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There have been assertions in the literature that the variational and unitary forms of coupled cluster
theory lead to the same energy functional. Numerical evidence from previous authors was inconsistent
with this claim, yet the small energy differences found between the two methods and the relatively large
number of variational parameters precluded an unequivocal conclusion. Using the Lipkin Hamiltonian,
we here present conclusive numerical evidence that the two theories yield different energies. The
ambiguities arising from the size of the cluster parameter space are absent in the Lipkin model,
particularly when truncating to double excitations. We show that in the symmetry adapted basis under
strong correlation, the differences between the variational and unitary models are large, whereas they
yield quite similar energies in the weakly correlated regime previously explored. We also provide
a qualitative argument rationalizing why these two models cannot be the same. Additionally, we
study a generalized non-unitary and non-hermitian variant that contains excitation, de-excitation,
and mixed operators with different amplitudes and show that it works best when compared to the
traditional, variational, unitary, and extended forms of coupled cluster doubles theories. Published by
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l. INTRODUCTION

Coupled cluster (CC) theory!? has established itself as
a benchmark model in computational quantum chemistry. It
has been used to compute fairly accurate approximations to
the energy eigenvalues of many-body systems with reasonable
computational cost. The ground state energy in the traditional
CC (tCC) framework is given by

Ecc = (0| e "He™ |0y, (1

where T is the excitation cluster operator truncated to kth rank
(T=T1+T,+--- +Ty). Different values of k yield different
truncated CC Ansdtze. Traditional CC theory comes with the
perks of size extensivity through the exponential Ansatz, as
well as fairly good approximations to the ground state energy
of a wide range of Hamiltonians, particularly when weakly
correlated. However, being an asymmetric expectation value,
it is not an upper bound to the energy.

On the other hand, the variational CC (vCC)>* energy is
obtained by minimizing the symmetric expectation value

(0] "' HeT |0)

Eyvce = 2
T 01 e 10) @

and is a rigorous upper bound. Like traditional CC, vCC is size
extensive in the sense that it contains only contributions from
connected diagrams.i6 However, it yields an infinite series of
contributing terms with no systematic truncation scheme. This
makes vCC computationally unpractical for realistic systems.
An alternative coupled cluster approach based on a unitary
Ansatz,”® known as unitary CC (uCC), has been sought as a
bridge between traditional CC and vCC. The uCC energy is
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obtained by minimizing the expectation value
Eucc = (0] e"7He? 10), 3

where o = T — T is an anti-hermitian operator. Unitary CC
is, by definition, a symmetric expectation value. Analogous
to vCC, an infinite series of diagrams contribute to Eycc.
Recently, there has been a renaissance of interest in uCC theory
in connection with quantum simulators that can evolve unitary
operators. 10

It has been asserted in the literature® that the energy
functional for the variational and unitary forms of coupled
cluster theory results in identical expressions—in fact identi-
cal order by order in the expansion. On the other hand, Ref. 7
reports otherwise. Numerical studies'"!> that followed this
claim reported discrepancies between Eycc and E,cc. Ref-
erence 11 reported that for the molecule Hydrogen Flouride
(HF), at the separation length R =3 A, the vCC and uCC ener-
gies differ by 2 millihartree or more. Yet the small differences
in the two energies, as well as the relatively large number
of parameters in the variational optimization (which makes
it tedious and usually difficult to converge to the true global
minimum), have precluded an unequivocal resolution about
the validity of the claim. A proper analysis and comparison of
the two energy functionals is thus warranted.

In this paper, we make use of the Lipkin model
Hamiltonian to present concluding numerical evidence that
the variational (Eycc) and the unitary (Eycc) coupled clus-
ter energies are different. Moreover, we offer a qualitative yet
concrete argument justifying the observed discrepancies. We
also compare different variants of the coupled cluster dou-
bles (CCD) model—uCCD, vCCD, traditional CCD (tCCD),
extended'®'® CCD (eCCD)—and a generalized (gCCD)'#-?!
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variant containing independent excitation, de-excitation and
mixed operators that we solve variationally (vgCCD).

