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Interprocedural Pointer Analysis for C

John Lu

Abstract

Many powerful code optimization techniques rely on accurate information connect-
ing the definitions and uses of values in a program. This information is difficult to
produce for programs written with pointer-based languages such as C. For values in
memory locations, accurate information is difficult to obtain at call sites and pointer-
based memory operations. Most compilers conservatively assume that call sites and
pointer-based operations may access any memory location. This greatly weakens the
effectiveness of many optimizations and leaves opportunities for improvement.

This dissertation examines how to implement an interprocedural pointer analyzer
for C in order to provide more accurate information about which memory locations
call sites and pointer-based memory operations may access. The key issues of pointer
analysis versus alias analysis, modeling of call sites, modeling of the heap, and usage
of interprocedural path information are discussed. Solutions given for the first two
questions and various solutions for the last two questions were used to build pointer
analyzers of varying power and complexity. All versions of the analyzer were tested
over a suite of programs, and we demonstrate that pointer analysis for programs of
about 30K lines can easily be done with the computational power of current ma-
chines. The resulting pointer-analyzed programs were tested, and we show that their
performance is better than non-analyzed programs. The data for each analyzers’ per-
formance and each analyzed programs’ performance was used to look at the trade-offs
among analysis time, analysis accuracy, and performance of the analyzed code. These
results were also compared with interprocedural MOD/REF analysis. We also show
that the analyzer can speed up the execution times of the rest our optimizer.

A new optimization, register promotion, that was specifically designed to use the
information generated by pointer analysis was also developed. Register promotion
moves a variable that normally resides in memory to a register for portions of the
code in which it is safe to do so. Our experimental results for register promotion show

that it is effective in reducing memory traffic.
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Chapter 1

Introduction

Many compiler optimization techniques rely on the availability of accurate informa-
tion connecting the definitions and uses of values in a program. Examples of such
transformations include dead code elimination[5], constant propagation[35], partial
redundancy elimination[29], and global value numbering[34]. All of these optimiza-
tions propagate information along the connections between definitions and uses. In
order for these optimizations to be effective, it is essential to make these connections
as precise as possible. Unfortunately in C, pointer-based memory operations make it
difficult to precisely determine the relationship between definitions and uses of values.
Unless the compiler analyzes the behavior of pointer-based operations, it must assume
that any pointer-based operation can access any memory location. Thus, any defi-
nition of a pointer-based value must be assumed to redefine every memory location
and any use of a pointer-based value must be assumed to reference any memory loca-
tion. This set of assumptions is usually much more conservative than necessary and
frequently produces code that is slower than code that could be produced if pointer
analysis were done.

This dissertation focuses on the design and empirical testing of a pointer analyzer
for C. One of our main contributions is to examine a set of basic questions that any
pointer analyzer for C must answer. We examine how previous work answered this
set of questions. We also propose our own solutions to some of these questions and
elucidate the trade-offs among the solutions. For some questions we explain why a
particular solution is the best one. For other questions that have no clear answer, we
test a variety of solutions in order to provide an empirical basis for making a decision.

Another contribution of this thesis is its extensive testing. We test our analyzer
over a suite of fourteen programs which range in size from 200 to 28,000 lines of C
code. We allow parameters for our analyzer to vary and record the impact of these
changes on the performance statistics of our analyzer. We also record the impact
of these changes on the performance of code analyzed by our analyzer. Whenever
varying a parameter changes the performance of an analyzed program, we try to find
the mechanism for the change. We look for an explicit example from the source code

of our test suite that illustrates how the changed parameter can affect performance.



One of the strengths of our performance testing is our use of MOD/REF analysis
as a benchmark for comparison. Like pointer analysis, MOD/REF analysis produces
information about the memory locations that loads, stores, and calls can access.
Unlike pointer analysis it is fast and simple, and it uses little memory. For these
reasons, it is an excellent benchmark for comparison. We show that pointer analysis
is useful by demonstrating that it improves the performance of code when compared
against code produced with MOD/REF analysis.

In order to increase the usefulness of our pointer analysis we also develop a new
optimization technique, register promotion, that is specifically designed to use the
information produced by pointer analysis. Again, we examine the impact of this
technique on the performance of analyzed code.

The rest of this dissertation is divided into seven chapters. In Chapter 2, we
examine basic questions that any pointer analyzer must answer. For each question
we examine various answers and describe the trade-offs among the answers. Chapter 3
discusses previous work in this area and how this work has answered these questions.
We look at the research of five groups: Landi and Ryder; Choi, Burke, and Carini;
Emami, Ghiya, and Hendren; Wilson and Lam; and Ruf. Chapter 4 presents an
abstract language, PL, that has all the language features relevant to pointer analysis.
We present a framework for doing pointer analysis on PL and a time bound for this
analysis. We also show how a C program can have its pointer behavior modeled by a
PL program. Chapter 5 contains performance results for the analyzer over a suite of
fourteen programs. The impact of our analysis on the performance of the analyzed
programs is also shown. Chapter 6 describes a transformation, register promotion,
that utilizes the results of pointer analysis. Results for this transformation are also
shown. In Chapter 7 we present our conclusions on pointer analysis based on the
results of this thesis. Chapter 8 outlines possible areas of future research in pointer

analysis.



Chapter 2

Questions

Many different approaches have been attempted to analyze the use of pointers in C.
A useful way of categorizing pointer analysis is to consider the questions that must
be answered in designing the analyzer. In this chapter we will examine six issues that
are relevant to pointer analysis: alias pairs vs. points-to, modeling call sites, program

representation, flow-sensitivity, heap model, and context information.

2.1 Choice of problem

The first design choice for an interprocedural pointer analyzer is: Will it analyze
pointers or aliases? In alias analysis, the fundamental abstraction is the alias pair.
An alias pair is simply a pair (x,y) where 2 and y are C expressions that may access
the same memory location. The goal of alias analysis is to determine the set of alias
pairs that can hold at a given point in a program. Using alias pairs is an unfortunate
consequence of thinking of pointer analysis in terms of the framework used to analyze
aliases in FORTRAN caused by call-by-reference parameters[13]. Formal parameters
in a call-by-reference language are not equivalent to memory locations. They are
alternative names given to memory locations within a function. In this situation,
alias pairs are the correct information to gather.

1 each memory

In C, however, the situation is different. If we ignore unions,
location has a unique name, the name with which it is declared. Thus, the distinc-
tion between a name and a memory location is both artificial and unnecessary in C.
However, even though a memory location has a unique name in C, it can be accessed
through other names—the names of pointers that point to it. We can derive a re-
lationship, called “points-to,” for a C program that embodies this information. The
points-to relationship maps a variable name to a set of memory locations to which it
may point. This more closely models the run-time situation in C; it appears to be

the critical information to gather in analyzing the pointer behavior of C programs.

'When we have unions, we use the same name for each member of the union since they have
overlapping memory locations.



Consider the solution that the two approaches yield for the fragment of code
in Figure 2.1. After the second statement there are three valid alias relationships,
but there are only two points-to relationships. The alias relationship, <**pp,i> can
be derived from the other two alias relationships. If we read the alias relationship,
(xx,y), as & points-to y, we find that the remaining two pieces of alias information and
the points-to information are identical. The fact that removing redundant aliasing
information gives us points-to information is an indication that points-to information
is preferable.

An added benefit of adopting the points-to abstraction is that it handles function
pointers in an easy and natural way. The same machinery used to analyze memory
pointers can track pointers to functions, as long as the compiler can recognize both

the creation of such pointers and their actual use. Hendren noted this as early as

1994 [16].

2.2 Modeling call sites

The analyzer must include a mechanism for modeling the effects of executing a pro-
cedure call and a subsequent return on the state of the program’s name space. The
complications that arise from these events are a result of the parameter binding mech-
anism in C, which relies on call-by-value parameters [2]. This seems simpler than the
call-by-reference convention used in Fortran; however, the presence of pointer vari-
ables in C re-introduces all of the problems caused by reference parameters in other
languages, as Figure 2.2 shows.

In designing an analyzer, this problem raises another critical question: How should
the analyzer represent and name non-local memory? Two solutions have been pro-
posed in the literature: using abstract but representative names and using explicit
names.

In a framework that uses representative names, the analyzer creates a new abstract
name for the non-local memory that can be referenced at each call site. These names
are then “un-mapped” at the procedure’s return to reflect the effect of the procedure
call on any non-local memory that it may have accessed. The difficulty with using
representative names is deciding how many representative names to create and how
to associate these names with non-local memory. Depending on the choices made,
representative names will either cause imprecision or incorrect results.

Consider Figure 2.3. To model the memory locations that can be accessed by
parameters *pl and *p2, the analyzer could choose to create a single representative
for each type of location. Thus one representative ri is created for the *int type,

and another r2 is created for the int type. Only a single name is used because the



Code Alias Analysis Pointer Analysis

void f() {
int **pp,*p,i;

pp=&p; <kpp,p> pp— P

p=&1i; <k*pp,i> <*pp,p> <*p,i> 9% % 1

b

Figure 2.1 Alias analysis vs. pointer analysis

void caller() {
int a, b;
called(&a,&b);

subroutine caller()
integer a, b
call called(a,b)
end

id called(int *r,int *
subroutine called(r,s) void called(int *r,int *s) {

k = :
=1 r 1;
*s = 2;
s =2 }
end

Fortran version }
C version

Figure 2.2 Interactions between pointers and parameter binding




analyzer must assume that *p1 and *p2 may point to the same location. On exit
from called, the analyzer will know that r1 can point to g1 and g2. When it maps
these results back into the call site in caller, it will determine that a can point to
either g1 or g2. It will also discover that b can point to either g1 or g2. The use of
a single representative name has introduced imprecision into this simple example.

If we try to use multiple representatives for one type, this can lead to incorrect
results. Consider the example in Figure 2.4. In this example we assume that every
non-local location is distinct, and we give it a unique representative. Unfortunately,
this causes representatives r1 and r3 to represent the same location. Since we use
multiple representatives to represent one location, we cannot recognize that *p and
*x*pp are aliases. Thus, we incorrectly conclude that *p has the value 4 at the return
statement.

A further difficulty with representative names arises in handling arbitrarily-sized
data-structures. The analyzer must decide how many names to create for each pointer;
the only real hint available is the type of the pointer. Unfortunately, programmers
can create types that are self-referential, like graphs. For a pointer to a graph, the
analyzer cannot easily determine the number of representative names that must be
created. This problem is analogous to modeling data structures in the heap.

These problems with using representative names can be eliminated by using ex-
plicit names. When the code passes a pointer into a function, the pointer can point
to an explicitly-named object. In this case, the analyzer should use the explicit name
of the object rather than a representative name. In the previous examples, using
explicit names would produce different results.

Consider the case in which using representatives names gave imprecise results (see
Figure 2.3). Figure 2.5, shows the results that would be obtained by using explicit
names in this case. On entry to called, we precisely determine that p1 points to a
and p2 points to b. This comes from looking at the parameters passed to called.
Within called, we accurately set a to point to g1 and b to point to g2. Since we use
explicit names, this information does not need to be mapped back to corresponding
names.

Using explicit names also gives us correct results for the example where repre-
sentative names gave us incorrect results (see Figure 2.4). The results using explicit
names for this example are shown in Figure 2.6. At the start to called, *pp and
p are correctly shown as pointing to the same location. This is achieved by using
the names passed in from the call site and preserving the points-to relationships that
already exist among those names (i.e., ip points to 1). By using this information, we

correctly determine that the return value *p equals 3.



void caller() {

b

int *a,*b;

called(&a,&b) ;

*pl=&gl;

*p2=&g2;

a gl
b g2
void called(int *#*pl, int **p2) { gé:::rl r2
11—
52_> ri gl
gl
pé ri
p g2

b

rl|represents| @ [gnd| b

Figure 2.3 Representative names cause imprecision




void caller() {
int *ip,1i;

ip=&i;
called(&i,&ip);
¥
int called(int *p,int **pp) { P—r1 pp r2 r3
*p=4; ri :4
**kpp=3; r3 :3
return(*p) ; r1 =4
¥

rl|and|r3|represent| 1

Figure 2.4 Representative names cause incorrect results




void caller() {
int *a,*b;

called(&a,&b) ; a gl
}
b g2
void called(int **pl, int** p2) { pl—l a | p2—{ b
*pl=&gl; pl a gl
*p2=&g2; p2 b g2
}

Figure 2.5 Explicit names are precise

Clearly, an analyzer based on explicit names will have its efficiency limited by the
number of names that it must instantiate. Thus, from an implementation perspective
and an efficiency perspective, it is important to limit the number of non-local variables
that the analyzer believes a function can access.? Otherwise, using explicit names will
become too costly. Non-local names arise from three sources: global variables, heap-
based variables, and local variables whose addresses are explicitly computed. The
number of globals is finite. Unfortunately, the number of heap-based variables is
unpredictable, in the general case, as is the number of concurrently live instances of
a specific local variable.

In using explicit names to handle procedure calls, care must be taken with ad-
dressed local variables of recursive functions (ALVRs). Since an ALVR can have more
than one instance, the analyzer must be quite clear about what it means when it de-
termines that an ALVR points to some name. Some approximation will be necessary.
In our framework, we will approximate by having the single name for the ALVR rep-
resent all instantiations of the ALVR. If at a program point p, some instantiation

of an ALVR, r, may point to a location g, then in our analysis at program point p,

?The analyzer must represent all of the names that are possible. What we would like to do is limit
the number of spurious names.
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void caller() {
int *ip,1i;

ip=&i;
called(&i,&ip);
}

int called(int *p,int **pp) { 19 ip i

>4 rij=4

**pp=3; r3j=3

return(*p) ; rl :3
}

Figure 2.6 Explicit names produce correct results
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r should point to q. An important consequence of this approximation is that stores
to an ALVR cannot “kill” old values. (i.e., all pointer values in an ALVR before a
store will still be in the ALVR after the store.) The non-addressed local variables
of a recursive function need not be approximated in this way. When such a variable
is accessed, only the most recent instance can be accessed. Thus, its name does not
need to represent all instances, but only the topmost instantiation. See Sections 4.1,
4.2 and 4.3 for a more detailed discussion of this issue.

The choice between using explicit names or representative names may require
trade-offs between space, speed, accuracy, and simplicity. Explicit names should be
more accurate, but more space will probably be required to give a function access
to all the non-local names it may use. The increased number of names used will
require more time to analyze, but this is balanced by the fact that no mapping
and unmapping functions are necessary. It is not clear which method will be faster.
Section 5 presents performance results for our analyzer, which uses explicit names. We
do not have comparable results for using representative names, because we did not
implement it. Although using representative names may be faster, we felt that any
implementation using representative names that was correct would be too imprecise.
Since using explicit names is both correct and precise, and since it seems simpler
(e.g., it does not require complicated mapping functions), it seemed unnecessary to

investigate representative names.

2.3 Program representation

Another issue that affects the design of both the analyzer and the analysis algorithm
is the design of the intermediate form used to represent the program. In particular,
the level of abstraction in the representation determines, to a large extent, both the
difficulty of deriving the initial information and the ease with which the results can

be applied to the resulting code.

e A more abstract, source-level representation can simplify gathering initial in-
formation; in a lower-level, assembly-like representation, some analysis may be
required to recreate information that was obvious in the source code. For ex-
ample, an address expression may be implicit at source-level but be distributed
across several basic blocks at assembly-level.

e A more abstract, source-level representation imposes the programmer’s name
space onto the results of analysis; in an assembly-level representation, each
individual subexpression may have a unique name. For example, a source-level
analysis is unlikely to disambiguate two pointer references that use induction
variables introduced by operator strength reduction [12].
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In designing an analyzer, the compiler writer should consider the uses to which the
results will be put. We intend to use the results of our analysis to drive optimizations
on a low-level representation of the program. Therefore, our analyzer will work from
an assembly-like representation of the code. In general, we would expect the results

of analysis on the low-level code to be of greater interest to low-level optimization.

2.4 Flow sensitivity

In any interprocedural analyzer, the compiler writer must choose between a “flow-
insensitive analysis” or a “flow-sensitive analysis”. In general, the flow-insensitive al-
gorithm will ignore control flow inside individual procedures, where the flow-sensitive
algorithm will need to analyze the flow inside each procedure. For points-to informa-
tion, the choice between flow insensitive and flow sensitive will change the results of
the analysis significantly.?

Flow-sensitive analysis will, in practice, be slower [31]. We feel that the increased
precision obtained with a flow-sensitive analysis is critical in computing points-to

information. Thus, our analyzer uses a flow-sensitive algorithm.

2.5 Modeling the heap

A common use of pointers in C programs is to track the addresses of data structures
that have been dynamically allocated on the heap. Thus, much effort described in the
literature has been directed at discovering and representing the shape of pointer-based
structures constructed in the heap [15, 10, 25, 20].

From our perspective, the issue of understanding the internal structure of the heap

is orthogonal to the rest of the analyzer.

e The simplest solution available to us would model the whole heap with a single
name. All loads and stores involving the heap would refer to this name. Since
the name represents multiple locations, stores to it cannot kill old values.

e An easy improvement to the simple model would split the heap by call sites
into the allocation routine. This would give a distinct name to the memory
allocated by each call site, improving the precision of the analysis at a small
cost in complexity, speed, and space.

e Further refinement in heap modeling is possible. It may be possible to split the
heap memory allocated by one call site into separate regions, along either the

3There are problems for which this is not true. May Modifies information is the classic example of
a problem that gains no additional information from considering intraprocedural control flow.
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time or space dimensions. For example, in the space dimension, we could split
the memory generated by one call site based on the structure of the memory
allocated at the call site. In the time dimension, we might try to generalize
from splitting by call sites to splitting by call paths.

Splitting the heap by call paths can be helpful. For example, in Figure 2.7, the
analyzer could return two separate names for the two calls to My Malloc. However,
for memory allocators that recycle memory, this will not be useful. In this case, from
the point of view of our analyzer, the memory allocator behaves just like any other
function that may return a pointer to the same memory location at different call sites
(e.g., a function that returns the start of a global linked-list). Thus we must return
the same heap name for all calls to the allocator. A solution to this problem would
be to allow the user to specify which calls allocate memory. This would accurately
split the heap for all memory allocators.

Another popular approach to splitting the heap is k-limiting[21]. This approach
allows up to k copies of a heap name to be generated where £ is pre-selected. The goal
of the k-limited approach is to allow for more accurate analysis of heap structures. If
we have a heap-allocated linked-list, the first £-7 nodes can be given unique names
and the rest of the list can be approximated with the A&th name. This information is
very difficult to generate. Furthermore, even if this information could be determined,
it would not be very beneficial. In this analysis, a technique is useful only if it allows
more precise determination of what memory locations loads and stores may access
Thus, splitting a heap name into two names, @_heap1 and @_heap2, will be profitable
only if memory operations that operate on only one of the two names can be found.

Finding such operations should be easy to do when the heap is split by call sites.

main() {
Node *a,*b;
a=My_Malloc(sizeof (Node)) ;
b=My_Malloc(sizeof (Node));
b

Void *My_Malloc(Int size) {
return malloc(size);

b

Figure 2.7 Splitting the heap by call paths
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It may be very difficult when the heap is split by A-limiting. For example, we think
it would be very rare to find a memory operation that operates on some subset of
the first k-1 elements of a linked-list. Besides being rare, if such a memory operation
did exist, it would probably be very difficult for a compiler to determine that the

operation only operated on a subset of the first k-1 nodes.

2.6 Context information

Another choice facing the compiler writer is how much context to record and use
during propagation. For each pointer, we can associate information with it that gives
some idea about which calling-context generated it. This information can take the
form of conditions that must be satisfied by a call site in order for a points-to relation
to be valid. These conditions themselves are frequently points-to relations. A sample
points-to relation with an associated condition might be x points to y if parameter
p points to global g on entry to the procedure. Another form that has been used
for context-information is to record the path (i.e., list of call sites) through which a
points-to relation was generated. There is a wide range of choices concerning how
much path information to record. The simplest is to record no information; the
most complicated is to record a full listing of all call sites through which a pointer
was generated. Naturally, the simplest choice is also the least accurate as well as
the quickest. The most complicated, full path information, can cause an exponential
increase in the amount of time and space required to analyze a program. We may also
choose to arbitrarily limit the number of call sites recorded, just as k-limiting places
an arbitrary fixed bound on the length of models for heap-based data structures. See
Figures 5.5, 5.6, 5.7, and 5.8 for our time and space requirements for performing
pointer analysis with varying path lengths. Various other statistics are also shown.

Context information can improve pointer analysis in two ways. In Figure 2.8, if
the analyzer lacks path information, it will conclude that p1 can point to either al or
a2, and that p2 points to the same values. This inaccuracy arises when the analyzer
begins to analyze called. It begins by merging the points-to relations from two
different contexts. In this case, it merges the fact that p can point to al with the
fact that p can point to a2. Propagating these facts through the return and back into
the assignment in the calling procedure results in the erroneous (but conservative)
points-to information. This problem has been termed the realizable path problem|[23]
or the false return problem]7].

In Figure 2.9, pp points to p1 and p2 and p points to al and a2. There are no
inaccuracies with this information, but without context information it is impossible

to know that pp and p cannot simultaneously point to p1 and a2 respectively or p2
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void caller1() {
int al,*pil;
pl=called(&al);
}

void caller2() {
int a2,*p2;
p2=called(&a2);
}

int *called(int *p) {
return(p);

b

Figure 2.8 False return problem

void caller1() {
int *pl,al;
called(&pl,&al);
}

void caller2() {
int *p2,a2;
called (&p2,&a2) ;
b

void called(int **pp,int *p) {
*PP=p;
¥

Figure 2.9 Pointer mixing
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and al respectively. Thus, in calleri after the call to called, pl will needlessly
point to a2. We have named this the pointer mixing problem.

Recent work by Ruf suggests that even with full path information, no increased
accuracy is obtained for pointer analysis[32]. However, even though path information
may not improve pointer analysis, its use may still be justified because it can improve
the subsequent interprocedural MOD/REF analysis. Consider Figure 2.10. The store
in called modifies g1 and g2. Without path information we would have to summarize
the effect of all calls to called as modifying both g1 and g2. This is imprecise.
With path information we can limit the modifications to a particular call site. This

generates the more accurate information in the right column.

2.7 Summary

We have examined six questions relevant to pointer analysis in this chapter: alias
pairs vs. points-to, modeling call sites, program representation, flow-sensitivity, heap
model, and context information. Clear answers to the first two questions were de-
veloped (i.e., use points-to analysis with explicit names). We have presented various
possible solutions for how to model the heap and how to implement context infor-
mation. Solutions for these problems that should increase the accuracy of pointer
analysis were shown (i.e., splitting the heap by call site and full path expressions).
However, it is not clear if these solutions will have enough impact on the accuracy of
pointer analysis and the speed of analyzed programs to justify their use over simpler
solutions (i.e., a single name for heap and no context information). The rest of this

thesis investigates the benefits and costs of these solutions.
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MOD/REF Results

without path info with path info
void caller1() {
called(&gl); gl g2 gl
}
void caller2() {
called(&g2); gl g2 g2

b

void called(int *p) {
*p=3;
¥

Figure 2.10 Path information improves MOD/REF analysis




18

Chapter 3

Related Work

In this chapter we examine previous work on pointer analysis for C. This chapter is
divided into six sections, one for each of five groups that has done work in this area.
We present each group in the chronological order that their work was published. The
five groups are: Landi and Ryder; Choi, Burke, and Carini; Emami, Ghiya, and
Hendren; Wilson and Lam; and Ruf. In the last section we summarize previous work

that has been done in this area.

3.1 Landi and Ryder

Landi and Ryder’s work is one of the first attempts at alias analysis for C programs
[23, 24]. Their view of this problem is clearly influenced by earlier work to analyze
FORTRAN aliases. Because of this background, they focus on finding the set of
possible aliases at every program point. They limit their work to a “C-like imper-
ative programming language with sophisticated pointer usage and data structures,
no type casting, explicit function calls, and arrays.” In their work they treat arrays
as aggregates. Names are k-limited* in order to ensure that only a finite number of
names need to be analyzed. They calculate the set of aliases that may hold at a given
program point, the may-alias problem, by first calculating the set of aliases that may
hold on entry to a function if a given alias condition is satisfied, the may-hold prob-
lem. They show how the may-alias problem can easily be solved once the may-hold
problem is solved. The solution to the may-hold problem incorporates some context
information by associating an alias condition with the alias pair. For example, one
condition may be that formal parameter a and location *g are aliases on entry to
a function. A variable, whose name is hidden from a function, but which may be

accessible through a pointer, is modeled with the name non-visible. This modeling is

*In this case, k-limiting limits names to a certain length. All names with greater length are rep-
resented by their longest prefix that is short enough to satisfy the k-limiting requirement. This
is similar to the k-limiting done in analyzing heap structures, where arbitrary size structures are
modeled by a finite number of nodes. In the heap analysis case, a finite number of nodes, k-1, 1s
used to model a portion of the data structure. Subsequent nodes are all approximated by a single
node.
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not explained in detail. The heap is modeled by a name for each call site. Presumably
these names are also k-limited. Landi and Ryder have implemented their analysis and
have presented analysis times and accuracy results. They identify four base sources
of approximation and prove that these are the only ones. Their first source of approx-
imation is k-limiting; the others are due to lack of information about intraprocedural

and interprocedural control flow.

3.2 Choi, Burke and Carini

Choi, Burke and Carini’s research is another early work on alias analysis for C [11].
Like Landi and Ryder, their work is also based on alias pairs with names truncated
by k-limiting. They note that only the transitive reduction[l] of the directed graph
of alias relations needs to be kept.” They note that this more compact represen-
tation can also improve the accuracy of their analysis. Heap locations are named
by the call path in which they are allocated. They also allow k copies of an ob-
ject to be associated with each allocation site, and they divide their analysis into
separate interprocedural and intraprocedural phases. Their interprocedural analysis
has both flow-insensitive and flow-sensitive versions (context-insensitive and context-
sensitive). Since pointers allow a callee to modify the aliasing relationships in its
caller, their context-sensitive interprocedural analysis must be interleaved with their
intra-procedural analysis. They achieve context-sensitivity by recording the last call
site through which an alias pair passed. They handle invisible locations with repre-
sentative names. In one example, they give an example where two pointer arguments
of the same type are initialized to point at different representatives. This is not safe
unless we guarantee that the two pointers cannot point to the same object. They do

not give any performance data.

