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Abstract

Major limitations of current tissue regeneration approaches using artificial scaffolds are fibrous 

encapsulation, lack of host cellular infiltration, unwanted immune responses, surface degradation 

preceding biointegration, and artificial degradation byproducts. Specifically, for scaffolds larger 

than 200 500 μm, implants must be accompanied by host angiogenesis in order to provide 

adequate nutrient/waste exchange in the newly forming tissue. In the current work, we design a 

peptide-based self-assembling nanofibrous hydrogel containing cell-mediated degradation and 

proangiogenic moieties that specifically address these challenges. This hydrogel can be easily 

delivered by syringe, is rapidly infiltrated by cells of hematopoietic and mesenchymal origin, and 

rapidly forms an extremely robust mature vascular network. scaffolds show no signs of fibrous 

encapsulation and after 3 weeks are resorbed into the native tissue. These supramolecular 

assemblies may prove a vital paradigm for tissue regeneration and specifically for ischemic tissue 

disease.
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Fundamentally, tissue will not grow or repair from a wound if there is not suitable blood 

supply to carry out basic exchange of oxygen, nutrients, and waste material. Similarly, for 

tissue engineering and regeneration strategies, blood vessel growth (angiogenesis) is critical 

to allow growth and prevent hypoxia, apoptosis, and tissue necrosis.1,2 Current techniques to 

achieve angiogenesis have focused on (i) modulating inflammation using cytokines to 
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promote a proangiogenic M2 macrophage phenotype (e.g., IL-4, IL-10, MCP-1), (ii) 

introducing growth factors (e.g., PlGF, FGF, EGF, VEGF), (iii) transplantation of 

mesenchymal stem cells, and (iv) induction of VEGF (vascular endothelial growth factor) 

production via gene therapy.3–6 These approaches to achieve neovascularization have been 

hampered by low gene uptake, neoplasticity, immune rejection, and maladaptive 

inflammatory responses.7–9 Clinical trials have met with modest success and have failed to 

fully recover ischemic tissue.7,10,11 Treatment with VEGF has resulted in modest reversal of 

ischemia with much of the nonsequestered growth factor diffusing into the lymphatic 

system.4,11–13 Promotion of angiogenesis can be stimulated by any of the approaches 

described above. However, current techniques result in small, nascent vessels that fail to 

anastomose with host vasculature, are immature and lack supporting pericytes, or resorb too 

quickly—over a less than 1 week period.3,14 Successful angiogenic materials will overcome 

these problems and result in (1) the development of mature vessels with a pericyte and/or 

muscular wall that are well connected to the host vasculature, (2) the retention of these 

vessels for long time periods, and (3) eventual resorption of the introduced material coupled 

with functional recovery of the associated tissue. We hypothesize that treatment with a 

specially designed multidomain peptide (MDP) sequence conjugated with a VEGF mimic 

will promote angiogenesis by prolonged stimuli presentation and residence time in situ.

MDPs are a class of peptide-based self-assembling supramolecular structures. MDPs consist 

of terminally charged residues that flank alternating hydrophilic and hydrophobic residues. 

These facial amphiphiles associate into bilayers of antiparallel β-sheets (Figure 1A). The 

MDPs in DI water form only short fibrils due to molecular frustration (like–like terminal 

charge repulsion). However, with the addition of multivalent ions (such as a PO4
3−), charges 

on the terminal residues are shielded, allowing long-range fiber growth, entanglement, and 

hydrogel formation from low millimolar concentration solutions (see Supporting 

Information movie S1). While we have demonstrated gelation with monovalent ions at high 

concentrations,15,16 to best simulate the physiological extracellular matrix, we chose to use 

PO4
3− -based Hank's balanced salt solution (HBSS) for peptide gelation. Hydrophobic 

interactions and hydrogen bonding are the main driving forces for self-assembly. Because 

peptide association is based on groups of supramolecular interactions, peptides easily 

associate and disassociate and peptide fibers easily break and re-form. This equilibrium 

assembly allows the hydrogel formed from the associated fibers to shear thin and shear 

recover easily and allows for aspiration and needle delivery of nanofibrous hydrogels.15,16 

In summary, hydrogels that exhibit rapid shear thinning and recovery can be created by 

gelling peptide solutions with volume equivalents of HBSS. MDPs can be modified with 

cell adhesion, enzyme cleavage, and other sequence-based functionality.