This article has been structured in the following way: in
Sec. II, we describe the Lipkin model, highlighting the rel-
evant features that enable numerical tests to be performed
conveniently. Section III lays out the details of the numeri-
cal schemes utilized, while in Sec. IV, we present the results
obtained using these schemes at the doubles level-comparing
energies obtained with vCCD, uCCD, tCCD, eCCD, and
vgCCD. In Sec. V, we present a qualitative argument justi-
fying the difference observed between variational and unitary
coupled cluster theories. We close with concluding remarks.

Il. THE LIPKIN MODEL

The Hamiltonian due to Lipkin, Meshkov, and Glick
is a simple yet non-trivial model describing fermions in a
two-level system. It was originally proposed as a model to
describe a closed shell nucleus with schematic monopole inter-
actions.!3"1> There are N sites at each of the two levels and
exactly N fermions that are allowed to hop between levels
(excitations and de-excitations) but not between different sites.
Figure 1 shows two of the many possible configurations for an
N = 8 site Lipkin model. The Hamiltonian exhibits su(2) sym-
metry and can be mathematically expressed in terms of su(2)
generators

=~ (12477). 4)

For quantum chemistry purposes, it is convenient to write
the generators in terms of spin 1/2 creation and annihilation
fermion operators J, J. defined as

N
1
Jz = E ; CjTC,'T — C:'flcil» (5)
N
J= ) chei, (©)
i=1
J_=1Jl, (7)

which satisfy su(2) commutation relations
Vi, J-1=2J, and [/, J.] = £/ ®)

Here x conveniently parameterizes the relative strength of the
interaction: x = 1 is non-interacting while x — 0 is the strong
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FIG. 1. Typical configurations with even and odd parity for the N = 8 site
Lipkin model. (a) Even parity. (b) Odd parity.
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correlation limit. It is not difficult to see that J? is a symme-
try and hence we can label the eigenstates of the system by
quantum number j with integral values of j such that j(j + 2)/4
are the eigenvalues of J2. For the N site Lipkin model, any
configuration or state lies in j = N subspace and this further
simplifies our problem. Another symmetry of the Hamiltonian
is parity defined as P = ¢™/:. As an example, for N = 8, the
states with an even number of excited fermions have the parity
eigenvalue p = 1 [see Fig. 1(a)] and those with odd number of
fermions in the upper level have p = —1 [see Fig. 1(b)].

The Lipkin model is exactly solvable using the
Richardson-Gaudin Ansatz*>*} as well as using the genera-
tor coordinate method.2* However, exact diagonalization (full
configuration interaction) of the resulting banded Hamilto-
nian is straightforward for fairly large system sizes and is the
approach used herein. This is a consequence of the size of the
Hilbert space being merely N + 1 as opposed to the combi-
natorial dependence of the size on a number of particles in
typical many-body systems such as the Hubbard model. We
conveniently form an orthonormal basis based on the number
of fermions excited to the upper level and define

Im) = Ji" 10}, ©))

Ym=0,1,2, ..., N.It mustbe noted that while there are ¥ C,,
possible states with m fermions excited, all of them are degen-
erate and therefore, |m) is, by definition, a linear combination
of all these configurations, each with a coefficient (Y C,,)"!/2
when normalized. Despite the simplicity, the model contains
non-trivial physics in the transition between the weakly and
strongly correlated regimes where parity symmetry breaks
down at the Hartree-Fock level.??

The restricted Hartree-Fock (RHF) reference determinant
for the Lipkin Hamiltonian is given by

0 =[]e,1-. (10)
i
where |—) is the physical vacuum with no particles. One can
also form a broken symmetry determinant given by

@) =] ei, 15, (1n

where {@;} defines the deformed basis of creation or anni-
hilation operators, obtained through a unitary rotation of

{ci}s . )
@) ! (1 K) (CT) 12
(‘”L) Vie \=k e -

Such a transformation with a non-trivial value for « breaks the
parity symmetry of the Hamiltonian. The above equation can
be conveniently re-written as a Thouless rotation®

D) = e+ 10y, (13)

(1+k2)N/2
where the value of « is optimized so as to minimize the Hartree-
Fock broken symmetry energy, here loosely referred to as
unrestricted HF (UHF), in analogy with quantum chemistry
terminology for broken spin symmetry

Eynr = (P H |D). (14)

In our study, we make use of both UHF and RHF references to
study the difference between vCC and uCC. However, as we
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shall observe later, this difference is more clearly apparent in
the RHF.