3.3 Emami, Ghiya and Hendren

The purpose of Emami, Ghiya, and Hendren’s work was to provide the most context-
sensitive analysis possible (see Section 2.6)[16]. They achieve this by performing
their analysis over the invocation graph. The invocation graph is a directed tree of
all possible call-stacks with a rooted node for the main function (i.e., each possible
call-stack is matched with a path in the invocation graph). Recursion is handled by

terminating the graph when a function appears twice in a call-stack. The terminating

5The directed graph of alias relations has a node for each variable name in the program. A directed
edge is placed from a variable to another variable if the variable at the source of the edge can be
dereferenced to access the variable at the sink. Thus, for alias pair <#*a,b> an edge would be placed
from a to b.
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node has an edge (this is not considered part of the graph) back to the node that
started the recursion. Essentially, this is equivalent to using full path-information.
They note that performing analysis over the invocation graph may require exponential
time. They suggest that “sub-trees that have the same or similar invocation contexts”
can be shared. This is the main idea behind Wilson and Lam’s work (see Section 3.4).

This work is the first, we believe, to use the points-to abstraction rather than the
alias pair abstraction. By using a points-to abstraction they can easily and naturally
analyze function pointers. Analyzing function pointers is a necessity since they per-
form analysis over the whole invocation graph. This is accomplished by constructing
the invocation graph while propagation is being done. When a function pointer is
propagated to a call site, a new node is added to the call-graph corresponding to the
target of this function pointer.

Emami, Ghiya, and Hendren use representative names (they call them symbolic
names) to handle call sites. They note that two representative names should not be
used to represent the same memory location. They also note that as many represen-
tatives as aliasing allows should be used in order to increase the accuracy of pointer
analysis. They consider heap analysis an issue orthogonal to the rest of pointer anal-
ysis. Their focus is analyzing stack and global pointers. Thus, they simply model
heap memory with one name. They note that pointers that reside in heap memory
almost always point to heap memory. Thus, using a coarse model for heap memory
will not diminish the accuracy of pointer analysis for stack and global pointers.

They implemented and tested their analysis over a suite of programs and present
the results of their analysis. The largest program analyzed had 2279 lines of C
code. Their results show that the average number of pointers arriving at an indirect
memory operation is 1.13. This indicates that their analysis is very accurate, since
each indirect memory operation must have at least one pointer reaching it. They
also point out that indirect memory operations that can be determined to access
only one location can be modified into explicit memory operations if the accessed
location is visible to the function containing the operation. They also note that
pointer analysis can be used for array dependence testing, instruction scheduling,
parallelization and other optimizations. However, they do not actually show the

impact of pointer analysis on subsequent optimizations.

3.4 Wilson and Lam

The goal of Wilson and Lam’s work is to provide context-sensitive analysis efficiently
[36]. Context-sensitivity takes time exponential in the program size in the worst case,

but they make their implementation more efficient by exploiting the fact that the
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number of aliasing patterns that arrive at the input to a function is usually small.
They exploit this fact by developing partial transfer functions. Transfer functions
were initially developed to perform interprocedural constant propagation[18]. For
constant propagation, a transfer function summarized a function’s effect on constants.
Constants arriving at a call site are passed to the callee’s transfer function. The
transfer function computes what constants will result from the given input. The
benefits of using a transfer function are speed and context-sensitivity. Speed is gained
because much of the analysis needed for constant propagation can be stored within
the transfer function. This stored analysis can be applied to multiple call sites,
thus gaining efficiency. Context-sensitivity is achieved since transfer functions are
applied to each call site individually. Transfer functions are more difficult to create
when applied to the problem of pointer analysis. Wilson and Lam give an example
where the effect of a simple function depends heavily on the aliasing patterns that
enter it. Thus, a transfer function that completely summarizes a function’s effect on
pointers may be as complicated as analyzing the function itself (i.e., little analysis can
be stored within the transfer function). Wilson and Lam construct efficient transfer
functions for pointer analysis by limiting the initial aliasing patterns in which they are
applicable, thus the name partial transfer function. When a call site to an unanalyzed
function is encountered, a partial transfer function is developed for the function that
is applicable to that context’s aliasing pattern. Subsequent call sites to that function
can re-use the partial transfer function if they satisfy the partial transfer function’s
initial aliasing pattern requirements. If these requirements are not satisfied, a new
partial transfer function is created. Wilson and Lam’s work depends on the fact that
a single partial transfer function will frequently be enough to cover all the aliasing
patterns that enter a function in a program. In their results for a given program, the
average number of partial transfer functions created for a function ranges from one
to 1.39.

By using partial transfer functions, they can safely use representative names (they
call them “extended parameters”), instead of explicit names (see Section 2.2). Their
work recognizes that aliasing may exist between representative names, and represen-
tatives cannot be created without regard to the aliasing patterns that may exist. By
testing to make sure that the aliasing patterns at a call site satisfy the requirements
of a partial transfer function, they do not have to create representatives assuming the
worst case aliasing pattern. They handle the problem of creating representatives for
arbitrary size data-structures by only creating locations as they are needed.

Wilson and Lam’s answers to our other questions are similar to the ones we have
chosen. They perform a points-to analysis rather than alias analysis, and they also
choose to split the heap by call site. They note that splitting by call path can
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produce more accurate results, but it can create too many heap names. Wilson amd
Lam tested their analyzer on a suite of programs that ranged in size from 188 to 4663
lines. For each program they present the time required for their analysis and the
average number of partial transfer functions created for each function. Their results
were used to parallelize two programs. They show the percentage of time that a
sequential version of each program would spend in code that was parallelized. They

also show the speedup achieved in the parallelized code.

3.5 Ruf

Ruf’s work was to quantify the improvement in accuracy of pointer analysis due to
using complete context information instead of no context information [32]. Ruf does
not try to develop an efficient context-sensitive analysis. His goal is to determine
the maximum possible benefit in order to provide a data-point for others who are
considering adding context-sensitivity to their pointer analyzer. Most people have
assumed that context information would greatly improve the accuracy of pointer
analysis. Ruf’s work directly compares two pointer analyzers that are identical except
that one implementation uses complete context information. The context information
that he chooses to use is assumption-set-based contexts. In this system he attaches
a set of conditions with every points-to pair. These conditions are propagated with
points-to pairs through a procedure. At loads and stores, if two pointers are involved,
the conditions on both points-to pairs involved are combined to produce the output
points-to pair. When a points-to pair is returned from a procedure to a call site, the
points-to pair is only returned to call sites that satisfy its conditions. Ruf’s work
surprisingly shows that context information produces no increase in the accuracy of
pointer analysis.

Ruf’s choice for context information is different from the one we have selected
for our work. Ruf chooses to associate conditions with each points-to pair while
we associate a call-stack or path through the call-graph. He chooses this type of
context information because it allows him to prune contexts based on the results of
a context-insensitive analysis. He prunes contexts from points-to pairs at indirect
memory operations that context-insensitive analysis has determined modify only one
location, (i.e., has only one points-to pair at the base register). In this case, all call
sites must produce this points-to pair for the base register. Thus context information
will not improve accuracy at all. Ruf also prunes away contexts at strong updates
based on the results of context-insensitive analysis. In a context-insensitive setting,
a strong update is a more accurate way of treating stores when it is known that

the store must modify a certain location. Since the store must modify a specific
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location, any old pointer values that were in that location prior to the store can
safely be killed (i.e., removed). In a context-sensitive setting, strong updates can
be partially achieved even if a store may operate on multiple locations. Old values
at a store can still be killed, for those contexts in which a specific location must be
modified. In this case, Ruf enumerates the contexts in which the pointer may survive
and attaches it to the surviving pointer. Context-insensitive analysis can remove the
need for enumerating contexts in the context-sensitive case for those locations which
context-insensitive analysis has already shown will not be modified. It is not clear to
us why these pruning techniques require the use of an assumption-set based approach
to context information as opposed to a call-stack based approach.

One technique that we use in our context-sensitive analysis that Ruf does not use is
to modify our propagation (when compared to the context-insensitive case) of points-
to pairs at loads and stores based on the context information. In Ruf’s work, when
two points-to pairs arrive at a memory operation their conditions are combined to
form the condition for the output pair. This may produce an unsatisfiable condition
for the output (e.g., the resulting condition may require one formal parameter to
point to two different locations). With a call-stack based approach to contexts, this
corresponds to the case where pointers with two different paths or call-stacks arrive
at a memory operation. Since they must come from different contexts, they cannot
interact in a real execution. Thus, in our analyzer we do not propagate the interaction
of two pointers in such a case. This may improve the accuracy of our context-sensitive
analysis over Ruf’s work.

Ruf’s work is similar to ours in many important respects. He uses a points-to
framework for analysis as opposed to an alias framework. He also splits the heap
by heap-allocating call sites. He does not use representative names (he calls them
“synthetic” names) to handle call sites, but like us he uses explicit names. However,
he does not explain the drawbacks of using representative names. He does note that
using explicit names can reduce the opportunities for strong updates and thus reduce
accuracy. On the other hand, he notes that explicit names can also improve accuracy
by eliminating aliasing relationships unnecessarily generated by merging aliasing re-
lationships from multiple call sites. Also, like our work, he gives performance results
for his analyzer. The largest program he analyzes has 6771 lines. The analysis times
for the context-insensitive version of his analyzer ranges from 1 to 35 seconds. The
type of machine that the experiments were performed on is not specified. Also, he

does not show what impact his analysis will have on later optimization passes.
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3.6 Summary

Work on pointer analysis for C developed as an extension of the work done on alias
analysis for FORTRAN programs. Early work in this area used alias pairs to analyze
C programs. Later work has switched to using the points-to abstraction.

Early work in pointer analysis has not been very clear about how to model the
behavior of pointers at call sites. Particular attention needs to be paid at these
locations since pointers allow a function to modify its caller’s memory. Wilson and
Lam dealt with this by using representative names and partial transfer functions. Ruf
dealt with this by using explicit names.

Previous work has also not been conclusive on what heap model to use. Various
models have been proposed (e.g., to use a single name, split by call site, split by call
path, k-limiting, etc.). No numbers have been shown to quantify the tradeoffs among
these models. Previous work has also not been conclusive about what form of context
information to use, path expressions or conditions. Ruf’s work suggests that context
information is of no use in improving the accuracy of pointer analysis.

A summary of the properties of previous work is shown in Figure 3.1.

Pointer analysis by itself will not improve the performance of code. It is only
beneficial if later optimizations can utilize the information it generates. All of the
numbers presented in the previous work in this area (except Wilson and Lam’s par-
allelization numbers) have been concerned with the performance and accuracy of the
pointer analysis itself. No numbers showing pointer analysis’ impact on the running

time of analyzed programs have been published.
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Type Call Sites Heap Path Information

LR Alias Representatives | k-limiting and | conditional
call site

CBC | Alias Representatives | Call Path with | conditional
k-limiting

EGH | Points-to | Representatives | One Name arbitrary-level

WIL | Points-to | Representatives | Call Path arbitrary-level?

Ruf | Points-to | Explicit Names | Call Site none/arbitrary-level

Lu Points-to | Explicit Names | Call Site none

LR Landi & Ryder

CBC  Choi, Burke, & Carini
EGH Emami, Ghiya, & Hendren
WL Wilson & Lam

Figure 3.1 Comparison of approaches
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Chapter 4

PL Style Analysis

In this chapter, we will describe the analyzer we implemented and examine its ef-
fectiveness. The analyzer uses pointers rather than alias pairs (see Section 2.1) and
explicit names rather than representatives (see Section 2.2). The analyzer represents
programs in an assembly-like language, and performs flow-sensitive analysis. Versions
of the analyzer were made with various models for the the heap and different forms of
path information (see Chapter 2 for a discussion of these choices). This chapter con-
tains six Sections. Section 4.1 describes an abstract pointer language, PL. Section 4.2
shows how pointer analysis can be performed on PL. Section 4.3 explains how the
pointer behavior of a C program can be modeled with a PL program. Section 4.4 de-
scribes our implementation of a PL style pointer analyzer for C. Section 4.5 discusses
the sources of approximation in the analyzer. Section 4.6 summarizes our current

work.

4.1 PL language

Here we define an abstract language PL that has the relevant features of pointer-
based languages but is easier to analyze. We will use it as the abstract model upon

which our pointer analyzer will be based. A PL program consists of:

e global regions G,
e functions F}, one of which, Fjy, is the entry point into the program

e function regions F'R;, the k-th function region of function F)

A function F} creates function regions F'R;; when it is invoked. These regions are

destroyed on exit. The syntax of PL is described in the following grammar:

function — label FUNCTION (register®) [ region®] block*
block — label operation®
operation — load | store | address | call | jump | branch | return

jump — JMP label
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branch — BR label label

return — RTN register [ region*]

load — LD register register [ region*]

store — ST register register [ region*] [ region®]

address — ADDR [ region | function | register

call — [ CALL label register register* [ region*] [ region*] |

CALLR register register register*] [ region*] [ region*]
region — G, | FR;

Since PL is only concerned with pointer analysis, operations not relevant to pointer
analysis have been left out. The branch operation is indeterminate, since we assume
any intraprocedural path may be taken. Operations that may modify or reference
regions (i.e., calls, loads and stores) have been extended with lists that tell what
regions the operation may reference or modify. For calls and stores, the referenced
list comes before the modified list. If nothing is known about what regions may be
accessed, these lists may contain every region. Our analysis will communicate its
results by shortening these lists. In addition, a list of regions is also associated with
the entry (FRAME) and return (RTN) of each function. These lists contain the set
of regions that may be used in the function and set of regions that may be modified in
the function respectively. The set of regions that may be used in a function is called
its Uses set.

In a legal PL program, an instantiation of a function region F'R;; can only be
referenced or modified by loads or stores if it is the topmost instantiation of F'R; .
This is not a natural consequence of the syntax, but is a restriction the programmer
must guarantee. This requirement is necessary in order to make pointer analysis
simpler (see the explanation of how to propagate a region to a call site in Section 4.2).
A consequence of this restriction is that ALVRs must be modeled by global regions
(see Section 4.3).

4.2 Pointer analysis

Our goal will be to label all loads and stores in PL programs with the regions that
they may reference or modify. A load or store labeled with a function region F'R;
indicates that the load or store may reference or modify the topmost instantiation
of 'R, ;. We will accomplish this by converting our PL program into SSA form and
then propagating pointer values through this SSA form.
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4.2.1 SSA form

To label all the loads and stores, the program must be converted into SSA form[14].
This includes giving SSA names to all global regions and the topmost instantiation
of all function regions. These regions, from the point of view of our SSA construction
algorithm, are just like the registers that may be defined and used by an operation. All
that is required by the SSA construction algorithm are the locations where a resource
(region or register) may be referenced, where it may be modified, and where it is
created. A region’s reference and modification points are specified by the region lists
associated with calls, loads, and stores. A function’s Uses set serves as the creation
point for the regions used in a function.

The SSA construction algorithm we use creates the SSA form for each function
individually. Tt does not create an interprocedural SSA representation. Since we are
performing an interprocedural analysis, we have a few additional requirements so
that SSA names at the interfaces between functions can be easily connected. In an
intraprocedural setting, a function’s Uses set serves as a creation point for all the
regions used in the function. In an interprocedural setting, the non-local regions in a
function’s Uses set are interpreted differently. For these regions, the Uses set serves
as a join point. All the SSA names for a non-local region at the call sites to the
function are joined at the SSA name created for the region at the function’s Uses
set. This serves the same purpose as joining SSA names from different basic blocks
at a phi-node. The only differences are that we are joining SSA names from different
call sites rather than different basic blocks, and we use the Uses set rather than a
phi-node. If a non-local region is modified in a function, it acquires a new SSA name.
These modifications are gathered together by placing all potentially modified regions
in a referenced list at each return from a function. These new names are connected to
the list of modified regions for each call site to the function. We should note that we
only need to give SSA names to a region over its lifetime. Thus, the referenced and
modified lists of calls, the referenced list of returns, and the Uses set of a function
do not need to include regions that are created by descendants of the function that
contains the list or set. These lists and the Uses sets should be as accurate as possible
to reduce the time and space needed to build the SSA form of the program.

In summary, there are seven sets and lists that must be specified in order to
generate the SSA form of a PL program. They are: referenced lists for loads, stores,
returns and calls; modified lists for stores and calls; and the Uses set of a function.
Figure 4.1 shows how these lists and sets might be specified for an example program.
In this example, the Uses set for a function is just the union of all global regions and

all local regions created by the function and its possible ancestors. All referenced
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and modified lists are just the Uses set for the function they occur in except for the
referenced list of a return. The referenced list for a return in a function is just the Uses
of the function minus all the locals created by the function. This is a conservative
setting for the lists and the Uses sets. There are six important properties of this

setting:

e all regions possibly referenced by a memory operation are in the memory oper-

ation’s referenced list

o all regions possibly modified by a store are in the store’s referenced and modified
lists

o all regions used in a function are in the function’s Uses set

o all regions possibly modified by a function are in the referenced lists of the

function’s return operations
o all regions possibly referenced by a call are in the call’s referenced list

o all regions possibly modified by a call are in the call’s modified list

See Section 4.3 to see how these lists and sets are further limited in our implementation.

4.2.2 Propagation

Every SSA name s will have a set of possible addresses it may contain written as
POINTS_TO(s). The target of each ADDR operation is inserted into a worklist
and initialized with the address of its region or function argument. The SSA name for
each global region in the Uses set for Iy is initialized with any addresses the region may
have when the program starts. If the region has an address, it is placed on the worklist.
We remove items from the worklist and propagate them to their uses. The algorithm
terminates when the worklist is empty. To propagate addresses, the analyzer uses
the function SetCopy(dst, src) to set POINTS_TO(dst) = POINTS_TO(dst) U
POINTS_TO(sre). If this changes POINT ST O(dst), dst is added to the worklist.

Figures 4.2 and 4.3 illustrate the actions needed to propagate an address in a load
operation. In this example, we are propagating to a load operation with base register
r11 and target register r12. The memory regions that may be accessed by this load
are listed in brackets after the operation. They are: @_ap, @_bp, and @_cp. These
memory regions have been given SSA names, which are denoted by the subscripts.
The “address” of these memory locations is shown above the box that represents

them. Thus, memory region @_ap’s address is 0. Propagation to this load begins
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Globals: Gy

Function: Fj

Locals: F'Rgg

Function: F}

Locals: F'Ry g

Function: F,

Locals: F'Ryq

Function: Fs

Locals: F'Rsq

FUNCTION
LD

ST

CALL Fy
CALL F,
RTN

FUNCTION
ST

CALL F;
RTN

FUNCTION
CALL F;
RTN

FUNCTION
RTN

[F' Roo, F'R1 0, Go)
[F' Ro0, F'R1 0, Go] [F' Roo, F' R1 0, G
[F'Roo, F'R10, Go] [F Roo, F'R1 0, Go]

[FRO,07 FR2,07 GO]
[FRO,Ov FRQ,OvGO] [FRO,Oa FRQ,Oa GO]
[F' Ro 0, Go]

[FRO,Oa FR1,07 FR2,07 FR3,07 GO]
[F'Ro 0, 'Ry 0, F R0, Go]

Figure 4.1 Operations with lists of modified and referenced regions
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by examining the contents of the base register, r11, of the load. We start with the
element 0. We look for any memory regions in the list of regions that this load may
reference that are located at address 0. We see that @_apy3 represents @_ap at this
point, and it is located at address 0. Since @_ap;3 represents a memory region that
may be pointed to by the base register of this load, we copy the contents of @_aps,
113, and put it into the target register, r12. We follow an identical procedure with
the other element, 4, in the base register and put the contents of @_bpy4, 97, into r12.
Since the address of memory location @_cpys is not in r11, we do not copy its contents,
126, into r12. At the end of propagation the target register, r12, will contain 113
and 97. Since its contents have changed, r12 will be added to the worklist.

The functions that perform propagation are shown in Figures 4.4 and 4.5. The
steps needed to propagate addresses are fairly obvious except for (1) propagating a
region to a store, (2) the treatment of regions at a call site, and (3) propagating a

function pointer to a call site.

1. A region in the referenced list for a store must have its addresses added to the
corresponding region in the modified list because a store might not kill values
in a region (i.e., some values might survive a store if the region references more
than one possible name). Thus any addresses in a region before the store may

still be in the region after the store. This is why stores need referenced lists.

2. There are two cases for handling a region r in the referenced list at a call site
to function Fj. If r represents a region F'R;, that is created by F,° then r
is copied directly to the modified list at the call site. Otherwise, r is copied
into the corresponding region in the Uses set for Fj. In the first case, this is
done because r represents the topmost instantiation of F'R;, before the call
site. Within the call, it is no longer the topmost instantiation. Thus, it cannot
be referenced or modified, and the values in the topmost instantiation of F'R;,,
before and after the call are the same. This is reflected by copying r from the
referenced list to the modified list. In the second case, I'R;,, is visible in the
call, so its values must be copied into the call. If these values are modified
by the call, the modified values will be placed in the call site’s modified list
when the called function’s RTN operation is processed. A RTN operation’s

referenced list contains all non-local regions possibly modified by a call.

If our MOD/REF analysis is powerful enough, this case will only occur if Fj is recursive. If Fj is
not recursive then our MOD/REF analyzer should have been able to remove r from the call site’s
referenced list.
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LOAD r11l => r12 [ @_ap;3 @_bpyy @ _cpys |

Memory Regions

SSA Name

Original Name

Contents

0 4 8
@_ap @Q_bp Q_cp
11 12 | Q_apis | Q.bpiy| Qcpys
@Q@ap | Q@Qbp | Qcp
0,4 113 97 126

Figure 4.2 Before propagation step
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LOAD r11l => r12 [ @_ap;3 @_bpyy @ _cpys |

Memory Regions

SSA Name

Original Name

Contents

0 4 8
@_ap @_bp @ _cp
11 12 | @.apy3 | @ bpiy | Qcpss
@Q@ap | Q@Qbp | Qcp
0,4 (113,97 113 97 126

Figure 4.3 After propagation step
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3. When a function pointer is propagated to a call site, the calling-context must
be propagated to the new target. In addition, the return context of the called
function must be propagated to the call site. This may seem unnecessary,
because the return context will be generated by the newly propagated calling-
context. However, if the newly propagated calling-context does not modify the
existing return context (the called function may have other call sites that may
have already created a return context), the return context will not be properly

returned.

4.2.3 Running time

Before analyzing the running time, it should be clear that this algorithm must halt.
The algorithm continues only if an SSA name has a region added to its POINTS_TO
set. Since there are a finite number of regions and SSA names, this process must ter-
minate. Four parameters will be used to analyze the running time of the propagation

algorithm.

o S Number of SSA names
e R Number of regions
o U Maximum number of uses of one SSA name

e D Maximum number of SSA names one operation can define

Each SSA name can be inserted and removed from the worklist at most R times.
Thus, each SSA name will be processed at most R times. Each time an SSA name
is processed, it may result in UD SetCopy calls. SetCopy can be implemented
to require O(#source addresses) + O(Ftarget addresses) time. Since both of the
addends are of O(R), SetCopy requires O(R) time. The only non-constant work
needed to determine if a SetCopy operation needs to be done is in the LD and ST
cases. In these cases, there is a test, PointsTo(operation.BaseRegister,region). If the
addresses in operation.BaseRegister are represented by a linked-list, this can be done
in O(R) time. Since this overhead is of the same order as the SetCopy operation,
the worst case running time is O(R?SUD). The worst case requires that every SSA
name contain every address upon termination and that each SetCopy call adds at
most one address. The average case of our test suite is much better than the worst
case (see Figure 4.6). Consider the results of our baseline analysis where the heap is
split by malloc call sites and no path expressions are used. In the fourteen programs

tested with our baseline analysis, there were a total of 2,822,907 SSA names when
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Void PropagateToCall(Name ssaName,Operation callingOperation,Function calledFunction) {
if (IsActualParameter(ssaName,callingOperation))
SetCopy(CorrespondingFormal(ssaName,calledFunction),ssaName);
else {
/* propagating a region to a call */
if (RegionIsLocalToFunction(ssaName,calledFunction))
SetCopy(CorrespondingRegion(ssaName,callingOperation.ModifiedRegions),
ssaName);
else
SetCopy(CorrespondingRegion(ssaName,calledFunction.UsesRegions),ssaName);

Figure 4.4 Code for PropagateToCall

using a heap model where the heap was split by malloc call sites. Of these SSA
names, 341,286, or 12% contained more than nine addresses. Over 79% of the SSA
names had no addresses. Thus, our worst case time bound is much worse than the
average case of our test suite. Usually, an SSA name will contain very few pointer
values. The indent program was especially difficult to analyze because of a large
array of structures that contained over 200 pointers. Since an array is approximated
by one name in the analyzer, any access to this array would refer to all 200 pointers,
greatly slowing down the analysis. The program jpeg was also difficult to analyze
because of a large number of indirect function calls. Excluding indent and jpeg,
only 38,702 SSA names out of 2,338,952 (or 1.65%) contained over nine addresses and

over 88% percent had no addresses.

