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Abstract 

In this paper, we develop, analyze, and test a new algorithm for nonlinear least-squares 
problems. The algorithm uses a BFGS update of the Gauss-Newton Hessian when some hueristics 
indicate that the Gauss-Newton method may not make a good step. Some important elements 
are that the secant or quasi-Newton equations considered are not the obvious ones, and the 
method does not build up a Hessian approximation over several steps. The algorithm can be 
implemented easily as a modification of any Gauss-Newton code, and it seems to be useful for 
large residual problems. 

Key words 

Nonlinear least squares, quasi-Newton methods, least-change secant update methods, variable 
metric methods. 





1. Introduction 

Nonlinear least-squares problems are frequently encountered in practical optimization, and 

they are also of interest to the algorist because of their highly structured nature. In this paper, 

we suggest another way to use this structure in an attempt to increase the efficiency of the trust-­

region-Gauss-Newton or Levenberg-Marquardt algorithm, More (1977), Dennis-Schnabel (1983). 

The algorithm presented here is inspired by NL2SOL, Dennis, Gay, Welsch (198la,b), m 

that it chooses at each iteration whether to use a Gauss-Newton quadratic model or a variable 

metric augmentation of the Gauss-Newton model to define the next iterate. The difference is that 

the variable metric augmentation used here requires less storage, less algebra, and less code than 

NL2SOL. However, it seems to have no better theoretical justification than the Gauss-Newton 

method. Still, it seems to use fewer residual and Jacobian computations than the Gauss-Newton 

for some large residual problems and to require little additional arithmetic at each iteration. 

Conversation with NL2SOL users encouraged us to undertake this research, and we publish it now 

in hopes that they will find it helpful and that our colleagues will find it an interesting use of 

secant updating ideas. 

Section 2 explains the augmented local model in its vanous forms, and points out some 

overlap between our ideas and those of Al-Baali and Fletcher (1983). Section 3 contains a unified 

local convergence proof under standard Gauss-Newton-type assumptions for all combinations of 

the methods presented here. Section 4 describes a model-switching strategy and the resulting 

hybrid algorithm that adaptively decides whether to use the Gauss-Newton model or an augmen­

tation at each iteration. Section 5 compares an experimental implementation of the algorithms 

suggested here to the LMDER implementation of the Gauss-Newton method and the NL2S1 rou­

tine from J\TJ,2S0L. 
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2. The Augmented Model. 

Let F :0 C RP-+ Rn be continuously differentiable, and consider the nonlinear least-squares 

problem of finding a local minimizer x. for 

1 1 n 
</>(x) = -F(x)TF(x) = -I;(!;(x))2

• 
2 2i=l 

(2.1) 

The classical algorithm for this problem is the Gauss-Newton method which can be thought of in 

two ways: 

First, we can linearize F( x) - F( x0 ) about the current parameter vector x0 to obtain the 

local affine model for F( x ), 

F(x):::::;:; F(x0 ) + J0 (x-x0 ), 

where J0 = J( x0 ) = F ' ( x0 ) = ( 
0 

/; ( x0 )). Then we can seek to improve x0 by taking the next 
OX; 

estimate x _ to be the value of the parameter vector that solves the linear least-square problem 

defined by the local affine model. 

The sum-of-squares-of-residuals of this model is 

! [F(x0 )+ J0 (x-xc)f[F(x0 )+ Jc(x-x0 )] , (2.2) 

and it can be viewed as a local quadratic model of </>( x) of the form 

(2.3) 

A second way to view this local quadratic model is as an approximation to the Newton 

model 

(2.4) 

where 
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• 
"v2¢(x,)-J?J, = E/;(x,)"v2/;(x,) = S(x,) {2.6) 

i=l 

is approximated by the zero matrix. It is easy to reason from either derivation that the difference 

between the two models depends on the size of the residuals F( x,) and on how nearly affine F is 

in a neighborhood of x,. 

Aside from the obvious advantage that the Gauss-Newton method has of not having to com­

pute or make as.5umptions about then pXp Hessians "y2/;(x,), i=l, ... , n, it also is guaranteed 

to generate descent directions as long as J, is of full rank. This happens because 

"y2mc°N( x,) = J? J, is positive definite, and it means that the next iterate x ZN can be calculated 

by solving the linear least-squares problem associated with (2.2) for sGN =xZN-x,. This leads 

to a useful simplification over Newton's method of the problem of proceeding from a poor initial 

guess when "y2¢(x,) may not be positive definite even though "y2¢(x.) is. 

The major disadvantage of (2.3) with respect to (2.4) is that neglecting S(xc) often leads to 

a significantly less accurate local model. It is not surprising that this would cause slower conver­

gence near a local minimizer of a large residual nonlinear problem; however far from x., it results 

often either in x2N not being an acceptable next iterate when x:/. is, or in a smaller residual 

reduction than Newton's method provides. 

NL2SOL essentially retained the Newton advantages without having to compute S(x, ). It 

did this by using a variable metric update method and an adaptive modeling technique to switch 

between the Gauss-Newton model and an augmented model of the form 

(2.6) 

where S, is a variable metric approximation to S( x,) and J0 = J( x0 ). Here as in NL2SOL, the 

decision is made at the end of the current iteration whether to use the Gauss-Newton or its vari-

able metric augmentation to make the next step. This decision is based on a simple comparison of 

the actual residual reduction ¢(x0 )-¢(x+) to the predictions ¢(x0 )-mc°N(x+) and ¢(xc)-mJ(x+)­

The algorithm suggested here does not attempt to build up a good approximation to S(xc) over 

several iterations; it temporizes a cheap rank-2 approximation if a given iteration seems to call for 



it. 