Requiring that the excitation operator respects the parity
symmetry of the Hamiltonian,> the cluster excitation operator
is defined as

k
T = Z tJL. (15)
i=1

Note that there is only one amplitude per excitation level due to
the degeneracy. These features make the Lipkin model an ideal
tool for comparing approximate many-body theories.>*>’-3°
Both the variational as well as the traditional coupled cluster
approaches are fairly easy to converge.

lil. METHODS

In this study, we make use of different coupled cluster
Ansdtze: traditional, variational, unitary, extended, and gen-
eralized. The latter is a non-hermitian coupled cluster Ansatz
similar to generalized CC where we use different amplitudes
for excitation, de-excitation, and mixed combination opera-
tors; we obtain the energy variationally as an expectation value.
Here, we shall describe the explicit mathematical formulation
only for the RHF reference; it is straightforward to generalize
the equations for a UHF reference. In the results, we refer to the
coupled cluster methods based on the RHF and a UHF refer-
ence as RCC and UCC, respectively. Accordingly, traditional
CCD, for instance, becomes tRCCD and tUCCD.

A. Traditional and extended coupled cluster

Practical CC models will necessitate some level of trunca-
tion. We therefore here restrict the cluster operator 7' to double
excitations. While working with the RHF reference, we use
an Ansatz that preserves the symmetry of the wave function,
and thus, the cluster operator consists of double excitations
only: T = tJf. On the other hand, for UHF reference, we use
CCD including additional single excitations (CCSD). The tra-
ditional coupled cluster doubles (tCCD) energy in the RHF
basis is given by

Eiccp = (0] ¢ He'"> 10), (16)

=0l H |0), 7)

where H is the similarity transformed Hamiltonian and the
doubles amplitude ¢ for tCCD is found by solving

0=(0| J> H |0). (18)

The extended coupled cluster energy'®~'# is obtained by a sec-

ond similarity transformation of H, this time with de-excitation
operators

Eecep = (O] e e Vi He e |0). (19)

After noting that de-excitations to the right do not change the
reference, it is also possible to interpret eCC as tCC with a
more elaborate bra state. Note that H is non-hermitian, thus its
right and left eigenvectors must be different

Eecc = (0] ¢“H |0). (20)
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Improvements to the bra yield significant changes to tCC. The
amplitudes for eCCD are obtained by making the energy func-
tional in Eq. (20) stationary with respect to all parameters, i.e.,
t and z.

For a standard Hamiltonian like Lipkin, with at most 2
body terms, the Baker-Campbell Hausdorff (BCH) expansion
of Eq. (17) truncates at the fourth order nested commutator
yielding a non-hermitian 6-body effective Hamiltonian. For
eCC, Eq. (19) yields an even higher many-body effective H
but still truncates at 75 and Z;.

B. Variational and unitary Ansétze

The variational coupled cluster doubles (vCCD) energy is
obtained by minimizing the symmetric (hermitian) expectation
value

<0| elJz Het]f |0>

n—m——s———.
(] et? ot)? |0)
The variational approach to CC is, in general, computation-
ally intractable because it involves a number of terms that grow
combinatorially as a function of size. In the Lipkin model, how-
ever, it is possible to converge the vCC wave function robustly
because of the relatively small size of the Hilbert space. In
our numerical implementation, we evaluate the vCCD wave
function using a Taylor series expansion of the exponential of
the double excitation operator,

2y

Eycep = mli

)
2

£

[vCCD) = (1 +1J2 + 3

Jh+ J£+...) |0). (22)
The Taylor series is truncated to kth-order when the norm con-
tribution from the (k + 1)th order is within a specified tolerance
value. For a model with N sites, the Taylor series naturally

truncates at Nth power of J, since
JM 0y = 0.

The hermitian expectation value of the Hamiltonian matrix can
then be easily obtained with order N operations. The resulting
functional is minimized with respect to ¢ in a one-dimensional
optimization.

