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Abstract

This paper studies the startup dynamics of TCP on both high as well as low bandwidth-
delay network paths and proposes a set of enhancements that improve both the latency as well
as throughput of relatively short TCP transfers. Numerous studies have shown that the timer
and congestion control mechanisms in TCP can have a limiting effect on performance in the
startup phase. Based on the results of our study, we propose mechanisms for adapting TCP
in order to yield increased performance. First, we propose a framework for the management of
timing in TCP. Second, we show how TCP can utilize the proposed timer framework to reduce
the overly conservative delay associated with a retransmission timeout. Third, we propose the
use of packet pacing in the initial slow-start to improve the performance of relatively short
transfers that characterize the web traffic. Finally, we quantify the importance of estimating
the initial slow-start threshold in TCP, specially on high bandwidth-delay paths.

1 Introduction

As new network technologies emerge and transform the Internet, the TCP (Transmis-
sion Control Protocol) is being evolved to cope with new operating conditions and
performance demands. For instance, extensions like large windows [4], selective ac-
knowledgements [20], PAWS (protection agains wrapped sequence numbers) [4] and the
timestamp option [4] are being incorporated in TCP to maintain correct operation and
high performance on the evolving Internet. This paper studies the startup dynamics of
TCP on both high as well as low bandwidth-delay network paths and proposes a set of
enhancements that improve both the latency as well as throughput of relatively short
TCP transfers. The term high bandwidth-delay path is intended for those network paths
the product of whose bandwidth and round trip propagation delay is of the order of two
orders of magnitude larger than the MTU (maximum transmission unit) supported by
the network.

Numerous studies have shown that the timer and congestion control mechanisms in
TCP can have a limiting effect on performance in some network environments, specially

in the startup phase. The coarse-grained clock! used for measuring round-trip time

'4.4BSD TCP uses a 500ms clock for measuring RTT and scheduling timeouts



(RTT) and scheduling retransmission timeouts (RTO) in the BSD based implementa-
tions of TCP has been shown to affect both latency as well as throughput [6, 5, 14, 19].
The slow-start congestion control mechanism [16] has been found to be slow in filling
the network pipe [21, 12, 1] and affects the performance of short transfers that typically
finish during the initial slow-start. Throughout this paper, the term pipe sizeis intended
to be synonymous with the product of the available bandwidth? and the round-trip time
observed when there is no queuing at the routers.

In this paper, we propose enhancements to the TCP timer and slow-start mechanisms
that adapt TCP for providing better performance during startup. Firstly, we propose
a framework that decouples the timing algorithms in TCP from the event scheduling
facilities provided by the operating system, viewing the latter as a service that TCP
tries to adaptively use to its best possible advantage. Secondly, we show how this
framework can be utilized by TCP to achieve a reduction in the long delays associated
with a timeout. Thirdly, we show how the performance of the slow-start mechanism in
TCP can be improved by using the event scheduling service to pace packets. Finally, we
quantify the impact of estimating the slow-start threshold (ssthresh) [14] on the startup
TCP performance in high bandwidth-delay networks.

The remainder of this paper is organized as follows. The simulation environment
used to obtain the results presnted in this paper is described in Section 2. In Section 3,
we show simulation results that demonstrate performance problems that TCP suffers in
certain network enviroments. Section 4 presents a new framework for managing TCP
timers and time measurement that allows TCP to make use of improved timing facilities
available in many modern host environments. Section 4.2 presents our enhanced slow-
start mechanism, which takes advantage of the time framework in order to pace packets,
thus affording higher performance for short transfers over network paths with high
bandwidth-delay products. A detailed simulation-based performance evaluations of the
proposed mechanisms is given in Section 5. Related work is discussed in Section 6 and

in Section 7 we summarize our conclusions.

2 Simulation Environment

This section describes the simulation environment used in our study. All simulations
were done using the z-sim network simulator [7], which is based on the z-kernel [15].
2-sim is an execution-driven network simulator, where the actions of network protocols
are simulated by executing its actual protocol implementation code, rather than an
abstract behavioral model of the protocol. z-sim supports multiple hosts, each running
a full protocol stack, and several abstract link behaviours (point-to-point and ethernet

links). The routers are modelled as network nodes that supports a particular queuing

2 Available bandwidth indicates how fast a connection should transmit data to preserve network stability while

bottleneck bandwidth gives an upper bound on how fast a connection can possibly transmit data [22].
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discipline (e.g. FCFS). Host and router computation is assumed to have zero overhead.
The simulator clock has a granularity of 1us.

The version of TCP Lite used in our simulations corresponds to Lite.4 proposed in [5].
This version fixes many bugs in the original 4.4BSD-Lite[26] distribution. TCP Lite is an
extension of TCP Reno and provides support for long fat pipes (high bandwidth-delay
paths) amongst other improvements [4]. The timeout estimation and congestion control
algorithms used in TCP Lite are essentially the same as those in TCP Reno[16, 17, 23].

Figure 1 and Figure 2 show the network topologies we used for our simulations. The
topology in Figure 1 was used to simulate a high speed WAN (wide area network) while
the one in Figure 2 was used to simulate both a low speed WAN as well as a satellite
network. In both topologies, nodes R1 and R2 are IP routers that are connected by the
bottleneck link. The IP packet size used for simulating the low and high speed WANs
was 1500 bytes while 512 bytes was used for simulations involving the satellite network.