4.3 Modeling and analyzing C in PL

The pointer behavior of C programs can be modeled with the PL language. Global
variables are modeled with global regions. Local variables that are not addressed or
are not created by a recursive function can be modeled by a function region. These

variables cannot be accessed unless they are the topmost instantiation of the variable.
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Void Propagate(Name ssaName,Operation operation,Function f) {
/* propagating ssaName to a use in operation in function f */
switch (operation.type) {
LD . forAllRegions(region,operation.ReferencedRegions)
if (PointsTo(operation.BaseRegister,region))
SetCopy(operation.definedRegister,region);
break;
ST . if (ssaName==operation.BaseRegister | |
ssaName==operation.ValueRegister)
forAllRegions(region,operation.ModifiedRegions)
if (PointsTo(operation.BaseRegister,region))
SetCopy(region,operation.ValueRegister);
else /* propagating a region to a store */
SetCopy(CorrespondingRegion(ssaName,
operation.ModifiedRegions),ssaName);
break;
RTN : if (ssaName==operation.returnRegister)
forAllCallerSites(callOperation,f)
SetCopy(callOperation.definedRegister,ssaName);
else {
/* propagating a region to a return */
forAllCallerSites(callOperation,f)
SetCopy(CorrespondingRegion(ssaName,
callOperation.ModifiedRegions),ssaName);
}
break;
CALLR: if (ssaName==operation.functionPointerRegister) {
forAllCallees(calledFunction,operation) {
forAllParameters(parameter,operation)
PropagateToCall(parameter,operation,calledFunction);
forAllRegions(region,operation.Referenced Regions)
PropagateToCall(region,operation,called Function);
forAllOutGoingRegions(region,called Function)
SetCopy(CorrespondingRegion(region,
operation.ModifiedRegions),region);
}
} else {
forAllCalledFunctions(called Function,operation)
PropagateToCall(ssaName,operation,calledFunction);
}
break;
CALL : PropagateToCall(ssaName,operation,operation.calledFunction);
break;

Figure 4.5 Code for Propagate
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Program | Number of | Number of SSA names with X

Regions SSA names number of addresses
0-9 | percent 0 | percent
go 817 1305321 | 1305285 100.0 | 1256788 96.3
cachesim 262 65129 65129 100.0 56344 86.5
allroots 31 1044 1044 100.0 880 84.3
ftt 84 5539 5539 100.0 4638 83.7
gzip 437 126063 | 126054 100.0 | 103822 82.4
clean 389 158197 | 158185 100.0 | 126739 80.1
water 274 11313 11313 100.0 9022 79.7
tsp 66 6788 6788 100.0 5214 76.8
bison 355 106624 | 106619 100.0 75158 70.5
dhrystone 46 2649 2649 100.0 1834 69.2
mlink 651 457240 | 456232 99.8 | 384653 84.1
be 282 93045 55413 59.6 48274 51.9
indent 312 166640 70697 42.4 52615 31.6
jpeg 378 317315 | 110674 34.9 | 106397 33.5

Figure 4.6 POINTS_TO set sizes

On the other hand, ALVRs” must be modeled by a global region. Since they are
recursive, multiple instantiations may exist, and since they are addressed, we have a
way to access instantiations that are underneath the topmost one. Thus, we cannot
guarantee that only the topmost instantiation of these variables will be referenced.
An SSA name for a function region only contains what the topmost instantiation of
that region may have at that point, which is not sufficient to model ALVRs. An SSA
name for a global region representing an ALVR contains the possible addresses of any
instantiation of that variable at that point in the program. Since it represents multiple
locations, addresses in these regions can never be killed. Fortunately, ALVRs in C

appear to be rare. Heap memory is also represented by global regions. Stores to heap

7Of the programs tested, only mlink had an ALVR. ALVRs are easy to detect. A call-graph is built
and all recursive functions are found. All addressed memory regions in these functions are ALVRs.
It is complicated to model ALVRs more accurately. Accurate modeling would produce little benefit,
since ALVRs are rare. Also, any attempt to model them more precisely would require complex code
to be written that would slow down the performance of the analyzer even if no ALVRs existed in
the program. Separate addresses would have to be created for the multiple regions used to model
an ALVR. Complicated code would be needed to adjust these addresses when they enter and leave
the function in which they are created.



38

memory cannot kill old values. In Figure 4.7, we have a short program that has one
ALVR. There are four variables in this program: p, alvr, not_alvr, and a. Variable
a i1s addressed but is not an ALVR since there can only be one instantiation of it.
All accesses to it must refer to this single topmost instantiation. The variables p and
not_alvr may have multiple instantiations, but only the topmost instantiation may
be accessed, since these variables are unaddressed. Variable alvr may have multiple
instantiations and is also addressed. Thus, it is an ALVR. In Figure 4.8, we have a
program with seven regions. Fach non-structure field of a structure is considered a
variable and given its own region name. If a field of a structure is itself a structure,
(e.g., g.d in function main) then the naming is based on the fields of the interior
structure. Note that variable a in function f is an example of an ALVR and is given
a global region.

Calls to heap generating functions can be modeled with an ADDR operation.
This splits the heap into sections based on the call site.

PL could be extended to handle explicit stores better. Stores in PL require a
referenced list in order to propagate old values that may not be killed (see the dis-
cussion in Section 4.2.2 on the steps needed to propagate a region at a store). Since
an explicit store is unambiguous about what region is being modified, we know that
old values in the region will be killed. Thus, there is no need to build a referenced
list for explicit stores. PL was not extended in this way in order to keep it simpler.

PL is too simple to model the generation of addresses in C. The intricacies of
address creation are abstracted away in PL with an ADDR operation. For certain
references (e.g., explicit references) address generation in C can be adequately mod-
eled with an ADDR operation. In these cases we know exactly which address is being
created, and thus we know what region argument to place in the ADDR operation.
On the other hand, an ADDR operation is inadequate for modeling the creation of
addresses by arithmetic on a pointer value. Consider the example in Figure 4.9. Since
we do not know whether p points to a or b, we do not know whether to generate an
ADDR operation to a.val or to b.val.

We can model the generation of addresses more accurately in PL by assigning each
region a numerical address. These addresses can be selected so that the addressing
arithmetic in the program can generate addresses correctly. For example, suppose in
Figure 4.9 that structures a and b are located at address 100 and 200, respectively,
and that the val field has an offset of 8 in these structures. Thus, to generate this

address we will have an operation like:

1ADDI 8 ri10 => rii
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void recursive(int *p) {
int alvr,not_alvr=*p;

alvr=not_alvr+i;
if (not_alvr==5)
recursive(&alvr) ;
main() {
int a=0;

recursive(&a) ;

b

Figure 4.7 Program with one ALVR

Register r10 represents the pointer variable p. Thus, r10 will contain the addresses
100 and 200. Using the address calculation ri1 will contain the addresses 108 and
208, the addresses for a.val and b.val.

In order to use the program’s addressing arithmetic to generate addresses for
our regions, we assume that our front-end calculates addresses with a certain code
shape. We require that address calculations be rooted at a stack pointer, global
label, or address returned from a heap-allocating library call and that they consist of
two separate components. The first component takes in the root address (i.e., stack
pointer, global label or address returned from a heap-allocating library call) and uses
it to calculate the base address of the region being accessed. We require that each
intermediate address calculated in this first component must also be an address to
the base of a region. The second component is non-empty only for accesses to heap or
array memory. It is used to access the interior of such regions. An example showing
two ways to access the same memory location, one ill-formed and one well-formed,
is shown in Figure 4.10. In this example we have two memory regions, @_g and Q_f,
both of size 8. Memory regions @_g and @_f appear in sequence. The ill-formed
code creates a pointer to @_g and then increments it to access a location within @_f.

This code merges the tail of component one with component two. The operation
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struct inner {
int a;
int b;

s

struct outer {
struct inner c[2];
struct inner d;

¥
main(int argc, char **argv) {
int *a;

struct outer g;

a=(int *) malloc(sizeof(int));

£(0);
}
void f(int a) {
int *p;
p=&a;
if (a<b)
f(at+l);
}
main’s function regions @ a Q@g.c @_g.d.a
@_g.d.b
f’s function regions @ f.p
global regions @_heap @ f.a

Figure 4.8 Program with seven regions
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if (a_or_b) {
p=&a;

} else {
p=&b;

b

f=p->val;

Figure 4.9 ADDR operation is inadequate

iADDI 12 r1 => r2 needs to be split into two operations to divide the calculation
into the two components. This is done in the well-formed calculation. Our front-end
originally generated ill-formed code for accesses to a stack array with an index that
was a compile-time non-zero constant.

We require address calculations to follow this format because we must be careful in
how we handle addressing arithmetic for arrays. Unless we limit the addresses in some
way, code that increments a pointer through an array will generate an infinite number
of addresses. Our solution is to limit legal addresses to those that point to the base
of a region. If a memory operation may access a location within a region, then the
address to the base of the accessed region should be in the base register of the memory
operation. In order to achieve this we must modify our address calculation algorithm
from that of the real program in two ways. First, if an operation produces an address
that is not the base of a region, then the computed address is discarded, and the input
address is returned. The reasoning for this can be divided into two cases. First, this
input address could not be a valid input address if this operation were part of the first
component of an address calculation, since operations in the first component must
produce addresses that are at the base of a region. In this case, no address needs to be
returned. If this operation is part of the second component of an address calculation,
then the input address should be returned. Since we cannot distinguish between these
two cases, the input address is returned. Our second modification is to change the
action of operations on addresses that point to heap memory and arrays. We identify
addresses of all memory regions that are aggregates. Arithmetic operations on these
addresses return the input address and may also return the computed address. The
reasoning behind returning the input address is that the addressing arithmetic may

compute a reference to a location within the array or heap. This is done even if the
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iGLOBAL 0 @_g _g
_g: iDATA 0 1

bGLOBAL 0 @_f _f

_f: bDATA O 8
Unacceptable Address Acceptable Address
Calculation Calculation
iLDI g => rl iLDI g => rl
1ADDI 12 r1 => r2 1ADDI 8 rl => r2
1ADDI 4 r2 => r3
bPLDor @' 10 r2=>r3 bPLDor @! 1 0 r3 => r4

Figure 4.10 Good and bad addressing calculation

computed address lands at the base of another region. This is necessary because array
arithmetic may create pointers outside of the range of the array, (e.g., if we create
a pointer to the end of the array in order to access the array with negative indices).
The computed address is returned if the computed address is at the base of a region.
The reason for returning the computed address is that the computation may be part
of the first component of an address calculation.

Thus, to generate addresses, we must add a great deal to PL, including numerical
addresses, array addresses, addressing arithmetic, and region sizes. We did not do
this because it is orthogonal to the propagation issues we wanted to examine with
PL. Tt is also a very complicated extension. Generating addresses with a numerical
framework was followed in our actual implementation.

Our rules for address calculation can be violated by some C code. Code that casts
pointers to structured local or global memory may not follow our requirements (see

Section 8.4 for an example of this).
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4.4 Implementation

We implemented a PL style analyzer within the Massively Scalar Compiler Project
(MSCP)[3]. We will describe it in five sections. The first four: C to ILOC, MOD/REF,
propagation, and annotation, describe pointer analysis with no path expressions.
The last section describes the modifications needed to perform analysis with path

expressions.

4.4.1 C to ILOC

C2I translates C code into our intermediate language ILOC (see Appendix A). C2I
generates a region for each scalar and array variable. Each field of a structure and
each compiler-generated location is also given a region. C2I also records if a region is
a global region or a function region, if a region is ever addressed, and the region’s size.
It also creates a region for each call site that returns heap memory. This memory is
marked as both global and addressed. C2I can explicitly annotate a load or store that
does not use a pointer with the region that it will reference or modify. C2I is also
able to denote that some stores must kill old values in the region the store modifies.
Figure 4.11 shows a C source code fragment and the ILOC that C2I produces for it.
This example contains four regions. Global regions are created for g1 and each field
of g2. A local region is created for local variable ¢ in function £. ALVRs are created
as local regions by C2I since C2I will not have enough information to determine that
an addressed local is an ALVR in the general case (i.e., the fact that a local is an
ALVR may depend on multiple files). Later when our analyzer processes all the
files, it can determine if a local is an ALVR. In this case, our analyzer will process
the ALVR as a global region, even though it was declared with a STACK statement.
Locals, including ALVRs, are declared with a STACK declaration. Ambiguous memory
operations are tagged with ‘@Q!". Later, our analyzer will create group tags to more
accurately tag ambiguous memory operations. The other three tags @_addr locals,
Q_writable globals, and @_addr_globals provide information used by our analyzer
to perform MOD/REF analysis. They are not used to tag operations.

4.4.2 MOD/REF analysis

MOD/REF analysis is crucial to the success of pointer analysis. It is necessary to
limit the number of SSA names generated for memory regions. Since many of our test
cases are limited by the amount of memory used by our analyzer, we have strived to
make our MOD/REF analysis as accurate as possible in order to trim our analyzer’s
memory requirements. See Figure 5.3 for the time and memory needed to produce
the SSA form for our test cases without MOD/REF analysis.
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int gi;

n

struct pair {
int a,b;

¥ g2;

void f() {
int *p,c,d;

=&gl;
=3;

3

Q-"(ﬁ * O
w &
0

g2.b=*p; _gl:

0 FRAME 8 =>r0Or1 [ i i ]
10 il.DI _gl =>r4

10 121 r4d => r2

11 121 r2 => rb

11 il.DI 3 =>r6

11 iPSTor @! 4 0 r5 r6

12 iADDI 0 ro => r8

12 121 r8 => r2

13 il.DI 3 =>1r9

13 121 r9 => r3

14 il.DI _g2 => ri0

14 iADDI 4 ri0 => ri10

14 121 r2 => rii

14 iPLDor @! 4 0 ri1 => ri12
14 iSSTor @_g2_4 4 0 r10 ri2
15 RTN r0

ALTIAS @_addr_locals [ @f_c_0 ]
iSSTACK 0 of_c_0 _f

bDATA 0 8

bDATA 0 4

ALIAS Q@_writable_globals [ @_g1_0 ]
ALTIAS @_addr_globals [ @_g1_0 ]

1SGLOBAL 0 0_gl 0 _gt
ALIAS Q@_writable_globals [ @_g2_0 ]
1SGLOBAL 0 0_g2_0 _g2
ALIAS Q@_writable_globals [ @_g2_4 ]
1SGLOBAL 4 0_g2 4 _g2

Figure 4.11 C code translated to ILOC
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The first step in MOD/REF analysis is to rewrite the modified and referenced
lists for each ambiguous memory operation. Four restrictions are used to limit the
memory regions that may appear in these lists. First, non-integer ambiguous mem-
ory operations have empty lists. Although these operations reference memory, we
assume they cannot move a pointer value into or out of memory. Since we are only
tracking pointer values, we do not create new SSA names for memory operations that
cannot affect the state of our analysis. Although we do not create SSA names for the
memory regions these operations may access, this does not mean that our pointer an-
alyzer cannot later determine that these operations will access some memory regions.
Second, only addressed locals and globals may be affected by ambiguous loads and
stores. This information is provided by C2I. Third, non-writable globals cannot be
modified by a store. An example of a non-writable global is a string literal passed
to a printf call. Fourth, a local can only appear in memory operations that are in
descendants of the function in which the local is created.

Once we have limited the MOD/REF effect of ambiguous memory operations,
we calculate the MOD/REF effect for whole functions. The MOD/REF effect of a

function is composed of two parts:

e the local MOD/REF effect

e the MOD/REF effect of the functions it calls

The local MOD/REF effect is determined by unioning together the MOD /REF effects
of all the memory operations in the function. For ambiguous memory operations,
their MOD/REF effect is limited by the rules in the previous paragraph. The second
component of a function’s MOD /REF effect is determined by calculating the strongly
connected components (SCC) of the call-graph. The call-graph is formed by assuming
that an indirect function call may call any addressed function. The MOD/REF effect
for every function in an SCC is the same since the functions are mutual descendants.
The SCCs are processed in reverse topological order so that the MOD/REF effect of
any called function not in the SCC being processed has already been calculated.

In writing the referenced and modified lists of procedure calls and returns, we
require that the memory regions in a call site’s referenced list have the same size
and order as the non-local memory regions in the Uses set (see Section 4.2) for the
called function. Similarly, we require that the list of referenced memory regions for a
return match the modified list for the corresponding call sites. These requirements are
necessary to allow efficient pointer analysis. When transferring information between
call sites, we do not want to search for a corresponding name in a Uses set or a

modified list. We accomplish this by ensuring that the same offset used to access a
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memory region in a call or return’s referenced list can be used to access the new SSA
name for a memory region in the Uses set or modified list. This requirement forces us
to use the same MOD /REF set for all call sites to a function. In particular all explicit
calls to an addressed function, say £, and all indirect calls (prior to pointer analysis,
we assume that an indirect call may call any addressed function, including £) must
have the same MOD/REF effect. Since MOD/REF analysis assumes that an indirect
call may call any addressed function, the MOD /REF effect for any indirect call site is
the union of the MOD/REF of all addressed functions. Thus, the MOD/REF effect
for explicit calls to £ must also be the union of the MOD/REF effect of all addressed
functions. This lowers the accuracy of our MOD /REF analysis for explicit calls to an
addressed function. Our requirements for matching also force all addressed functions
to have identical Uses sets and referenced lists for their returns. Note that these size
and ordering requirements are not necessary when we redo MOD/REF analysis after
pointer analysis. Thus, we are free to tailor the MOD/REF effect for each call site
to a function by using path information (see Figure 2.10).

MOD/REF analysis not only reduces the memory requirements of pointer analysis,
it can also improve the accuracy of pointer analysis. In Figure 4.12, p will contain the
address of g before the call to printf in £1. Without MOD/REF analysis, this fact
will enter the printf function, because all variables are in printf’s referenced and
modified lists. The variable p will be propagated to the return operation in printf
and will be returned to all call sites of printf. (Note that this is an example of the
false-return problem.) Thus, p will unnecessarily point to g immediately after the call
to printf in main. With MOD/REF analysis, we know that printf cannot modify
or reference p, so it will not appear in printf’s referenced and modified lists. Thus,
p will not be propagated into printf, nor will it be propagated back to printf’s call
sites.

4.4.3 Propagation

The actual pointer analysis starts by assigning a numerical address to each region.
These addresses are chosen so that an add immediate operation generated to access
a local variable in a stack frame can generate the correct address by adding its im-
mediate operand to the address in the base register. The addresses of regions in a
structure are also chosen so that the addressing arithmetic is preserved. Care is taken
in handling add immediates to ensure that only addresses to the start of a region are
generated. Otherwise, an infinite number of addresses might be generated by code
that increments a pointer through an array. Using numerical addresses also makes
initialization of the worklist easier. All references to a stack frame can be initialized

by inserting the base register onto the worklist. Once the SSA names are initialized
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int *p,g;

void f1() {
p=&g;
printf("hi");
}

main() {
printf("hello");
£10);

b

Figure 4.12 MOD/REF analysis improves accuracy

with these addresses, propagation is started. Propagation is done as described in
Section 4.1. In our implementation, the set of pointer values associated with an SSA
name (its POINTS_TO set) is kept in a linked-list. When no path expressions are
used, the pointer values are moved to a vector set if the size crosses a threshold of
ten (when path expressions are used, only the linked-list representation is used) [6].
The reason for using multiple representations is to reduce the memory requirements
of the analysis. Figure 5.4 shows the time and memory requirements if an exclusively
linked-list representation is used. These results were obtained by setting the thresh-
old to 1000. Since this was larger than the maximum POINTS_TO set size for any

of our programs, it produced the desired results.

4.4.4 Annotation

Once propagation is finished, ambiguous loads and stores are re-annotated with more
precise lists of the memory regions that they may use. This is done by looking at
the addresses in the base registers of such operations and finding the regions at those
addresses. MOD/REF analysis is performed again to re-annotate the referenced and
modified lists for calls and return operations. There are four differences between the
MOD/REF analysis performed before propagation and the one done after propaga-
tion. First, ambiguous loads and stores have had their MOD/REF effect limited by
pointer analysis. Second, the targets of indirect function calls have been limited by

pointer analysis. Third, we do not require that a call site’s referenced list match
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the Uses set of its target, nor do we require that a return’s referenced list match a
corresponding call site’s modified list. This requirement was only necessary to speed
up propagation. Since pointer analysis is finished, we are free from this restriction.
Fourth, path information is available to tailor the MOD/REF information for a func-

tion to a particular call site (see Figure 2.10) or call path.

4.4.5 Other details

In order to perform pointer analysis, our analyzer expects an ILOC definition for all
functions used in the program. In particular, it needs a definition for all library
functions called by the program. These definitions cannot be created by C2I since we
do not have the C source files for many of these functions. Our solution is to write
hand-made ILOC files that have the same MOD/REF and pointer effect as the library
functions. These hand-made files do not have the same functionality. Figure 4.13
shows our hand-made ILOC file for the atoi function. The atoi function takes in
a pointer to a string and returns the decimal value of the string as an int. From
a MOD/REF perspective, atoi’s only effect is to reference its string argument. We
simulate this effect by loading the string with the iPLDor operation. We also return

a NULL value in case the return value is used as a pointer.

4.4.6 Path expressions

We also implemented a version of our pointer analyzer that used path expressions.
Path expressions were implemented by associating a list of call sites with each pointer
value. The implementation allowed the user to specify the length of these expressions.
To associate a path expression with each pointer value, we represented our sets of
pointer values with linked-lists. Each node in the linked list contained a pointer value
and a path expression. A vector set representation of our pointer sets was not possible

since this did not allow path expressions to be easily associated with a pointer value.

FRAME 0 =>r0ritr2[1iiil]
iPILDor @! 4 0 r2 => r9

iLDI 0 => r20

iRTN r0 r20

_ato1i:

w o O O

Figure 4.13 Hand-made ILOC for an atoi function
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Path expressions are maintained at call sites and returns of functions with multiple
call sites. If only one call site exists for a function, maintaining path information for
that call site would provide no help in tracking pointer values. By eliminating path
information for these call sites we effectively increased the path-length of our analysis
without increasing the space requirements. When a pointer and path-expression pair
pass through a call site to a function with multiple call sites, the path expression
must be modified. The new call site is put on the top of the new path expression,
and the bottom call site of the path expression is popped off. At returns, the reverse
process is done. The top call site is popped off. However, we do not know what call
site to put at the bottom of the path expression, so a special marker representing any
call site is put on the bottom. An example of maintaining path expressions is shown
in Figure 4.14. In this example, path expressions are enclosed in angle brackets. The
most recent call site in each path expression is on the right side. Each path expression
is associated with a pointer value, and these pairs are enclosed in parenthesis. On the
top of this example, we have a path expression, <a,b,c>, that reaches a call site 4.
This produces the new path expression, <b,c.d>. Note that d was added to the right
since 1t is the most recent call site. Since the old path expression was already full, a
was removed to create space for d in the new path expression. The bottom example
shows the effect of returning this path expression. This path expression can only be
returned through call site d. At the return, we remove call site d. Since we have no
information about what call site preceded call site b, we put ANY in the leftmost
position to signify any call site.

We use path expressions to modify our propagation algorithm in two ways. First,
a pointer value is only returned to the call site that is at the top of its path expression.
This will eliminate the false-return problem for those pointer values that do not have
ANY as their top call site (see Figure 2.8). If the top call site is ANY then propagation
proceeds just as if no path expressions are used.

Path expressions also affect propagation at loads and stores. The path expres-

sions of the two pointer values involved (i.e., base register and pointer value to be

call site d

(pt,<a,b,c>) (pt,<b,c,d>)

(pt,<ANY,b,c>) return to d (pt,<b,c,d>)

Figure 4.14 Maintaining path expressions
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moved to or from memory) in the memory operation must intersect for propagation
to occur. We test for intersection by checking that corresponding call sites in the
path expressions are equal or that one of the call sites is ANY. This additional test
can eliminate the pointer-mixing problem (see Figure 2.9).

Path expressions also modify the way that MOD/REF analysis is done after
pointer analysis. Without path expressions the MOD/REF effect of a memory oper-
ation is propagated to all the callers of the function containing it. Path expressions
can limit this MOD/REF effect to subsets of all the callers (see Figure 2.10).

4.5 Sources of approximation
There are seven sources of approximation in the analyzer:

1. Interprocedural Paths: The first source of approximation occurs because we
have limited or no knowledge of the interprocedural path through which a
pointer came. This lack of information causes inaccuracies when pointers are
propagated to return operations. With limited or no path information, pointers
may be passed in through one call site and returned to another call site. This
is the false-return problem (see Figure 2.8). Lack of interprocedural path infor-
mation can also create inaccuracies when we propagate to memory operations.
Two pointers from different interprocedural paths cannot interact in a memory
operation in a real execution of a program. Unfortunately, without complete
path information, our analysis may allow two pointer values from different call

sites to interact. This is the pointer-mixing problem (see Figure 2.9).

2. Intraprocedural Paths: The second source of approximation occurs because we
do not record the intraprocedural path through which a pointer comes. This
source of approximation causes inaccuracies when we propagate to memory
operations. This inaccuracy is the intraprocedural analog of the pointer-mixing
problem. Since the flow of control in a function is not stack-like, there is no

intraprocedural analog of the false-return problem.

3. Stores: The third source of approximation occurs because multiple pointer val-
ues may reside in a single SSA name. This affects store operations since we
cannot kill old values unless we know that a store modifies a specific scalar
memory location. For pointer-based stores, we never kill old values, even if
there is only one pointer to a scalar memory location in the base register. This
was due to the difficulty in implementing it efficiently and the ineffectiveness
of this technique when tested with an inefficiently implemented version. With

interprocedural and intraprocedural path information, it is possible to kill old
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values even if multiple pointer values reside in the base register. The key is to
look for a pointer whose path does not intersect the path of any other pointer
in the base register. If such a pointer p with path y is found, then we can
optimistically assume that all execution paths described by y must store to p’s
target m. All pointers in memory location m whose path is contained in y can
safely be killed. Later, if propagation places another pointer in the base register

that intersects path y, then pointer values in m will have to be resurrected.

. Heap: The fourth source of approximation is in the representation of the heap.
We tried three models for the heap in our experiments: a single name, split by
malloc call sites, and split by user heap allocator. All three of these models
use a finite number of names to approximate an arbitrary number of locations.
Obviously, some names may have to represent multiple heap locations. Thus,
heaps and arrays are similar in that a single name may have to represent multiple
locations. Heaps and arrays also cause inaccuracies in the same way. Loads from
a heap name must load from all the locations represented by that name. Stores

to a heap name cannot kill old values.

. Arrays: The fifth source of approximation is in the representation of arrays.
Since we do not perform any array section analysis, this will cause inaccuracies
when we propagate to memory operations. Loads will load all the pointer
values in an array. This is the main source of approximation when analyzing

the program indent in our test suite. Also, pointer values in a store can never

be killed.

. Pointer Arithmetic: The sixth source of approximation is pointer arithmetic.
Two values may be generated by an operation performing pointer arithmetic for
a single input value. If the input pointer value pointed to an array or heap, then
the input pointer value is returned. The reason for this is that the operation
may just be accessing an array element within the array or a location within
the heap name. In this case, returning the input pointer value is the correct
action. If the computed value is the base address of a new memory location,
then the computed address is returned. This handles the cases where a field
of a non-heap structure or a stack allocated variable is being accessed. Both
of these cases cannot occur simultaneously in a real program, but our analysis
cannot determine which case should occur in some circumstances. Thus, it will
return both addresses in order to be safe, but this will introduce inaccuracies.
One circumstance in which this can occur is when pointer arithmetic is done

on a heap pointer. We have arbitrarily set our heap size to 4000. However,
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some arithmetic may generate a value that accidentally hits another memory
location. A heap size of 4000 should make this unlikely, but it is still possible.