We complete this section with a description of the way we suggest defining Sc in {2.6) and 

with some basic facts about this definition. We postpone a discussion of implementational details 

until Section 4. 

Given Xe , x_, J, , J_, F, , F_, information at the current and previous iterate, 

Sets_= x, - x_ and 0~ a, ~min{ 1, IIJtF, II}; 

Set either 

or 

or 

and either 

BFGS Y- y! Jt J, s_ s! Jt J, 
S, = -T- - ------

s_ y_ s! Jt J, s_ 

or 

(y_-J{J,s_)y! + y_(y_-JtJ,s_f 
Sf>FP = ------s-!""y _______ _ 

Note that with any pair (2.8), (2.9), we have 

s!(y_ - Jt J, s_)y_y! 

(s!y_)2 

(2.7) 

(2.8a) 

(2.8b) 

(2.8c) 

(2.9a) 

{2.9b) 

(2.10) 

and that o, = 0 recovers the Gauss-Newton method. H we take O'c = 1, then we obtain the two 

methods that Al-Baali and Fletcher (1983) call the GN-BFGS and GN-DFP methods. Our proof 

technique;; can not support always taking a, = 1, and so our analysis does not apply to their 

methods. Our numerical results suggest that a, = 1 is not always the best choice. 

It is tediou;;, but not difficult, to show that if J, ha.,; full rank and s'! y_ > 0, then He = J[ le + Sc 

is positive definite and 
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(HfFG5)-l == (J[Jc + 5fFG5)-l = (J[Jctl+ [a_-(J;Jct
1
Y-]a_! ;a_[a_-(J[Jct

1
y_jT 

.,_ y_ 

y_![8_ -(J[ Jc t1,_]8_a! 
(a_!y_)2 

In fact, if any symmetric nonsingular matrix A replaces J'[ Jc in (2.9), then 

T T T a_a! 
(A+ SflFG~-1 = (1 - y_8_) A-1[1 - y_8_) + -T-' 

8! y_ 8! y_ 8_ y_ 

and 

T T T T 
A+ sfFP = (l _ Y-

6
- )A(l _ Y-

6
-) + Y-Y- . 

.,_!y_ .,_!y_ .,_!,_ 

3. Local Convergence. 

(2.11) 

(2.12a) 

(2.12b) 

In this section, we will present a local convergence analysis for the quasi-Newton or 

Newton-like method based on the augmented local model discussed in the previous section. Our 

major result, Theorem 3.4, will be the same as the standard local result for the Gauss-Newton 

method (see Dennis (1977); indeed, if we always choose a=O, then the new method is easily seen 

to be the Gauss-Newton method. It will be convenient to collect some useful bounds before we 

start the main proof. \Ve will always use the /2 norm for both vectors and matrices, and for 

xER", and f 2: 0, N(x;t)= {x ER": II x -x II ~ f }. For any set D ~R", D will denote the norm 

closure of D. 

Lemma 9.1. If x, y are two vectors of order n such that xT y = 1, I is unit matrix of order n 

then 

II x 11 · IIY II . 
Proof. Straightforward. 

Lemma S. 2. Let F:R"-+ Rm be continuously differentiable in an open convex set D CR", and 

let J be Lipschitz continuous in D: 

IIJ(x) - J(x) II ~ 1'11 x - xii, (3.la) 

for any X' xED. Then, 



IIJ(x)T - J(xf II ~ 1llx - :ill, 

IIF(x)-F(x)-J(x)(x-x)II ~ ; llx-zll 2, 

and if Dis compact, then for uM ~ max II J(x) II, 
iE~ 

IIJ(xf J(x) - J(x)r J(x) II ~ ,ill x - xii, 

IIJ(x)TF(x)-J(x)TF(x)II ~ ,2llx - xii, 

for /I= 2,-uM and ,2 = u1+,-ma~IIF(x )Ii-
i ED 

(3.lb} 

(3.2) 

(3.3) 

(3.4) 

Proof. See Dennis and Schnabel (1983) pg.75 for (3.2). The Lipschitz condition (3.lb) follows 

directly from the fact that the /2 norm of a matrix and its transpose are the same. The Lipschitz 

condition (3.3) follows because 

IIJ(x)r J(x)-J(x f J(x) II ~ II J(xf [J(x)- J(x )] II+ II [J(x)-J(x )f J(x) II ~ 2,uM II x -x II , 

where "M e:>...ists because Dis compact. Finally, to get {3.4), 

IIJ(xfF(x)-J(xfF(x)II ~ IIJ{xY[F{x)-F{x)]II + ll[J(x)-J(x)jTF(x)II 

~ uMf IIJ(x+0(x-x))ll ·llx-xlld0 + ,llx -xll·IIF(x)II ~ ,2llx - xii. 
0 

Lemma S.S. Let the hypothesis of Lemma 3.2 hold and let x. ED. If J(x.f J(x.) is positive 

definite with smallest eigenvalue >-.., then for any pE ( 0, 1), there exists t > 0 such that for 

x,xEN(x.:t) and s=x-x, 

(3.5) 

Also, J(xf J(x) is positive definite with smallest eigenvalue greater than p·>-.. and satisfies the 

Lipschitz condition: 

II 
for some , 3 ~ --~ 

(p ·>-..)2 

(3.6) 

Proof. Because J( x f J( x) is continuous at x., there exists 6 > 0 such that the smallest eigenvalue 

of J(x f J(x) is larger than p · >-.. for all 11 x - x. 11 ~ 8. Thus, J(x )T J(x) is invertible and 
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II [J(xf J(x)J-1 II S P\. · (3.7a) 

For any x, z EN(x.; 6), 

II [J(xY J(:r)J-1
- [J(xf J(x)J-1 II s II [J(xY J(x)J-1 11 · IIJ(x)r J(x)-J(x)r J(x)ll · 11 [J(x)T J(x)J-1 II 

s (-1-f,illx-x II 
p ·>... 

by (3.7) and (3.3). 