In this work, we examine a series of self-assembling, nanofibrous MDPs for the promotion 

of angiogenesis. The base peptide sequence of the MDP used in this study is 

KKSLSLSLSLSLSLSLKK (named “SL” for the serine–leucine repeat). Sequences and 

names for peptides used in this study are listed in Table 1. Terminal lysines flank alternating 

hydrophilic serine and hydrophobic leucine.16–18 Three additional MDPs are studied which 

add functionality to this basic self-assembling peptide: KSLSLSLRGSLSLSLK17 (named 

“SLc” for the basic SL repeat which now includes an enzyme cleavage site, c), 
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KSLSLSLRGSLSLSLKGRGDS17 (named “SLac” for the basic SL repeat which is 

augmented by both an enzyme cleavage site, c, and a cell adhesion sequence, a), and 

KSLSLSLRGSLSLSLKG-KLTWQELYQLKYKGI (named “SLanc” for the basic SL 

repeat which is augmented by both an enzyme cleavage site, c, and an angiogenic sequence, 

an). This last peptide, SLanc, incorporates a recently described angiogenic VEGF-165 

mimic19,20 to the C-terminus of SLc. Work from our group and others have demonstrated 

that MDP modification with both small and large peptides maintains β-sheet structure and 

fiber-forming propensity.17,2124 Conjugation of small peptide mimics onto the base peptide 

chain which drives fiber self-assembly has the effect of resulting in extremely high molar 

epitope presentation, potentially promoting VEGF receptor activation, dimerization, 

clustering, and intracellular angiogenic signaling at the site of nano-fibrous hydrogel 

delivery.6,25–27 Furthermore, the builtin cleavage sequence in our MDPs allows for long-

range diffusion of the angiogenic signal upon enzymatic degradation that may be valuable in 

recruiting necessary cells.

RESULTS AND DISCUSSION

Physical and Structural Characterization of SLanc

SLanc has chemical and physical characteristics that are comparable to previously published 

multidomain peptides. The peptide can be dissolved in deionized water but upon mixing 

with negatively charged multivalent ions undergoes rapid hydrogel formation (Figure 1B,C). 

Carboxyfluorescein-conjugated SLanc (F-SLanc) can be used to dope SLanc, yielding 

fluorescent gels (Figure 1D). Rheological characterization of the nanofibrous peptide 

hydrogel showed responsivity to high-frequency shear, with gels liquefying (inversion of G′ 

and G′′) at about 15 rad/s (Figure 1E). Further, gels demonstrate plastic strain shearing at 

about 20% strain (Figure 1F). To demonstrate syringe aspiration and delivery, hydrogels 

were sheared at high strain (100% strain) for 1 min and then returned to a low strain (1% 

strain). Hydrogels recover greater than 95% of their storage moduli within seconds of 

returning to low strain (Figure 1G), comparable or somewhat more rapid than previously 

reported MDPs. This quantitative assessment is borne out by qualitative tests which 

demonstrate that the peptide hydrogel can be easily aspirated and dispensed using needles as 

small as 30 gauge, resulting in a well-formed hydrogel immediately after dispensing. Similar 

to previously published MDPs, SLanc displays characteristic circular dichroism (CD)16,23 

and Fourier transform infrared (FTIR) spectra which suggest self-assembly into antiparallel 

β-sheets (Figure 1H,I). SEM and TEM of SLanc show a nano-fibrous hydrogel scaffold 

(Figure 1J,K).