7. ALVRs: The seventh source of approximation is caused by ALVRs. Names
for ALVRs must represent all instantiations. This is the only approximation
that recursion forces in the analysis. Recursion by itself will not cause any
approximation in the analysis. The approximation is needed for code like the
code shown in Figure 4.15. Suppose function £ was called with £(0,NULL). This
will result in recursive calls to £ to a depth of three. All three calls will have
a local instantiation of a. The call to f at depth zero has its instantiation of a
addressed and passed to the other calls. The call at depth one stores through its
instantiation of a to globall. The call at depth two sets the instantiation of a
at level zero to point to global2. The analysis will unnecessarily conclude that
the store through a at depth one at line 6 may modify global2. This occurs
because p initially points to a due to the call on line 3. Thus, line 8 will set a to
point to global2. Upon exit from £, a will point to globall and global2. We
unnecessarily conclude on line 6 that a may point to global2. This error occurs
because all instantiations of a are represented by one name. It may be possible
to get more accurate analysis by allowing multiple instantiations of a name
(e.g., a_levelO, a_levell, a_level2, a_level3) in our analysis. However, this
analysis would be very difficult. It would require knowing that certain portions
of code only operate at a certain recursion depth. Furthermore, we have not

seen code where this would be useful in our test programs.

These seven sources of approximation may generate other inaccuracies. For exam-
ple, inaccuracies in the function pointer of an indirect function call will unnecessarily
cause the calling context of the call to be merged with the initial context of the targets
of the inaccurate function pointers. We do not consider these compounding effects
to be a source of approximation. Of the seven sources of inaccuracies, the first five
(interprocedural paths, intraprocedural paths, stores, arrays, and heap) are the most
important. ALVRs rarely occur in real programs. In our test suite only mlink had
one. Addressing arithmetic should rarely generate inaccuracies. In our implemen-
tation, a heap pointer can be incremented to hit the base of another region if it is
incremented by a value of greater than 4000. This should be very unlikely. An array
pointer can only hit the base of another region if the real program increments an
array pointer to access a location outside of the array, or if the array pointer reaches
a location that it could never reach in a real execution. Of the first five sources of
approximation, arrays are probably the least important, although for certain pro-

grams, like indent, this source is crucial. Without the complicity of other sources
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int globall,global?2;

int f(int depth,int **p) {
int *a;

a=&globall;

if (depth==0) {
f (++depth,&a) ;

} else if (depth==1) {
f (++depth,p);
*a=3;

} else if (depth==2) {
*p=&global?2;

O N O U WN =

Figure 4.15 ALVR causes approximation

of inaccuracies, arrays can only cause inaccuracies if the real program stores pointers
in an array. Our feeling is that, because this construction is rare, the other four
sources are more important. The order of importance of the remaining four sources
is not clear. Techniques have been examined in our work to reduce the impact of all
four of these sources except for intraprocedural paths. The technique for handling
inaccuracies due to interprocedural paths, path expressions, is the most satisfying in
terms of effectiveness. It can potentially completely handle all of the inaccuracies
due to this source, if the program is non-recursive. However, path expressions can
greatly increase the running time of analysis. Partial techniques have been developed
to deal with inaccuracies due to stores and the heap. We can kill values with a store
only in the clearest cases. A great deal of work has been done to refine the heap
model[15, 10, 25, 20]. In fact, most of the work on pointer analysis is focussed on this
source of inaccuracy. We have not seen any technique that deals with the inaccuracies

due to intraprocedural paths.
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4.6 Summary

In this chapter, we have developed an abstract language PL which can model the
propagation of pointers in C. It does not model the address arithmetic used to create
pointers in C. Using this model, we developed a pointer analyzer for C. This analyzer
requires MOD /REF analysis in order to generate the SSA form of the program. It uses
the points-to relation as its basic unit of information and explicit names to handle call
sites. It also supports a variety of heap models and path expressions. We also showed
that the context-insensitive version of our analysis has a polynomial time bound for

its propagation step. We also identified seven sources of error in our analyzer.
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Chapter 5

Results

We gathered experimental results on the analyzer and the analyzed code it produced
by running test cases on a SPARC 10 with 128M of memory. The analyzer was tested
on 14 programs (see Figure 5.1). The Lines column is the number of lines in all the
source files used to make the program. This does not include header files. The number
of lines for clean includes library files that contain functions not used in clean. We

performed three categories of experiments with each program:

1. Analyzer performance - We measured the analyzer’s performance under a variety
of conditions:

e with and without MOD/REF analysis

e with and without multiple representations for points-to sets (i.e., linked-

lists and vector sets)

e with various amounts of context information: path expressions ranging

from length zero to four
e with three heap models: split by user heap allocator call sites (LARGE),
split by call site (MEDIUM), single name (SMALL)

2. Analyzed code performance - We measured the performance of compiled pro-

grams as a function of the analyzer’s configuration. Configurations included:

e no analysis
e MOD/REF analysis
e pointer analysis

— with various amounts of context information: path expressions ranging

from length zero to four

— with three heap models: single name (SMALL), split by call site (MEDIUM),
split by user heap allocator call sites (LARGE)
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We also obtained cache statistics for the performance of our programs in our
test suite. Statistics were obtained for programs with no analysis, MOD/REF
analysis, and pointer analysis with no path expressions and a baseline heap

model.

3. Optimizer performance - We measured the impact of different configurations of

the analyzer on the performance of the rest of the optimizer.

5.1 Analyzer performance

In our tests of our pointer analyzer we attempted all feasible versions of our pointer
analyzer for each test case. We allowed the length of path expressions to range from
zero to four. We also allowed three models for the heap. In the SMALL heap model,
a single name was used to represent the whole heap. In the MEDIUM heap model,
a separate name was given for each call site to a library function that allocates heap
space. In the LARGE heap model, a separate name was given for each call site
to a user-defined heap allocator and for each call site to a heap-allocating library
function. Note that each call site to a heap-allocating function only returned one
value, the heap name for that call site. Even if another value reached the return-site
of these functions, the value was not returned. This prevented heap names that were
recycled from being propagated to every allocation call site. For some programs it
was not possible to test with all varieties of the analyzer. This was due to two reasons.
First, more precise models for the heap and longer path expressions both required
more time and space in order to complete the analysis. Second, only five programs
had user-defined heap allocators. A summary of the versions of our pointer analyzer
that were used to analyze each program is shown in Figure 5.2. The numbers show
the longest path expression that could be used to analyze the specified program and

heap model. An “x” indicates that no experiments were performed in that category.

5.1.1 MOD/REF’s impact on analysis

Our first test of the analyzer’s performance was to determine the impact of MOD/REF
analysis on the time and space requirements for the analyzer. Figure 5.3 shows the
results of this experiment. In this experiment we only generated the SSA form of the
program. We did not do the complete analysis. The MEDIUM heap model was used
in this experiment. The “Memory” column shows the maximum amount of memory
used to generate the SSA form without MOD/REF analysis. The “Time” column
shows the amount of time necessary to build the SSA form without MOD/REF anal-
ysis. The “SSA” column shows the number of SSA names in the SSA form of the
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Program Lines | Description Inputs

tsp 760 | a traveling salesman problem | nine city tour

mlink 9264 | genetic linkage analysis cleft lip data set

fft 1037 | fast-fourier transform 16x16x16 array

clean 11191 | basic-block cleaning pass 116 line ILOC function
from MSCP

cachesim 2849 | cache simulator 161K instruction trace

dhrystone 534 | classic benchmark code 2000 iterations

water 1345 | from SPLASH benchmark 64 molecules, 2 time steps

indent 5955 | prettyprinter for C programs | 264 line input

allroots 215 | polynomial root-finder cubic polynomial

be 7583 | calculator language from program to find primes less than
GNU 300 and exponentiate a 60 digit

number to the 6th power

go 28553 | game program from SPEC skill level 10, board size 13
benchmarks

bison 10179 | LR(1) parser generator parser for flex input

jpeg 19842 | graphics compression code 86K gif file
from SPEC

g7ip 7331 | file compression program inflate.c portion of gzip code

Figure 5.1 Program descriptions
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Figure 5.2 Experiment chart

program without MOD/REF analysis. These three columns are each followed by
columns of percentages showing the memory, time, or SSA names in the version with-
out MOD/REF analysis over the version with MOD/REF analysis. This experiment
shows that MOD/REF analysis is clearly beneficial, reducing the memory, time, and
number of SSA names by multiple factors. Particularly important is the reduction
in memory required. Three programs required over 100M just to generate the SSA
form when no MOD/REF analysis was done. These versions of the programs would
have been difficult or impossible to analyze due to space considerations. This is why
we stopped this experiment after building the SSA form instead of continuing on
with the complete analysis. Note that we perform MOD/REF analysis not only to
make pointer analysis feasible, but also to improve its accuracy. See Section 4.4.2 and

Figure 4.12 for how MOD/REF analysis can improve the accuracy of pointer analysis.

5.1.2 Multiple representations

We also tested the usefulness of multiple representations. We used a linked-list and a
vector set to represent our sets of pointer values in the versions of our pointer analyzer

that used no path expressions. The sets of pointer values were initially represented
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Program Memory Time SSA names
w/oMR w/oMR w/oMR
(M) | % w//MR (s) | % w//MR K w//MR

tsp 1.9 173.8 | 0.34 283.3 23079 340.0
mlink | 177.2 250.9 | 42.52 328.1 | 2021324 442.1

1Tt 1.9 240.2 | 0.38 316.7 23966 432.7

clean | 85.5 247.9 |1 19.01 320.6 | 1179195 745.4
cachesim | 23.5 215.3 | 4.84 264.5 | 365071 560.5
dhrystone 0.8 175.0 | 0.12 200.0 11792 445.1
water 8.0 410.0 | 1.63 652.0 | 107159 947.2
indent | 60.7 238.8 | 13.94 282.8 | 767176 460.4
allroots 0.4 175.4 | 0.07 233.3 4237 405.8
bc | 42.3 240.2 | 9.56 295.1 | 571839 614.6

go | 226.6 185.4 | 65.85 212.5 | 3057220 234.2

bison | 108.3 385.5 | 26.79 H8K.8 | 1485962 1393.6
jpeg | 83.6 183.1 | 18.28 223.2 | 1067979 336.6
gzip | 45.7 278.8 | 10.88 355.6 | 631979 501.3

Figure 5.3 Pointer analysis without MOD/REF analysis results

with a linked-list. These sets were converted to a denser vector set representation
when the set size passed a threshold of ten. To test the effectiveness of using multiple
representations we created a version of the analyzer that only used a linked-list rep-
resentation. This was done by setting the threshold to 1000. Since the maximum set
size generated by our test-suite using the MEDIUM heap model was 178, this ensured
that only a linked-list representation was used. The results comparing the versions of
the analyzer with different thresholds are shown in Figure 5.4. Note that for these re-
sults, the data structures used to convert between the two formats were still created,
although we knew they would not be used. Also, the timing results only include the
time necessary to perform the propagation of pointer values. It does not include the
time to convert the program into SSA form, to perform MOD/REF analysis, and to
perform annotation. The first two phases are not affected by the representation used
for our pointer sets, and the last phase is only modestly affected.

The results show that multiple representations have a varied impact on propa-
gation time. The reason that multiple representations slowed down propagation for
some programs may be due to the cost of converting to the dense representation. On

the other hand, the reason that propagation was faster for some programs may have
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been due to the lower memory requirements of the dense representation. Multiple
representations had little impact on memory requirements except for indent and
Jjpeg. This is to be expected since these two programs have the highest average
pointer set size. The denser representation is only beneficial when large sets need to
be represented. Without multiple representations, pointer analysis would not have
been possible on jpeg. This was the main benefit of using multiple representations;
it made the analysis of jpeg feasible.

In many of our test cases, there is a reduction in memory used when going from
no path expressions to path expressions with a path length of one (see Figures 5.5 and
5.6). Our results in the case of no path expressions were generated using multiple
representations. The results with path expressions were generated with an exclusively
linked-list representation. Since our purpose in using multiple representations is to
reduce memory requirements, it might be asked why multiple representations are used
if a single representation with the additional memory demands of path expressions
frequently uses less memory. To answer this question it should be noted that multiple
representations are only beneficial if significant numbers of SSA names are converted
to the denser vector set representation. This conversion only occurs at the threshold
size of ten. Only four programs, clean, indent, be, and jpeg, had an average set size
greater than one. Thus we should only expect multiple representations to be beneficial
in these cases. For our test suite, our motivation for using multiple representations
was to make analysis of jpeg feasible. Without this test case, we would not have

needed multiple representations.

5.1.3 Analyzer varying by heap model and path expressions

We organize our results in this section by dividing it into three parts, one for each
heap model. We start with the MEDIUM heap model because we consider it our
baseline model.

5.1.3.1 MEDIUM heap model

Figures 5.5 and 5.6 show the time and space needed to completely analyze the pro-
grams with a MEDIUM heap model. Various statistics are also shown. By “completely
analyze”, we mean MOD/REF analysis, generation of SSA form, propagation, and
annotation. We attempted to analyze each program using path expressions with a
length from zero to four. For mlink, indent, be, and jpeg only the shorter lengths
were feasible due to time and/or space constraints. When doing analysis with no
path expressions (i.e., a path length of zero), a linked-list was used to represent the
pointer sets of sparse SSA names. This representation was converted into a vector

set when the size grew beyond a threshold of ten. Analysis with path expressions
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Program Memory (M) Time (s)
Threshold || 1000 | 10 | % resiedtoon [rygpg | 10 Op Layesholdi o0
tsp 1.4 1.3 102.2 0.05 | 0.05 100.0
mlink 93.7 | 93.7 |100.0 15.53 | 15.90 97.7
fft 1.3 1.3 102.1 0.03 | 0.06 50.0
clean 39.0 |39.0 |99.9 9.24 | 9.98 92.6
cachesim | 14.5 | 14.5 | 100.2 0.87 | 0.83 104.8
dhrystone || 0.8 0.7 104.4 0.02 | 0.03 66.7
water 2.6 2.5 101.2 0.08 | 0.09 88.9
indent 100.0 | 35.4 | 282.6 54.81 | 36.06 152.0
allroots 0.4 0.3 109.5 0.03 | 0.00 *

bc 22.4 | 22.2 | 101.0 12.80 | 25.27 50.7
go 143.8 | 143.7 | 100.0 4.63 | 5.10 90.8
bison 30.9 | 30.9 |100.0 1.71 | 1.58 108.2
jpeg * 91.0 | * * 11393.66 | *
gzip 21.3 | 21.3 | 100.0 1.34 | 1.37 97.8

Figure 5.4 Comparison between multiple and single representations

required a linked-list representation. This difference in representation should be re-
membered when comparing the results for various path lengths. The memory column
shows the maximum amount of memory used in analyzing the program. It does not
include the time needed to parse all the files. Since memory requirements were a
major concern we chose to build the pruned-SSA form. The regions column shows
the number of memory regions in the program. Thus, it shows the number of possible
pointer values. Figures 5.7 and 5.8 show various statistics for the size of the pointer
sets for all SSA names (“all SSA names” columns) and for the SSA names of base
registers of pointer-based memory operations (“base registers of pt. based memop”
columns). The “Max” column in the first group (“all SSA names”) shows the size of
the largest pointer set for all SSA names. Likewise, the “Max” column in the second
group (“base registers of pt. based memop” columns) shows the size of the largest
pointer set for all SSA names that are base registers of a pointer-based memory oper-
ation. The “Avg” columns show the average size of the pointer sets for each group of
SSA names. The “0” column shows the number of SSA names that have zero pointers.
The “< 10” column shows the number of SSA names with less than ten pointers. The
“Num” column on the far right is the number of pointer-based memory operations in

the program. In Figures 5.7 and 5.8 and for all other figures on pointer results, we do
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not have a column showing the minimum number of pointer values in a pointer-based
memory operation since this value was always one for all programs and for all forms
of our pointer analyzer. Note that for analysis with path expressions, we count a
pointer value once even if it appears with multiple path expressions.

As was expected, increasing path length usually increased the time and space re-
quirements for analysis. However, for some cases increasing the path length reduced
the time requirements significantly. For example, there is a time reduction in the
mlink test case when going from a path length of two to three. This result is some-
what surprising, but it is not unexplainable. The increased precision from longer
path expressions can remove some extraneous propagation due to false returns and
pointer mixing. This reduction in propagation can be greater than the cost of longer
path expressions. We have not been able to verify that this is the main reason for
the reduction in time when moving to longer path expressions (i.e., we have not been
able to find the exact piece of code where extraneous propagation is removed). One
piece of evidence that this is the case is the lower average number of pointer values
for all SSA names. This reduction must be due to the increased length of the path
expressions.

In many of the cases, there is a reduction in memory used when going from no
path expressions to a path length of one. This is due primarily to the fact that our
pointer sets had multiple formats when the path length was zero, but they had a
single format when the path length was greater. A single format allowed some data
structures to be eliminated that were necessary for conversion when using multiple
formats. In particular, it should be noted that this memory reduction is not due to
the increased accuracy obtained by using path expressions.

The program indent is difficult to analyze because of a large compiler-initialized
array of structures, pro, which is used to handle formatting options. Fach of these
structures has a pointer value. Since we do not do any array section analysis, any
load from this array will place all the pointer values in it into the target register.
This creates a long list of pointers that is widely propagated. The program jpeg is

difficult to analyze because of a large number, 278, of indirect procedure calls.

5.1.3.2 SMALL heap model

Figures 5.9, 5.10, 5.11, and 5.12, show the performance and pointer results of the
analyzer with a SMALL heap model. The ratios of these results to our baseline
analysis are shown in Figures 5.13, 5.14, 5.15, and 5.16. A glance at the “Regions”
column shows that the number of regions is usually reduced by a few percent by
using a SMALL heap model. In the go test case, there are no regions created to

model the heap in the MEDIUM heap model, since there are no heap allocation call
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Program | Path Length | Memory (M) | Time (s) | SSA Names | Regions
tsp 0 1.3 0.24 6788 66
1 1.4 0.36
2 1.4 0.33
3 1.4 0.37
4 1.4 0.37
mlink 0 93.7 32.89 457240 651
1 87.7 511.28
2 95.7 | 8395.17
3 108.1 | 7110.13
Tt 0 1.3 0.23 5539 84
1 1.2 0.24
2 1.2 0.27
3 1.2 0.27
4 1.2 0.25
clean 0 39.0 21.77 158197 389
1 43.9 | 1060.94
2 51.9 | 3867.86
3 64.0 | 9611.32
4 75.0 | 12400.80
cachesim 0 14.5 3.66 65129 262
1 13.6 9.15
2 14.1 14.82
3 15.0 45.62
4 15.9 69.78
dhrystone 0 0.7 0.12 2649 46
1 0.6 0.20
2 0.6 0.19
3 0.6 0.19
4 0.6 0.22

Figure 5.5 Pointer analysis: baseline performance results
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Program | Path Length | Memory (M) | Time (s) | SSA Names | Regions
water 0 2.5 0.43 11313 274
1 2.5 0.44
2 2.5 0.42
3 2.5 0.45
4 2.5 0.52
indent 0 35.4 42.94 166640 312
allroots 0 0.3 0.04 1044 31
1 0.3 0.07
2 0.3 0.06
3 0.3 0.08
4 0.3 0.06
be 0 22.2 30.58 93045 282
1 33.1 | 1086.86
2 51.5 | 9886.79
3 79.0 | 45680.64
go 0 143.7 46.64 1305321 817
1 141.0 136.42
2 142.9 956.80
3 145.9 | 5914.16
4 149.2 | 17109.33
bison 0 30.9 8.59 106624 355
1 34.0 108.31
2 38.0 366.45
3 45.1 | 1267.39
4 59.7 | 4300.30
jpeg 0 91.0 | 11539.52 317315 378
gzip 0 21.3 5.86 126063 437
1 21.3 12.20
2 22.0 26.98
3 23.7 163.91
4 26.4 629.75

Figure 5.6 Pointer analysis: baseline performance results (cont.)
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Pro- Path all SSA names base registers of pt.
gram | Length based memop
Max 0 <10 Avg Avg | Max | Num
tsp 0 5 5214 6788 | 0.2364 || 1.0602 5| 216
1 5 5214 6788 | 0.2364 || 1.0602 5
2 5 5214 6788 | 0.2364 || 1.0602 5
3 5 5214 6788 | 0.2364 || 1.0602 5
4 5 5214 6788 | 0.2364 || 1.0602 5
mlink 0 38 | 384653 | 456232 | 0.7751 | 3.1108 38 | 3394
1 37 | 387295 | 457232 | 0.4205 || 2.3724 37
2 37 | 390965 | 457232 | 0.3992 || 2.3724 37
3 34 | 396859 | 457232 | 0.3457 | 2.3385 34
ftt 0 5 4638 5539 | 0.2083 || 2.1165 5| 103
1 5 4638 5539 | 0.2083 || 2.1165 5
2 5 4638 5539 | 0.2083 || 2.1165 5
3 5 4638 5539 | 0.2083 || 2.1165 5
4 5 4638 5539 | 0.2083 || 2.1165 5
clean 0 13 | 126739 | 158185 | 1.2157 || 7.0088 13 ] 1254
1 13 | 126739 | 158185 | 1.2102 || 6.8198 13
2 13 | 126788 | 158185 | 1.2001 || 6.7249 13
3 13 | 126917 | 158193 | 1.1827 || 6.6093 13
4 13 | 127242 | 158193 | 1.1411 || 6.5255 13
cache- 0 8| 56344 | 65129 | 0.2975 || 1.3723 8| 419
sim 1 8| 56747 | 65129 | 0.2776 || 1.3723 8
2 8| 56981 | 65129 | 0.2668 || 1.3723 8
3 8| 56981 | 65129 | 0.2668 || 1.3723 8
4 8| 56981 | 65129 | 0.2668 || 1.3723 8
dhry- 0 4 1834 2649 | 0.3220 || 1.2712 4 59
stone 1 4 2078 2649 | 0.2269 || 1.2712 4
2 4 2078 2649 | 0.2269 || 1.2712 4
3 4 2078 2649 | 0.2269 || 1.2712 4
4 4 2078 2649 | 0.2269 || 1.2712 4

Figure 5.7 Pointer analysis: baseline pointer results
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Pro- Path all SSA names base registers of pt.
gram | Length based memop
Max 0 <10 Avg Avg | Max | Num
water 0 8 9022 11313 0.2377 || 1.5346 81 260
1 8 9022 11313 0.2377 || 1.5346 8
2 8 9022 11313 0.2377 || 1.5346 8
3 8 9022 11313 0.2377 || 1.5346 8
4 8 9022 11313 0.2377 || 1.5346 8
indent 0] 114 52615 70697 | 63.4176 || 12.4430 | 114 | 1465
all- 0 2 880 1044 0.1925 || 1.5714 2 35
roots 1 2 880 1044 0.1925 || 1.5714 2
2 2 880 1044 0.1925 || 1.5714 2
3 2 880 1044 0.1925 || 1.5714 2
4 2 880 1044 0.1925 || 1.5714 2
be 0 34 48274 55413 6.1801 || 10.8604 34 | 1067
1 31 48843 64597 3.8592 || 8.3280 31
2 31 50014 65761 3.7090 || 8.3074 31
3 31 50052 67729 3.4759 || 8.3074 31
go 0| 102 | 1256788 | 1305285 0.0386 || 4.2576 | 102 | 493
1| 102 | 1256962 | 1305285 0.0384 || 4.2576 | 102
2| 102 | 1256962 | 1305285 0.0384 || 4.2576 | 102
3| 102 | 1256962 | 1305285 0.0384 || 4.2576 | 102
41 102 | 1256962 | 1305285 0.0384 || 4.2576 | 102
bison 0 14 75158 | 106619 0.8793 || 1.3199 14| 2166
1 14 75158 | 106619 0.8793 || 1.3199 14
2 14 75158 | 106619 0.8793 || 1.3199 14
3 14 75158 | 106619 0.8793 || 1.3199 14
4 14 75158 | 106619 0.8793 || 1.3199 14
jpeg 0| 178 | 106397 | 110674 | 108.2039 || 76.4131 | 178 | 3430
gzip 0 10 | 103822 | 126054 0.3138 || 2.3671 10| 425
1 9 | 103887 | 126063 0.2263 || 1.8329 9
2 9 105251 | 126063 0.2132 || 1.8047 9
3 9| 105592 | 126063 0.2105 || 1.8047 9
4 9| 105592 | 126063 0.2105 || 1.8047 9

Figure 5.8 Pointer analysis: baseline pointer results (cont.)
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sites to library functions. When a single name was used to represent the heap in the
SMALL heap model, this name replaced zero regions, thus increasing the total number
of regions by one. Using the SMALL heap model allowed us to analyze mlink and
bc with path expressions of length four. This was not possible with the MEDIUM
heap model. The SMALL heap model usually required less time and memory than
the MEDIUM heap model. On some cases, mlink and be, the SMALL heap model
required substantially less time. This can be explained since we have fewer pointer
values to propagate. Also, fewer SSA names need to be created. Remember, heap
names are addressed global regions. Addressed global regions are the most expensive
regions to analyze, since they must be placed in the referenced and modified lists of
all pointer-based memory operations in order to create the SSA form of the program.
On the other hand, using a SMALL heap model can also use more time and memory
than the same analysis with a MEDIUM heap model. This can be explained since a
single heap name causes more approximation in interactions with the heap. These
approximations will cause more unnecessary pointers to be propagated which will

increase the time and space requirements of the analysis.