For the topology in Figure 1, eight senders (S1, S2, ... S8) use TCP to send data
to eight destinations (D1, D2, ... D8) across the bottleneck link. The routers were
configured to have a buffer size of 200 packets. The round-trip propagation delay is
60ms. The links connecting the end-hosts to the routers have a bandwidth of 100Mbps
while the bottleneck link has a bandwidth of 155Mbps. This topology then provides a
high bandwidth-delay path between R1 and R2 having a pipe size of 1.1MB. It resembles
a real internet where hosts on several 100Mbps Ethernet LANs (local area networks)
transfer data to destinations across a WAN consisting of an 155Mbps STS-3 link.

In Figure 2 the bottleneck link that connects R1 and R2 has a bandwidth of 1.5Mbps.
The two TP routers R1 and R2 are further connected to 10Mbps Ethernets. Senders
(S1, S2) connected on the Ethernet attached to R1 use TCP to send data to desinations
(D1, D2) that are connected on the Ethernet attached to R2.

For simulating a low speed WAN, the bottleneck link in Figure 2 was configured to
use a round-trip propagation delay of 100ms and the buffer sizes at the routers were set
to 20 packets. This results in a low bandwidth-delay path of pipe size 200KB between
R1 and R2. The setup is similar to other studies of TCP dynamics on low speed WANs
[6, 5] and resembles an internet where 10Mbps Ethernet LANs are connected by a T1
link.



The simulations on a satellite network involve setting the round-trip propagation
delay in Figure 2 to 580ms, while the router buffer sizes were set to 70 packets. This
topology is similar to the one used in [1] to emulate satellite networks and provides a
high bandwidth delay path of size 116KB. The links used in this topology, however, do
not simulate any bit errors.

In the simulations with the high speed WAN and satellite topology, we use a TCP
advertised window size of 512KB to accomodate the relatively large bandwidth-delay
products in these simulated networks. This enables us to examine the effect of timer
and congestion control algorithms on TCP performance without being limited by the
receiver advertised window. For the low speed WAN, an advertised window of 64KB

was used.

3 TCP timers and congestion control

In this section, we present performance problems with the timer and congestion control
mechanisms in TCP Lite that affect the startup dynamics. Many of these limitations
have also been observed elsewhere in the literature [21, 12, 1, 6, 14]. As we will show, the
impact of these problems is particularly significant in networks with large bandwidth-

delay products, including high-bandwidth, long-haul networks and satellite networks.

Simulation Effective Avg Data
Time (s) | Throughput (%) | Transferred
1 6.62 145.8 KB
5 19.81 2.2 MB
10 30.52 6.7 MB
20 56.36 24.8 MB
30 68.65 45.3 MB

Figure 3: Time vs Throughput

In this section, we’ll use the high speed WAN topology in Figure 1 for studying the
startup TCP dynamics over high bandwidth-delay paths. All senders transfer 100MB
of data to the corresponding destinations and the simulation time was limited so as
to terminate the transfers before they finish (as suggested in [7]). We define effective
throughput as the ratio of the total amount of useful data that was transferred, to the
maximum amount of useful data that could have been transferred over the bottleneck
link for the time of the simulation. Figure 3 shows the effective throughput obtained by
limiting the simulation time to several different values. It also indicates the resulting
average amount of data transferred by each sender in that time.

The results indicate that the effective throughput of the TCP transfers increases

with the increase in simulation time. The results can also be interpreted by thinking
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of the transfer sizes to be variable while the simulation time is unlimited. Interpreted
this way, the effective throughput increases with the transfer size. For TCP transfers
that take less than 1s of time to finish (i.e. the size is less than 145KB), the effective
throughput is less than 7% while transfers that takes less than 10s to finish (less than
6.7MB in size), have an effective throughput of less than 30%. Only very large TCP
transfers (of sizes greater than 45MB) attained an effective throughput of 70% and shall
be able to effectively utilize the high-bandwidth network.

Today, the vast majority of TCP traffic over the Internet consists of HT'TP transfers
that have a mean size of less than 100KB [2]. Most of the TCP transfers on the Internet
that use the ftp protocol are also less than 10MB. Thus, our results indicate a potentially
severe underutilization of link capacity in networks with high bandwidth-delay products

during common TCP transfers.
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Figure 4: TCP Lite over Topology1l

Figure 4 shows the trace of a typical TCP Lite transfer when the simulation time
was limited to 30s (enough to transfer about 580MB of data across the bottleneck link).
A description of the information presented in the trace is given in Appendix A.

At t=0s, TCP enters the slow-start phase, where is doubles the size of the congestion
window every round-trip time (RTT), starting at a size of one segment. This phase
continues until t=1.2s, when multiple segment losses occur because the size of the
congestions window has exceeded the capacity of the network. The losses result in a
period of inactivity that extends to t=2.8s, when a retransmission timeout occurs. TCP
reenters slow-start until t=3.4s, when the congestion window size reaches the slow-start
threshold (ssthresh). At this point, TCP enters the congestion avoidance state, where
the congestions window is increased by only 1 segment every RTT. This state continues
until t=26.5s, when the congestion window has again grown too large, resulting in the
loss of a single segment. This loss is detected by TCP’s fast retransmit mechanism [23],
the lost segment is retransmitted, the congestion window is halved, and TCP continues
in the congestion avoidance state.

In the rest of this section, we describe the main factors that limit TCP performance

based on these observed simulation results.



3.1 Retransmission Timeout

We first focus on performance losses related to TCP’s retransmission timeout mecha-
nism. TCP’s fast retransmit mechanism attempts to recover from packet losses without
requiring a retransmission timeout. Fast retransmit is a heuristic that retransmits a
segment upon receiving three duplicate ACKs for the segment that precedes the re-
transmitted packet. However, when faced with multiple segment losses, TCP has to
generally rely on a retransmission timeout for recovery. For instance, the trace in Fig-
ure 4 indicates a retransmission timeout (shown by a large black circle at the top of the
graph) at t=2.8s that resulted from multiple segment losses. The single segment loss at
t=26.5s, on the other hand, is handled by the fast retransmit mechanism.