Chemical Functionality of SLanc

Chemical moieties introduced into the peptide sequence can tailor the host response to 

materials. In the design of SLanc, a pro-tease cleavage sequence was introduced into the 

central peptide backbone. This sequence is designed to be cleaved specifically with MMP-2, 

which is secreted by a host of infiltrating cells ranging from macrophages to fibroblasts. In 

vitro demonstration of physiological degradation of SLanc with the addition of MMP-2 

yields a variety of peptide fragments around the cleavage site (Figure 2A,B) as 

anticipated.17 Similar MDPs with cleavable sequences have been characterized.15,17 As 
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detailed above, additional functionality was afforded to SLanc to enhance angiogenesis by 

conjugation of a peptide mimic derived from VEGF-165.20 HUVEC vasculogenic receptor 

activation was determined by PCR. VEGFR1, VEGFR2, and NP-1 receptor activation for 

SLanc was similar to the positive control, VEGF-doped media. In contrast, SLc showed less 

activation and was similar to the negative control, tissue culture plastic (Figure 2C).19 These 

chemical, rheological, structural, and biochemical data demonstrate that SLanc is an 

injectable self-assembling nano-fibrous biodegradable scaffold, capable of activating 

vasculogenic receptors.

Cytocompatibility of SLanc

Multidomain peptides SL, SLc, SLac, and SLanc were assayed for cytocompatibility. First, 

human mesenchymal stem cells (hMSCs) were seeded onto hydrogel scaffolds. Cells 

showed increased adhesion to SLanc over the unfunctionalized SL but was comparable to 

SLc. Surprisingly, SLanc showed similar cell adhesion to SLac which contains the 

fibronectin-derived cell adhesion sequence RGDS (Figure 3A–F).

Next, the scaffolds' pro-inflammatory potential was evaluated. Their proclivity to activate a 

pro-inflamma-tory M1 macrophage phenotype was assayed by incubating THP-1 cells atop 

scaffolds. TNF-α and IL-1β levels were determined by ELISA for all scaffolds, and MDP 

hydrogels were found to be significantly lower than cells treated with lipopolysacharide and 

similar to commercially available scaffolds such as Puramatrix and Matrigel (Figure 3G,H). 

Finally, HUVEC cytocompatibility was evaluated to determine the ability of endothelial 

cells to proliferate on scaffolds. Endothelial cells showed proliferation on SLanc scaffolds 

similar to that on SLac scaffolds. Scratch wound healing and cellular infiltration into scratch 

wounds in response to SLanc showed wound healing similar to that of SLac (Figure 3J–L).

While the results underscore the apparent effect of the GRGDS moiety on cell adhesion as 

we have seen previously,17,21 other factors may be involved in hMSC adhesion such as cell-

matrix interactions. Further, with respect to hMSCs, SLanc did show a significant increase 

in cell adhesion over SL scaffolds alone, suggesting the potential for the addition of the QK 

domain to improve cell adhesion. In HUVEC adhesion studies, we noted that both SLac and 

SLanc scaffolds offer similar cell adhesivity as compared to rat tail tendon collagen gels. In 

the case of SLac and rat tail tendon collagen scaffolds, HUVECs are being activated by their 

integrin receptors promoting cell adhesion. In the case of SLanc scaffolds, VEGFR-1, 

VEGFR-2, and NP-1 receptors are upregulated, as shown in Figure 2, promoting cellular 

proliferation.