5.1.3.3 LARGE heap model

Figures 5.17 and 5.18 show the performance and performance results of the analyzer
with a LARGE heap model. Figures 5.19 and 5.20 show the ratios of these results to
our baseline analysis. The “Regions” column shows that using a LARGE heap model
as opposed to a MEDIUM heap model increases the number of regions from 0.2%
to over 30%. This increase in addressed global regions has a modest impact on the
amount of space required but a substantial impact on the time required for analysis.
Unlike the jump from a SMALL heap model to a a MEDIUM heap model, the jump
from a MEDIUM heap model to a LARGE heap model always takes more time.
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Program | Path Length | Memory (M) | Time (s) | SSA Names | Regions
tsp 0 1.4 0.30 6747 66
1 1.4 0.32
2 1.4 0.36
3 1.4 0.35
4 1.4 0.35
mlink 0 85.8 19.32 412535 621
1 76.8 56.70
2 79.1 315.78
3 84.1 847.50
4 98.2 | 18738.31
Tt 0 1.0 0.20 4766 75
1 0.9 0.19
2 1.0 0.26
3 1.0 0.24
4 1.0 0.23
clean 0 38.4 19.47 155973 387
1 42.5 | 1011.80
2 48.5 | 3633.67
3 56.8 | T767.14
4 64.5 | 10898.62
cachesim 0 13.8 3.56 60796 252
1 13.0 10.04
2 13.2 14.70
3 13.9 56.96
4 14.4 76.15
dhrystone 0 0.7 0.13 2581 45
1 0.6 0.19
2 0.6 0.16
3 0.6 0.19
4 0.6 0.17

Figure 5.9 SMALL heap model performance results
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Program | Path Length | Memory (M) | Time (s) | SSA Names | Regions
water 0 2.5 0.40 11176 273
1 2.4 0.42
2 2.5 0.49
3 2.5 0.48
4 2.5 0.47
indent 0 35.4 43.42 166479 312
allroots 0 0.4 0.04 1044 31
1 0.3 0.04
2 0.3 0.05
3 0.3 0.07
4 0.3 0.07
be 0 20.0 11.63 84564 274
1 27.1 537.99
2 37.0 | 4559.80
3 52.2 | 18166.53
4 73.2 | 68545.03
go 0 144.1 47.03 1308877 818
1 141.3 139.21
2 143.2 | 1013.65
3 146.2 | 6161.38
4 149.5 | 17805.91
bison 0 30.7 8.47 104816 354
1 33.8 118.65
2 37.8 420.34
3 44.8 | 1416.65
4 59.5 | 4823.35
jpeg 0 89.6 | 10769.38 314948 377
gzip 0 21.3 6.21 124582 435
1 21.2 13.57
2 22.0 28.90
3 24.0 182.60
4 27.1 706.59

Figure 5.10 SMALL heap model performance results (cont.)
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Pro- Path all SSA names base registers of pt.
gram Length based memop
Max 0 <10 Avg Avg | Max | Num
tsp 0 5 5204 6747 | 0.2333 || 1.0602 5| 216
1 5 5204 6747 | 0.2333 || 1.0602 5
2 5 5204 6747 | 0.2333 || 1.0602 5
3 5 5204 6747 | 0.2333 || 1.0602 5
4 5 5204 6747 | 0.2333 || 1.0602 5
mlink 0 28 | 354145 | 412533 | 0.1558 || 1.1759 28 | 3394
1 28 | 355311 | 412533 | 0.1526 | 1.1759 28
2 28 | 358981 | 412533 | 0.1425 || 1.1759 28
3 28 | 361709 | 412533 | 0.1359 || 1.1759 28
4 28 | 361709 | 412533 | 0.1359 || 1.1759 28
ftt 0 2 3886 4766 | 0.1861 || 1.0680 2| 103
1 2 3886 4766 | 0.1861 || 1.0680 2
2 2 3886 4766 | 0.1861 || 1.0680 2
3 2 3886 4766 | 0.1861 || 1.0680 2
4 2 3886 4766 | 0.1861 || 1.0680 2
clean 0 11 | 126689 | 155962 | 0.8610 || 5.3102 11| 1254
1 11 | 126689 | 155963 | 0.8576 || 5.1970 11
2 11 | 126738 | 155963 | 0.8505 || 5.1292 11
3 11 | 126867 | 155971 | 0.8388 || 5.0518 11
4 11 | 127192 | 155971 | 0.8129 || 5.0016 11
cachesim 0 6 | 48648 | 60796 | 0.3266 || 1.2905 6| 420
1 6 | 49922 | 60796 | 0.2855 || 1.2905 6
2 6 | 52487 | 60796 | 0.2024 || 1.2905 6
3 6 | 52487 | 60796 | 0.2024 || 1.2905 6
4 6 | 52487 | 60796 | 0.2024 || 1.2905 6
dhrystone 0 3 1830 2581 | 0.3003 || 1.2034 3 59
1 3 2062 2581 | 0.2073 || 1.2034 3
2 3 2062 2581 | 0.2073 || 1.2034 3
3 3 2062 2581 | 0.2073 || 1.2034 3
4 3 2062 2581 | 0.2073 || 1.2034 3

Figure 5.11

SMALL heap model pointer results
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Pro- Path all SSA names base registers of pt.
gram Length based memop
Max 0 <10 Avg Avg | Max | Num
water 0 8 8906 11176 0.2387 || 1.5346 81 260
1 8 8906 11176 0.2387 || 1.5346 8
2 8 8906 11176 0.2387 || 1.5346 8
3 8 8906 11176 0.2387 || 1.5346 8
4 8 8906 11176 0.2387 || 1.5346 8
indent 0| 114 52614 70561 | 63.4616 || 12.4430 | 114 | 1465
allroots 0 2 880 1044 0.1925 || 1.5714 2 35
1 2 880 1044 0.1925 || 1.5714 2
2 2 880 1044 0.1925 || 1.5714 2
3 2 880 1044 0.1925 || 1.5714 2
4 2 880 1044 0.1925 || 1.5714 2
be 0 27 48225 84531 2.9562 || 5.8866 27 | 1067
1 27 48714 84531 2.1943 || 5.8472 27
2 27 49877 84531 2.0846 || 5.8341 27
3 27 49907 84531 1.9217 || 5.8341 27
4 27 50328 84531 1.9158 || 5.8341 27
go 0| 102 | 1260367 | 1308841 0.0384 || 4.2576 | 102 | 493
1| 102 | 1260541 | 1308841 0.0383 || 4.2576 | 102
2| 102 | 1260541 | 1308841 0.0383 || 4.2576 | 102
3| 102 | 1260541 | 1308841 0.0383 || 4.2576 | 102
41 102 | 1260541 | 1308841 0.0383 || 4.2576 | 102
bison 0 14 73374 | 104811 0.9108 || 1.3199 14 | 2166
1 14 73374 | 104811 0.9108 || 1.3199 14
2 14 73374 | 104811 0.9108 || 1.3199 14
3 14 73374 | 104811 0.9108 || 1.3199 14
4 14 73374 | 104811 0.9108 || 1.3199 14
jpeg 0 177 | 106378 | 110652 | 107.1176 | 75.5703 | 177 | 3430
gzip 0 10 | 100455 | 124574 0.4651 || 2.5929 10 | 425
1 91 101413 | 124582 0.2515 || 1.8706 9
2 9 102778 | 124582 0.2382 || 1.8424 9
3 91 103119 | 124582 0.2354 || 1.8424 9
4 91 103119 | 124582 0.2354 || 1.8424 9
Figure 5.12 SMALL heap model pointer results (cont.)
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Program | Path Length | Memory (M) | Time (s) | SSA Names | Regions
tsp 0 102.2 125.0 99.4 100.0
1 99.7 88.9
2 99.7 109.1
3 99.7 94.6
4 99.7 94.6
mlink 0 91.6 58.7 90.2 95.4
1 87.5 11.1
2 82.7 3.8
3 77.8 11.9
1 % %
Tt 0 73.4 87.0 86.0 89.3
1 80.2 79.2
2 83.3 96.3
3 83.4 88.9
4 83.5 92.0
clean 0 98.5 89.4 98.6 99.5
1 96.9 95.4
2 93.5 93.9
3 88.7 80.8
4 86.0 87.9
cachesim 0 95.1 97.3 93.3 96.2
1 95.7 109.7
2 94.0 99.2
3 93.1 124.9
4 90.9 109.1
dhrystone 0 98.8 108.3 97.4 97.8
1 97.7 95.0
2 97.6 84.2
3 97.6 100.0
4 97.5 77.3

Figure 5.13 SMALL/baseline heap model performance percentages
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Program | Path Length | Memory (M) | Time (s) | SSA Names | Regions
water 0 99.4 93.0 98.8 99.6
1 98.9 95.5
2 98.9 116.7
3 98.9 106.7
4 98.9 90.4
indent 0 100.0 101.1 99.9 100.0
allroots 0 109.5 100.0 100.0 100.0
1 100.0 57.1
2 100.0 83.3
3 100.0 87.5
4 100.0 116.7
be 0 90.2 38.0 90.9 97.2
1 81.7 49.5
2 71.9 46.1
3 66.0 39.8
1 * *
go 0 100.3 100.8 100.3 100.1
1 100.2 102.0
2 100.2 105.9
3 100.2 104.2
4 100.2 104.1
bison 0 99.4 98.6 98.3 99.7
1 99.5 109.5
2 99.6 114.7
3 99.3 111.8
4 99.7 112.2
Tpeg 0 935 933 993 997
gzip 0 99.7 106.0 98.8 99.5
1 99.4 111.2
2 99.9 107.1
3 101.0 111.4
4 102.5 112.2

Figure 5.14 SMALL/baseline heap model performance percentages (cont.)




Pro- Path all SSA names base registers of pt.
gram Length based memop

Max 0| <10| Avg| Avg Max

tsp 0]100.0 | 99.8199.4 | 98.7 || 100.0 100.0

1]100.0 | 99.8 199.4 | 98.7 | 100.0 100.0

21100.0 | 99.8 199.4 | 98.7 || 100.0 100.0

31100.0 | 99.8 199.4 | 98.7 || 100.0 100.0

41100.0 | 99.8 | 99.4 | 98.7 || 100.0 100.0

mlink 0 73.7| 92.1 [90.4 | 20.1 | 37.8 73.7

1] 75.7| 91.7190.2 | 36.3 | 49.6 75.7

20 7571 91.8190.2 | 35.7| 49.6 75.7

31 824 | 91.1 [90.2 | 39.3 | 50.3 82.4

] % % % % % %

ftt 0| 40.0 | 83.8|86.0 | 89.3| 50.5 40.0

1] 40.0 | 83.8186.0 | 89.3 | 50.5 40.0

2| 40.0 | 83.886.0 | 89.3 | 50.5 40.0

3| 40.0 | 83.8|86.0 | 89.3| 50.5 40.0

41 40.0 | 83.8|86.0 | 89.3| 50.5 40.0

clean 0| 84.6 | 100.0 | 98.6 | 70.8 || 75.8 84.6

1| 84.6 |100.0 | 98.6 | 70.9 | 76.2 84.6

2| 84.6 | 100.0 | 98.6 | 70.9 | 76.3 84.6

3| 84.6 | 100.0 | 98.6 | 70.9 | 76.4 84.6

4|1 84.6 | 100.0 | 98.6 | 71.2 || 76.6 84.6

cachesim 0| 75.0 | 86.3 |93.3|109.8 || 94.0 75.0

1] 75.0 | 88.0]93.3]102.8 || 94.0 75.0

20 75.0 | 92.1 [93.3 | 75.9 | 94.0 75.0

31 7.0 9211933 759 94.0 75.0

41 75.0 1 9211933 759 | 94.0 75.0

dhrystone 0] 75.0 | 99.8 1974 | 933 94.7 75.0

1| 75.0 99.2 974 ] 914 94.7 75.0

20 75.0 | 99.2 | 97.4 | 91.4 | 94.7 75.0

31 75.0 99.2 974 | 91.4 | 94.7 75.0

41 750 99.2 974 | 914 | 94.7 75.0

Figure 5.15 SMALL/baseline heap model pointer statistic percentages
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Pro- Path all SSA names base registers of pt.
gram Length based memop
Max 0| <10 | Avg | Avg Max
water 0]100.0 | 98.7 | 98.8 | 100.4 || 100.0 100.0
1]100.0 | 98.7 ] 98.8|100.4 || 100.0 100.0
21100.0 | 98.7 | 98.8 | 100.4 || 100.0 100.0
31100.0 | 98.7 | 98.8 | 100.4 || 100.0 100.0
41100.0 | 98.7 | 98.8 | 100.4 || 100.0 100.0
indent 0] 100.0 | 100.0 | 99.8 | 100.1 || 100.0 100.0
allroots 0| 100.0 | 100.0 | 100.0 | 100.0 || 100.0 100.0
1] 100.0 | 100.0 | 100.0 | 100.0 || 100.0 100.0
21 100.0 | 100.0 | 100.0 | 100.0 || 100.0 100.0
31 100.0 | 100.0 | 100.0 | 100.0 || 100.0 100.0
4 1100.0 | 100.0 | 100.0 | 100.0 || 100.0 100.0
be 0] 7941 99.9 | 152.5 | 47.8 | 54.2 79.4
1] 87.1 | 99.7 | 130.9 | 56.9 | 70.2 87.1
2 871 99.7 | 1285 | 56.2 | 70.2 87.1
3 871 99.7 | 124.8 | 55.3 | 70.2 87.1
] % % % % % %
go 0] 100.0 | 100.3 | 100.3 | 99.5 || 100.0 100.0
1] 100.0 | 100.3 | 100.3 | 99.7 || 100.0 100.0
21 100.0 | 100.3 | 100.3 | 99.7 || 100.0 100.0
31 100.0 | 100.3 | 100.3 | 99.7 || 100.0 100.0
4 1100.0 | 100.3 | 100.3 | 99.7 || 100.0 100.0
bison 0]100.0 | 97.6 | 98.3 | 103.6 || 100.0 100.0
1]100.0 | 97.6 | 98.3|103.6 || 100.0 100.0
21100.0 | 97.6 | 98.3 | 103.6 || 100.0 100.0
31100.0 | 97.6 | 98.3 | 103.6 || 100.0 100.0
41100.0 | 97.6 | 98.3 | 103.6 || 100.0 100.0
jpeg 0] 99.4 |100.0 | 100.0 | 99.0 | 98.9 99.4
gzip 0]100.0 | 96.8 | 98.8 | 148.2 || 109.5 100.0
1]100.0 | 97.6 | 98.8 | 111.1 || 102.1 100.0
21100.0 | 97.7 | 98.8 | 111.7 | 102.1 100.0
31100.0 | 97.7 ] 98.8 | 111.8 | 102.1 100.0
41100.0 | 97.7 | 98.8 | 111.8 || 102.1 100.0
Figure 5.16 SMALL/baseline heap model

pointer statistic percentages (cont.)
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Program | Path Length | Memory (M) | Time (s) | SSA Names | Regions
clean 0 51.6 719.65 222499 449

1 95.3 | 14198.83
indent 0 40.7 151.52 189888 339
be 0 26.4 156.94 118917 307

1 44.5 | 1509.67
bison 0 57.8 24.27 319591 475

1 64.7 | 1265.62
gzip 0 21.4 6.14 126460 438

1 21.3 12.62

Figure 5.17 LARGE heap model performance results

Pro- Path all SSA names base registers of pt.
gram | Length based memop
Max 0 <10 Avg Avg | Max | Num

clean 0 46 | 130632 | 164014 | 10.9881 || 22.2504 46 | 1254
1 46 | 131693 | 165099 | 10.5285 || 21.6156 46

indent 0| 136 | 58237 | 76184 | 77.7312 || 14.4273 | 136 | 1465

be 0 48 | 53612 | 60748 | 14.3472 || 19.6626 48 | 1067
1 40 | 54381 | 70152 | 5.6674 | 8.8013 30

bison 0 94 | 199714 | 310688 | 1.3528 || 1.9224 26 | 2166
1 94 | 201450 | 310688 | 1.3147 || 1.9224 26

gzip 0 10 | 104427 | 126451 | 0.3111 || 2.3671 10 | 425
1 9 | 104492 | 126460 | 0.2240 || 1.8329 9

Figure 5.18 LARGE heap model pointer results
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Program | Path Length | Memory (M) | Time (s) | SSA Names | Regions
clean 0 132.3 3305.7 140.6 115.4

1 217.1 1338.3
indent 0 114.8 352.9 114.0 108.7
be 0 119.0 513.2 127.8 108.9

1 134.3 138.9
bison 0 187.2 282.5 299.7 133.8

1 190.4 1168.5
gzip 0 100.3 104.8 100.3 100.2

1 100.2 103.4

Figure 5.19 LARGE/baseline heap model performance percentages

Pro- Path all SSA names base registers of pt.
gram | Length based memop

Max 0 <10| Avg| Avg Max

clean 0 | 353.8 | 103.1 | 103.7 | 903.8 || 317.5 353.8

1]353.8 | 103.9 | 104.4 | 870.0 || 317.0 353.8

indent 0(119.3 | 110.7 | 107.8 | 122.6 || 115.9 119.3

be 0| 141.2 | 111.1 | 109.6 | 232.2 || 181.0 141.2

1]129.0 | 111.3 | 108.6 | 146.9 || 105.7 96.8

bison 0| 671.4]265.7|291.4 | 153.8 || 145.6 185.7

1]671.4 | 268.0 | 291.4 | 149.5 || 145.6 185.7

gzip 0 | 100.0 | 100.6 | 100.3 | 99.1 || 100.0 100.0

1] 100.0 | 100.6 | 100.3 | 99.0 || 100.0 100.0

Figure 5.20 TLARGE/baseline heap model pointer percentages
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5.2 Analyzed code performance

The code produced by our pointer analyzer was tested by running it through our
compiler environment. Our environment consists of a number of optimization passes
that take in ILOC and produce optimized ILOC. By structuring our optimizer as a
sequence of independent filters, we gain flexibility in our testing procedures. The

optimizations used in this section were:

e RP: register promotion

o LP: loop peeling

e VN: value numbering

e LCM: lazy code motion

e CP: constant propagation

e LICM: loop-invariant code motion
e DCE: dead code elimination

o CO: coalesce

o RA: register allocation

e CL: clean

The specific sequence of optimization passes used in this section was:

RP |LP | VN |LCM | RP | CP | LICM | DCE | VN | LCM | LICM | VN |
LCM | CP | DCE | CO | RA | CL

After the code was optimized, it was translated into an equivalent C program. This
C code was instrumented to record the number of ILOC operations, ILOC loads, and
ILOC stores executed. Once this instrumented code was executed, the results were
checked against the output produced by the original C source code when compiled
with a UNIX C compiler.

In our tests of the analyzed programs, two parameters for pointer analysis were
investigated, type of heap model and type of path information (up to length four).
The results for the pointer analyzed versions for the programs were compared against

versions with no analysis and versions with MOD/REF analysis. Some programs
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could not be tested with lengthy path expressions. Two programs, jpeg and indent,
could not be tested with any path expressions. Only five programs (clean, indent,
be, bison, and gzip) performed their own heap allocation. We have split up the
results in this section into four subsections. The first subsection presents the results
obtained with no pointer analysis. The last three subsections present the results

obtained by by using various heap models.

5.2.1 No pointer analysis

In order to compare the effectiveness of our pointer analyses, we generated versions of
each program with no analysis and with MOD/REF analysis. Figure 5.21 shows the
results in terms of total operations executed. Figures 5.22 and 5.23, show number of
stores and loads executed, respectively. In each figure we show the absolute number

of operations/stores/loads® executed for each of the fourteen test programs.

5.2.2 MEDIUM heap model

We present the results of the analyzer with a MEDIUM heap model before the results
obtained with other heap models, because the MEDIUM heap model is our baseline
model (see Appendix B for additional results with this model). Figures 5.24, 5.26,
and 5.28 show the results obtained by using this model. For each program tested,
we varied the path expressions used in the analysis. Path expressions with path
lengths varying from zero to four were used. In Figures 5.25, 5.27, and 5.29, we show
a comparison of the various versions of each program (including versions with no
analysis and MOD/REF analysis) with the version produced with a MEDIUM heap
model and no path expressions. The MEDIUM heap model with no path expressions
is our base_analysis.

The formula for these comparisons is:

100x(other _analysis—base_analysis)
other _analysis

These figures show that pointer analysis can produce substantial improvements
over no analysis and MOD /REF analysis. Path expressions offered very little improve-
ment over analysis without path expressions. Most of the improvements obtained by
path expressions could be obtained from path expressions of length one. These im-
provements due to pointer analysis were concentrated in our load results. This is to

be expected since pointer analysis deals with memory and thus should improve our

8From now on we will just refer to operations even if we also mean stores or loads.
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Figure 5.21

Program Original | MOD/REF
tsp 729921 657271
mlink 134483827 | 126772024
fft 13634058 12635914
clean 1141512 1099823
cachesim 11960530 11589109
dhrystone 596198 582185
water 14798643 13476586
indent 945899 867212
allroots 1028 1010
be 5598537 5561348
go 501977911 | 496832956
bison 3863186 3334118
jpeg 36904868 36963318
gzip(enc) 5736537 5711089
gzip(dec) 979824 976879
No pointer analysis: total operations

Program Original | MOD/REF
tsp 51047 51048
mlink 2507703 2505951
fft 1036396 1036398
clean 85022 82442
cachesim 685931 594390
dhrystone 60007 60010
water 1035129 1035175
indent 72615 69140
allroots 11 11
be 243650 238488
go 20357668 20203423
bison 539944 539606
jpeg 2503016 2503022
gzip(enc) 216990 212300
gzip(dec) 17768 17379

Figure 5.22 No pointer analysis: store operations




81

Program Original | MOD/REF
tsp 166549 113721
mlink 32004568 27044130
fft 2012056 1252763
clean 207510 183382
cachesim 2102248 1901536
dhrystone 68033 62021
water 3060022 2386374
indent 206751 147453
allroots 163 145
be 845705 817587
go 93336622 89224694
bison 942296 553731
jpeg 6535643 6596102
gzip(enc) 901537 854592
gzip(dec) 138323 135968

Figure 5.23 No pointer analysis: load operations

Program Path 0 Path 1 Path 2 Path 3 Path 4
tsp 651487 651487 651487 651487 651487
mlink 124425317 | 124424420 | 124423998 | 124423998

ftt 12550636 | 12550618 | 12550618 | 12550618 | 12550618
clean 1108473 1105261 1105261 1105261 1105261
cachesim 11587501 | 11587501 | 11587501 | 11587501 | 11587501
dhrystone 552181 548186 548186 548186 548186
water 12726871 | 12726871 | 12726871 | 12726871 | 12726871
indent 867180

allroots 1000 1000 1000 1000 1000
be 5550821 5546264 5546723 5546723

go 486937168 | 486777895 | 486872714 | 486872714 | 486872714
bison 3331125 3327915 3327915 3327915 3327915
jpeg 36962001

gzip(enc) 5678893 5678893 5678893 5678893 5678893
gzip(dec) 976366 976366 976366 976366 976366

Figure 5.24

MEDIUM heap model: total operations




Program % eliminated

Original | MOD/REF | Path 1 | Path 2 | Path 3 | Path 4
tsp 10.7 0.9 0.0 0.0 0.0 0.0
mlink 7.5 1.9 -0.0 -0.0 -0.0
ftt 7.9 0.7 -0.0 -0.0 -0.0 -0.0
clean 2.9 -0.8 -0.3 -0.3 -0.3 -0.3
cachesim 3.1 0.0 0.0 0.0 0.0 0.0
dhrystone 7.4 5.2 -0.7 -0.7 -0.7 -0.7
water 14.0 5.6 0.0 0.0 0.0 0.0
indent 8.3 0.0
allroots 2.7 1.0 0.0 0.0 0.0 0.0
be 0.9 0.2 -0.1 -0.1 -0.1
go 3.0 2.0 -0.0 -0.0 -0.0 -0.0
bison 13.8 0.1 -0.1 -0.1 -0.1 -0.1
jpeg -0.2 0.0
gzip(enc) 1.0 0.6 0.0 0.0 0.0 0.0
gzip(dec) 0.4 0.1 0.0 0.0 0.0 0.0

Figure 5.25 MEDIUM heap model: total operation removal percentages

Program Path 0 Path 1 Path 2 Path 3 Path 4

tsp 51048 51048 51048 51048 51048
mlink 2352204 | 2352200 | 2352200 | 2352200

ftt 1003608 | 1003599 | 1003599 | 1003599 | 1003599
clean 82402 80189 80189 80189 80189

cachesim 594390 594390 594390 594390 594390
dhrystone 56010 56010 56010 56010 56010

water 1069645 | 1069645 | 1069645 | 1069645 | 1069645
indent 69141

allroots 11 11 11 11 11
bc 238488 238488 239639 239639

go 20403336 | 20412840 | 20475320 | 20475320 | 20475320
bison 539606 539606 539606 539606 539606
jpeg 2503022

gzip(enc) 198823 198823 198823 198823 198823
gzip(dec) 17233 17233 17233 17233 17233

Figure 5.26 MEDIUM heap model: stores
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Program % eliminated

Original | MOD/REF | Path 1 | Path 2 | Path 3 | Path 4
tsp -0.0 0.0 0.0 0.0 0.0 0.0
mlink 6.2 6.1 -0.0 -0.0 -0.0
fft 3.2 3.2 -0.0 -0.0 -0.0 -0.0
clean 3.1 0.0 -2.8 -2.8 -2.8 -2.8
cachesim 13.3 0.0 0.0 0.0 0.0 0.0
dhrystone 6.7 6.7 0.0 0.0 0.0 0.0
water -3.3 -3.3 0.0 0.0 0.0 0.0
indent 4.8 -0.0
allroots 0.0 0.0 0.0 0.0 0.0 0.0
be 2.1 0.0 0.0 0.5 0.5
go -0.2 -1.0 0.0 0.4 0.4 0.4
bison 0.1 0.0 0.0 0.0 0.0 0.0
jpeg -0.0 0.0
gzip(enc) 8.4 6.3 0.0 0.0 0.0 0.0
gzip(dec) 3.0 0.8 0.0 0.0 0.0 0.0

Figure 5.27 MEDIUM heap model: store removal percentages

Program Path 0 Path 1 Path 2 Path 3 Path 4
tsp 107937 107937 107937 107937 107937
mlink 25517809 | 25517130 | 25517019 | 25517019

ftt 1204103 | 1204103 | 1204103 | 1204103 | 1204103
clean 180429 179091 179091 179091 179091
cachesim 1900611 | 1900611 | 1900611 | 1900611 | 1900611
dhrystone 50021 46021 46021 46021 46021
water 1673879 | 1673879 | 1673879 | 1673879 | 1673879
indent 147735

allroots 141 141 141 141 141
be 812012 808606 807914 807914

go 83945430 | 83851902 | 83865727 | 83865727 | 83865727
bison 552589 551519 551519 551519 551519
jpeg 6594787

gzip(enc) 835906 835906 835906 835906 835906
gzip(dec) 135636 135636 135636 135636 135636

Figure 5.28

MEDIUM heap model: loads
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Program % eliminated

Original | MOD/REF | Path 1 | Path 2 | Path 3 | Path 4
tsp 35.2 5.1 0.0 0.0 0.0 0.0
mlink 20.3 5.6 -0.0 -0.0 -0.0
fft 40.2 3.9 0.0 0.0 0.0 0.0
clean 13.1 1.6 -0.7 -0.7 -0.7 -0.7
cachesim 9.6 0.0 0.0 0.0 0.0 0.0
dhrystone 26.5 19.3 -8.7 -8.7 -8.7 -8.7
water 45.3 29.9 0.0 0.0 0.0 0.0
indent 28.5 -0.2
allroots 13.5 2.8 0.0 0.0 0.0 0.0
be 4.0 0.7 -0.4 -0.5 -0.5
go 10.1 5.9 -0.1 -0.1 -0.1 -0.1
bison 41.4 0.2 -0.2 -0.2 -0.2 -0.2
jpeg -0.9 0.0
gzip(enc) 7.3 2.2 0.0 0.0 0.0 0.0
gzip(dec) 1.9 0.2 0.0 0.0 0.0 0.0

Figure 5.29 MEDIUM heap model: load removal percentages

memory numbers. It is not clear why stores are not affected as much. It is more ben-
eficial to remove loads than stores since processors must wait for a load to complete
before continuing, but stores do not force a processor to pause. Removing load op-
erations will become more and more important as processor speed is increasing more
rapidly than memory speed is. Stores on the other hand are cheap since computation
does not need to wait on their completion.