Now sett< min{6, p·>... }. So for any p ER", xEN(x.;i), the inequality 
2 "')'"UM 

(3.7b) 

holds. Now suppose x, x EN( x.; l), then from the previous lemmas and the Cauchy-Schwartz-

Bunyakovskii inequality, we have 

I [J(x)s f [F(x)-F(x )]-[J(x)s f [J(x)s] I S uM II s II ! ,- II s II 2 

S ! uM,[llx-x.11 + llx-x.11] lls 11 2 

Therefore, 

Hence 

Theorem S.4- Let the hypothesis of Lemma 3.3 hold and assume that x. is the only local minim-

izer of 4> which is convex in D. Assume that for some ,. < >.., and every x ED , 

ll[J(x)-J(x.)]TF(x.)11 S,.llx-x.11- (3.8) 

Let r E ( ..2.:.., 1 ). Then there exists f > 0, such that for all x 0 EN( x.; l ), the following sequence gen­
>... 

erated by any combination of the Gauss-Newton method with its BFGS and DFP augmentations 

is well defined and converges to x. with II xk+ 1-x. II S r II xk-x, II: 



or 

END. 
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For k=l,2,3, ... ; DO 

"k-l = xk-xk-I, choose O ~a,.~ min{l, IIJ[Fk 11}; 

or 

!lk-1 = J[ J1,s1;_1 + 01,( J[Fk - J[_1F1;_i), 

or 

J[ J,..,,._1 + ak( J[ - J[1 )Fk ; 

1fk-l 11l1 
Sk = sras = --,,,T--

8k-l 1/1,-1 

J[ Jk 81,_1 .,[_1 J[ J,. 
.,[i J[ J1; 61,_1 

DFP (!lk-1 - J[ J,, 6k-i)y[_l + Y1<-1(Y1e-1 - J[ J,, 61,_1)T 
S1, = S1e = --------=rc--------­

"1e-1 Y1e-1 

H1; = J[ J1e + S1e ; 

s[1 (Y1e-1- J[ Jk 81<-1)!11<-1Yl1 

( s[1Y1<-d
2 

Furthermore, if 1. =0 or 11 F( x_) 11 = 0, then the convergence is at least q-quadratic. 

Proof. First we establish some more useful inequalities. Choose 

pE( :· , 1), 
• 

and take € 1 > 0 to be as chosen by Lemma 3.3. From (3.4) and the fact that 

J(x.f F(x.) = JtF. = 0, we see that if xEN(x.;€1), then 

II J(xf F(x)II ~ 12 llx-x.11 (3.9) 

Furthermore, by (3.2), {3.3), {3.8), 



II J(:rf F(x)-J; J.(x-x.) II :S II J(x)II · IIF.-F(x)-J(x)(x.-x)II 

+ II J(x f J(x )- J; J. II · II x-x. II+ II (J(x )-J.f F. II 

:S uM; llx-x.ll2+-y1 llx-x.112+-y. llx-x.11 (3.10) 

=("Y4llx-x.ll+-y.)·llx-x.ll, 

Similarly, for x_, x, E N(x.;E 1) and s_, a" y_ defined as in (2.7), (2.8a), we get from (3.3), 

(3.9), and the choice of a, :S 11 J[F, 11, that for ')'0 = -y1 + -y2 max{ uL, "Y2}, 

II Y--J; J.s_ II= II J[ J,s_ + aJ[(F, -F_)-J; J.s_ II 
:S IIJ{J,-J;J.ll ·lls-11 +ac"IIJ[(F,-F_)II 

:S II J[ J, -J; J. II . II 8_ II+ II J[F, II . II Jt(F, -F_) II 
:S"Y1 lls-11 ·llx,-x.11 +')'2UKf lls-11 ·llz,-z.ll :S"Yolls-11 ·llz,-z.11, 

and for y_ defined by (2.8b ), 

II Y--J; J.s_ II= IIJ[ J, s_ + a,(J[F, -J!F_)-J; J.s_ II 
:S IIJ{J,-J;J.11 ·11 8-II + IIJ[Fc 11 ·IIJ[Fc-J!F_II 

:S "Y1 11 8 -II · llx,-x. II +-Yi 11 8 -II · II x,-x. II :S "Yoll s-11 · llx,-x.11 , 
and for y_ defined by {2.8c), 

IIY--J;J.s_ll = IIJ[J,s_+a,(J[-J!)F,-J;J.s_ll 

:S II J{ J, -J; J. II· II 8 -11 + 11 J[F, 11 · ll(J[-J!)F, II 
:S "Y1 I Is_ I I · I I Xe - x. 11 + "Y I Is_ I I · I IF, 11 "')'2 · I Ix, -x. 11 

:S"Y1 lls-ll ·llx,-x.ll+-Yills-11 ·llx,-x.11 :S"Yolls-ll ·llxc-x.11 · 
Also, a, :S 1, so for the three different y_ definitions and -y11 = uL + max{uL, 12}, 

(3.lla) 

(3.llb) 

{3.llc) 

IIY-11 :S IIJ{J,ll ·lls-ll+a,IIJt[F,-F_]II :S u11ls-ll+u111s-11 :S "Yolls-11, (3.12a) 