In Vivo Angiogenic Response of Multidomain Peptides

In modeled diseases, such as ligated femoral artery ischemic limb wounds or myocardial 

infarction, several host tissue responses are activated. From secretion of mediators of 

inflammation such as MCP-1, IL-4, IL-10, SDF-1, and GCSF to growth factors such as 

VEGF, FGF, and EGF, extrinsic factors can drastically influence performance of 

materials.1,3,4,10,14 These types of responses are generated in all oxygen-deprived tissue and 

make isolation of the effect of putatively angiogenic materials difficult. Because of this, we 

wanted to evaluate our scaffolds without the influence of these native disease and injury-
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stimulated responses. Therefore, a simple subcutaneous injection of the MDP scaffold was 

used. This model allows us to evaluate (1) the ease of syringe-directed delivery of our shear 

thinning and recovering hydrogels, (2) cellular infiltration from the host, (3) any 

inflammatory response and/or fibrous encapsulation, as well as (4) angiogenesis within the 

syringe-delivered nanofibrous hydrogel.

Nanofibrous MDP hydrogels SL, SLc, and SLanc were prepared at a final peptide 

concentration of 1% by weight and were easily injected subcutaneously in rats using a 30 

gauge needle. The bolus of hydrogel was evaluated at 3, 7, 14, and 21 days. Hydrogels of 

MDP remained localized and easily identifiable through 14 days. At 21 days, hydrogels 

were no longer readily apparent. Both SLc and SLanc hydrogels showed remarkably rapid 

and thorough cellular infiltration, regardless of sequence, even after only 3 days subsequent 

to injection (Figure S1). Many of these cells were found to be CD68+ macrophages (Figure 

S4). In all cases, there was a distinct lack of fibrous encapsulation or walling off of the 

injected implants. This suggests that communication from within the injectable hydrogels to 

the extracellular matrix and vice versa would be possible. Interestingly, as indicated by SEM 

and TEM, these scaffolds have pores on the nanometer size scale, and as such, infiltration of 

cells must be due to either proteolysis of the peptide scaffold or molecular reorganization by 

the infiltrating cells. In addition to the lack of fibrous encapsulation, the tissue surrounding 

the MDP hydrogels was not red or swollen and rats did not display any unusual behavior 

suggestive of a negative inflammatory response.

In the case of SLanc, gross morphological analyses of explants showed a large number of 

blood vessels surrounding the implant (Figure 4A) compared to implants of SLc (Figure S1), 

which showed no visible vasculature. Vessels and extracellular matrix syntheses were 

further identified using Masson's Trichrome staining (Figure 4B). H&E staining of injected 

scaffolds showed that SLc and SLc loaded with VEGF showed similar extent of cellular 

infiltration (depth of infiltration into the bolus), but both with significantly fewer cells 

compared to SLanc scaffolds (Figure 4C–E and Supporting Information Figures S1B,C, S2, 

and S3).

VEGF injected in phosphate buffered saline and Puramatrix subcutaneous injections could 

not be identi-fied at the 3 day, or subsequent time points, which suggests that they were 

rapidly resorbed and had no lasting effect on the surrounding tissue. SLanc scaffolds 

contained small nascent vessels at day 3, and by day 7, they contained an amazingly large 

number of very mature vessels as identified by their staining with Nestin+, α-SMA+, and 

CD31+ (Figure 5A and Figure S3). These mature vessels persist at the 14 day time point 

(Figure S5). Blood vessels in H&E-stained sections of SLanc implants were as large as 50 

μm in diameter and contained numerous red blood cells (Figure S3). Further, CD45+ 

hematopoietic cells were noted within vWF+ vessels, suggesting patent, perfused, and 

mature neo-vessels, which were quantified (Figure 5B–D).

Studies with VEGF-doped SLc resulted in minimal angiogenesis (Figure S1). Muted 

angiogenesis may be due to insufficient VEGF angiogenic epitope concentration and rapid 

diffusion. VEGF-loaded scaffolds presented 100 ng of recombinant protein (13 nM) within 

scaffolds. In comparison, the VEGF mimetic has an effective concentration of 2.7 mM, 27 

Kumar et al. Page 5

ACS Nano. Author manuscript; available in PMC 2016 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



000× higher than the VEGF loading and much higher than can reasonably be cost-effective 

when using the full VEGF protein. Additionally, while the VEGF loaded in SLc scaffolds is 

free to diffuse away in a matter of hours, the SLanc hydrogel persists with its VEGF mimic 

signal for weeks. The combination of concentration and persistence over time leads to the 

remarkable angiogenic response observed.