Notice that prior to the retransmission timeout, the connection remained idle from
t=1.2s to t=2.8s (indicated by the absence of Hash marks at the top of the graph as
described in Appendix A). Hence, there is a delay of almost 1.6s between the timeout
and the previous packet sent. Given that the round-trip delay is only 60ms, this timeout
period is excessivley long. There are two reasons for this long timeout period. The
BSD implementation of TCP uses a coarse-grained clock (500ms granularity), both for
measuring the RTT and for scheduling timeouts. Since all scheduled timeout events are
synchronized to the 500ms clock, the minimum possible timeout value is 2 ticks, resulting
in an actual timeout period in the range 0.5-1s. Moreover, because of inaccuracies
resulting from the measurement of the actual RTT using the 500ms clock, the actual
minimal timeout value is normally 3—4 ticks, resulting in a timeout period in the range

1-2s. This issues will be further analysed in Section 4.1.

3.2 Slow Start
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Figure 5: Slow-Start in TCP Lite over Topology1l

Next, we consider the impact of TCP’s slow-start on performance. Figure 5 shows an
exploded view of the first 4 seconds in the trace of Figure 4. The trace shows that the
connection gets established after about 60ms®. After this, TCP enters the slow-start

state with an initial congestion window of 1 segment. TCP is said to be in slow-start

#This is where the sender gets to know the receiver’s advertised window and is indicated by the setting of the dark

gray line in the trace to 512KB as mentioned in Section 2.



whenever the congestion window is less than the slow-start threshold (ssthresh). In
slow-start, the congestion window is increased exponentially every RTT# until either
the congestion window becomes larger than ssthresh or lost segments are detected.

Despite an exponential increase in the size of the congestion window, slow-start
can take many round-trip times before filling up the network pipe in a network with
large bandwidth-delay product. This results in inefficient link utilization for short TCP
transfers, especially those that finish while still in slow-start. The primary cause of the
low effective throughput reported in Figure 3 for small simulation times is the slow-
start phase. We will address the issue of performance limitations due to slow-start in
Section 4.2.

3.3 Congestion Avoidance

Finally, we consider performance loss due to TCP’s congestion avoidance state. When
the congestion window becomes greater than ssthresh, TCP enters the congestion avoid-
ance state, where the congestion window is increased by 1 segment every RTT®. Figure 4
shows that TCP enters the congestion avoidance state at 3.4s. The congestion window
is increased linearly until a packet loss is detected (at 26.5s). Thus, it took about 23s to
fill the network pipe (including the buffers at the bottleneck router). More importantly,
after the timeout, it took more than 16s to increase the congestion window to a value
of 145KB (this is the pipe size available to a sender if we assume that the bandwidth
is distrubuted fairly amongst all 8 senders). During this time, TCP was underutiliz-
ing the available capacity in the network. Once the pipe is full, further increase in
the congestion window fills up the router buffers until congestion occurs due to buffer
overflows.

Other researchers [1] have also observed that the linear rate of growth of the con-
gestion window can cause decreased performance in satellite networks that typically
involve high bandwidth-delay paths. We do not address this problem in this paper, but
in Appendix B we suggest some possible approaches that can be used.

In the next section, we present our enhancements to TCP’s timeout estimation and

slow-start techniques that address the limitations described in this section.

4 TCP Timers: New Framework to Utilize OS Capabili-
ties
In this section, we propose a new framework that allows TCP to make the best possible

use of the timer facilities available in the host operating system and architecture. The

framework allows TCP to perform more accurate RT'T measurements and to schedule

*Delayed ACKs in TCP cause the window increase to be less than exponential [5].

"Delayed ACKs cause the window increase to be less than 1 segment every RT'T



finer-grained timeouts that are much closer to the RTT of the network by exploiting
improved timing facilities available in modern computer systems.

The BSD implementation of TCP, which still forms the basis for many commercial OS
implementations, expects the operating system to provide it with two periodic “software
interrupts”. One of these interrupts invokes a designated TCP function every 200ms, the
other invokes a separate TCP function every 500ms. These two interrupts consititute
all of the timing services that TCP expects of the host operating system; all TCP timer
mechanisms (round-trip time estimation and various TCP timeouts) are implemented
by the TCP protocol module using these periodic interrupts. While this minimalistic
timing service interface to the operating systems ensures portability across a wide range
host hardware and software platforms, it also constrains the accuracy of TCP time
management.

Two technological changes have occured since the original BSD TCP implementation
was developed that drive our proposed new framework for time management in TCP.
First, network speed has increased by several orders of magnitude, thus increasing the
impact of inaccuracies in timer management on TCP performance. Second, vastly
improved timing and event handling facilities are available in modern host operating
systems and platforms. Our new framework aims at enabling TCP to take advantage of
the best timing facilities available in a given host OS and platform, while still retaining
the ability to make due with the traditional BSD style coarse-grained timing facilities
to ensure backward compatibility and portability across a wide range of host platforms.

Our proposed framework has two salient features:

1. TCP expects OS to provide two different timing-related services—one for measure-

ment and one for event scheduling.

2. TCP is actively aware of the clock granularity of each of the services and adapts

its behavior based on the available clock granularities.