IIY-11 :S IIJ[J,11 ·lls-ll+a,IIJ[F,-J!F_]II :S u111s-11+,2lls-ll ~-rolls-II, (3.12b) 

and 

Finally, for the three y_ definitions, we have 

s!y_ = s!J[J,s_+a,s!Jt(F,-F_) ~ s!J{J,s_ ~ p>-..lls-11 2 (3.13a) 

from (3.5) and (3.7b), and 



10 

s!y_ = s!JtJcs_+0tcs![JtFc-J!F_] ~ s!JtJcs- ~ pX,lls-11 2
, 

since t/> is convex on D. See Ortega-Rheinholdt (1970), pg 86. In the same manner, 

s!y_ = s!JtJcs_+0tcs![Jt-f!]Fc ±0tcs!J!F_ 

= s! J[ Jes- +0tcs![J[Fc -f!F_] +0tcB! f!(Fc -F_) 

~ s!JtJcs- ~ pX,lls-11 2 
-

These, (3.12), and Lemma 3.1 allow us to say in either case that 

11 1 - y_s! II= II y_s! II= 1111-11 ·11~11 = IIY-ll ·lls-ll 
s!y_ s!y_ s!y_ s!y_ 

It will also be useful to have 18 = 1f'"Y1 + 1715( 1 + 11) -

Now we prove the theorem by induction. Let r E ( ~· , 1) and take 
• 

1, 1, 1, 
r-- r-- r-2-x. x. x. x. 

1: < min f:1' ' - ' 14 14 2 12 21s 
2· 

14+1s 
~+1312 ~ +111312+16)?(1 + 11) x. • • p • 

(3.13b) 

(3.13c) 

(3.14) 

Given any x0 EN(x.;<), J[J0 is nonsingular by the choice of <J, so x1 is well defined and from 

(3.10), (3.6) and (3.9) we have 

llxi-x,11 = llxo-x,-(JJ'Jot1JJ'Foll 

~ II (J; 1.t1 II · II JJ'Fo-J: J,(xo-x.) II+ II (Jl Jot1-(J; J,t1 II · II JJ'Fo II 

1 
~ ~ ·[(,411 Xo-x, II)+ 1,] II xo-x, II+ 13 II Xo-x, lh2 II Xo-x, II 

• 

~ [(:
4 

+1312)1:+ ~']llxo-x,11 ~ rllxo-x,11 < 1: · 
• • 

Suppose llx,--x,11 ~ rllx,-_1-x,II for j = 1,2, ... ,k. Then by Lemma 3.3, f[J1, is positive 

definite and this together with (3.13) ensures that H,. is positive definite in either case; so xk+ 1 

exists. Since either augmentation gives the Gauss-Newton step when °'k = 0, we can concentrate 

on the augmented steps. First, we will carry out the induction step for the BFGS augmentation. 

By (2.10), (2.11), (2.12), (3.14), (3.10), (3.9), and (3.11), 
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To complete the induction, let us consider the case when H11 is the DFP augmentation of 

J[ J,.. From {2.12b), {3.3), {3.12), {3.13), and {3.14), 

Thus, 
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and 

Hence by the Banach Perturbation Lemma (Dennis and Schnabel (1983), pg.45), 

Finally, 

II XH1 -x. II II xk-x.-Hk-1J[Fk II 
< II-Hk1 II · II J[Fk-J; J.(xk-x.)-(H,.-J; J.)(x,.-x.) II 

~ : [(,4llx,.-x.ll +,.)I lx1:-x.ll +,sllx.t-x.112] 
• 

2 
~ ~[,.+(,4+,s)t]·llx.t-x.ll ~ rllx.t-x.11 · 

• 

(3.15b) 

This completes the proof of q-linear convergence. If ,. = 0, then q-quadratic convergence follows 

immediately from (3.15). Of course, if II F(x.) II = 0, then,. = 0. 

4. The Hybrid Algorithm. 

In this section, we will describe a model switching strategy and give details of a hybrid algo­

rithm that adaptively decides at each iteration whether to use the Gauss-Newton model (2.3) or a 

BFGS augmented model (2.6), (2.9a). Much of the implementation follows MINPACK and 

NL2SOL. Except for model switching, the basic algorithm is essentially the same as in the subrou­

tine LMDER of MINPACK. The model switching decision is borrowed from the ideas in the sup­

routine NL2Sl of NL2SOL. Among the major differences between our hybrid algorithm and the 

one used in NL2SOL are: 

(1) No doubling of the trust radius is tried internal to an iteration. 

(2) H five unsuccessful steps are attempted in an iteration with the currently preferred model, 

then the algorithm will start the next iteration with the other model. 
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Before presenting the algorithm, we make some preliminary remarks that will also serve to 

define the variables in the algorithm. The actual reduction ared, the predicted reduction pred, 

and the directional derivative dirder are computed as in the subroutine LMDER. Moreover, the 

updating strategies for the step bound A,1; and the Levenberg-Marquardt parameter ). are also 

taken from that routine. 