All tested MDP hydrogels show extensive and rapid host cell infiltration, and with a lack of 

fibrous encapsulation, these cells of immune, hematopeotic, and mesenchymal origin have 

the potential to provide an excellent niche for tissue regeneration.1,3 In SLanc, this results in 

a robust angiogenic response driven by the VEGF mimic which recruits endothelial feeders 

from existing vessels. Pericytic cells enhance stability of growing vessels in a paracrine 

fashion, providing adequate support for generation of arterioles.1,2,28 While these vessels are 

robust and patent, at the 1 week and 2 week time points, implants could not be identified in 

gross histology (Figure S6) at 3 weeks, suggesting that they are subsequently resorbed by 

the host as there is no need for extensive vascularization in the fascia. The importance of this 

design strategy is underscored by the rapid development of angiogenic networks around the 

implants (within 3 days), stable vessels within implants (within 7 days), and resorption of 

superfluous vessels and implants without development of hematomas or hemorrhaging 

(within 3 weeks).

Comparison to Previous Strategies and Proposed Mechanism

A variety of VEGF mimics have been used previously.6,19,20,25,27 Since its identification 

and isolation in 2005,20 this VEGF-165 mimic, frequently named QK, has shown to be 

highly conserved and stable in secondary structure and activates a host of VEGF 

receptors.19,20,29 Stemming from this, several groups have conjugated QK to surfaces,29 

PEG hydrogels,30,31 and self-assembling peptides.27,32 These studies affirm that QK 

stimulates VEGF receptor activation and dimerization and can potentially stimulate tissue 

regeneration.27,30,33 However, these studies have yet to achieve the required criteria for 

functional angiogenic vessel development: (1) stabilization of vessels with pericytes/smooth 

muscle cells, (2) retention of vessels, and (3) integration or resorption after 2–3 weeks. 

SLanc, however, shows rapid angiogenesis with the development of mature vessels in just 7 

days. This rapid response may be particularly suitable for translation into clinically viable 

treatments.27,34–37

In the design of this study, we assayed the effects that SLanc had on the chemistry and self-

assembly of an MDP and its effects on cells in vitro and in vivo. We show that SLanc 

scaffolds still formed β-sheet-based nanofibrous hydrogels and maintained desirable 

material properties, while stimulating VEGF receptors and being susceptible to cleavage by 

MMP-2. In vitro results confirmed cytocompatibility. Subcutaneous injections into rats 

demonstrate rapid infiltration by cells and development of stable perfused vasculature within 

7 days that resorb by 3 weeks. Infiltrating cells preload scaffolds with necessary vascular 

support cells, as seen in 3 day histology. We postulate that a small amount of the VEGF 

mimic diffuses away from the hydrogel bolus by either simple equilibrium of an intact 

SLanc peptide or subsequent proteolysis of the MMP-2 cleavage site. This signal can diffuse 

toward native vasculature, prompting budding and growth of feeder vessels to the implant. 
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The bolus of the VEGF mimic can then promote robust angiogenesis into the implant. Due 

to the lack of a fibrous capsule, communication inside and outside scaffolds is readily 

available. Finally, infiltrating vessels mature by support cells, leading to perfused 

microvessels (Figure 5B), shown schematically in Figure 6. This unprecedented rate of 

angiogenesis with development of mature vessels in a subcutaneous model (Figure 5) 

promotes the use of these scaffolds and presents a paradigm in clinically available 

treatments for ischemic tissue disease.