The OS service for time measurement consists of an operation currentTime (), which
returns a 64-bit value, representing the current real time in nanoseconds. Since the
values are used only to measure intervals, the time need not be synchronized with
any standard time base. In addition, the TCP module can queury the resolution of
the underlying timer. Note that although currentTime() returns the current time in
nanoseconds, the actual resolution of the obtained values may be much coarser, for
instance 500ms.

A second OS service provides the TCP module with a facility to schedule events.
This can either be in the form of a periodic software interrupt (as for BSD implementa-
tions), or as an explicit request by the TCP module for a sofware interrupt whichever is
efficiently supported by the OS. A designated function in the TCP module is invoked as
a result of the software interrupt. This function is used by the TCP module to imple-

ment its various event timer facilities using appropriate data structure, such as timing



wheel [24] and calendar queues [8]. Again, the TCP module can query the granularity
of this event service, and this granuarity determines the granularity of TCP’s timers.

Typically, the OS service for measuring time can provide a finer granularity than
the service for event scheduling. This is because most modern architectures provide a
fine-grained timer/counter with micro to nano-second granularity in hardware, whose
current value can be read with little overhead [6]. Providing an event timer, on the
other hand, involves a thread dispatch that is currently only efficiently supported at a
millisecond granularity as a finer granularity could cause significant interrupt overhead.
The separation of the services for time measurement and event scheduling allows TCP
implementations to take advantage of this fact.

Current BSD implementations use the same coarse-grained (500 ms) clock for both
time measurement as well as for scheduling events. Thus, time measurements are made
at the same coarse granularity as event scheduling. In the following subsections, we
show how the proposed timer framework can be utilized to reduce the inefficiencies

associated with retransmission timeouts and slow-start in TCP.

4.1 Retransmission Timeout: decoupling estimation and scheduling

We have shown in Section 3.1 that the long delay associated with the firing of the
retransmission timeout can cause decreased performance. In this section, we show how
to achieve shorter retransmission timeouts and the associated throughput loss taking
advantage of the timer framework proposed in the previous section.

The RTO value calculation in the BSD implementations of TCP are described in
[16]. The appropriate retransmission timer value rto is calculated based on an RTT

estimator ¢ and a mean deviation estimator d, according to the formula:
rto «— a + 4d

The estimators are updated using a new RTT measurement m using the following
formulas:

FEFrr=m-—a
a<+ a+ goFrr

d+ d+ g (|Frr|—d)

1
49
arithmetic using scaled versions of the above equations and using scaled estimators that

The chosen values for gain parameters are gg = % and g; = which allows integer

are defined as sa = 2%a and sd = 22d. The calculations can be implemented using

integer arithmetic as follows:
Err=m — (sa >> 3)

sa +— sa+ Err



sd < sd+ (|Err| — (sd >> 2))
rto < (sa >> 3) + sd (1)

The BSD implementations of TCP use a coarse-grained clock (500ms granularity) for
measuring RTT and scheduling timeouts. Two problems arise when the above calcula-

tions are performed on tick counts from a coarse-grained clock:

1. Due to the coarse-grained clock used, there can be a large variance in the measure-
ment of RTT, resulting in a large value for sd. For small RTTs, the contribution of
(sa >> 3) would be much smaller than the contribution due to sd, thus resulting

in large estimates of RTO as compared to the average RTT (given by (sa >> 3)).

2. Brakmo and Peterson [5] have shown that due to limited precision of the C im-
plementation, the mean deviation estimator does not decay even when repeated
RTT measurements with the same value are made. This problem is significant

only when sd is large compared to (sa >> 3) i.e. when the clock is coarse-grained.

The work in [5] shows that for round-trip times of about 100ms, the estimated RTO
can be as large as 5 ticks and almost never goes below 3 ticks. RTO values of 5 ticks and
3 ticks can cause an actual timeout delay of 2-2.5s and 1-1.5s, respectively®. Brakmo
and Peterson [5] also propose a fix for the second problem described above by using
larger scaling factors. The authors show that as a result, the estimated RTO frequently
is 3 ticks while sometimes it does get as low as 2 ticks (the minimum possible value for
RTO in BSD implementations of TCP).

Overly conservative estimates for RTO can keep the connection idle for unnecessar-
ily long periods of time. This results in inefficient link utilization, which is particularly
costly for high bandwidth networks. If the RTT is sufficiently smaller than the granu-
larity of the coarse-grained clock, the estimated value of RTO should be the minimum
possible (2 ticks). This would keep the timeout delay between 0.5-1s. We propose the
following method for calculating RTO values, taking advantage of the timer framework
proposed in the previous section.

Let the clock frequency for measuring time be f.;; and the clock frequency for
scheduling events be f.,. After measuring time in ticks corresponding to the f,.;; clock,
Equation 1 is used to compute rto. This value is in ticks, corresponding to the f.; clock,
and is expected to be closer to the real RT'T because of the finer granularity of the clock

used. The actual timeout rto., value is computed using the following equation:
rtoe, ¢ MAX(2,[rtox fey/frue] +1) (2)

The term [rto  f.,/fr] gives the number of ticks of the f., clock that are equivalent
to rto ticks of the f,;; clock. The increment by one accounts for the fact that packet

transmissions may not coincide with any clock tick in BSD implementations.

instant when packets are sent. Thus, an RTO of 5 ticks can result in a delay of anywhere from 2 to 2.5s.

