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� Introduction

An important problem in optimization and linear algebra is the trust�region sub�
problem� minimize a quadratic function subject to an ellipsoidal constraint�

min �
�
xTAx� gTx subject to kxk� � ��

where A � IRn�n� A � AT � x� g � IRn and � � 	
 Two signi�cant applications of
this basic problem are the regularization or smoothing of discrete forms of ill�posed
problems and the trust�region globalization strategy used to force convergence in
optimization methods


A solution x� to the problem must satisfy an equation of the form

A � �I�x� � �g with � � 	
 The parameter � is the Tikhonov regularization
parameter for ill�posed problems and the Levenberg�Marquardt parameter in op�
timization
 The constraint might also involve a matrix C �� I where C is often
constructed to impose a smoothness condition on the solution x� for ill�posed prob�
lems and to incorporate scaling of the variables in optimization
 We will not treat
this case explicitly here
 However� in many applications the matrix C will be non�
singular and therefore with a change of variables we can reduce the problem to the
case we are considering


If we can a�ord to compute the Cholesky factorization of matrices of the form
A� �I� then the method proposed by Mor�e and Sorensen 
cf
 ���� is the method of
choice to solve the problem
 However� in many important applications� factoring or
even forming these matrices is prohibitive
 This has motivated the development of
matrix�free methods that rely only on matrix�vector products
 The �rst method in
this class is the method of Steihaug ���� which computes the solution to the problem
in a Krylov subspace
 This method is very e�cient in conjunction with optimization
methods� however it does not compute an optimal solution and cannot handle a
special situation known as the hard case� which we will describe later
 New methods
based on matrix�vector products are the ones by Golub and von Matt ���� Sorensen
����� Rendl and Wolkowicz ���� and Pham Dinh and Hoai An ��	�
 Recently� Lucidi�
Palagi and Roma ��� presented new properties of the trust�region subproblem that
provide useful tools for the development of new classes of algorithms for this problem
in the large�scale context
 As we were �nishing this paper we became aware of a
new method proposed by Hager ��� where an SQP approach is used to solve the
trust�region subproblem


Golub and von Matt ��� base their algorithm on the theory of Gauss quadra�
ture and do not include in their analysis the possibility of the hard case
 Pham
Dinh and Hoai An ��	� develop an algorithm based on di�erence of convex func�
tions
 Their strategy is very inexpensive due to its projective nature� but needs a
restarting mechanism to ensure convergence to a global solution
 The approaches of
Sorensen ���� and Rendl and Wolkowicz ���� recast the trust�region subproblem as

-
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a parameterized eigenvalue problem and design an iteration to �nd an optimal value
for the parameter
 The idea of formulating the trust�region subproblem in terms of
an eigenvalue problem is also exploited in Gander� Golub and von Matt ���
 Rendl
and Wolkowicz present a primal�dual semide�nite framework for the trust�region
subproblem� where a dual simplex�type method is used in the basic iteration and a
primal simplex�typemethod provides steps for the hard�case iteration
 At each iter�
ation� the method computes the smallest eigenvalue and corresponding eigenvector
of the parameterized problem using a block Lanczos routine
 Sorensen�s algorithm
provides a superlinearly convergent scheme to adjust the parameter and �nds the
optimal vector x� from the eigenvector of the parameterized problem� as long as
the hard case does not occur
 For the hard case� Sorensen�s algorithm is linearly
convergent
 The algorithm uses the Implicitly Restarted Lanczos Method 
IRLM�

cf
 ����� to compute the smallest eigenvalue and corresponding eigenvector of the
parameterized problem
 The IRLM is particularly suitable for large�scale applica�
tions since it has low and �xed storage requirements and relies only on matrix�vector
products


In this work we present a new matrix�free algorithm for the large�scale trust�
region subproblem
 Our algorithm is similar to those proposed in ���� ��� in the
sense that we solve the trust�region subproblem through a parameterized eigen�
value problem� but it di�ers from those approaches in that we do not need two
di�erent schemes for the standard case and the hard case
 Our algorithm can han�
dle all the cases in the same basic iteration
 We achieved this improvement over
the methods in ���� ���� by computing two eigenpairs of the parameterized problem
and incorporating information about the second eigenpair whenever it is appropri�
ate
 This strategy does not substantially increase the computational cost over the
method in ����
 We introduce a two�point interpolating scheme that is di�erent from
the one in ����
 We show that this new iteration is also convergent and that the
convergence rate is superlinear
 Moreover� our convergence results naturally include
the hard case� since no special iterations are necessary
 Such a uni�ed approach is
not achieved in either ���� or ����


The organization of this work is the following
 In Section � we analyze the struc�
ture of the problem and motivate the algorithm
 In Section � we give a complete
characterization of the hard case with respect to the parameterized eigenproblems

We describe the algorithm in detail in Section �
 In Section � we present the con�
vergence analysis
 We describe preliminary numerical experiments in Section � and
present some conclusions in Section �
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� Structure of the Problem

The problem we are interested in solving is

min �
x�
s
t
 kxk � � �


��

where �
x� � �
�
xTAx� gTx� A� g as before and k � k � k � k� throughout the paper