The extra work involved in trying the alternate model in any iteration after the currently 

preferred model step has been computed is not significant. To see this, suppose that the alterna­

tive is the BFGS augmented model. We would already have the factorization 

J,1;= Q·R' 

and if we follow Goldfarb {1976), Dennis-Schnabel (1981) or (1983, pp.200-201), and define 

JBFGS = J,1; + UVT, 

J,1;s_ (y_-t ·J[J,1;s_) J'y'!;_ 
where u = ---- v = , and t = -==;::::::=-

11 J.,, s_ I I ' ~ Js'!J[J,1;s_ 

( 4.1) 

then HfFGS = J'JFGsJBFGS, and it is cheap to obtain the QR decomposition of JBFGS by the fol­

lowing well known means: 

JBFGS = Q·R+uvT = Q(R+wvT) = Q·Q·R = Q·R 

Similarly, in the case that the iteration starts with the BFGS augmented model and the alternate 

is the Gaus.5-Newton model, the QR factorization of J,1; can be obtained easily from the QR fac­

torization of JBFGS· For complete details, see Dennis-Schnabel (1983, pg.57). In the algorithm 

below, we will use the notation J. and J, to denote the Jacobian or JBFGS as is appropriate 

depending on which is the alternate and which is the currently preferred model. We will use m4 

and m, for the quadratic models themselves. 

The Hybrid Algorithm 

(1) Initialize k=l, A,1;=0, s0 =0=y0 , and A,1;. 

Set Current_model = Gaus.5-Newton; Alternate_model = BFGS. 

Compute Fk=F(xk), Fnorm= IIF" II, and phik= IIFk 112-
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(2) Set first=. TRUE., if ail = 0 and compute J,. = J(x,.). 

Rescale D,. if neccessary. 

If Current_model = Gauss-Newton Then Jc = J,. 

Else Jc = JBFGS 

End If 

(3) Solve for s to minimize II F,. + J,.s II, subject to II Dks II~ fl.". 

(4) Set xf+1 =x"+s and pnorm= IID1,:s II-
Compute F(xf+d and Fnorml= IIF(xf+dll, phikp= IIF(xf+dll 2

. 

(5) Compute: ared =1-(Fnorml/Fnorm)2; 

pred =( II J,.s II/ Fnorm )2 + 2·(>..lf2·pnorm/ Fnorm )2; 
dirder =-[( II J,.s II/ Fnorm )2+ (>..]12-pnorm/Fnorm )~; 

rho =ared/pred. 
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(6) If rho~ .25 Then(* Probably a good step.) 

If rho~ .75 or>., =0 Then(* It was a good step.) AH 1 = 2·A, , >., = >.,/2 

Else AHi =A,. , XH1 =>-, 
End If 

Else(* Probably a bad step.) 

End If. 

If first=. TRUE. Then 

first= .FALSE., 

End If. 

Compute J. ( * See the discussion before the algorithm.) 

If I m,(xf+i)-phikp I> 1.5· I m.(xf+i)-phikp I Then 

End If. 

Solve for s to minimize 11 F,. + J4 s 11 

subject to II D,.s II ~ A,.. 

Set xP+1 =x,.+s and pnorm2= IID1.s II­
Compute F(xF+i), Fnorm2= II F(xF+i) II, 

and phikpp= IIF(xP+i)!l2. 
If phikpp < phikp Then 

End If. 

xf+1 =xf~1, 

F(xf+d=F(xf~i), J,. = J., 

pnorm = pnorm2, Fnorml = Fnorm2, phikp = phikpp. 

Go to (5) (* Check fit of alternate model.) 

If ared ~ 0 Then temp = .5 

Else temp= .5· dirder /( dirder + .5· ared) 

End If. 

If (Fnorml ~ IO·Fnorm or temp< .1) Then temp= .1 

End If. 

Ak+1 = temp·min{A,, IO·pnorm} 

XH1 = X,. / temp 

(7) Check for convergence. 
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(8) If rho< 10--4 Then(* Bad step; compute another.) 

ifail = if ail +1 

End If. 

If ifail =5 Then 

End If. 

Exchange model preferences for next iteration 

Go to (2) 

Go to (3). 

(9) Set X1r-t-t = xf+t, Fk+t =F(xf+t ), Fnorm = Fnorml, phik = phikp. 

If I mc(xH1)-phikp I > 1.5· I m.(xH1)-phikp I Then 

Exchange model preferences for next iteration 

End If. 

(10) Set k = k + 1, Go to (2). 

5. Numerical Results. 

In this section, we will try to compare a preliminary implementation of our hybrid algo-

rithm NO:--."LSQ with the MINPACK subroutine LMDER and the NL2SOL subroutine NL2S1. 

Our implementation is as close as possible to LMDER since we felt that the hybrid algorithm 

should be viewed as a way to modify the Gauss-Newton method on large residual problems. In 

fact, we didn't even tune any of the constants involved in the LMDER code to find values that 

gave better performance with our hybrid algorithm. All the runs were done in double precision on 

the Data General MV-1000 at IMSL using stopping criteria of l.0D-8 on the relative stepsize or 

the relative change in the sum of squares. The 26 problems used in our test were: 
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Problems 1-18 were the MINPACK-1 nonlinear least-squares test problems. 

Problems 19-26 were the NL2SOL test problems that were not included in the MINPACK 

test set. They were: 19.) Woods' function, 20.) Zangwill's function, 21.) Engvall's function, 

22.) Branin's function, 23.) Beale's function, 24.) Cragg's and Levy's function, 

25.) the Davidon 1 function, 26.) Madsen's function. 

The results for LMDER and NONLSQ were indentical for most of the problems and so we 

only present the results for Problems 7, 8, 9, 14, 15, 18, 26. These results are summarized m 

Tables 1-8 where we follow the practice of using the 'standard' starting point for the problem the 

first time the problem is listed, ten times that standard point if the problem is listed again, one 

hundred times the standard starting point if there is a third listing, etc. For the problems listed, 

we continue multiplying the standard initial guess by powers of ten until the intial point is too 

large for us to even be able to compute the initial residuals. Convergence was never a problem. 