10

5The 500ms clock in BSD implementations of TCP ticks regularly every 500ms rather than re-starting at the



RTT. | RTOo | RTOg | RTT; | RTON; | RTON.
(500ms) | (500ms) | (500ms) || (Ims) | (1ms) | (500ms)
0 3 3 60 183 2
0 3 3 150 253 2
1 5 3 60 218 2
0 4 3 60 190 2
0 3 3 61 167 2
0 3 3 60 150 2
0 3 3 61 135 2
0 3 3 60 123 2
0 3 3 60 114 2
0 3 2 61 105 2
0 3 2 60 99 2
1 5 3 61 93 2

Figure 6: Sample RTO computation

In short, the new framework decouples the clock granularity used for measuring
RTT from that used for scheduling events. This effectively results in a fine-grained
measurement of RTT and avoids an overly conservative estimation of RTO without
affecting the clock granularity for actually scheduling timeouts.

The 4.4BSD implementations of TCP also use the timestamp option [4] in the packet
header to measure the round-trip time of a segment in addition to maintaining internal
variables for timing a segment”. This timestamp is reflected back in acknowledgements
sent by the receiver. It is to be noted that clock granularities finer than 1ms should not
be used in the timestamp option in TCP [4] (the BSD implementations use a 500ms
clock granularity). This value is the minimum suggested in RFC1323 [4] and is necessary
for the detection of timestamps that are older than 24 days by the PAWS (protection
against wrapped sequence numbers) mechanism in TCP®. However, this does not imply
that a finer granularity clock available in the OS cannot be used to its full advantage.
The value provided by currentTime() can be scaled to 1ms granularity to be put in
the timestamp option and upon reception of the acknowledgement, the finer internal
estimation of RT'T can be compared with that obtained using the timestamp. If they are
within a millisecond, the internal estimation can be used; if not, the RT'T measurement
using the timestamp should be used in the timeout estimation equations (after scaling
it to nanosecond granularity).

Figure 6 shows the RTO computation with RTT measurements taken from a typical

[4]

8 As long as the timestamp doesn’t have a finer granularity than 1ms, the PAWS test remains unaffected.

11

"This avoids underestimations of RT'T when an ACK is misinterpreted as acknowledging a retransmitted segment
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TCP sender in the simulation run presented in Section 3. RTT, gives the RTT mea-
surement made by a 500ms clock. RTT} gives the RT'T measurement made by a 1ms
clock. RTOg gives the RTO estimate as computed by TCP Lite. RTOp gives the RTO
estimate after applying the fixes suggested by Brakmo and Peterson [5] to the timeout
estimation algorithms in TCP Lite. RTOp gives the RTO estimate as computed using
RTT measurements by the 1ms clock?. RTOp. gives the RTO estimate as computed by
equation 2 by using f.;; = 1000H z and f., = 2H z. The results show that the proposed
framework computes the minimum estimate for RTO (given by RT'Ox,) while the other
estimation algorithms often compute values that are overly conservative.

It is to be noted that even if a fine-grained clock is provided by the OS to schedule
events, a lower bound of at least 200ms should be observed for the estimation of the
timeout. This is because BSD TCP receivers can delay ACKs by 200ms that can cause
unnecessary retransmissions if the timeout is estimated lower than this value. In all
simulations reported in this paper with a finer event scheduling clock, we set this lower
bound to (200ms + rtt) where rtt gives the average round-trip time and is obtained

from sa mentioned earlier.

4.2 Slow-Start: Pacing Packets

The results in Section 3.2 indicate that on networks with a high bandwidth-delay prod-
uct, TCP’s slow-start mechanism can take many round-trip times until it fills the net-
work pipe. As a result, short transfers cannot take advantage of the network’s capacity.
We present a modification to TCP slow-start based on packet pacing that enables TCP
to fill the network pipe more quickly, thus efficiently utilizing the available bandwidth,
even for short transfers. Packet pacing takes advantage of the new timer framework
proposed in Section 4.

In order to improve the efficiency of slow-start, once could consider the following

naive approach:

1. Measure the bandwidth-delay product and set the slow-start threshold (ssthresh) to
this value. Techniques to measure the bandwidth-delay product have been shown
in [14, 6, 18, 22] and Hoe [13] has already proposed setting the initial ssthresh
value to the estimated bandwidth-delay product.

2. Set the congestion window to the value of ssthresh. This would immediately send
out a bandwidth-delay product’s worth of data, thus filling up the network pipe

immediately.

There are several problems with the above approach. The techniques used to mea-
sure the bandwidth-delay product can overestimate its value. These techniques usu-

ally implement a variant of the packet-pair algorithm [18] to estimate the bandwidth

?BSD implementations set the initial values of sa and sd so as to give a value of rto that is three times as large
as the measured RTT. Thus RTOpn has a large initial value.



and multiply it by the measured RTT to compute the bandwidth-delay product. The
packet-pair algorithm estimates bandwidth by measuring the difference in the times of
reception of the ACKs of two closely sent data segments. Certain network phenomena
like ack clustering [27] and the absence of fair queuing in the network routers can give
an inflated estimate of the bandwidth, if computed using the packet-pair algorithm.
Furthermore, the measured RTT usually includes queuing delays that can also result in
an elevated estimate of the bandwidth-delay product.

Even if the bandwidth-delay product is measured accurately, sending an equivalent
number of segments back-to-back (i.e., at the capacity of the network link adjacent
to the sending host) can cause extreme congestion at the bottleneck router. TCP’s
slow-start, on the other hand, never sends more than 2-3 segments back to back (if the
receiver uses delayed ACKs, then the sender sends 3 segments back to back).

To avoid congestion, a practical scheme for speeding up TCP’s slow-start for high
bandwidth-delay networks must (1) conservatively estimate the bandwidth-delay prod-
uct of the network to determine the appropriate congestion window, and (2) pace the
transmission of the corresponding segments at a rate that does not exceed the capacity

of the bottleneck. We propose such a scheme in the following subsections.