We looked at the resulting code to determine the actual mechanism through which
pointer analysis improves code. In water, we have a very dramatic example (see
Figure 5.30). In CSHIFT, where most of the program’s improvement occurred, we
have three arrays that are passed in, XA, XB and XL. Without pointer analysis we do
not know if these arrays are non-overlapping. Thus, we must reload all references to
these arrays. With pointer analysis, we know that XL points to eight stack allocated
arrays in functions POTENG and INTERF, and XA and XB point to heap allocated arrays.
Thus we do not have to reload the references to XA and XB before the loop. In the loop,
we know that fabs() cannot modify XL[I], so it does not have to be reloaded after
the call to fabs(). This last result can be achieved with just MOD/REF analysis.

Note that the sign macro just returns the value of a with the same sign as b.
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CSHIFT(XA,XB,XMA,XMB,XL,BOXH,BOXL)
double XA[], XB[I, XL[J;
double BOXH, BOXL, XMA, XMB;

{
int I;

XL[0]
XL[1]
XL[2]
XL[3]
XL[4]
XL[5]
XL[6]
XL[7]
XL[8]
XL[9]
XL[10]
XL[11]
XL[12]
XL[13]

for (I =

XMA-XMB;
XMA-XB[0];
XMA-XB[2];
XA[0]-XMB;
XA[2]-XMB;
XA[0]-XB[0];
XA[0]-XB[2];
XA[2]-XB[0];
XA[2]-XB[2];
XA[1]-XB[1];
XA[1]-XB[0];
XA[1]1-XB[2];
XA[0]-XB[1];
XA[2]-XB[1];

0; I < 14; I++) {

if (fabs(XL[I]) > BOXH) {
XL[I1=XL[I]-(sign(BOXL,XL[I]));

b
b

} /* end of subroutine CSHIFT */

Figure 5.30 How pointer analysis improves water
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In another example, pointer analysis significantly improved an inner-loop in mlink
(see Figure 5.31). In this code, we have a triply-nested loop that has a complicated
address calculation and a store to that address. Unfortunately, loop indices, which
are part of the address calculation, are addressed. Thus, the store in the inner-loop
may modify the indices. Without pointer analysis the indices must be loaded at the
beginning of the inner-loop. With pointer analysis, we are able to determine that the
store does not modify the indices, and they may be kept in registers. This results in

the greatly improved code seen in Figure 5.32.

5.2.3 SMALL heap model

We also examined how various heap models change the effectiveness of the analysis.
The absolute results for analysis with a SMALL heap model are shown in Figures 5.33,
5.34, and 5.35. Note that in these figures we do not show the results with no analysis
and MOD/REF analysis since the heap model will not affect these analyses. The
ratios between the results produced by the SMALL and MEDIUM heap models with-
out using path expressions is summarized in in Figure 5.40. Surprisingly, almost all
these ratios are very close to one, which means that the more refined heap model
produced little runtime improvement. In fact, in one case the ratio is less than one,
which indicates that the SMALL heap model produced better runtime results than
the MEDIUM heap model. However, this does not indicate that the MEDIUM heap
model produced less accurate pointer analysis. More likely it indicates that the more
accurate pointer analysis produced by the MEDIUM heap model caused other opti-
mizations (perhaps the register allocator) to produce poorer code. Since the results
of the analyzed code with our SMALL heap model are very close to the results with
a MEDIUM heap model, and since the time and memory requirements of the SMALL
heap model are always comparable or less than the requirements with a MEDIUM
heap model,” the SMALL heap model is a good alternative to the MEDIUM heap
model.

This was a surprising result to us. Of all the ways to refine a heap model, we
expected going from a SMALL heap model to a MEDIUM heap model to have the
most impact. We had guessed that splitting the heap by k-limiting would have less
impact. The reason for this is that splitting one heap name into two names is only
beneficial if we can find a memory operation that only operates on one of the two
names. When we split the heap by malloc call site, as in the MEDIUM heap model,

9Some test cases could only be analyzed with a SMALL heap model. For example, mlink with
path length four could not be analyzed with the MEDIUM heap model, but it could be analyzed
with the SMALL heap model.
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if (ch == ’i’ || ch == ’I’) {

for (sys = 0; sys < FORLIM; sys++) {
for (a = 0; a < maxall; a++) {
for (b = 0; b < maxall; b++)
WITH->possible[sys] [a] [b] = false;
}
}
} else {

fscanf (speedfile, "%1d’%1d%1d", &sys, &a, &b);

Figure 5.31 How pointer analysis improves mlink: source code
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Modref Analyzed Pointer Analyzed

iSLDor Oreadspeed b 0 4 0 r0 => r108

iSLDor Oreadspeeda 8 4 0 r22 => ri109

1MUL r23 r109 => r110

iSLDor Oreadspeed sys_16 4 0 ri15 => riil1l

1MUL r24 ri111l => r112

1ADD r96 r112 => ri113

1ADD r110 r113 => r114

1ADD r108 r114 => r11b 1ADD r92 r105 => rob
bPSTor @T93 1 0 r11b5 ré bPSTor @T333 1 0 r95 ré6
iSLDor Oreadspeed b 0 4 0 r0 => r116

1ADDI 1 ri116 => ri117 1ADDI 1 r105 => r105
1SSTor Oreadspeed b 0 4 0 r0 ri117

1CMP1t r117 r23 => r118 iCMP1t 1105 r23 => r96
BR L27 L32 r118 BR L27 L32 r96

Figure 5.32 How pointer analysis improves mlink: machine code

Program Path 0 Path 1 Path 2 Path 3 Path 4
tsp 651487 651487 651487 651570 651487
mlink 125723783 | 125722997 | 125722575 | 125722575 | 125722575
ftt 12562160 | 12562142 | 12562142 | 12562142 | 12562142
clean 1108473 1105261 1105261 1105261 1105261
cachesim 11587501 | 11587501 | 11587501 | 11587501 | 11587501
dhrystone 552181 548186 548186 548186 548186
water 12726871 | 12726871 | 12726871 | 12726871 | 12726871
indent 867265

allroots 1000 1000 1000 1000 1000
be 5550822 5549718 5549239 5549239 5549239
go 486937168 | 486777895 | 486872714 | 486872714 | 486872714
bison 3331125 3327915 3327915 3327915 3327915
jpeg 36962001

gzip(enc) 5678893 5678893 5678893 5678893 5678893
gzip(dec) 976366 976366 976366 976366 976366

Figure 5.33 SMALL heap model: total operations
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Program Path 0 Path 1 Path 2 Path 3 Path 4
tsp 51048 51048 51048 51048 51048
mlink 2419269 | 2419265 | 2419265 | 2419265 | 2419265
ftt 1003608 | 1003599 | 1003599 | 1003599 | 1003599
clean 82402 80189 80189 80189 80189
cachesim 594390 594390 594390 594390 594390
dhrystone 56010 56010 56010 56010 56010
water 1069645 | 1069645 | 1069645 | 1069645 | 1069645
indent 69141

allroots 11 11 11 11 11
be 238488 238488 238488 238488 238488
go 20403336 | 20412840 | 20475320 | 20475320 | 20475320
bison 539606 539606 539606 539606 539606
jpeg 2503022

gzip(enc) 198823 198823 198823 198823 198823
gzip(dec) 17233 17233 17233 17233 17233

Figure 5.34 SMALL heap model: stores

Program Path 0 Path 1 Path 2 Path 3 Path 4
tsp 107937 107937 107937 107937 107937
mlink 26515862 | 26515294 | 26515183 | 26515183 | 26515183
ftt 1211787 | 1211787 | 1211787 | 1211787 | 1211787
clean 180429 179091 179091 179091 179091
cachesim 1900619 | 1900619 | 1900619 | 1900619 | 1900619
dhrystone 50021 46021 46021 46021 46021
water 1673879 | 1673879 | 1673879 | 1673879 | 1673879
indent 147735

allroots 141 141 141 141 141
be 812013 810909 810430 810430 810430
go 83945430 | 83851902 | 83865727 | 83865727 | 83865727
bison 552589 551519 551519 551519 551519
jpeg 6594787

gzip(enc) 835906 835906 835906 835906 835906
gzip(dec) 135636 135636 135636 135636 135636

Figure 5.35 SMALL heap model: loads
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we can easily imagine memory operations that operate on the memory from only one
call site or some subset of the malloc call sites. However, if we split by k-limiting, it
is more difficult to imagine a memory operation operating on only a subset of the &
names (e.g., it is difficult to find code with a memory operation that only operates
on, say, the second element of a linked-list). Since the heap model that we expected
to have the most impact had very little impact, we suspect that the other ways of
refining the heap will produce little benefit also. However, there is one heap model
refinement that was not tested that may have a substantial impact — splitting the
heap based on the field names of the structure being allocated. We think this may
be beneficial because we can imagine memory operations that operate on only one
field of a heap-allocated structure. Admittedly, we also imagined that a MEDIUM
heap model would produce a significant improvement over a SMALL heap model, so
we can only cautiously recommend this as an area for research.

We examined how analysis with a MEDIUM heap model can improve the perfor-
mance of analyzed code over analysis with a SMALL heap model. A MEDIUM heap
model was useful for improving the performance of mlink, the program in which such
a model made the most difference. Most of the improvement came in the function
segup. Over half the loads removed by changing heap models came from this func-
tion. There were many places in which our MEDIUM heap model allowed changes to
the code. One place we found is seen in Figure 5.36. This example may or may not be
the reason for most of the improvement due to this function. In this example we have
a triply nested loop. Within this loop we have a load, *LINK->p, from some heap
allocated structures. We also have a store to a heap allocated structure segvall[i].
With a MEDIUM heap model we can determine that these two memory accesses do
not interfere, thus we can move the load outside the outermost loop. With a SMALL
heap model we cannot determine that these two accesses do not interfere. Thus, we
cannot move the load outside any of the loops. We were surprised that this sort of

pattern did not occur more often in our test suite.

5.2.4 LARGE heap model

Another heap model that was used was splitting the heap by user defined heap allo-
cators. Five programs were found to have their own heap allocators: clean, indent,
be, bison, and gzip.

The absolute results for this analysis are shown in Figures 5.37, 5.38, and 5.39.!1° The
ratios between the results produced by the LARGE and baseline heap models without

10Note that the results for clean were generated using a newer version of our optimizer than the
other performance results for analyzed code in this thesis. This was necessary because a bug was
discovered late in the writing of this thesis that affected the analysis of clean with a LARGE heap
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for (nonzindex = 0; nonzindex < nonzcount; nonzindex++) {
fc;%(i = 0; i < stepl; i++) {
fc;;(j = 0; j < step2; j++) {
if.((!sexdif) |l ((*LINK->p)->male))

segval[i] += newwith3[second+j] * val;

Figure 5.36 Splitting the heap helps analysis

Program | Path 0 | Path 1

clean 1017021 | 1017021
indent 865622

bc 5548284 | 5536821
bison 3326755 | 3326473

gzip(enc) | 5678893 | 5678893
gzip(dec) | 976366 | 976366

Figure 5.37 LARGE heap model: total operations




Program | Path 0 | Path 1

clean 55970 55970
indent 69141
bc 238486 | 238486

bison 539597 | 539597
gzip(enc) | 198823 | 198823
gzip(dec) | 17233 | 17233

Figure 5.38 LARGE heap model: stores

Program | Path 0 | Path 1

clean 146949 | 146949
indent 147159

bc 809476 | 802617
bison 550720 | 550626

gzip(enc) | 835906 | 835906
gzip(dec) | 135636 | 135636

Figure 5.39 LARGE heap model: loads
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using path expressions is summarized in in Figure 5.40. These results show that more
accurate heap models do not significantly improve the performance of the analyzed

code.

5.2.5 Path expressions

We also examined how path expressions improve analysis and cause code to run faster.
In our fourteen test cases, path expressions had the greatest impact in dhrystone.
All of the improvement occurred in the function main. There were two situations
within main that allowed path expressions to improve the code.

In the first example (see Figure 5.2.5), Enum_Loc will unnecessarily be loaded
from memory in the if statement if path expressions are not used. Enum Loc is
already available from the assignment at the beginning of the code. Unfortunately,
without path expressions, our pointer analysis will show that the call to Proc_1 may
modify Enum Loc, and thus we must reload Enum Loc at the if statement. With path
expressions, this load is unnecessary since we can determine that this call to Proc_1
does not modify Enum Loc. Path expressions allow us to determine this by allowing
us to tailor the MOD/REF effect for each call site to a function. Within Proc_1
there is a call to Proc_6. Proc_6 modifies the variable whose address is given as its
second parameter. The call within Proc_1 does not pass the address Enum Loc as
its second parameter, but another call to Proc_6 does. Without path expressions we
must combine the MOD /REF effect for all the calls to Proc_6 and put this effect at all
call sites. Thus the call to Proc_6 in Proc_1 and Proc_1 itself must be conservatively
and unnecessarily assumed to modify Enum Loc. With path expressions, it can be
determined that the call to Proc_6 in Proc_1 does not modify Enum Loc, even though

another call to Proc_6 does modify Enum Loc.

SMALL | MEDIUM | LARGE Range
Operations 100.1 100.0 99.9 || 99.8-101.0
Stores 100.2 100.0 100.0 || 100.0-102.9
Loads 100.3 100.0 99.8 || 99.6-103.9

Figure 5.40 Summary of memory model impact on code performance

model. We could not regenerate the old version of the optimizer. Thus, the ratios for clean with
the LARGE heap model versus our baseline model show the ratios when using the new optimizer.
In particular, we did not use the performance results for our baseline model in Figures 5.24, 5.26,
and 5.28 since these results were produced with our old optimizer.
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A similar thing occurs in our second example (see Figure 5.2.5). In this case
the variable Int_3_Loc is unnecessarily reloaded on the last statement. It is already
available as a parameter to the call to Proc_8. As in the previous example, without
path expressions, we must unnecessarily assume that the call to Proc_1 may modify
Int_3 Loc. This is due to a call to Proc_7 in Proc_1. Proc_7 modifies the variable
whose address is passed as its third parameter. The call to Proc_7 within Proc_1 does
not pass the address of Int_3_Loc as its third parameter, but another call to Proc_7
does. This causes inaccuracy when the MOD/REF effect from all the call sites to
Proc_7 are combined. This inaccuracy can be removed when path expressions are
used.

Both of these examples occur in a loop that is iterated a user specified number
of times (in our case this is 2000). Path expressions will remove one load in each
example. Thus, these two examples explain why path expressions will remove 4000
loads in the execution of dhrystone. This accounts for all the loads removed by path

expressions in dhrystone.

5.2.6 Cache results

We also ran our analyzed programs in two models that contained a cache simulator.
In the first model we simulated a single-level 2KB, 2-way set-associative write-back
cache with a line size of 32 bytes. In the second model, we simulated a two-level
cache with a 1KB direct-mapped, write-through L1 cache, and a 64KB 4-way set-
associative, write-back 1.2 cache, each with a line size of 16 bytes. In order to give a
background to interpret our cache results, Figure 5.43 shows the impact of varying the
level of analysis on the number of cache accesses. These numbers are normalized with
the version having no analysis set to 100.0. The “% of total” line shows the percentage
of operations in the unanalyzed program that accessed the cache. The other figures

in this section follow an identical format, except that instead of the “number of cache

Enum_Loc = Ident_2;
Proc_1 (Ptr_Glob);

if (Enum_Loc == Func_1 (Ch_Index, ’C’))

Figure 5.41 Path expressions help: example 1
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Proc_8 (Arr_1_Glob, Arr_2_Glob, Int_1_Loc, Int_3_Loc);
Proc_1 (Ptr_Glob);

Int_1_Loc = Int_2_Loc / Int_3_Loc;

Figure 5.42 Path expressions help: example 2

accesses,” we present the number of cache misses for a particular cache level. When
interpreting the importance of these results, the “% of total” column and the cost of
a cache access and a cache miss are very important. Overall, the number of cache
accesses is the most important statistic since most memory requests are serviced at
the highest cache level. However, this emphasis should be balanced by the greater
cost of acccessing lower cache levels.

Figure 5.44 shows the results for the single-level cache model. This table is sorted
so that programs that have a higher percentage of operations that produced a cache
miss are placed on the top of the figure. Comparisons of the number of misses for tsp
and dhrystone are not meaningful since the total number of misses is very small.
This figure shows that MOD/REF analysis and pointer analysis usually decreased
the number of cache misses for programs for which the number of cache misses was
significant (15 out of 24 cases). However, there were important exceptions. For
go, bc and the pointer analyzed version of indent, the percentage of misses was
significantly increased. This was especially bad for go since such a large percentage
of its operations caused cache misses. On the other hand, both MOD/REF analysis
and pointer analysis reduced the number of misses for bison by over half. Pointer
analysis usually produced better results than MOD/REF analysis for programs in the
top half of the figure while MOD/REF analysis produced better results for programs
in the lower half. For indent, MOD/REF analysis generated much better results
than pointer analysis. We were not able to determine why this is the case, but this
result is not unexplainable. One possiblity is that pointer analysis may produce more
register pressure which causes a register spill. The register might not be serviced by
the cache causing more cache misses.

Figure 5.45 shows the results for the L1 cache of two-level cache. For this level,
analysis occasionally increased the number of misses by a small percentage. However,

for most of the programs in our test suite, the number of misses was reduced by large
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Program | % of total | Original | MOD/REF | Path 0
tsp 29.81 100.00 75.72 | 73.06
mlink 24.25 100.00 82.78 77.66
fft 22.34 100.00 75.09 72.42
clean 25.27 100.00 76.02 | 75.00
dhrystone 21.26 100.00 95.30 | 82.81
water 27.90 | 100.00 83.66 | 65.01
indent 29.70 | 100.00 75.06 | 75.14
allroots 16.75 | 100.00 89.66 | 87.36
be 19.51 100.00 96.78 | 96.24
go 21.94 | 100.00 95.87 | 91.00
bison 38.52 | 100.00 73.75 | 73.67
jpeg 24.48 | 100.00 100.67 | 100.66
gzip(enc) 19.54 100.00 94.49 91.62
gzip(dec) 15.76 | 100.00 98.25 | 97.94

Figure 5.43 Normalized cache accesses

percentages. Most notably, bison and tsp had the number of misses reduced by
multiple factors. For these programs this should be especially benefical since misses
occur for a large percentage of the total operations. At this level pointer analysis
outperformed MOD/REF analysis in most cases. The results for the L.2 cache of this
model are shown in Figure 5.46. Only go, fft, and mlink had over 10,000 misses. For
the other programs, the effect of the analyses never changed the number of misses
by more than a few hundred. This indicates that the memory required for these
programs was usually less than the 64KB size of the 1.2 cache. For the programs that
could not fit in the .2 cache, our analyses had a significant impact on only two cases,
go and mlink. For mlink, there was a minor improvement, but for go, MOD/REF
analysis nearly doubled the number of misses.

Overall the impact of pointer analysis and MOD/REF analysis on memory per-
formance was good. Analysis usually decreased the number of memory references in a
program. Our cache performance statistics show that at the highest cache level, this
reduction in the number of memory references usually also reduced the number of

cache misses. For most of these programs, such as water, analysis increased the miss
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rate,'’ but this was only because analysis was able to remove a greater percentage of
memory accesses that produced cache hits than cache misses. For other programs,
such as bison, analysis was able to reduce the number of accesses and reduce the
miss percentage. There were programs, such as go, where the number of cache misses
increased. However, this was compensated by the fact that the number of accesses
was reduced. Although there were borderline cases, MOD/REF analysis and pointer
analysis usually reduced the memory traffic and cache misses. These effects will result

in reduced execution times for our test programs.

"We can determine this because the normalized number of accesses is less than the normalized
number of misses. This indicates that a greater fraction of accesses than misses was removed, thus
increasing the miss rate.
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Program | % of total | Original | MOD/REF | Path 0
go 7.13 | 100.00 115.57 | 109.54
gzip(enc) 5.87 100.00 102.42 99.24
clean 4.66 100.00 93.17 | 89.43
mlink 4.16 | 100.00 92.65 | 95.30
jpeg 4.06 | 100.00 99.65 | 99.37
fft 2.15 100.00 95.57 92.13
indent 1.66 100.00 67.94 | 124.11
allroots 1.15 100.00 100.00 | 91.67
bison 1.01 100.00 46.23 47.15
water 0.98 | 100.00 90.37 | 97.94
gzip(dec) 0.87 | 100.00 101.28 | 103.82
be 0.79 | 100.00 137.60 | 137.83
tsp 0.09 | 100.00 470.38 | 319.36
dhrystone 0.00 100.00 121.43 | 121.43

Figure 5.44 Single-level cache model: normalized misses

Program | % of total | Original | MOD/REF | Path 0
go 8.60 | 100.00 107.42 | 103.18
bison 8.45 | 100.00 8.65 7.97
mlink 7.22 100.00 88.22 93.41
gzip(enc) 6.56 | 100.00 103.93 | 100.52
clean 5.98 | 100.00 90.93 | 88.76
tsp 5.47 | 100.00 30.47 | 30.54
jpeg 4.73 | 100.00 100.32 | 98.49
water 3.38 | 100.00 89.07 | 87.04
indent 3.31 100.00 77.85 | 83.23
Tt 2.54 | 100.00 89.30 | 77.48
allroots 2.21 100.00 69.57 | 65.22
be 2.14 100.00 91.34 | 100.25
gzip(dec) 1.51 100.00 100.54 | 105.17
dhrystone 0.67 100.00 199.45 | 199.45

Figure 5.45 Two-level cache model: normalized misses (level one)
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Program | % of total | Original | MOD/REF | Path 0
allroots 1.44 100.00 106.67 | 100.00
Tt 0.84 | 100.00 99.58 | 99.68
gzip(enc) 0.48 | 100.00 98.94 | 98.66
gzip(dec) 0.33 | 100.00 101.13 | 100.67
clean 0.26 100.00 99.86 | 100.71
bison 0.25 | 100.00 100.33 | 100.67
go 0.21 100.00 188.85 | 109.05
tsp 0.18 | 100.00 99.16 | 99.24
mlink 0.17 | 100.00 88.83 | 98.55
indent 0.13 | 100.00 98.08 | 106.98
be 0.03 | 100.00 103.45 | 104.47
water 0.02 100.00 97.59 | 97.16
jpeg 0.01 100.00 100.53 | 105.51
dhrystone 0.00 100.00 95.00 | 95.00

Figure 5.46 Two-level cache model: normalized misses (level two)
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5.3 Optimizer performance

We optimized our ILOC files by using a PERL script to control the optimization
process. We also used the script to record the time needed to optimize all the files
in each program. These results are shown in Figure 5.47. For comparison, in the
far right column, we also show the time needed to analyze the program with no
path expressions with the MEDIUM heap model. In order to see the impact of the
analyses on optimization time more clearly, we standardized the results so that the
optimization time of the unanalyzed program was 1.000 (see Figure 5.48). This shows
that MOD/REF analysis usually increases the amount of time needed to optimize a
program while pointer analysis has the opposite effect. Pointer analysis with no path
expressions speeds up optimization enough so that the time required for analysis and
optimization (Analysis Time column plus Path 0 column) is usually less than the
time required for optimization with no analysis (Original column). However, there
were three exceptions, (clean, be, and jpeg), which accounted for 22% of our test
cases. Also, for the jpeg case, this increase was huge (i.e., the cost of analysis was

nearly forty times greater than the cost of optimization with no pointer analysis.
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Program | Original | Modref Path Length Analysis
0 1 2 3 4 || Time
tsp 27.0 30.2 | 23.3| 23.6 | 23.8| 22.6 | 25.2 0.2
mlink 568.7 576.6 | 361.9 | 371.0 | 334.9 | 351.9 32.9
ftt 37.8 25.7 1 23.9| 273 | 223 | 23.8| 255 0.2
clean 243.2 346.2 | 318.0 | 336.0 | 312.1 | 306.1 | 348.6 21.8
cachesim 96.5 126.2 | 91.0| 87.3| 79.4 | 81.9| 88.7 3.7
dhrystone 15.7 1471 148 | 121 11.9] 13.1 | 12.7 0.1
water 70.2 44.7 | 43.1 | 38.9 | 455 | 385 | 45.0 0.4
indent 298.0 299.4 | 211.6 42.9
allroots 9.1 8.4 8.5 8.1 7.8 7.1 8.9 0.0
bc 210.6 222.8 | 212.2 | 218.4 | 208.4 | 204.7 30.6
go 904.9 | 1088.5 | 839.8 | 817.8 | 635.6 | 919.0 | 919.0 46.6
bison 368.0 389.7 | 340.9 | 347.2 | 316.4 | 304.0 | 368.6 8.6
jpeg 292.1 413.2 | 675.1 11539.5
gzip 196.0 223.4 | 184.5 | 183.9 | 175.1 | 173.0 | 205.9 5.9
Figure 5.47 Optimization times (s): absolute
Program | Original | Modref Path Length Analysis
0 1 2 3 4 || Time
tsp 1.000 1.119 | 0.866 | 0.874 | 0.881 | 0.838 | 0.933 0.009
mlink 1.000 1.014 | 0.636 | 0.652 | 0.589 | 0.619 0.058
ftt 1.000 0.680 | 0.632 | 0.723 | 0.589 | 0.629 | 0.675 0.006
clean 1.000 1.424 1 1.308 | 1.381 | 1.283 | 1.258 | 1.433 0.090
cachesim 1.000 1.308 | 0.943 | 0.904 | 0.823 | 0.849 | 0.919 0.038
dhrystone 1.000 0.936 | 0.944 | 0.767 | 0.760 | 0.835 | 0.810 0.008
water 1.000 0.637 | 0.614 | 0.553 | 0.648 | 0.549 | 0.640 0.006
indent 1.000 1.005 | 0.710 0.144
allroots 1.000 0.921 | 0.935 | 0.887 | 0.863 | 0.778 | 0.982 0.004
be 1.000 1.058 | 1.008 | 1.037 | 0.990 | 0.972 0.145
go 1.000 1.203 | 0.928 | 0.904 | 0.702 | 1.016 | 1.016 0.052
bison 1.000 1.059 | 0.926 | 0.943 | 0.860 | 0.826 | 1.001 0.023
jpeg 1.000 1.415 | 2.312 39.511
gzip 1.000 1.140 | 0.941 | 0.938 | 0.893 | 0.883 | 1.051 0.030

Figure 5.48 Optimization times: standardized (1.000 = original)




102

Chapter 6

Register Promotion

We have also developed a technique, register promotion, to utilize the information
generated by pointer analysis. Register promotion improves code by allowing a value
that normally resides in memory to reside in a register for some portions of the code.
This is done by identifying sections of the code in which it is safe to place the value in
a register. Before entering such a section, the value is “promoted” (i.e., loaded) from
its memory location to a register. Within the section, references to this value are
rewritten to refer to the register. Upon exit from the section, the value is “demoted”
(i.e., stored) to a memory location.