These numerical results support the conclusions that for poor initial guesses and nonzero 

residuals, the method suggested here may enjoy some advantages over the Levenberg-Marquardt 

method. Therefore, further investigation seems justified; for example, we do not allow internal 

doubling, and we have made use of the freedom in the parameter ac only enough to show that it 

does affect performance. 

The results in Table 7 show that {2.8c) with ac=min{ 1, IIJtFc II} is probably the best 

choice of secant condition. We included ac = 1 because of the relationship to ideas of Al-Baali 
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and Fletcher (1983) mentioned m Section 2. The comparison of NONLSQ to NL2S1 1s much 

harder due to the differences in the implementation details, and so we will just present the NL2S1 

results in Table 2 for completeness. 

We hope that refinement of this simple and computationally convenient idea will lead to 

improved algorithms for large residual nonlinear least squares. 



Table 1: Gauss-Newton Results Table 2: NL2SOL Results 

NPROB N M NFEV NJEV FINAL L2 NORM NPROB N M NFEV NJEV FINAL L2 NORM 

7 2 2 1 4 8 .6998875E+01 7 2 2 1 0 9 .6998875E+01 

7 2 2 1 9 1 2 .6998875E+01 1 2 2 21 1 6 .6998875£+01 

7 2- 2 24 1 7 .6998875E+01 7 2 2 37 27 .6998875£+01 

7 2 2 31 25 .6998875E+01 7 2 2 52 39 .6998875£+01 

7 2 2 36 29 .6998875E+01 7 2 2 2 2 .113111811E+111 

8 3 1 5 6 5 .9063596E-01 8 3 1 5 .7 1 .9063596E-01 
8 3 1 5 31 36 .4174769E+01 8 3 1 5 43 29 .11174773£+01 
8 3 1 5 111 1 3 .4174769E+01 8 3 1 5 23 1 5 .111711769E+01 
8 3 1 5 5 II .4174769E+01 8 3 1 5 1 1 7 .111711769E+01 
8 3 1 5 5 4 .4174769E+01 8 3 1 5 72 33 .9063596E-01 

9 4 1 1 1 8 1 6 .1753584E-01 9 11 1 1 1 1 1 0 .1753584E-01 

9 4 1 1 78 70 .3205219E-01 9 4 1 1 51 38 .1753584E-01 

9 4 1 1 524 390 .1753584E-01 ·9 4 1 1 152 108 .17535811E..:.01 

9 4 1 1 804 692 .1753584E-01 9 11 1 1 228 172 .1753584£-01 

9 ,~ l 1 211 2 1 628 .3073494E-01 9 4 1 1 . 1 91 1 35 • 3073.309E-01 
1 II 11 20 266 247 .29295113E+03 1 II 4 20 ) 21 1 5 .2929543E+03 
Pl 11 20 56 11 4 .2929543E+03 1 4 4 20 29 l 9 .2929543E+03 
1 4 4 20 253 236 .2929543E+03 1 4 4 20 32 21 .2929543E+03 
1 4 4 20 226 21 1 .2929543E+03 l 4 4 20 38 24 .2929543E+03 
1 4 4 20 495 117 5 .29295~3E+03 l 4 4 20 2 2 .6188207E+12 
l 5 1 8 1 1 .1886238E+Ol 1 5 1 8 1 l . 1886238E+01 
l 5 l 8 29 28 .18842118E+Ol 1 5 1 8 60 48 .18811248E+01 
l 5 l 8 lt7 46 .1884248E+Ol l 5 1 8 2 1 • 11 80887 E+ 1 9 
l 5 l 8 64 63 • l 8842118E+01 1 5 1 8 2 1 .1269793E+27 
1 5 l 8 81 80 .1884248E+01 1 5 1 8 2 1 .1278976E+35 
1 8 l l 65 1 7 1 3 .2003440E+OO 1 8 1 1 65 20 1 4 .20034IIOE+OO 
1 8 1 1 65 1 3 1 0 .1337839E+01 1 8 1 1 65 1 9 1 3 . 1337839E+01 
21 3 5 25 1 5 .2559996E+01 21 3 5 1 3 l 1 .2559996E+01 
21 3 5 31 , 9 .2559996E+01 21 3 5 30 21 .2559996E+01 

21 3 5 2794 2 7 41 .2559997E+01 21 3 5 48 33 .2559996E+01 

26 2 3 29 27 .8793174E+OO 26 2 3 1 3 1 1 .8793174E+OO 

26 2 3 27 25 .8793174E+OO 26 2 3 1 9 1 3 .87931711E+OO 

26 2 3 39 37 .8793174E+OO 26 2 3 34 22 .87931711E+OO 
26 2 3 27 25 .8793174E+OO 26 2 3 35 23 .8793174E+OO 
26 2 3 119 42 .87931711E+OO 26 2 3 48 30 .8793174E+OO 



Table 3: IONLSQ vith (2.8a), alpha•ain(1,IJtF() Table II: NONLSQ vith (2.8a) and alpha• 1.0 