4.2.1 Estimating ssthresh

We present a method that conservatively estimates the initial value of ssthresh, the
slow-start threshold. This value will be used to determine a pacing threshold (pthresh)
that will be used as the target congestion window size during the segment pacing. The

ssthresh estimation involves the following steps:

e The bandwidth, bw, is estimated based on the interarrival times of closely spaced
acknowledgements such that the total acknowledged data used to estimate the
bandwidth is at least 2 segments. The bandwidth-delay product is computed
by taking the product of the bandwidth with the estimated RTT. An ssthresh

estimation is then made by setting it to this value.

e Instead of estimating the ssthresh only once, we estimate its value repeatedly at
most once every RTT. The new ssthresh value at each estimation is set to the
minimum of all estimations done so far. As soon as an estimation lies within
10% of the minimum of the estimations done so far, the resulting ssthresh value is

considered to be final and no more estimations are performed.

Repeated estimations greatly decrease the probability of overestimating the band-
width. The value of pthresh is then set to half the value of the estimated ssthresh.
Setting pthresh to half the measured bandwidth-delay product compensates both for
an elevated RTT estimate (due to any queuing delays) and any overestimations of the
bandwidth. It can be shown that if bandwidth is estimated correctly, then transmitting

pthresh’s worth of data in the network would not even increase the queue occupancy at
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the routers unless the queuing delay is larger than round-trip propagation delay of the
network links.

It is to be noted that both bandwidth estimation as well as RTT estimation use the
time measurement abstraction in our proposed timer framework.

To reduce the time for computing an estimate for the bandwidth-delay product, we

use an initial startup congestion window given by:
MIN (4% MSS, MAX (2% MSS,4380bytes))

where MSS gives the maximum size of a TCP segment. Setting the initial congestion
window to the above value has been proposed by Floyd et al [11] and is currently in the
process of standardization by TETF. The above amounts to using an initial congestion
window of 3 segments for an IP packet size of 1500 bytes and 4 segments for an IP
packet size of 512 bytes.

4.2.2 Pacing

Once the value of pthresh has been estimated, we use the event scheduling clock to
schedule the transmission of as many segments as possible, subject to the constraint
that the total transmitted data in one RTT remains less than the estimated pthresh
value. The segments are paced in time dictated either by the estimated bandwidth, or
by the minimum granularity provided by the OS’s scheduling clock, i.e., a single tick
of the event scheduling clock. Moreover, the amount of time over which pacing is done
does not exceed one RTT. Thus, if p is the value of the estimated pthresh in segments,
bw is the estimated value of the available bandwidth in segments/s d is the number
of segments that have already been sent in the current RTT by the normal slow-start
mechanism, then N TCP segments would be sent with an inter-transmission time T

where N and T are given by:
N+ MIN(p—d,RTT % f.,)

T+ MAX(1/ fer, 1/bw)
Note that TCP takes both the granularity of the event scheduling clock and the pthresh

value into account when determining the number of segments to send. It is also to
be noted that this technique cannot suffer from bandwidth overestimation if (1/f., >
1/abw) where abw gives the actual available bandwidth. This implies that for the clocks
with f., = 100Hz (or 10ms granularity) available in systems today, overestimating
available bandwidths of more than 150KB/s (for a 1500 byte IP packet size) cannot
cause network bursts. Moreover, unless the RTT estimate is hugely inflated due to
queuing delays, our pacing technique will not transmit more than the capacity of the
pipe.

Transmitting paced TCP segments in this fashion strikes a balance between filling

up the network pipe quickly and avoiding congestion due to traffic bursts.
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5 Performance Evaluation

In this section, we evaluate the performance improvement afforded by the proposed im-
provements to TCP in the previous sections. We first present simulations that demon-
strate the effectiveness of our proposed techniques in reducing the delay associated with
retransmission timeout in both high as well as low bandwidth-delay networks. Then we
show the performance improvements yielded by estimating ssthresh and pacing packets
during the initial slow-start phase in TCP. In all simulations using our proposed timer

framework, the granularity of the clock used for time measurement is 1ms (i.e. fo4 is
1000Hz).

5.1 Timeout Delay Reduction
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To estimate the advantages afforded by the proposed timer mechanism, we performed
two experiments — one on the low bandwidth-delay network (obtained by setting the
propagation delay to 100ms in Figure 2) and the second on the high bandwidth-delay

network in Figure 1

5.1.1 Effect on Low Bandwidth-Delay Network

Sender S1 in Figure 2 was set up to send an infinite amount of data to D1 using TCP
Lite. Once the transfer reached steady state behaviour (after 15s of simulation time),
sender S2 was made to transfer data to D2. Due to the bursty slow-start mode in
TCP Lite, Figure 7 shows the amount of data transferred across the bottleneck link in
the next bs after starting the transfer from S2 to D2. The curve entitled “prop-timer”
shows the performance when all senders were using our proposed timer mechanism,
while “orig-timer” corresponds to the use of the original timeout estimation algorithm

in TCP Lite. Both senders use a 500ms clock for scheduling timeouts.
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Our results indicate that the startup burstiness of sender S2 caused both S1 and
S2 to undergo a timeout. The average timeout delay for “orig-timer” was nearly 2s.
On the other hand, the timeout delay associated with “prop-timer” was always less
than 1s for both senders. This indicates that our proposed scheme always estimates
the timeout as 2 clock ticks (a value more than 2 would result in a delay that is more
than 1s), which is the minimum in the BSD implementations of TCP. On the other
hand, the original scheme estimated the timeout to be more than 2 ticks that lead to
an unnecessarily large delay given an RTT of 100ms. A reduction of 1s in delay is
equivalent to 10 round-trips in the topology being simulated. Our results show that
the senders using our proposed timer scheme were able to transfer about 170KB more
data during this period as compared to the original scheme that lead to an increase in
effective throughput from 44% to 66%.