CONCLUSION

Effective promotion of angiogenic stimuli is a critical factor in nearly all efforts toward 

tissue engineering and regeneration and is particularly critical in systems of acute and 

chronic ischemia. In this study, a self-assembled, nanofibrous hydrogel of a multidomain 

peptide named SLanc presents a VEGF-165 peptide mimic. SLanc is cytocompatible and is 

cleaved by MMP2, and the VEGF mimic activates VEGFR-1, VEGFR2, and NP-1 receptors 

in vitro. SLanc can be delivered by simple syringe injection, and the hydrogel bolus is 

rapidly infiltrated with host cells, has no fibrous encapsulation, and has excellent tissue 

integration. By day 7, these hydrogels have large and numerous microvessels which stain 

positive for vWF, CD31, R-SMA, and Nestin. The results of this study suggest the potential 

for this angiogenic peptide to be used in a broad range of tissue regeneration strategies 

where vascularization is required and, in particular, for therapeutic revascularization 

postmyocardial infarction, stroke, and other ischemic tissue diseases.

EXPERIMENTAL SECTION

Peptide Preparation and In Vitro Characterization

Multidomain peptides were synthesized, purified, and dissolved aseptically at 20 mg/mL in 

sterile 298 mM sucrose. Gelation of the peptide was achieved by addition of equivalent 

volumes of pH 7.4 buffer with 1 × PBS or HBSS. Detailed synthesis methods and in vitro 

chemical (mass spec, VEGFR binding, FTIR), mechanical (rheology), thermal (CD), 

microstructural characterization (SEM and TEM), cellular compatibility (HUVEC, hMSCs), 

and pro-inflammatory response (THP-1) are described in the Supporting Information.

In Vivo Characterization

All experiments were approved by the Rice University Institutional Animal Care and Use 

Committee. Female Wistar rats (225–250 g) were injected subcutaneously in the dorsal 

aspect with 200 μL of peptide scaffolds. At prescribed time points, dorsal skin was removed 

and processed into paraffin blocks. Samples were processed for routine histology and 

immunofluorescence staining, detailed in the supplementary methods. Detailed methods and 

surgical procedures are presented in the Supporting Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Physical characterization of SLanc. (A) Multidomain peptides were engineered to self-

assemble, biodegrade, and present bioactive moieties. (B) SLanc peptides form a viscous 

solution in 298 mM sucrose (C) that gel upon the addition of anions. (D) Fluorescent 

carboxyfluorescein-modified SLanc (F-SLanc) was added to SLanc (1:100) and 

demonstrated facile gelation. Rheometry of 1 wt % gels showed high G′ and G′′ with shear 

thinning at high (E) strain rates and (F) high-frequency oscillation. (G) Demonstration of 

recovery from high shear rate, as experienced when aspirated or injected via a needle, of 

SLanc hydrogels. (H) FTIR spectrum shows characteristic amide I band (1625 cm −1 peak) 

and antiparallel (1695 cm −1 peak) β-sheet formation. (I) Circular dichroism shows the 

presence of a β-sheet supramolecular structure within a polymer structure (solid line), which 

is enhanced by the addition of polyvalent salts (dotted line). (J) SEM (scale bar 1 μm, inset 

10 μm) and (K) TEM (scale bar 100 nm) show the nanofibrous matrix structure. For 

physical characterization of previously published MDPs including SL, SLc, and SLac, the 

reader is directed to refs 15–17 and 21–23.
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Figure 2. 
In vitro biochemical response. Controlled degradation of SLanc shown by MALDI mass 

spectrometry of intact SLanc before (A) and cleavage fragments after incubation with 

MMP-2 (B). Activation of VEGF receptors shown by PCR of VEGFR-1/2 and NP-1 

interaction with different peptides or VEGF positive control. Similar Greek letters indicate 

no statistically significant difference for each receptor (*p < 0.01).
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Figure 3. 
Cell adhesion and scratch wound healing on scaffolds. With respect to hMSCs, (A) TCP 

showed greatest adhesion, while RGD-modified SLac and angiogenic SLanc showed similar 

cell adhesion. Representative images of hMSC adhered and spread on all scaffolds: (B) 

TCP, (C) RTT, (D) SLac, (E) SLanc, and (F) SL; scale bar 100 μm. Inflammatory potential 

of scaffolds measured by incubating THP-1 cells atop scaffolds and measuring TNF-α (G) 

and IL-1β (H) secretion. Quantification of HUVEC adhesion on scaffolds showed (I) 

HUVEC proliferated to a similar extent on all hydrogel material surfaces after 4 days. 