NPROB N M NFEV NJEV FINAL L2 NORM NPROB N M NFEV NJEV FINAL L2 NORM 

7 2 2 1 4 8 .6998875E+01 7 2 2 1 7 1 1 .6998875E+01 
7 2 2 24 1 6 .6998875E+01 7 2 2 22 1 5 .6998875E+01 
7 2 2 24 1 7 .6998875E+01 7 2 2 24 1 7 .6998875E+01 
7 2 2 31 25 .6998875E+01 7 2 2 32 25 .6998875E+01 
7 2 2 37 29 .6998875E+01 7 2 2 37 29 .6998875E+01 
8 3 1 5 6 5 .9063596E-01 8 3 15 6 5 .9063596E-01 
8 3 1 5 37 36 .4174769E+01 8 3 1 5 37 36 .4174769E+01 
8 3 1 5 1 3 1 2 .4174769E+01 8 3 1 5 1 3 1 2 .417lt769E+01 
8 3 1 5 5 4 .4174769E+01 8 3 1 5 5 It .lt174769E+01 
8 3 1 5 5 4 .417lt769E+01 8 3 1 5 5 It .417lt769E+01 
9 4 1 1 1 8 1 6 .175358ltE-01 9 4 1 1 1 2 1 0 .175358ltE-01 
9 4 1 1 78 70 .3205219E-01 9 4 1 1 88 73 .3205219E-01 
9 4 1 1 440 3 7 lt .1753584E-01 9 4 1 1 395 350 .1753584E-01 
9 It 1 1 790 686 .1753584E-01 9 It 1 1 706 639 .175358ltE-01 
9 4 1 1 2038 1578 .3C173lt94E-01 9 4 1 1 1946 1533 .3073lt9ltE-01 

1 It 4 20 328 309 .2929543E+03 1 4 4 20 328 309 .29295113E+03 
1 4 It 20 65 53 .2929543E+03 1 4 4 20 65 53 .29295lt3E+03 
1 4 It 20 265 247 .2929543E+03 1 4 4 20 265 247 .29295lt3E+03 
1 4 4 20 222 206 .2929543E+03 1 It 4 20 222 206 .29295lt3E+03 
1 4 It 20 468 439 .2929543E+03 1 It 4 20 468 439 .29295113E+03 
1 5 1 8 1 1 .1886238E+01 1 5 1 8 1 1 .1886238E+01 
1 5 1 8 29 28 .1884248E+01 1 5 1 8 29 28 .188112118E+01 
1 5 1 8 It 7 46 .1884248E+01 1 5 1 8 4 7 46 .188lt2118E+01 
1 5 1 8 611 63 .1884248E+01 1 5 1 8 611 63 .188lt2118E+01 
1 5 1 8 81 80 .1884248E+01 1 5 1 8 81 80 .18842lt8E+01 
1 8 1 1 65 , 1 1 3 .2003440E+OO 1 8 11 65 1 8 1 It .20034IIOE+OO 
1 8 1 1 65 1 5 1 2 .1337839E+01 1 8 1 1 65 1 7 1 4 .1337839E+01 
21 3 5 24 1 5 .2559996E+01 21 3 5 24 1 5 .2559996E+01 
21 3 5 46 32 .2559996E+01 21 3 5 46 32 .2559996E+01 
21 3 5 2675 2568 .2559996E+01 21 3 5 2675 2568 .2559996E+01 
26 2 3 29 27 .879317ltE+OO 26 2 3 29 27 .879317JtE+OO 
26 2 3 27 25 .8793174E+OO 26 2 3 27 25 .87931711E+OO 
26 2 3 40 35 .8793174E+OO 26 2 3 27 22 .87931711E+OO 
26 2 3 46 40 .8793174E+OO 26 2 3 34 28 .8793174E+OO 
26 2 3 48 42 .879317ltE+OO 26 2 3 48 42 .87931711E+OO 



Table 5: NONLSQ with (2.8b), alpha•ain(1,IJtfll Table 6: WONLSQ with (2.8b) and alpha• 1.0 

NPROB N M NFEV NJEV FINAL L2 NORM NPROB N M NFEV NJEV FINAL L2 NORM 

7 2 2 15 8 .6998875E+01 7 2 2 1 7 9 .6998875E+01 
7 2 2 1 9 1 2 .6998875E+01 7 2 2 20 1 2 .6998875E+01 
7 2 2 25 1 7 .6998875E+01 7 2 2 26 1 7 . 6998875E+01 
7 2 2 32 25 .6998875E+01 7 2 2 33 25 .6998875E+01 
7 2 2 37 29 .6998875E+01 7 2 2 37 29 .6998875E+01 
8 3 1 5 6 5 .9063596E-01 8 3 1 5 6 5 .9063596E-01 
8 3 1 5 37 36 .4174769E+01 8 3 1 5 37 36 .4174769E+01 
8 3 1 5 1 4 1 3 .4174769E+01 8 3 1 5 1 4 1 3 .4174769E+01 
8 3 1 5 5 4 .4174769E+01 8 3 1 5 5 4 .4174769E+01 
8 3 1 5 5 4 .4174769E+01 8 3 1 5 5 4 .111 711769E+01 
9 II 1 1 1 8 1 6 .1753584E-01 9 4 1 1 1 1 9 .17535811E-01 
9 4 1 1 78 70 .3205219E-01 9 4 1 1 81 71 .3205219E-01 
9 4 1 1 388 3 3 II .1753584E-01 9 4 1 1 175 1 32 .3072655E-01 
9 4 1 1 800 693 .17535811E-01 9 4 1 1 926 775 .17535811E-01 
9 II 1 1 211 2 1628 .30734911E-01 9 4 1 1 2159 1 661 .307311911E-01 