The compiler performs promotion in the early phases of optimization. It rewrites
the ILOC to keep additional values in a register. However, subsequent actions by the
register allocator can “undo” a promotion. At the time that promotion occurs, the
compiler cannot accurately predict the availability of a register to hold the promoted
value. If the register allocator discovers that demand for registers exceeds supply, it
must “spill” some values back to memory. The promoted values compete for registers

on an equal footing with other values; and as a result, some of them may get spilled.

6.1 The algorithm

The algorithm that we have developed is relatively simple. It proceeds as follows:

1. interprocedural analysis—The compiler performs an interprocedural analysis to
disambiguate memory references. The results are used to shrink the tag sets for

references and procedure calls.

2. gather initial information—For each block b, the compiler computes two sets.
B_EXPLICIT, contains all tags referenced by an explicit memory operation in b.
B_AMBIGUOUS, contains all tags referenced ambiguously in b, through procedure
calls or pointer-based memory operations where the pointer contains multiple

tags.

3. find loop structure—The compiler computes dominator information to identify

loop nests using an algorithm due to Lengauer and Tarjan [27].
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4. analyze loop nests—For each loop [, the compiler solves the equations shown
in Figure 6.1. The set L_PROMOTABLE; contains the tags that may safely be

promoted inside loop [.

5. rewrite the code—VFor each tag that is in some L_PROMOTABLE;, a virtual register
v is created. All references to the tag in loops for which the tag is promotable

are converted to a copy involving v.'?

6. promote the tags—A tag that has had its accesses rewritten to use a virtual
register must be loaded into its virtual register before entering the outermost
loop in which it is promotable. It also must be stored to at the loop exits. The
set of tags that needs to be loaded and stored around a loop [ is in L_LIFT;.

The equations from Figure 6.1 merit some additional explanation. B_EXPLICIT, and
B_AMBIGUQUS, are computed in a simple linear pass over each block. The pass must
examine each operation and its tag set. FEquations (1) and (2) simply aggregate
together the information for all the blocks in a loop. Equation (3) is solved once per
loop; it computes the set of values that are only referenced explicitly in the loop. If
a tag t is in L_PROMOTABLE; for loop [, the loop can be rewritten safely to keep the
value associated with t in a register. Finally, equation (4) ensures that a tag t is only
loaded and stored around the outermost loop where it may be promoted.

What have we accomplished? As presented, the algorithm promotes references

to a scalar variable in a loop if all the references to the scalar variable in the loop

LEXPLICIT, = | JBEXPLICIT, (6.1)
bel
L.AMBIGUOUS, = | JB_AMBIGUOUS, (6.2)
bel
L_PROMOTABLE, = L_EXPLICIT, — L_AMBIGUOUS; (6.3)
L_PROMOTABLE; if 1 is outermost loop
LLIFT, = { (6.4)
L_PROMOTABLE; — L_PROMOTABLE yrrounding loop(l) otherwise

Figure 6.1 Equations for register promotion

12The copies are subject to coalescing by the register allocator [4]. Tt is quite effective at eliminating
copies like these.
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B0

B1
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B3

B4

B5

B6

B7

B8

B9

1

SST [C] ro
JSR [A]
PLD [B Z] — ri

1

1

SST [B] r2

1

JSR [B]

1

SLD [A] — r3

1

Register

Promotion
—_—

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

SLD [C] — rc
¥

CP r0 — rc
JSR [A]
PLD [B Z] — ri
¥
SLD [A] — ra
¥
SST [B] r2
¥
JSR [B]
¥
CP ra — r3

¥

SST [A] ra
¥

SST [C] rc

Loop Nest and Relevant Code

— |

Block Information
Set 0 B1 B2 | B3| B4 | B5 | B6 | BT | B8 | B9

B_EXPLICIT C B A

B_AMBIGUQOUS AB7Z B
Loop Information
Loop | Landing Pad | Exit | L.LEXPLICIT | L_AMBIGUOUS | L_PROMOTABLE | L_LIFT
B1-B8 B0 B9 ABC ABZ C C
B3-B7 B2 B8 AB B A A
B5-B6 B4 B7 A A

Figure 6.2 An example
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are explicit. It does not promote references based on pointers that may point to
multiple objects; neither does it promote array references. The promoted variables
are scalars that the compiler did not enregister because it lacked the information
to show that enregistering them was safe. Section 6.3 discusses one technique for
extending the domain of promotion to include some array and more pointer-based
values. The algorithm only examines references inside loops; our implementation of
partial redundancy elimination[30] uses memory tag information to achieve most of
the effects of promotion in straight-line code.

What does this algorithm cost? The cost of the interprocedural analysis used
to support register promotion varies with both the algorithm used and the desired
precision of the information. The promotion algorithm itself runs efficiently. Tts
complexity is expressed as a function of the following variables that characterize a
program.
code size
number of tags
number of loops
maximum number of exits in a loop

number of basic blocks

MmN Q

number of edges in CFG

Computing B_.EXPLICIT and B_AMBIGUQOUS takes a simple pass over the code. In each
block, it examines each statement and, possibly, each tag set. This requires O(C'T)
time, worst case. The dominator algorithm used to find the loop structure can be
implemented to require O(FEa(FE, B)) time, where a(E, B) is related to a functional
inverse of Ackermann’s function [27]. Computing L_EXPLICIT and L_AMBIGUQUS re-
quires O(L BT') time, while L_PROMOTABLE and L_LIFT require O(LT') time. Rewriting
the code requires O(C') time to convert memory operations to copies, plus O(T LX)
time to insert loads and stores at loop landing pads and loop exits. Thus, the overall
time bound is
OCT+ FEa(E,B)+ LBT + LT +C+TLX),
which simplifies to
O(Ea(E,B)+T-(C+ LB+ LX)).

In practice, it runs quickly.

6.2 An example

To make this discussion more concrete, consider the example shown in Figure 6.2.
It shows a triply nested loop, along with some of the code that populates the loop.

(The remaining code is assumed to have no impact on the example.) The instructions
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for (i=0; i<DIM_X; i++) {

for (i=0; i<DIM_X; i++) { rb=0;
B[i]=0; for (j=0; j<DIM_Y; j++) {
for (j=0; j<DIM_Y; j++) { rb+=A[1] [j];
B[il+=A[i][j]; b
} Bli]l=rb;
b b
Original code Transformed code

Figure 6.3 Promoting array references

are presented in an abstracted form; each shows its tag list followed by any relevant

registers. The mnemonics have simple meanings.

SST | Scalar store

SLD | Scalar load

CP | Register copy

PST | Pointer-based store
PLD | Pointer-based load

JSR | Jump to subroutine

The version on the left shows the code before register promotion. The version on the
right shows the results of register promotion. Notice that each loop has an explicit
landing pad before its header and an explicit exit block. Our compiler automatically
inserts landing pads and exits as part of constructing the control-flow graph; empty
blocks are automatically removed after optimization.

The tables at the bottom of the figure show the local information computed for
the example, B_LEXPLICIT and B_AMBIGUQUS, as well as the sets computed for the
loops. The L_PROMOTABLE and L_LIFT sets concisely summarize the situation. The
value associated with tag A is promotable in the two inner loops but not the outer
loop. The JSR instruction in block B1 references A ambiguously, so it cannot be
promoted in that loop. The value associated with tag B is referenced ambiguously in
loop B3-B7; since it is not referenced in loop B5-B6, no opportunity for promoting
it exists. Finally, the value associated with tag C is never referenced ambiguously.
Since it is referenced in the outer loop (B1-B8), it is promotable in that loop. The
L_LIFT set correctly shows that A should be promoted in loop B3-B7 rather than
loop B5-B6 since loop B3-B7 contains loop B5-B6.
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When the compiler rewrites the code, it promotes C in loop B1-B8 and A in
loop B3-B7. Thus, it inserts a scalar load of C into rc in loop B1-B8’s landing pad
(block B0) and a scalar store into loop B1-B8’s exit block (B9). The store in block
B1 becomes a copy into rc. To promote A, it inserts a scalar load of A into ra in
loop B3-B7’s landing pad (B2), and a scalar store into loop B3-B7’s exit block (B8).
The load in B5 becomes a copy out of ra. The other instructions remain unchanged.

The net result is to replace the scalar load in the innermost loop with a copy
operation and a load/store pair two loops farther out. The scalar store in the outer
loop is replaced with a copy operation and a load/store pair outside that loop. In

many cases, the register allocator can coalesce away these copies.

6.3 Handling pointer-based references

The algorithm from Section 6.1 only promotes scalar variables that are explicitly
referenced. Pointer-based loads and stores that may point to multiple locations cannot
be modified. Consider, for example, the code shown on the left hand side of Figure 6.3.
The inner loop uses a single value of B[i] per iteration of the outer loop; since 1 does
not change, the address of B[i] is invariant. Thus, the compiler should rewrite the
code as shown on the right by promoting B[i] into a register rb. This eliminates a
load before the reference to B[i] in the inner loop and a store after it. To achieve
this, however, the compiler must recognize that B[i] refers to the same location in
each iteration of the inner-loop and that only one way to reference the code is possible
in the inner loop. The analysis described earlier cannot do that.

We developed another algorithm to promote some pointer-based references to mul-
tiple locations. In particular, it finds memory references, r, where the base register,
b, is invariant in a loop and the only accesses in the loop to the tags accessed by
r are through the invariant base register b. This algorithm relies on loop-invariant
code motion to identify the loop-invariant base registers and place the computation
of these registers outside a loop. When it finds memory references satisfying these
conditions, it promotes the reference into a register using the same rewriting scheme
as before—a load before each loop entry, a store at each loop exit, and a copy at each
reference. These conditions include the example from Figure 6.3.

Anecdotally, the pointer-based promotion scheme is a success. When its condi-
tions apply, it produces the code that might be expected of a good assembly pro-
grammer. For example, it produces a loop equivalent to the transformed code shown
in Figure 6.3, after coalescing removes the copy operations. In our suite of test pro-
grams, however, the measured improvements were not overwhelming when compared

with scalar promotion. For total operations executed, pointer-based promotion hurt
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performance for one program and had no effect on nine others. The improvements in
three of the other four programs were less than 1% of the improvement due to scalar
promotion. In fft, the only significant success, pointer-based promotion was able to
remove 48.3% more operations, 48.3% more stores, and 48.4% more loads than scalar
promotion was able to remove. This accounted for 0.41% of the stores and 0.34% of
the loads in the execution of fft. The reason for this disappointing performance may
be that the restrictions are too strict; it may be that the promotable pointer-based
references in our collection of programs are relatively unimportant to performance.

We intend to continue to investigate this set of problems.

6.4 Planned improvements

Our current register promoter misses some opportunities. We are interested in ex-

tending this work to increase its coverage of real programs.

e The loop-based approach to analysis and transformation causes the promoter to
overlook situations that occur outside loop nests. There should be many cases

where it is profitable to promote values to registers in straight-line code.

In our compiler, partial redundancy elimination handles many of these cases in
straight-line code. Tt uses the tag fields to eliminate redundant loads. It must
treat stores more conservatively. Extending the promoter could improve the

behavior for these stores.

o The scheme described in Section 6.3 handles a set of relatively simple array refer-
ences. Some of the more complex examples require detailed dependence analysis
or an equivalent technique to reason about conflicts with other references to the
same array inside the loop [17, 28]. For example, Carr used dependence analysis
to detect consistent patterns of cross-iteration reuse in Fortran and to promote

the corresponding values into scalar temporaries that ended up in registers [8].

We are interested in expanding the set of array references promoted by the
compiler. Our work to date has focussed on poor code that results from lack of
information about the behavior of other procedures and pointer-based memory
operations. As we delve deeper into array promotion, we will need to improve

our analysis of subscripts.

As in any experimental study, examining the code that comes out of the compiler
suggests additional areas of improvement. Further cases for improvement will suggest
themselves as we continue this work.

However, we must sound a note of caution. Register promotion increases the

demand for registers—often called register pressure. As we improve the promoter, we
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increase its ability to generate an intermediate code program that requires spilling in
the register allocator. Carr discovered this effect in his work on scalar replacement in
Fortran [9]; beyond some point, the memory accesses removed by the transformation
were balanced by the spills added during register allocation. He adopted a bin-
packing discipline to “throttle” the promotion process. As we extend our work, we
will undoubtedly encounter the same problem and need a similar solution to moderate

register pressure.

6.5 Results

Register promotion had a small effect on the total number of operations executed (see
Figures 6.4, 6.5, and 6.6). The main benefit of register promotion is the removal of
memory operations—stores and loads (see Figures 6.7, 6.8, 6.9, 6.10, 6.11, and 6.12).
In several of the applications, promotion removed a large fraction of the stores and
many of the loads. In other applications, it found few, if any, opportunities. When it
found opportunities, the promoter often made significant improvements. If memory
operations take more cycles than other operations, as in many modern machines, the
positive impact of promotion will be greater.

In some cases, the net effect of promotion was a minor performance degradation.
This is not surprising when we look at the total operations executed (see Figures 6.4
and 6.5). Register promotion replaces some memory operations with copies and adds
memory operations to promote variables. Thus, by itself, register promotion will al-
ways increase the total number of operations executed. In combination with other
optimization passes, register promotion may decrease the total operations executed
by exposing some optimization opportunities. Performance degradation in terms of
memory operations executed was caused by two effects, promoting rarely used or con-
ditionally used values and increasing register pressure. For example, in bison, values
were promoted that were only accessed on an error condition. In water, register
promotion was able to promote twenty-eight values for one loop nest. Unfortunately,
this caused the register allocator to spill values, which resulted in a performance loss

13 Most of the improvements were the result of

compared to no register promotion.

global variables that are normally placed in memory being promoted to registers.
The results also show that the improved information derived from pointer analysis

does not greatly improve the results of register promotion. This does not warrant

a conclusion that pointer analysis is unprofitable; it does suggest that MOD/REF

13Tt might be expected that the allocator would simply spill some subset of the twenty-eight pro-
moted values and avoid the actual performance degradation. Our compiler uses a graph-coloring
allocator [4]. These allocators are known to “over-spill” in tight situations.
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Program | analysis without with | difference | % removed
tsp modref 657271 657271 0 0.00
pointer 651487 651487 0 0.00
path 1 651487 651487 0 0.00
path 2 651487 651487 0 0.00
path 3 651487 651487 0 0.00
path 4 651487 651487 0 0.00
mlink modref | 126763483 | 126772024 -8541 -0.01
pointer | 124578327 | 124425317 153010 0.12
path 1 | 124577258 | 124424420 152838 0.12
path 2 | 124576824 | 124423998 152826 0.12
path 3 | 124576824 | 124423998 152826 0.12
fft modref | 12636446 | 12635914 532 0.00
pointer | 12575749 | 12550636 25113 0.20
path 1 | 12575740 | 12550618 25122 0.20
path 2 | 12575740 | 12550618 25122 0.20
path 3 | 12575740 | 12550618 25122 0.20
path 4 | 12575740 | 12550618 25122 0.20
clean modref 1113150 1099823 13327 1.20
pointer 1117631 1108473 9158 0.82
path 1 1119738 1105261 14477 1.29
path 2 1119738 1105261 14477 1.29
path 3 1119738 1105261 14477 1.29
path 4 1119738 1105261 14477 1.29
cachesim modref | 11588600 | 11589109 -509 -0.00
pointer | 11586991 | 11587501 -510 -0.00
path 1 | 11586991 | 11587501 -510 -0.00
path 2 | 11586991 | 11587501 -510 -0.00
path 3 | 11586991 | 11587501 -510 -0.00
path 4 | 11586991 | 11587501 -510 -0.00
dhrystone | modref 582185 582185 0 0.00
pointer 552181 552181 0 0.00
path 1 548186 548186 0 0.00
path 2 548186 548186 0 0.00
path 3 548186 548186 0 0.00
path 4 548186 548186 0 0.00

Figure 6.4

Register promotion: total operations




111

Program | analysis without with | difference | % removed
water modref | 13478252 | 13476586 1666 0.01
pointer | 12725764 | 12726871 -1107 -0.01
path 1 | 12725764 | 12726871 -1107 -0.01
path 2 | 12725764 | 12726871 -1107 -0.01
path 3 | 12725764 | 12726871 -1107 -0.01
path 4 | 12725764 | 12726871 -1107 -0.01
indent modref 873264 867212 6052 0.69
pointer 873249 867180 6069 0.69
allroots modref 1010 1010 0 0.00
pointer 1000 1000 0 0.00
path 1 1000 1000 0 0.00
path 2 1000 1000 0 0.00
path 3 1000 1000 0 0.00
path 4 1000 1000 0 0.00
mybc modref 5574493 5561348 13145 0.24
pointer 5563470 5550821 12649 0.23
path 1 5558913 5546264 12649 0.23
path 2 5559372 5546723 12649 0.23
path 3 5559372 5546723 12649 0.23
go modref | 489094926 | 496832956 | -7738030 -1.58
pointer | 479136877 | 486937168 | -7800291 -1.63
path 1 | 478978573 | 486777895 | -7799322 -1.63
path 2 | 479073392 | 486872714 | -7799322 -1.63
path 3 | 479073392 | 486872714 | -7799322 -1.63
path 4 | 479073392 | 486872714 | -7799322 -1.63
bison modref 3333123 3334118 -995 -0.03
pointer 3330130 3331125 -995 -0.03
path 1 3326926 3327915 -989 -0.03
path 2 3326926 3327915 -989 -0.03
path 3 3326926 3327915 -989 -0.03
path 4 3326926 3327915 -989 -0.03
jpeg modref | 36963117 | 36963318 -201 -0.00
pointer | 36961800 | 36962001 -201 -0.00

Figure 6.5 Register promotion: total operations (cont.)
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Program | analysis | without with | difference | % removed
gzip(enc) | modref | 5814665 | 5711089 103576 1.78
pointer | 5805907 | 5678893 127014 2.19
path 1 | 5805907 | 5678893 127014 2.19
path 2 | 5805907 | 5678893 127014 2.19
path 3 | 5805907 | 5678893 127014 2.19
path 4 | 5805907 | 5678893 127014 2.19
gzip(dec) | modref | 977247 | 976879 368 0.04
pointer | 976879 | 976366 513 0.05
path 1 | 976879 | 976366 513 0.05
path 2 | 976879 | 976366 513 0.05
path 3 | 976879 | 976366 513 0.05
path 4 | 976879 | 976366 513 0.05

Figure 6.6 Register promotion: total operations (cont.)

analysis is a good basis for evaluating the benefits of improved analysis. An example
where pointer analysis was required to promote a value arose in fft.
for (I = begin; I < end; I++)
for (J = 0; J < N3; J++)
for (K = 0; K < N1; K++)
{

index3

(I*N3+J)*N1+K;
index1 (I*N3+J)*N1*2+K;
T1 = pow(X3[index3], (double) KT) ;
X2[index1] = T1 * X1[index1];
X2[index1+N1] = T1 * X1[index1+N1];
}
T1’s address is taken elsewhere in this code. X2 is a pointer, so the stores through it

may modify T1. Thus T1 is not promotable with just MOD/REF analysis. Pointer
analysis can discover that the stores through X2 cannot modify T1, and thus T1 can

be promoted.

Finally, some of the improvement due to register promotion was hidden because
other passes in the optimizer achieve similar results. For example, loop invariant code
motion can remove a load of a constant value out of a loop. Register promotion’s

main benefit seems to be transforming multiple stores of a promoted variable in a loop
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Program | analysis | without with | difference | % removed
tsp modref 51048 51048 0 0.00
pointer 51048 51048 0 0.00
path 1 51048 51048 0 0.00
path 2 51048 51048 0 0.00
path 3 51048 51048 0 0.00
path 4 51048 51048 0 0.00
mlink modref | 2509189 | 2505951 3238 0.13
pointer | 2442134 | 2352204 89930 3.68
path 1 | 2442131 | 2352200 89931 3.68
path 2 | 2442131 | 2352200 89931 3.68
path 3 | 2442131 | 2352200 89931 3.68
fft modref | 1036666 | 1036398 268 0.03
pointer | 1016178 | 1003608 12570 1.24
path 1 | 1016169 | 1003599 12570 1.24
path 2 | 1016169 | 1003599 12570 1.24
path 3 | 1016169 | 1003599 12570 1.24
path 4 | 1016169 | 1003599 12570 1.24
clean modref 83747 82442 1305 1.56
pointer 83746 82402 1344 1.60
path 1 87164 80189 6975 8.00
path 2 87164 80189 6975 8.00
path 3 87164 80189 6975 8.00
path 4 87164 80189 6975 8.00
cachesim | modref | 594387 | 594390 -3 -0.00
pointer | 594387 | 594390 -3 -0.00
path 1 | 594387 | 594390 -3 -0.00
path 2 | 594387 | 594390 -3 -0.00
path 3 | 594387 | 594390 -3 -0.00
path 4 | 594387 | 594390 -3 -0.00
dhrystone | modref 60010 60010 0 0.00
pointer 56010 56010 0 0.00
path 1 56010 56010 0 0.00
path 2 56010 56010 0 0.00
path 3 56010 56010 0 0.00
path 4 56010 56010 0 0.00

Figure 6.7 Register promotion:

store operations
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Program | analysis | without with | difference | % removed
water modref | 1035179 | 1035175 4 0.00
pointer | 1069711 | 1069645 66 0.01
path 1 | 1069711 | 1069645 66 0.01
path 2 | 1069711 | 1069645 66 0.01
path 3 | 1069711 | 1069645 66 0.01
path 4 | 1069711 | 1069645 66 0.01
indent modref 71957 69140 2817 3.91
pointer 72083 69141 2942 4.08
allroots modref 11 11 0 0.00
pointer 11 11 0 0.00
path 1 11 11 0 0.00
path 2 11 11 0 0.00
path 3 11 11 0 0.00
path 4 11 11 0 0.00
mybc modref 243866 238488 5378 2.21
pointer 243866 238488 5378 2.21
path 1 243866 238488 5378 2.21
path 2 245017 239639 5378 2.19
path 3 245017 239639 5378 2.19
go modref | 20707586 | 20203423 504163 2.43
pointer | 20912109 | 20403336 508773 2.43
path 1 | 20921613 | 20412840 508773 2.43
path 2 | 20984093 | 20475320 508773 2.42
path 3 | 20984093 | 20475320 508773 2.42
path 4 | 20984093 | 20475320 508773 2.42
bison modref 539941 539606 335 0.06
pointer 539941 539606 335 0.06
path 1 539941 539606 335 0.06
path 2 539941 539606 335 0.06
path 3 539941 539606 335 0.06
path 4 539941 539606 335 0.06
jpeg modref | 2503016 | 2503022 -6 -0.00
pointer | 2503016 | 2503022 -6 -0.00

Figure 6.8 Register promotion: store operations (cont.)
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Program | analysis | without with | difference | % removed
gzip(enc) | modref | 270393 | 212300 58093 21.48
pointer | 270392 | 198823 71569 26.47
path 1 | 270392 | 198823 71569 26.47
path 2 | 270392 | 198823 71569 26.47
path 3 | 270392 | 198823 71569 26.47
path 4 | 270392 | 198823 71569 26.47
gzip(dec) | modref | 17565 | 17379 186 1.06
pointer 17565 | 17233 332 1.89
path 1 17565 | 17233 332 1.89
path 2 17565 | 17233 332 1.89
path 3 17565 | 17233 332 1.89
path 4 17565 | 17233 332 1.89

Figure 6.9 Register promotion: store operations (cont.)

to a single store at the loop’s exit, an effect that other optimization passes cannot

achieve.
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Program | analysis | without with | difference | % removed
tsp modref 113721 113721 0 0.00
pointer 107937 107937 0 0.00
path 1 107937 107937 0 0.00
path 2 107937 107937 0 0.00
path 3 107937 107937 0 0.00
path 4 107937 107937 0 0.00
mlink modref | 27047909 | 27044130 3779 0.01
pointer | 25612630 | 25517809 94821 0.37
path 1 | 25611769 | 25517130 94639 0.37
path 2 | 25611658 | 25517019 94639 0.37
path 3 | 25611658 | 25517019 94639 0.37
fft modref | 1253031 | 1252763 268 0.02
pointer | 1216662 | 1204103 12559 1.03
path 1 | 1216662 | 1204103 12559 1.03
path 2 | 1216662 | 1204103 12559 1.03
path 3 | 1216662 | 1204103 12559 1.03
path 4 | 1216662 | 1204103 12559 1.03
clean modref 184158 183382 776 0.42
pointer 181334 180429 905 0.50
path 1 180023 179091 932 0.52
path 2 180023 179091 932 0.52
path 3 180023 179091 932 0.52
path 4 180023 179091 932 0.52
cachesim | modref | 1901534 | 1901536 -2 -0.00
pointer | 1900609 | 1900611 -2 -0.00
path 1 | 1900609 | 1900611 -2 -0.00
path 2 | 1900609 | 1900611 -2 -0.00
path 3 | 1900609 | 1900611 -2 -0.00
path 4 | 1900609 | 1900611 -2 -0.00
dhrystone | modref 62021 62021 0 0.00
pointer 50021 50021 0 0.00
path 1 46021 46021 0 0.00
path 2 46021 46021 0 0.00
path 3 46021 46021 0 0.00
path 4 46021 46021 0 0.00

