - en-1 
~t 

+ 0 c·-· :;.t-· + pw·, - E ,, At)} ~t 

(6.8) 

By assumption (Hlb), we can bound the last term in (6.8) from below, replacing 0D 

by v. Substituting (6.8) into (6.4), we obtain the desired lower bound for the /3 term 

of (6.1). 

Setting x = (n in (6.1), multiplying by ~t and summing on n, and using the 

bounds given by (6.4) and (6.8), we obtain 

E { (0 (n ~~n-l , c) + (0DV(n, VC) 

+ k [(0 C, C) + t (0DV(n, V(n)~t]} ~t 

+ k; [ (f VC~t, E VC~t) + (i; (n~t, E C~t)] 

< E { k(p(,P(c·) - <p(c·n ,t·) + (a·,(")+ (0 t· ~r-· . '") 
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+ (ODVt•, V(") + (o (•-t ;;,.t-t , (") 

+k [(er·, t. ('L1t) + (o t· ~r-l , E ('L1t) 

+ (pwn, E (lL\t)]} L\t 

+ k; (E (nL\t, E (nL\t) 

- T1 + ··· +Tn. 

We now estimate the terms T1 through T11 • 

By the Holder continuity of</>, and Holder's inequality 

M 

where 

T1 = k L(p(<p(cn) - </>(Cn)),C)L\t 
n=l 

M 

< kllPlloo L 11</>(cn) - </>(Cn)IILq(n)IICllu(n)L\t 
n=l 

1 1 
-+-=l. 
q r 

1 
Choose q = !, then r = 

1 
_ e ::; 2, and 

2 

M 2 M 

T1 < I<h2 L (IICll 2 + IICll 2
) q L\t + J<h-

2 I:IICllir(n)L\t 
n=l n=l 
M M 

< I<h2 I:[IICll2P + ll(nll 2P]L\t + J<h-2I:IICllir(n)L\t 
n=l n=l 
M M 

< I<h2I:UICll 2P + IICll 2P]L\t + I<h- 2 I: IICll 2L\t. 
n=l n=l 
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Consider 

n=l 

Note that 

where ~f = Jlx - xl 2 + ~t2 , and, for x fixed, cf' denotes the directional derivative 

of c in the direction of the constant vector (0(x),q(x)). For (s,t) between (x,tn- 1 ) 

and (x, tn), using the Holder continuity of Ct and ex in space and time (see (4.9)), we 

find 

lcf'(s, t) - cr(x, tn)I - l0(x)(ct(s, t) - Ct(x, tn)) + q(x) · (Vc(s, t) - Vc(x, tn))I 

< I{ [Is - xlP + It - tnl~] 

< J{~t~. 

Thus, 

M f I cn(x) cn-l(x) I 
T2 < ~\~ Jn 1/,(x)cr(x, tn) - 0(x) ~t IC(x)I dx 

M 

< ~tEK~t~IICII 
n=l 

M 

< J{~tP + I<I:ll(nll2~t. 
n=l 
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For a function g(x) E WJ(O), we note that 

and using the fact that ( oen, X) = 0 for X E Mh, we obtain 

M M 

< KI:llv7C-1 ll 2~t + KI:ll(nll 2~t. 
n=l n=l 

Moreover, 

M 

T4 - °E(0Dv7C, VC)~t 
n=l 

M M 

< KI:llv7Cll 2~t + tI:llv7(nll 2~t. 
n=l n=l 

Similar to the estimate for T3 , 

Ts < 

n=l n=l 
Similar to the estimate for T2 , 

T6 = k E (an, t.(~t) ~t 

- k E (an,t.(~t- E (l~t) ~t 

< Kt,.t• + < llt.('t,.tll' 
+ I( E IIE (' t,.{ !,.t · 
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Similar to the estimates for T3 , T4 , and T6 , 

T, = t. (i"-1 :;,t-•, t. ('t>t) t>t 

< K f 11vc-•11'c,1 + , IIE('c,111' 

+Kt. llE ('t,111' t,t, 
and 

M M 2 

< KI: 11vc112 ~t + t: I: t~t 
n=l l=l 1 

Before estimating T9 , we note that, for a spatially periodic, L2 function g, it is 

shown in [4] that 

sup [-1- f g(x) - g(x) f(x)dx] 
JEW}(0),#0 llflli Jo ~t 

< KIIYII- (6.10) 

Thus, 

M M 2 

< KI: 11,n-1 11 2 ~t + t: I:t~t 
n=l l=l 1 

M n-1 2 

+ J{ I: I:,e~t ~t. 
n=l l=l 1 
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For the estimate of T10 , consider 

By the Holder continuity of St, we obtain 

Thus, 

Finally, 

Tn k; (~ C~t, t, (n~t) 

< K j;, IIC"ll'LH+ , II fie"'{ 
Combining the estimates for T1-T11 with (6.9), and using the fact that 

and the estimate 

lie(·, t)II + hlle(·, t)lli s; Kh2llc(·, t)ll2 
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(here we use the quasi-uniformity assumption on the mesh), we find 

½(0(M, (M) 

+ t, [{DV(", V(") + k( O(",(") + ~ (DV\", V\")t>t] t>t 

+ k; [ (t,v(n~t, t, V(n~t) + (t,,n~t, t,c~t) l 
M M 

~ J{h2Lll(nll2p~t + I<Ell(nll2~t + I{ ~t2p + J{~fP + J{h2 

n=l n=l 
M M 2 

+EL IICll~~t + I{ L 
n=l n=l 1 

+ , II E c t>t 11: (6.11) 

We now hide terms multiplied by E, and define 

n 2 

9n = ((n,(n) + Lt~t . 
1 

The L2 stability of en can be demonstrated using essentially the same arguments 

given above; i.e., we set x and v = en in (5.13) and (5.14), and use the monotonicity 

of</>. We then set x = I:-:!n ei~t in (5.13), multiply the result by ~t and sum on 

n, and sum by parts. The result is that IJenll ~ I<lle0 1J for each n, where I< is 

independent of h and ~t. Thus, by the L2 stability of C, we have 

IICll2p ~ I<. 

Then, (6.11) implies 

M 

gM ~ J<(h2 + ~fP) + J<Ljgnj~t. 
n=l 
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Applying Gronwall's Lemma and the triangle inequality, we obtain the following 

result: 

Theorem 6.1 Assume (Hla)-(Hlf ), (4. 7)-(4-9), and (H3a)-(H3e) hold, then 

Remark. When () and ij_ are time-dependent (hence D is time-dependent), this 

introduces additional terms into the summation by parts arguments which lead to 

(6.5) and (6.7). In particular, we obtain terms involving discrete time differences 

on () and () D. In this case, to derive error estimates we must assume these discrete 

differences satisfy assumptions analogous to those given in (H2b ). To our knowledge, 

these assumptions do not have any physical justification. 
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