1 4 4 20 1 21 81 .29295113E+03 1 4 II 20 1 21 81 .29295113E+03 
1 4 4 20 49 32 .2929543E+03 1 4 4 20 49 32 .2929543E+03 
1 4 4 20 233 176 .2929543E+03 1 4 4 20 233 176 .29295113E+03 
1 4 4 20 1 86 1 41 .2929543E+03 1 4 4 20 186 1 41 .29295113E+03 
1 4 4 20 450 404 .2929543E+03 1 4 4 20 450 404 .2929543E+03 
1 5 1 8 1 1 .1886238E+01 1 5 1 8 1 1 . 1886238E+01 
1 5 1 8 29 28 .1884248E+01 1 5 1 8 29 28 .1884248E+01 
1 5 1 8 47 46 .1884248E+01 1 5 1 8 47 46 . 1884248E+01 
1 5 1 8 64 63 .1884248E+01 1 5 1 8 64 63 .18811248E+01 
1 5 1 8 81 80 .1884248E+01 1 5 1 8 81 80 .18842118E+01 
1 8 1 1 65 1 7 1 3 .2003440E+OO 1 8 11 65 1 7 1 3 .20034110E+00 
1 8 11 65 1 3 1 0 .1337839E+01 1 8 1 1 65 1 3 1 0 . 1337839E+01 
21 3 5 30 1 7 .2559996E+01 21 3 5 31 1 6 .2559996E+01 
21 3 5 33 22 .2559996E+01 21 3 5 37 25 .2559996E+01 
21 3 5 2722 2619 .2559997E+01 21 3 5 2618 2531 .2559996E+01 
26 2 3 29 26 .8793174E+OO . 26 2 3 1 5 11 .87931711E+00 
26 2 3 33 31 .8793174E+OO 26 2 3 1 8 1 6 .87931711E+O0 
26 2 3 36 34 .8793174E+OO 26 2 3 23 21 .8793174E+00 
26 2 3 27 25 .8793174E+OO 26 2 3 24 22 .87931711E+00 
26 2 3 56 49 .8793174E+OO 26 2 3 42 35 .87931711E+00 



Table 7: NONLSQ with (2.8c), alpha•ain(1,IJtF0 Table 8: NONLSQ with (2.8c) and alpha• 1.0 

NPROB N M NFEV NJEV FINAL L2 NORM NPROB N H NFEV NJEV FINAL L2 NORM 

7 2 2 1 8 1 0 .6998875E+01 7 2 2 1 9 1 0 • 6998875E+01 
7 2 2 23 1 3 .6998875E+01 7 2 2 25 1 3 .6998875E+01 
7 2 2 31 22 .6998875E+01 7 2 2 32 22 .6998875E+01 
7 2 2 32 26 .6998875E+01 7 2 2 33 26 .6998875E+01 
7 2 2 4 4 34 .6998875E+01 7 2 2 47 34 .6998875E+01 
8 3 15 7 6 .9063596E-01 8 3 1 5 7 6 .9063596E-01 
8 3 1 5 37 36 • 41 74769E+01 8 3 1 5 37 36 .4174769E+01 
8 3 1 5 , 4 , 3 .4174769E+01 8 3 1 5 , 4 1 3 .4174769E+01 
8 3 , 5 5 4 • 4174769E+01 8 3 1 5 5 4 .4174769E+01 
8 3 1 5 5 4 .4174769E+01 8 3 1 5 5 4 .4174769E+01 
9 4 , 1 1 8 1 6 .1753584E-01 9 4 1 , 1 3 1 1 .1753584E-01 
9 4 , 1 79 70 .3205219E-01 9 4 1 , 1 0, 84 .3205219E-01 
9 4 1 1 388 334 .1753584E-01 9 4 1 1 510 424 .1753584E-01 
9 4 1 1 801 689 .1753584E-01 9 4 1 1 865 742 .1753584E-01 
9 4 1 1 211 3 1 628 .3073494E-01 9 4 1 , 2126 1637 .3073494E-01 

1 4 4 20 72 49 .2929543E+03 1 4 4 20 72 49 .2929543E+03 
1 4 4 20 47 33 .2929543E+03 1 4 4 20 4 7 33 .2929543E+03 
1 4 4 20 189 1 51 .2929543E+03 1 4 4 20 189 1 51 .2929543E+03 
1 4 4 20 190 148 .2929543E+03 1 4 4 20 1 90 1 4 8 .2929543E+03 
1 4 4 20 336 303 .2929543E+03 1 4 4 20 336 303 .2929543E+03 
1 5 1 8 1 1 .1886238E+01 1 5 1 8 , 1 . 1.886238E+01 
1 5 1 8 29 28 .1884248E+01 1 5 1 8 29 28 .1884248E+01 
1 5 1 8 47 46 .1884248E+01 1 5 1 8 47 46 .188112118E+01 
1 5 1 8 64 63 .1881.f248E+01 1 5 1 8 64 63 .1884248E+01 
1 5 1 8 81 80 .1881.f 248E+01 1 5 1 8 81 80 .1884248E+01 
1 8 11 65 1 7 1 3 .20031.f40E+OO 1 8 11 65 1 8 1 4 .2003440E+00 
1 8 1 1 65 1 3 1 0 • 1337839E+01 1 8 1 1 65 1 3 1 0 . 1337839E+01 
21 3 5 25 1 l.f .2559996E+01 21 3 5 27 1 6 .2559996E+01 
21 3 5 46 30 .2559996E+01 21 3 5 46 30 .2559996E+01 
21 3 5 1587 1 501.f .2559997E+01 21 3 5 1 4 4 2 1366 .2559996E+01 
26 2 3 29 27 .8793174E+OO 26 2 3 29 27 .87931711E+00 
26 2 3 25 24 .8793174E+OO '26 2 3 1 6 1 5 .87931711E+00 
26 2 3 37 35 .8793174E+OO 26 2 3 37 35 .8793174E+00 
26 2 3 42 39 .8793174E+OO 26 2 3 30 27 .8793174E+00 
26 2 3 40 39 .8793174E+OO 26 2 3 28 27 .8793174E+00 
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