Analogously, the uCCD energy is obtained by taking the
symmetric expectation value of H using the exponential of an
anti-hermitian operator of double excitation and de-excitation
operators, o =t (J2 — J?), where o' = -0,

EuCCD = mtin <0| E_O-Heo- |0> (23)
Computationally, unitary coupled cluster can be implemented
using an approach similar to the variational Ansarz. How-
ever, one can easily diagonalize the anti-hermitian operator
o' = J? — J?, which has imaginary eigenvalues

a’|Ap) = idp|Ap),
where we demand the eigenvalues 1, € R by explicitly
inserting i; writing the RHF reference in the basis of {|1,)},

10y =" epldp), (24)
P
the energy expression then takes the form

Eucep = min )" creqe™ W H |4, @5)
pq
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For both the variational and unitary CCD energy functionals,
a well defined global minimum with respect to ¢ is observed.
It must be noted that the variational energy functional in the
UHF picture will have an additional dependence on « [see Eq.
(12)] and one should also minimize the energy with respect to
this parameter.

C. Generalized Ansatz

Our last model is a variational Ansatz in the spirit of gen-
eralized coupled cluster, where we make use of JE, J?, and
J+J_ operators. In principle, one can also include J,. But we
observe that including the latter causes, a strong tendency for
the amplitudes to converge to values such that

exp(tJ? + aJ? + bJ,) — exp(-BH) (26)

with large values for 8 (>1) leading to numerical issues. This
observation is similar to the one made by Mazziotti in one of the
schemes in Ref. 27. The energy for this variational-generalized
coupled cluster doubles (vgCCD) is given by

[veCCD) = exp(tJ? + aJ? + bJ,J_) |0), (27)
. {(vgCCD| H |vgCCD)

E. =
veCeD = o eCCDvaCCD)Y

Computationally, the vgCCD energy in the symmetry adapted
basis is obtained using an approach similar to that explained
above for vCCD. However, it is difficult to find a global min-
imum in the broken symmetry formulation. Even with RHF
as the reference, care must be taken to get the required con-
vergence. Here we follow a systematic cascade approach—
restricting the amplitude b = 0—and we conveniently minimize
the energy with respect to 7 and a; these converged values are
then used as an initial guess and energy is minimized with
respect to all the three parameters {t, a, b}.

(28)

IV. RESULTS

The various Ansdtze described above were implemented
for the Lipkin model without any significant numerical prob-
lems. Energy plots as a function of the interaction parameter
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FIG. 2. Energy error per particle for traditional, extended, variational, unitary,
and variational-generalized CCD in the RHF basis on the Lipkin model for
N =32 sites.
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FIG. 3. Energy error per particle for mean field energy, traditional, varia-
tional, and unitary CCSD in the UHF basis on the Lipkin model for N = 32
sites. The variational energy functionals are optimized with respect to « as
well.

x are presented for both symmetry adapted as well as bro-
ken symmetry formulations. Keeping consistent with notation
in Ref. 25, we use a prefix “R” for the results in the RHF
basis results and a prefix of “U” for those in the UHF basis.
Figure 2 shows the energy error per particle with respect to
exact results for the various methods in the RHF basis, i.e., tra-
ditional (tRCCD), extended (eRCCD), variational (vVRCCD),
unitary (uURCCD), and generalized (vgRCCD) coupled clus-
ter doubles for the N = 32 site Lipkin model. As already
noted in previous work,” both the tRCCD and eRCCD
solutions fail to exist as the correlation strength increases
(x decreases).

Figure 3 shows the energy error per particle with respect
to exact results for the various methods in the broken symme-
try basis, i.e., UHF energy, traditional (tUCCSD), variational
(vUCCSD), and unitary (uUCCSD) coupled cluster doubles
for the N = 32 site Lipkin model. As noted before, for the
variational methods, we minimize the energy functional with
respect to the broken symmetry parameter « as well. Figure 4
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FIG. 4. Optimized cluster amplitudes corresponding to the different VRCCD
methods in Fig. 2 for the N = 32 Lipkin model.
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shows the optimized amplitudes corresponding to the differ-
ent RCCD Ansditze in Fig. 2. Clearly, unitary and variational
Ansdtze do not lead to the same energy—in fact, VRCCD is
found to be better than uRCCD over the entire range of the
interaction parameter x for reasons that are not obvious to
us. The difference is not as visible in the broken symmetry
formulation. We give a qualitative explanation for this obser-
vation in Sec. V. On the other hand, the vgRCCD Ansatz
significantly improves upon both vRCCD and uRCCD. More-
over, the optimum amplitudes for vgRCCD make the cluster
operator non-hermitian and far from unitary.