Figure 6.10 Register promotion: load operations
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Program | analysis | without with | difference | % removed
water modref | 2388037 | 2386374 1663 0.07
pointer | 1672710 | 1673879 -1169 -0.07
path 1 | 1672710 | 1673879 -1169 -0.07
path 2 | 1672710 | 1673879 -1169 -0.07
path 3 | 1672710 | 1673879 -1169 -0.07
path 4 | 1672710 | 1673879 -1169 -0.07
indent modref 162389 147453 14936 9.20
pointer 162742 147735 15007 9.22
allroots modref 145 145 0 0.00
pointer 141 141 0 0.00
path 1 141 141 0 0.00
path 2 141 141 0 0.00
path 3 141 141 0 0.00
path 4 141 141 0 0.00
mybc modref 822343 817587 4756 0.58
pointer 816780 812012 4768 0.58
path 1 813374 808606 4768 0.59
path 2 812682 807914 4768 0.59
path 3 812682 807914 4768 0.59
go modref | 89793649 | 89224694 568955 0.63
pointer | 84594065 | 83945430 648635 0.77
path 1 | 84500529 | 83851902 648627 0.77
path 2 | 84514354 | 83865727 648627 0.77
path 3 | 84514354 | 83865727 648627 0.77
path 4 | 84514354 | 83865727 648627 0.77
bison modref 553970 553731 239 0.04
pointer 552828 552589 239 0.04
path 1 551760 551519 241 0.04
path 2 551760 551519 241 0.04
path 3 551760 551519 241 0.04
path 4 551760 551519 241 0.04
jpeg modref | 6596100 | 6596102 -2 -0.00
pointer | 6594785 | 6594787 -2 -0.00

Figure 6.11 Register promotion: load operations (cont.)
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Program | analysis | without with | difference | % removed
gzip(enc) | modref | 906418 | 854592 51826 5.72
pointer | 897695 | 835906 61789 6.88
path 1 | 897695 | 835906 61789 6.88
path 2 | 897695 | 835906 61789 6.88
path 3 | 897695 | 835906 61789 6.88
path 4 | 897695 | 835906 61789 6.88
gzip(dec) | modref | 136155 | 135968 187 0.14
pointer | 135823 | 135636 187 0.14
path 1 | 135823 | 135636 187 0.14
path 2 | 135823 | 135636 187 0.14
path 3 | 135823 | 135636 187 0.14
path 4 | 135823 | 135636 187 0.14
Figure 6.12 Register promotion: load operations (cont.)
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Chapter 7

Conclusion

Our work has made contributions to the development of pointer analysis in two ways.
First, we performed extensive experimental testing of pointer analysis. We provide
performance numbers for both the analyzer and analyzed code. The size of our
test suite is much larger than previous work. We experimentally justify the use of
pointer analysis by showing that it can improve the performance of analyzed code.
Performance improvement was especially dramatic in terms of the reduction in mem-
ory traffic. We also developed MOD/REF analysis as a benchmark against which
to compare the results of pointer analysis. Second, we examined key questions and
developed answers for them. In particular we explain why points-to analysis should
be done instead of alias analysis. We also explain why explicit names should be used
instead of representative names. Our experiments allowed us to quantitatively answer
design questions concerning heap modeling and context information. Surprisingly, we
found that using more accurate heap models did not significantly improve the perfor-
mance of our benchmark code. We also show that context information can slightly
improve the accuracy of pointer analysis. This is in contrast to the conclusion of Ruf’s
work. Furthermore, we show how context information can also slightly improve the
performance of analyzed code. Unfortunately, we also show that context information
is extremely expensive to compute in terms of time and space.

For anyone contemplating pointer analysis, our work shows that MOD/REF anal-
ysis is a good first step. It has many advantages. It is simpler. It is necessary for
pointer analysis. It is safer. It brings much of the speedup that pointer analysis
produces. It is also much less demanding in terms of time and space than pointer
analysis. With the current state of computers, our pointer analyzer might be able to
handle programs of about 100K lines of C code. This is good for research, but it will
not be able to handle many industrial programs, which may have more than a million
lines of code.

We also developed a new optimization pass, register promotion, that utilizes the
information generated by pointer analysis or MOD/REF analysis. We show how it

can reduce the memory traffic of programs.
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Chapter 8

Future Work

Several areas were not explored or not fully explored by this thesis. These areas should
be investigated more fully. Two of these areas, heap modeling and path information,

were discussed in Section 2.

1. Heap modeling
2. Intraprocedural paths
3. Strong updates

4. Safety

5. Sources of approximation

8.1 Heap modeling

Three separate models for the heap were tested with our analyzer: splitting by malloc
call site, using a single name, and splitting by user heap allocator call sites. Other
models could be tried, for example: splitting along call paths and splitting by fields
of heap allocated structures.

Generating heap regions is an expensive operation in the analyzer. Refinements
to the heap model that increase the number of heap regions should be carefully
considered. Heap regions are addressed regions, so they will appear on the region
lists of all calls and pointer-based memory operations. This will expand the SSA
name space and require more memory. Modeling the heap more accurately is not the
ultimate goal. It may or may not produce more accurate pointer analysis. This in
turn may or may not result in performance increases in the analyzed code. We must
weigh all the potential improvements against the increased time and space required.
This evaluation should be done by running various versions of the analyzer on the

test suite.
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8.2 Intraprocedural paths

No intraprocedural path information is used in the analyzer. Work should be done
to see how it can be efficiently implemented, and what its impact on accuracy will
be. One possibility is to record the basic block where an SSA name is defined. To
test if two SSA names may interact at a memory operation, we need to find a path
that passes through both definition points and reaches the basic block of the memory
operation. This can be done by finding the strongly-connected components (SCC)s
of the control-flow graph. Look for a path in the SCC graph that passes through the
SCCs of the definition points and ends at the SCC of the use point. The existence
of such a path must be determined quickly since it will be done repeatedly during

propagation.

8.3 Strong updates

We have evidence from one experiment that strong updates do not improve the accu-
racy of our analyzer. However, perhaps the benefit of strong updates is being hidden
by inaccuracies introduced by other sources of approximation. If we reduce the other

sources of approximation, the benefit of strong updates may become evident.

8.4 Safety

The analyzer assumes that it can identify where addresses to new regions are gen-
erated. In the analyzer, the only place where these addresses should be generated

are:

¢ load immediate of the address of a global
e add to a stack pointer
e add to a structure pointer

o heap-allocating call site

We are usually able to distinguish between an add operation that generates an address
to a new region and an add to an array or heap pointer by the layout of memory regions
in our analyzer’s address space. The code in Figure 8.1 will illustrate how this works
and a problem in this approach. The regions for this code can be seen at the bottom
of the figure (note that p does not have a region since it is allocated to a register).
Regions are shown with their address above their top left corner. The code in this

first section would produce the ILOC in Figure 8.2. Register r0 will be initialized with



122

address 0, since this is the base of the stack frame. Thus, we recognize that the 1ADDI
generates an address to a new region because the resulting address, 4, is the start of
region @_c.b. On the other hand, in the 1ADD operation, r4 will contain the address
4, and r5 will contain 4. When these are added together, the result, 8, is not the
base of any region, so we do not add this address to r6. Instead, we assume that 4 is
the address of an array region, so when we add to it we generate the same address,
4. Thus, 4 will be inserted in the list of addresses in r6.

Problems with this process can occur when we use type casts. For the code in
the second section of Figure 8.1, the analyzer will incorrectly conclude that the first
store through p stores to @_c.b, and the second store through p stores to @_c.a.
This occurs because the analyzer does not understand how to deal with type casts.
All stores through p should be to the same region. Unfortunately, the underlying
structure that was inherited through the type cast puts a region, @_c.b, in the middle
of the array pointed to by p. The first store happens to hit the base of this region,
so we conclude that it is a store to @_c.b. When p is incremented, this lands in the
middle of region @_c.b. Since this is not the base of a region, the analyzer assumes
this is an array increment and sets p to its original address. Thus, p points to region
@_c.a after the increment. Further work needs to be done to ensure that this case is
handled correctly.

8.5 Sources of approximation

It would be very helpful for further work in pointer analysis to understand the fre-
quency of each source of approximation. Unfortunately, this information may be very
difficult to generate (see Section 4.5).
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struct foo {

int a,b[2];
s
void f() {
int *p;

struct foo c;
/* good addressing */

p=c.b;
pl11=3;

/* bad addressing */

p=(int *) &c;

pl1]1=3; /* analyzer thinks this stores to c.b */
p+=2;
pl0]1=3; /* analyzer thinks this stores to c.a */
}
0 4
f’s function regions Q_c.a @ _c.b

Figure 81 Good and bad address creation

9 iADDI 4 r0 => r3 # get address of f_c
9 121 r3 => r2

10 121 r2 =>r4

10 il.DI 4 => rb5

10 1ADD r4d r5 => ré6

10 il.DI 3 =>r7

10 iSTor ' 4 0 r6 7

Figure 8.2 ILOC code with no address creation problems
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Appendix A

ILOC

In this section we give a quick description of our intermediate language, ILOC, which
should be sufficient for understanding this thesis. A more complete description is
given in our documentation for the MSCP[3].

In Figure A.1, a short piece of C code is given with its corresponding ILOC code.
ILOC is an assembly-like language with an unlimited number of symbolic registers.
Registers always start with the letter “r”. Functions in ILOC always start with a
FRAME declaration. In our example, the label for the function being declared is:
_swap. Labels always start with an “_” or an “L.”. The _swap label is followed by
the number of the source line in C code that created this operation. Since a FRAME
operation is not executable code, it has no associated source line, so this number is 0.
Following the FRAME opcode comes the size of the stack frame for this function and
the registers for the parameters passed into the function. The first two parameters
are non-user parameters. The first parameter is the stack pointer. The second is
necessary for the implementation of ILOC. The types of the parameters follow the
registers. The types for ILOC are shown in Figure A.2. In our example, the function
has four parameters, two of which are user parameters. All of the parameters are of
integer type. Functions in ILOC are terminated with a RTN, return, or HALT operation.

Functions and basic blocks are always given at least one label. There are five
labels in this example: _swap, L3_swap, L1_swap, L2_swap, and _g. The label _swap is
the label for the function and the entry block to the function. The next three labels
are also for basic blocks of the function. The last label _g is for a data segment. Data
segments are made up of DATA statements. DATA statements allocate global memory.
The one letter lower-case prefix tells the type of the memory being allocated. The

syntax of a DATA statement is:
DATA initial_value repetition_factor

The repetition_factor tells the number of copies of the specified data type for which
to allocate memory.
Calls, loads, and stores can be “tagged” with the memory locations they may

modify or reference. Tags occur in two types, base and group. Base tags represent a
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C source code

int g;

void swap(int *a, int #*b) {

int temp;
if (xa) {
temp=%*a;
*a=x%b;
*b=temp;
} else
g=3;
X
ILOC code
_swap: 0 FRAME 0 =>r0Orlr2r3 [iiii]
6 i2i r2 => rb
6 iPLDor @! 4 0 r5 => 16
6 iLDI 0 => r7
6 iCMPeq 16 r7 => r2b5
6 BR L1_swap L3_swap r2b
L3_swap: 7 i2i r2 => r9
7 iPLDor @! 4 0 r9 => ri10
7 i2i ri0 => r4
8 i2i r3 => ri1
8 iPLDor @! 4 0 ri11 => ri2
8 iPSTor @! 4 0 r9 ri2
9 i2i r3 => ri4
9 i2i r4 => ri5
9 iPSTor @! 4 0 ri14 ri15
10 JMP1 L2_swap
L1_swap: 11 iLDI _g => r20
11 iLDI 3 =>r21
11 iSSTor @_g_0 4 0 r20 r21
L2_swap: 12 RTN r0
-g: bDATA 0 4

ALIAS @_writable_globals [ @_g_0 ]

iSGLOBAL

0

@_g_0 _g

Figure A.1 Sample ILOC function
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prefix | description size
(bytes)

b byte or character 1

W word 2

i integer 4

f single-precision floating-point | 4

d double-precision floating-point | 8

c single-precision complex 8

q double-precision complex 16

Figure A.2 ILOC types

region of memory (e.g., an array, a local variable, a string, ete.). Group tags represent
a collection of base tags. Tags always start with an “@Q”. The group tag “@Q!” is used
to represent the collection of all base tags. For operations that have a type, the
type is specified by a prefix attached to the opcode. For example, 121 is an integer
copy (read: integer to integer). Memory operations come in two varieties, scalar
and pointer. Scalar memory operations have a “S” following their type prefix, while
pointer-based memory operations have a “P”. There is no distinction between the
actions of a scalar and a pointer-based memory operation. Their purpose is to aid
the accuracy of the analysis of our optimization passes. Scalar memory operations
denote operations on a known non-aggregate (i.e., non-heap and non-array) memory
location. The memory location being acted on is specified by the base tag in the
operation. Pointer memory operations are used for all other memory operations. The
tags used for these operations may be group tags or base tags for aggregate memory
locations. Using our nomenclature, the opcode iPSTor, stands for an integer pointer
store. The opcode dSLDor stands for a double-precision floating point scalar load. In

our example, the line:
11 1SSTor @_g_0 4 0 r20 r21

is an integer scalar store to base tag @_g_0. The base register is r20 and the value
being stored is in r21. The ALIAS statement is used to add base tags to a group tag.
The syntax is:

ALIAS Q@_group_tag [@base_tagl Qbase_tag2 ... ]
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The GLOBAL statement is used to declare information about a tag for global memory.
The one letter lower-case prefix tells the type of the memory. If this is followed by
an “S”, then the memory is scalar. Otherwise, it is non-scalar (i.e., it is an array or
heap). This is followed by the offset, the tag itself, and a global label. The global
label plus the offset is the address of the base of the memory region. The STACK
statement is the analog of the GLOBAL statement for stack memory. The label in a
STACK statement is the label of the function that creates the stack memory.

Figure A.3 gives a chart of of ILOC opcodes roots and a description of their function.
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Opcode | Description

LDI load immediate

LDor load

STor store

ADD add

ADDI add immediate

SUB subtact

MUL multiply

DIV divide

CMP compare

2 move

RTN return

JSR1 explicit call

JSRr indirect call

BR branch

JMP1 jump to a label

JMPr computed jump

FRAME declaration for a function
GLOBAL | declaration for a global tag
STACK declaration for a local tag
DATA declaration for global memory
ALIAS declaration for a group tag

Figure A.3 1ILOC opcode roots
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Appendix B

Supplementary Results

Our compiler environment is constantly under development. Many improvements,
including a better register allocator, were installed while this thesis was being written.
Some of the experiments testing the performance of analyzed code were re-run with
these improvements. The results of these experiments are shown in Figures B.1, B.2,
B.3, B.4, B.5, and B.6. These results were produced from code analyzed with a
MEDIUM heap model and are directly comparable to the results in Section 5.2.2.

B.0.1 Cache Results

We also ran our analyzed programs with two models that contained a cache simulator.
In the first model we simulated a single-level 2KB, 2-way set-associative write-back
cache with a line size of 32 bytes. Figure B.7 shows the results for the single-level
cache model. The “% of total” line shows the percentage of operations in the program
that access the cache. The “miss %” line shows the percentages of accesses that are
not serviced by the cache. Increasing analysis usually decreased the percentage of
cache accesses. This is to be expected since our analysis frequently allows memory
operations to be removed. However, this also reduced the cache locality and thus
increased the miss percentage. In the second model we simulated a two-level cache
with a 1KB direct-mapped, write-through .1 cache, and a 64 KB 4-way set-associative,
write-back 1.2 cache, each with a line size of 16 bytes. Figures B.8 and B.9 show the
results for the two-level cache model. The results for this model follow a format that
is similar to the results for the single-level model, however, results for each level of
the cache are presented. The “% of total” line for the 1.2 cache is the percentage of
operations that access the 1.2 cache. This includes .1 cache misses and .1 cache write-
throughs. As in the single-level cache model, increasing analysis usually decreased
the percentage of L1 cache accesses. However, unlike the single-level model this had a
varied effect on the .1 cache misses. Both increases and decreases in miss percentages
were seen. L2 cache results were unpredicatable. Increases and decreases in both the
percentage of cache accesses and percentage of cache misses were seen when the level

of analysis was increased.
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Program Original Modref Path 0 Path 1 Path 2
tsp 729899 657238 651454 651454 651454
mlink 131733946 | 123952927 | 121309799 | 121308656 | 121308224
ftt 13647090 | 12642655 | 12557372 | 12557363 | 12557363
clean 1080339 1021799 1015224 1017177 1017177
cachesim 11960929 | 11589353 | 11587392 | 11587392 | 11587392
dhrystone 602196 588171 556171 552171 552171
water 14584452 | 13379663 | 12603865 | 12603865 | 12603865
indent 906980 828188 828252

allroots 1039 1021 1011 1011 1011
be 5464782 5430853 5419956 5415399 5410282
go 495428725 | 489854354 | 478821979 | 478590106 | 478565722
bison 3848257 3312990 3310092 3306882 3306882
jpeg 36876573 | 36935016 | 36933699

gzip(enc) 5725701 5680328 5648030 5648030 5648030
gzip(dec) 990565 987510 986828 986828 986828

Figure B.1 Supplementary results: total operations

Figure B.2 Supplementary results: total operation removal percentages

Program % eliminated

Original | Modref | Path 1 | Path 2
tsp 10.7 0.9 0.0 0.0
mlink 7.9 2.1 -0.0 -0.0
fft 8.0 0.7 -0.0 -0.0
clean 6.0 0.6 0.2 0.2
cachesim 3.1 0.0 0.0 0.0
dhrystone 7.6 5.4 -0.7 -0.7
water 13.6 5.8 0.0 0.0
indent 8.7 -0.0
allroots 2.7 1.0 0.0 0.0
be 0.8 0.2 -0.1 -0.2
go 3.4 2.3 -0.0 -0.1
bison 14.0 0.1 -0.1 -0.1
jpeg -0.2 0.0
gzip(enc) 1.4 0.6 0.0 0.0
gzip(dec) 0.4 0.1 0.0 0.0
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Program Original Modref Path 0 Path 1 Path 2
tsp 51047 51046 51046 51046 51046
mlink 2114631 | 2111388 | 2025124 | 2025120 | 2025120
ftt 1036396 | 1036396 | 1003607 | 1003598 | 1003598
clean 76297 56010 55970 55970 55970
cachesim 685931 594390 594390 594390 594390
dhrystone 60007 60007 56007 56007 56007
water 1034246 | 1034241 | 1034176 | 1034176 | 1034176
indent 68599 64421 64421
allroots 11 11 11 11 11
be 238850 232440 232440 232440 232440
go 18586094 | 18363963 | 18373173 | 18373173 | 18373173
bison 539964 539494 539494 539494 539494
jpeg 2499954 | 2499960 | 2499960
gzip(enc) 216990 212300 198823 198823 198823
gzip(dec) 17765 17376 17230 17230 17230
Figure B.3 Supplementary results: stores
Program % eliminated
Original | Modref | Path 1 | Path 2

tsp 0.0 0.0 0.0 0.0

mlink 4.2 4.1 -0.0 -0.0

fft 3.2 3.2 -0.0 -0.0

clean 26.6 0.1 0.0 0.0

cachesim 13.3 0.0 0.0 0.0

dhrystone 6.7 6.7 0.0 0.0

water 0.0 0.0 0.0 0.0

indent 6.1 0.0

allroots 0.0 0.0 0.0 0.0

be 2.7 0.0 0.0 0.0

go 1.1 -0.1 0.0 0.0

bison 0.1 0.0 0.0 0.0

jpeg -0.0 0.0

gzip(enc) 8.4 6.3 0.0 0.0

gzip(dec) 3.0 0.8 0.0 0.0

Figure B.4 Supplementary results: store removal percentages
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Program Original Modref Path 0 Path 1 Path 2
tsp 166549 113720 107936 107936 107936
mlink 29835970 | 24336975 | 22788457 | 22787292 | 22787181
ftt 2012054 | 1252753 | 1204097 | 1204097 | 1204097
clean 196710 151540 148784 147473 147473
cachesim 2102248 | 1901536 | 1900611 | 1900611 | 1900611
dhrystone 63033 62018 50018 46018 46018
water 3034509 | 2369636 | 1610997 | 1610997 | 1610997
indent 201035 137955 138188
allroots 163 145 141 141 141
be 827239 799295 793562 790156 785039
go 90119721 | 85852361 | 80550739 | 80421579 | 80341350
bison 942318 553621 552479 551409 551409
jpeg 6526461 | 6586920 | 6585605
gzip(enc) 901537 844628 825942 825942 825942
gzip(dec) 138317 135962 135629 135629 135629
Figure B.5 Supplementary results: loads
Program % eliminated
Original | Modref | Path 1 | Path 2

tsp 35.2 5.1 0.0 0.0

mlink 23.6 6.4 -0.0 -0.0

fft 40.2 3.9 0.0 0.0

clean 24.4 1.8 -0.9 -0.9

cachesim 9.6 0.0 0.0 0.0

dhrystone 26.5 19.3 -8.7 -8.7

water 46.9 32.0 0.0 0.0

indent 31.3 -0.2

allroots 13.5 2.8 0.0 0.0

be 4.1 0.7 -0.4 -1.1

go 10.6 6.2 -0.2 -0.3

bison 41.4 0.2 -0.2 -0.2

jpeg -0.9 0.0

gzip(enc) 8.4 2.2 0.0 0.0

gzip(dec) 1.9 0.2 0.0 0.0

Figure B.6 Supplementary results: load removal percentages
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Program Original | MOD/REF | Path 0
tsp % of total 29.81 25.07 | 24.40
miss % 0.32 1.98 1.39
mlink % of total 24.25 21.34 20.45
miss % 17.15 19.19 21.05
1Tt % of total 22.34 18.11 17.58
miss % 9.63 12.25 12.24
clean % of total 25.27 20.31 20.17
miss % 18.45 22.62 22.00
dhrystone | % of total 21.26 20.75 | 19.06
miss % 0.01 0.01 0.02
water % of total 27.90 25.44 20.99
miss % 3.50 3.79 5.28
indent % of total 29.70 24.41 24.44
miss % 5.58 5.05 9.21
allroots % of total 16.75 15.28 15.03
miss % 6.90 7.69 7.24
be % of total 19.51 19.00 18.93
miss % 4.03 5.73 5.78
go % of total 21.94 21.27 20.66
miss % 32.47 39.15 | 39.09
bison % of total 38.52 32.99 32.99
miss % 2.63 1.65 1.69
jpeg % of total 24.48 24.60 | 24.60
miss % 16.60 16.43 | 16.38
gzip % of total 19.54 18.61 | 18.14
(enc) miss % 30.02 32.54 | 32.52
gzip % of total 15.76 15.53 | 15.50
(dec) miss % 5.52 5.69 5.85

Figure B.7 Single-level cache statistics
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Program | cache level Original | MOD/REF | Path 0
tsp 1 % of total 29.81 25.07 | 24.40
miss % 18.35 7.38 7.67

2 % of total 6.91 2.65 2.67

miss % 2.61 7.49 7.50

mlink 1 % of total 24.25 21.34 20.45
miss % 29.76 31.72 35.80

2 % of total 8.39 7.94 8.61

miss % 2.00 2.00 2.09

1Tt 1 % of total 22.34 18.11 17.58
miss % 11.36 13.51 12.15

2 % of total 4.44 4.46 3.94

miss % 18.91 20.26 23.07

clean 1 % of total 25.27 20.31 20.17
miss % 23.65 28.29 27.99

2 % of total 9.04 7.99 7.79

miss % 2.87 3.43 3.57

dhrystone | 1 % of total 21.26 20.75 | 19.06
miss % 3.14 6.57 7.56

2 % of total 2.00 4.09 4.68

miss % 0.17 0.08 0.07

water 1 % of total 27.90 25.44 | 20.99
miss % 12.13 12.92 16.24

2 % of total 5.82 6.96 7.21

miss % 0.33 0.29 0.30

indent 1 % of total 29.70 24.41 24.44
miss % 11.15 11.56 12.35

2 % of total 6.06 5.22 6.01

miss % 2.08 2.60 2.46

allroots 1 % of total 16.75 15.28 15.03
miss % 13.22 10.26 9.87

2 % of total 2.41 1.76 1.68

miss % 60.00 88.89 88.24

be 1 % of total 19.51 19.00 18.93
miss % 10.96 10.34 11.42

2 % of total 2.76 3.04 3.29

miss % 0.98 0.93 0.87

Figure B.8 Two-level cache statistics
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Program | cache level Original | MOD/REF | Path 0
go 1 % of total 21.94 21.27 | 20.66
miss % 39.21 43.93 44.46

2 % of total 9.64 10.53 | 10.39

miss % 2.17 3.79 2.27

bison 1 % of total 38.52 32.99 | 32.99
miss % 21.95 2.57 2.38

2 % of total 12.17 5.21 5.19

miss % 2.03 5.52 5.56

jpeg 1 % of total 24.48 24.60 | 24.60
miss % 19.33 19.26 | 18.92

2 % of total 8.11 8.05 8.09

miss % 0.11 0.11 0.12

gzip 1 % of total 19.54 18.61 18.14
(enc) miss % 33.56 36.91 | 36.82
2 % of total 7.55 8.06 7.81

miss % 6.42 5.99 6.21

gzip 1 % of total 15.76 15.53 | 15.50
(dec) miss % 9.57 9.79 | 10.27
2 % of total 2.11 2.13 2.19

miss % 15.71 15.73 | 15.27

Figure B.9 Two-level cache statistics (cont.)
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