Migration of HUVEC into a scratch wound with a soluble peptide stimulus was measured 

(J). Conditions were in low FBS (0.5%) media after 18 h. SLac and SLanc showed 

significantly higher proliferation than TCP. Representative images of a SLanc healed scratch 

wound are shown (K) before and (L) after; scale bar 250 μm. Similar Greek letters indicate 

no statistically significant difference (*p < 0.01).
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Figure 4. 
Cellular infiltration and angiogenesis within scaffolds. (A) Upon explant, SLanc scaffolds 

showed visible macroscale vessels at 7 days. (B) Masson's Trichrome and (C) H&E staining 

show rapid infiltration of scaffolds and presence of blood vessels with red blood cells 

(arrows) at 1 week; scale bar 100 μm. A magnified image of the blood vessel clearly 

showing RBCs flowing through is shown in Figure S3. Control and 3 day time points shown 

in Figures S1 and S2. (D) SLanc scaffolds show significantly greater cellular infiltrate 

toward the center of scaffolds and (E) degree of infiltration, compared to SLc or SLc-VEGF. 

Similar Greek letters indicate no statistically significant difference (p < 0.01).

Kumar et al. Page 14

ACS Nano. Author manuscript; available in PMC 2016 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
In vivo efficacy of SLanc in promoting angiogenesis, venulo/arteriolo genesis. (A) 

Immunostaining of cells from hematopoietic and mesenchymal origin showing extensive 

infiltration of pericyte-like cells (purple, Nestin+), which costain with SMC (red, α-SMA+), 

surrounding endothelial cells in large stable microvessels and circulating cells (green, 

CD31+); select region magnified in Figure S4 and controls in S5. (B) Perfusion of vessel 

was confirmed by observation of circulating cells of hematopoietic origin (purple, CD45+) 

in endothelial lined (green, vWF+) vessels. (C) Vascular tube formation and (D) vessel 

maturity were significantly higher in SLanc compared to SLc/SLc-VEGF controls. Similar 

Greek letters indicate no statistically significant difference (p < 0.01).
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Figure 6. 
Proposed mechanism of healing. (A) SLanc scaffolds form nanofibrous hydrogels. (B) 

Scaffolds rapidly infiltrate with macrophages. (C) Hydrophobic and ionically bound SLanc 

at the periphery of scaffolds recruits endothelial cells to infiltrated scaffolds, which interact 

with current infiltrate to form blood vessels. (D) Subcutaneous and intramuscular implanted 

scaffolds rapidly form CD31+, vWF+, Nestin+, and α-SMA+ microvessels that have CD45+ 

cells that flow through their lumen. Images above (D) show progression of vessels from 

immature (EC only) to stabilized (EC + pericyte) to mature (EC + pericyte + SMC). (E) 

Neovessels in the subcutaneous model resorb since they do not anastamose injured/damaged 

vessels
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Table 1

Multidomain Peptides Studied

Name Sequence

SL
a KKSLSLSLSLSLSLKK

SLc
a KSLSLSLRGSLSLSLK

SLac
a KSLSLSLRGSLSLSLKGRGDS

SLanc
a KSLSLSLRGSLSLSLKGKLTWQELYQLKYKGI

fSLanc
b fluorescein-KSLSLSLRGSLSLSLKGKLTWQELYQLKYKGI

a
N-terminally acetylated and C-terminally amidated.

b
C-terminally amidated. MMP2 cleavage site highlighted in red; cell adhesion sequence highlighted in blue; VEGF mimic highlighted in green.
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