Due to the structure of 
��� its optimality conditions are both necessary and
su�cient� as stated in the next lemma� where we follow ���� in the nonstandard but
notationally more convenient use of a nonpositive multiplier


Lemma ��� �����	 A feasible vector x� is a solution to ��� with corresponding
Lagrange multiplier �� if and only if x�� �� satisfy 
A� ��I�x� � �g with A� ��I
positive semide�nite� �� � 	 and ��
�� kx�k� � 		

Proof
 See ����
 �

In order to design e�cient methods for solving problem 
�� we must exploit
the tremendous amount of structure of this problem
 In particular� the optimal�
ity conditions are computationally attractive because they provide a means to re�
duce the given n�dimensional constrained optimization problem into a zero��nding
problem in a single scalar variable
 For example� we could de�ne the function
�
�� � k
A� �I���gk and solve the secular equation �
�� � �� monitoring � to be
no greater than the smallest eigenvalue of A� so that the Cholesky factorization of

A� �I is well de�ned
 Using Newton�s method to solve
�

�
��
� �

�
� 	 has a num�

ber of computationally attractive features 
cf
 ���� and we should use this approach
when we can a�ord to compute the Cholesky factorization of A � �I
 When com�
puting a Cholesky factorization is too expensive� we need to use a di�erent strategy

The introduction of a new parameter will make it possible to convert the original
trust�region subproblem into a scalar problem that is suitable for the large�scale set�
ting
 The conversion amounts to embedding the given problem into a parameterized
bordered matrix eigenvalue problem
 Consider the bordered matrix

B� �

�
� gT

g A

�

and observe that

�

�
� �
x� �

�

�

�� xT �B�

�
�
x

�
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Therefore there exists a value of the parameter � such that we can rewrite prob�
lem 
�� as

min �
�
yTB�y

s
t
 yTy � � � ��� eT�y � ��

��

where e� is the �rst canonical unit vector in IRn��
 This formulation suggests that
we can �nd the desired solution in terms of an eigenpair of B� in the following way

Suppose that f�� 
�� xT �Tg is an eigenpair of B�
 Then�

� gT

g A

��
�
x

�
�

�
�
x

�
� �

which is equivalent to

� � � � �gTx 
��

and


A� �I�x � �g 	 
��

Now� let 
�� 
�� 	 	 	 � 
d be the distinct eigenvalues of A in nondecreasing order
 Then

� � � � �gTx �
dX

j��

��

j


j � �

��

where ��

j is the sum of the squares of the expansion coe�cients of g in the eigenvector
basis� corresponding to all the eigenvectors associated with 
j


Observe that as a consequence of Cauchy�s Interlace Theorem 
cf
 ����� p
�����
and also from equation 
��� the eigenvalues of A interlace the eigenvalues of B�
 In
particular� if ��
�� is the smallest eigenvalue of B�� then ��
�� � 
�
 This implies
that the matrix A���
��I is always positive semide�nite independently of the value
of �
 Moreover� ��
�� is usually well separated from the rest of the spectrum of B��
particularly for small values of �
 In these cases� we expect a Lanczos�type method
to be very e�cient in computing this eigenvalue and the corresponding eigenvector


Equations 
���
�� express � and hence x implicitly in terms of �� suggesting
the de�nition of a convenient function as follows
 Let y denote the pseudoinverse of
a matrix and let us de�ne

�
�� � gT 
A� �I�yg � �gTx 	

Therefore�

��
�� � gT �
A� �I�y��g � xTx �
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Figure �� Example of the typical pattern of �
�� 
solid� and the straight line f
�� �
�� � � 
dashdotted�
 The three smallest eigenvalues of A are ��� �		� and �
 
a�
general case with the slope at �� also plotted� 
b� exact hard case� 
c� near hard
case� 
d� detail of box in 
c�


where di�erentiation is with respect to �� and x satis�es 
A � �I�x � �g
 The
function � appears in many contexts ��� �� ��� ��� and Figure �
a shows its typical
behavior
 It is worth noticing that the values of � and �� at an eigenvalue � of B��
are readily available and contain valuable information with respect to problem 
���
as long as � has a corresponding eigenvector with nonzero �rst component


Finding the smallest eigenvalue and a corresponding eigenvector of B� for a
given value of �� and then normalizing the eigenvector to have its �rst component
equal to one will provide a means to evaluate the rational function � and its deriva�
tive at appropriate values of �� namely� at � � ��
�� � 
�
 If we can adjust � so
that the corresponding x satis�es xTx � ��
�� � �� with �� � � �
��� then


A� �I�x � �g and �
� � kxk� � 	

with A � �I positive semide�nite
 If � � 	 then x is a boundary solution for the
trust�region subproblem
 In case we �nd � � 	 with kxk 
 � during the course
of adjusting �� then this implies that the matrix A is positive de�nite and that

-~ 
... :.:-.., .. 