We have also performed similar simulations with the technique suggested by Brakmo
and Peterson in [5]. The faster decay resulted in an average delay of 1.5s (corresponding
to 3 ticks) that provided an effective throughput of 55%.

5.1.2 Effect on High Bandwidth-Delay Network

The simulation involving the topology in Figure 1 was set up to have senders S1 through
ST transmit data to the corresponding destinations D1 through D7. After 50s of simu-
lated time, sender S8 was started so as to send data to D8. This enabled the senders
S1 through S7 to reach steady state behaviour. Our results indicate that due to the
burstiness of the initial slow-start in TCP Lite, 6 out of the 7 senders experienced a
timeout. Figure 8 shows the total amount of data transferred across the bottleneck
link in the next 5s. The meaning of entitled curves “prop-timer” and “orig-timer” is
similar to those for Figure 7. All senders use a clock granularity of 500ms for scheduling
timeouts.

Our results show that the average timeout delay for “orig-timer” was about 1.5s. On
the other hand, the timeout delay associated with “prop-timer” was again always less
than 1s for all senders and averaged at about 700ms. This leads to an average reduction
of more than 500ms in the delay that is equivalent to 8 round-trips (for 60ms RTT).
Our results show that the senders using our proposed timer scheme were able to transfer
about 1.5MB more data during this period as compared to the original scheme. Similar
simulations with the technique in [5] resulted in an average delay of about 950ms.

Our results also indicate that less than 20MB of data were transmitted in the 5s
following the startup of sender S8. This indicates a bandwidth utilization of only about
20% and is a direct result of the pipe drainage due to the timeout delay. The ensuing
slow-start after a timeout is not fast enough to fill up the pipe in high bandwidth delay
networks.

We conclude that while the occurance of a retransmission timeout leads to a greater
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degradation in effective throughput in high bandwidth-delay networks, a reduction in
the delay associated with it provides higher percentage gains for for the same in low
bandwidth-delay networks. However, reducing the delay is equally important in both

for reducing the response time perceived by the user for short TCP transfers.

5.2 SSthresh Estimation and Pacing

We present simulations that show the effectiveness of predicting the initial ssthresh and
pacing packets over high bandwidth-delay networks. We present results for both the low
bottleneck speed network in Figure 2 as well as for the high speed network in Figure 1.
The propagation delay for the topology in Figure 2 was set to 290ms. As mentioned in

Section 2, this topology is similar to the one used in [1] for emulating satellite networks.
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5.2.1 Satellite Network

Figure 9 shows the results when a standalone TCP transfer is made between hosts S1
and D1 in figure 2. The y-axis shows the effective throughput, while the 2-axis depicts
the simulation time for which the simulation was allowed to run. The curve denoted by
“orig-Lite-500ms” corresponds to the simulation with the original timer and slow-start
schemes in TCP Lite with the scheduling clock’s granularity set to 500ms (i.e. fe, is
2Hz). Similarly the curve “prop-Lite-10ms” denotes the simulation with TCP Lite that
was enhanced with ssthresh estimation as well as the proposed timer framework; the
granularity of the scheduling clock is 10ms (i.e. f., is 100Hz). For a fair comparison, all
simulations used an initial congestion window as defined in Section 4.2.1 (4 segments
for an IP packet size of 512 bytes).

Our results indicate that the original TCP Lite is able to achieve a maximum of
only 18% of the effective throughput in the time shown. This is mainly due to multiple
window decreases followed by an expensive timeout because of the losses resulting from

unbounded initial window growth. After the timeout, Lite starts with a small congestion

17



window (due to multiple decreases before the timeout) and thus takes a long time in
filling the pipe.

A comparison of the curves “prop-Lite-500ms” and “orig-Lite-500ms” shows almost
a 5-fold increase in performance for simulations that lasted longer than 20s. This was
primarily due to the ssthresh estimation incorporated for “prop-Lite-500ms” (pacing
is not effective due to the large value of clock granularity). With a 10ms scheduling
clock, the sender for “prop-Lite-10ms” was able to achieve a 5-fold improvement over

“prop-Lite-500ms” for simulations that last less than 5s.

5.2.2 High Speed WAN

Figure 10 shows the performance for eight competing TCP transfers on the topology
shown in Figure 1. The curves shown are labelled similarly as in Figure 9. Again,
for a fair comparison, all simulations used an initial congestion window as defined in
Section 4.2.1 (3 segments for an IP packet size of 1500 bytes).

Our results indicate that incorporating the ssthresh estimation in TCP Lite yields
nearly a 10-fold increase in performance over orig-Lite for simulations times that are
less than 5s. The larger initial window usage and ssthresh estimation resulted in the
slow-start terminating after 0.7s. Our results indicate that in this period, pacing with
a 10ms clock achieved a 20% increase in performance. Pacing with a 2ms clock resulted
in an 85% increase in effective throughput over “prop-Lite-500ms”.

We also observe that pacing with a 10ms clock offers lesser improvement in this
topology than for the one used for satellite network because of the relatively short

round-trip time (60ms compared to 580ms in satellite topology).