V. VARIATIONAL VS UNITARY

It is not difficult to see the difference between the
vCC and uCC energy functionals analytically. As noted by
Pal et. al. in Ref. 5, the vCC energy functional can be reduced
to

1 .
Evce = ) (O (TY"HT" [0)a, (29)

m,n

where the subscript “cl” denotes contribution from closed and
connected terms (or diagrams) only. On the other hand, the
uCC energy functional can be expanded using the Baker-
Campbell-Hausdorff series

1
Eucc = F«)' ([...[H,0l,ol...],00110),  (30)
k!

where the summand is the ground state expectation of the usual
nth order nested commutator of H and the unitary cluster oper-
ator o =T — TT. At kth order nested commutator of H with o,
we have ¥C,, unique combinations of nested commutators of
H with astring of m T’s and (k —m) T’sVm =1,2, ..., n. If
these commutators are either all trivial or all non-trivial, then
we recover the coefficients in Eq. (29) with n =k — m.

In general, however, the BCH expansion of an arbitrary
term /; in the Hamiltonian with either pure excitation or pure
de-excitation operators will terminate at a finite order, say,
n;+ and n;_ respectively. Then at some (m < n;.)th order in
Eq. (30), the ground state expectation value of a nested com-
mutator of i; with some arbitrary sequence of x 7’s and y T'7’s
(x + y = m) becomes

1 1 ,
— (Ol [...[[H, T),T™],... T 10) = — (O] (T"YHT*|0)q
n. n.

(31)

and since m can be partitioned as m = x +y in m!/(x!y!) ways,
the contribution from A; at mth order to uCC in Eq. (30) and
vCCin Eq. (29) is identical, as has been claimed. However, for
m > n; some of the m!/(x!y!) combinations would be identically
zero, which result into the difference between these two energy
functionals.

As an explicit example, consider the term 4 = J? in
the Lipkin Hamiltonian and the corresponding contribution
at O(#3) in vCCD and uCCD. The only closed connected term
in vCCD is

[3
Eyeep() = 157 OLTTAT 0)a, (32)
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while the uCCD functional due to / at the same order is

E®

3 .
wecp = %{[[[h, 71,1, T+ ([H, T'), 771, T]

+[[[H.T71. 71,771}, 33)

Notice that there are 3!/(1!2!) terms in the above expression
for uCCD, but clearly the first term is zero while the others
are equivalent to the closed and connected expectation value
in Eq. (32). Therefore

3
[C (4)
EvCCD - EEMCCD' (34

Another example that shows the difference at O(t*) can also be
constructed with i, = J.. While (0] (77)?h,T? |0) contributes
non-trivially to vCCD, the following commutators in the uCC
expression are zero:

([, T), T, T, T =0 = [[[[h,, T, T"1, T, T].  (35)

Indeed, for the Lipkin model Hamiltonian, the variational and
unitary energy functional would differ by O(z?). Therefore,
if the optimizing amplitudes #ycc and fycc are similar (and
here found to be ~1072—see Fig. 4), then the observed dif-
ference in Eycc and Evcc would be ~107° or lower. This is
exactly what we observe in the broken symmetry formula-
tion. On the other hand, in the symmetry adapted Hamiltonian,
the optimizing amplitudes t,cc and fycc are quite different.
Thus we see a more clear difference between the two energy
functionals.

VI. CONCLUSIONS

We have unequivocally demonstrated the non-equivalence
of energies between unitary and variational CCD Ansditze using
the Lipkin model Hamiltonian. The difference between uCC
and vCC is found to be small in weakly correlated limit.
This is consistent with observations made in Refs. 11 and
12 where physical systems have been studied in weak cor-
relation limit and the energy differences are reported to be
of O(mkEj) or even smaller. It is in strongly correlated limit
when the distinction between the two energy functionals is
evident (see Fig. 2). This observation is corroborated by our
arguments in Sec. V where we notice that for the interac-
tion Hamiltonian, the energy difference shows up at O(r%),
while for non-interacting case, it shows up at O(t*). Fur-
thermore, the results from the variational-generalized Ansatz
suggest that a non-hermitian combination of J2, J?, and
JiJ_ operators leads to much smaller errors than the anti-
hermitian one. While we have explicitly worked with the
Lipkin Hamiltonian, it is straightforward to generalize the
arguments presented in Sec. V to the more general ab initio
Hamiltonian.
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