6 Related Work

Floyd[10] discusses the problem of invoking fast retransmit mechanism multiple times for
the same window of data. Hoe [14] proposes two methods to improve TCP’s congestion
control algorithms. First, it attempts to set the slow-start threshold (ssthresh) to an
appropriate value by measuring the bandwidth-delay product using a variant of the
packet-pair technique [18]. Paxson[22] suggests a more robust bottleneck estimation
technique called PBM that forms estimates using a range of packet bunch sizes. The
second method in [13] recovers multiple packet losses in the same window without
decreasing the window multiple times. Our method of estimating ssthresh is similar to
the one described in [14] except that it repeatedly estimates ssthresh until a value that
differs from the minimum by less than 10% is obtained.

Fall and Floyd [9] investigate the effect of multiple packet losses on the congestion
control algorithms of TCP Reno. They point out that the absence of selective acknowl-

edgments imposes limits on TCP’s performance. Their work also shows that TCP with
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selective acknowledgments (SACK-TCP) can effectively recover from multiple packet
losses.

Paxson[22] shows that in the absence of the SACK TCP option [20], a significant
number of lost packets in the Internet are recovered using the coarse-grained retrans-
mission timeout. The same was confirmed by Balakrishnan et al [3]. Our proposed
timer framework reduces the unnecessary long delays associated with a retransmission
timeout when a coarse-grained clock is used for scheduling events. Brakmo et al[6] have
also used the fine-grained system clock to detect lost packets early (while processing
a received duplicate ACK) in TCP Vegas. Their method does not however affect the
coarse-grained retransmission timeout in TCP.

Allman et al[1] have shown the limiting effect of slow-start and congestion avoidance
schemes in TCP in utilizing the bandwidth over satellite networks. Our proposed scheme
for pacing packets in slow-start addresses their former observation.

Visweswaraiah et al[25] suggest using rate-based pacing to improve the restart of
idle connections. While their technique is applicable only to the restarting of data flow
in TCP after an idle period, our suggested pacing technique improves performance in
the intial startup period and is primarily aimed at improving the performance of short
TCP transfers. To the best of our knowledge, using timer mechanisms to pace packets

in TCP has not been comprehensively studied.

7 Conclusions

In this section we present our conclusions. We summarize the main results presented in

this paper as follows:

e The startup dynamics in BSD based implementations of TCP can suffer from severe
performance degradation, both in latency as well as throughput. The problem is
specially severe on high bandwidth-delay networks owing to the large number of

round-trips needed to fill up the pipe.

e The main cause of performance degradation for short transfers (that finish before
slow-start completes) is the large number of round-trips taken by slow-start to fill

the pipe.

e The primary cause of performance degradation for transfers that finish after slow-
start is the draining of the pipe due to a retransmission timeout following the huge
losses caused by an unchecked increase of congestion window in slow-start. The
congestion avoidance phase that follows is very slow in occupying the available
bandwidth in high bandwidth-delay networks. The overly conservative delay asso-
ciated with a timeout in BSD implementations of TCP affects the user-perceived

latency.
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We have proposed a timer framework that decouples the OS facilities for time mea-
surement and event scheduling. Decoupling these services in this fashion enables

TCP to adaptively use them to its best possible advantage.

We have shown how TCP can use the suggested timer framework to reduce the
overly conservative delays associated with a retransmission timeout. This reduces
the user-perceived latency in both high as well as low bandwidth-delay networks.
However, the percentage gain in effective throughput is larger for low bandwidth-

delay networks because of the smaller time needed to fill the pipe.

We have proposed to improve the performance of the initial slow-start by pacing
the packets using the event scheduling facility provided by the OS. This has the
potential of yielding improved performance for short TCP transfers that mainly

characterize the web traffic today.

Finally we have shown the importance of estimating the initial ssthresh value for

high bandwidth-delay paths.
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A Graph Description

Figures 11 and 12 explain the trace graphs used in this paper'®. Figure 11 shows some
general information shown in the graphs:

(1) Hash marks on the z-axis indicate when an ACK was received. (2) Hash marks at
the top of the graph indicate when a segment was sent. (3) The numbers on the top of
the graph indicate when the n'" kilobyte (KB) was sent. (4) Diamonds on top of the
graph indicate when TCP checked whether a coarse-grained timeout should happen.
(5) Black circles on top of the graph indicate that a coarse-grained timeout actually
occurred. (6) Solid vertical lines running the whole height of the graph indicate when

a segment that is retransmitted was actually sent.

Figure 12 shows traces of the TCP windows:
(1) The dashed line gives the slow-start threshold (ssthresh). (2) The dark gray line
gives the send window (minimum of the sender’s buffer size and receiver’s advertised
window) and gives the upper limit on the amount of unacked data. (3) The light gray
line gives the congestion window. (4) The thin-line gives the actual amount of unacked
data.

1976, 5] give a more detailed description of the same
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B Congestion Avoidance

We suggest a possible approach to address the problem of slow congestion window
increase in high bandwidth-delay networks. Jacobson [16] suggests increasing the con-
gestion window additively and decreasing it multiplicatively for network stability. In
most existing TCP implementations, the unit of congestion window increase (in bytes)
depends on the segment size, which is usually determined by the MTU of the network to
which the sender connects and can vary from 512 bytes to 9180 bytes. For a faster win-
dow increase in high bandwidth-delay networks, this additive unit of window increase
can be decoupled from the TCP segment size and can be determined as a fraction of the
available pipe size. As information about the available pipe size is not known apriori,
extreme care is required so as not to affect the fairness and network stability. This
approach can be possibly used with TCP Vegas[6] that can dynamically estimate the

pipe size by keeping track of the increase in buffer occupancy at the bottleneck routers.
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