... ,.· 
~, 
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kA��gk 
 �
 As showed in ���� these two conditions imply that problem 
�� has an
interior solution that satis�es Ax � �g


The availability of the values �� �
��� ��
�� makes it possible to use rational
interpolation to adjust the parameter using these values as interpolation points

The adjustment of � by means of rational interpolation� consists of constructing a
rational interpolant b� and �nding a special point b� such that b��
b�� � ��
 We then
compute the new parameter as �� � b� � b�
b��
 In this approach it is necessary
to safeguard �� to ensure convergence of the iteration
 This idea was discussed in
��� ��� and used in ����
 The algorithm in this paper follows this approach


� Characterization of the Hard Case

We assumed in the previous discussion that the smallest eigenvalue of B� had
a corresponding eigenvector with nonzero �rst component
 It remains to con�
sider the possibility that all the eigenvectors associated with ��
�� have �rst com�
ponent zero so that we cannot normalize any of them to have its �rst compo�
nent equal to one
 In this case� the proposed strategy for solving problem 
��
breaks down
 However� this can happen only when g is orthogonal to S�� where
Sj � fq j Aq � 
jqg� j � �� �� 	 	 	 � d


The condition g 	 S� is a necessary condition for the ocurrence of the so�called
hard case
 Therefore� we call this situation a potential hard case
 Observe that in a
potential hard case 
� is no longer a pole of � as Figure �
b illustrates
 We discuss
the hard case in detail at the end of this section
 At this point we will concentrate
on the potential hard case� which has intriguing consequences
 We will show that
in a potential hard case� for all values of � greater than certain critical value ����
all the eigenvectors corresponding to the smallest eigenvalue of B� will have �rst
component zero
 We will also show that for any �� there is always a well de�ned
eigenvector of B�� depending continuously on �� that we can safely normalize to
have �rst component one
 If g �	 S� or g 	 S� and � � ���� then this eigenvector
corresponds to ��
��
 If g 	 S� and � exceeds the critical value ��� by a small
amount� this parameterized vector corresponds to the second smallest eigenvalue
of B�
 A complete understanding of this case leads to the main algorithm of this
paper
 The following results are the bases for this understanding


Lemma 
�� For any � � IR and any q � Sj � � � j � d� f
j� 
	� qT �Tg is an
eigenpair of B� if and only if g is orthogonal to Sj 	

Proof
 The proof follows from the observation that g 	 Sj and Aq � 
jq are
equivalent to �

� gT

g A

��
	
q

�
� 
j

�
	
q

�
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�

If Z�
�� is the eigenspace of B� corresponding to 
�� Lemma �
� establishes
that the set f
	� qT �T j q � S�g is a subset of Z�
��
 Note that while S� corre�
sponds to the smallest eigenvalue of A� Z�
�� does not necessarily correspond to the
smallest eigenvalue of B�
 These subspaces have the same dimension for all but one
exceptional value of �
 The following result states that there is a unique value of �
for which dimZ�
�� � dimS� � �


Lemma 
�� Suppose that g is orthogonal to Sj� � � j � d� and let
pj � �
A � 
jI�yg	 The pair f
j� 
�� pTj �Tg is an eigenpair of B� if and only if
� � ��j where ��j � 
j � gTpj 	

Proof
 First we observe that g 	 Sj implies that g � R
A� 
jI� and therefore


A� 
jI�pj � �
A� 
jI�
A� 
jI�
yg � �g� 
��

since 
A� 
jI�
A� 
jI�
y is an orthogonal projector onto R
A� 
jI�


Now� let � � ��j
 Then�
��j gT

g A

��
�
pj

�
�

�
��j � gTpj
g �Apj

�
� 
j

�
�
pj

�
�

since by de�nition of ��j we have ��j � gTpj � 
j and by 
��� g �Apj � 
jpj 

Suppose now that f
j� 
�� pTj �Tg is an eigenpair of B�� i
e
�

� gT

g A

��
�
pj

�
� 
j

�
�
pj

�
�

It follows directly from this relationship that � � ��j � 
j � gTpj 
 �

The following corollary summarizes the main results from Lemmas �
� and �
�


Corollary 
�� Suppose that g is orthogonal to Sj� � � j � d� and let
Zj
�� � fz � IRn�� j B�z � 
jzg	 If ��j � 
j � gTpj with pj � �
A � 
jI�yg
then dimZj
��j� � dimSj � � and for any other value of �� dimZj
�� � dimSj 	
Moreover� if mj is the multiplicity of 
j and fq�� 	 	 	 � qmj

g is an orthogonal basis for
Sj then ��

�
pj

�
�

�
	
q�

�
� 	 	 	 �

�
	
qmj

��

is an orthogonal basis for Zj
��j� and��
	
q�

�
� 	 	 	 �

�
	
qmj

��

is an orthogonal basis for Zj
��� for � �� ��j 	
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The result in Lemma �
� was also stated in ����� the idea behind Lemma �
� was
presented in ����
 We present here a general formulation of these results given in ����

In the next results from ����� we establish that there always exists an eigenvector of
B� that we can normalize to have �rst component equal to one� and we characterize
the eigenvalue to which this eigenvector corresponds


Theorem 
�� ���
�	 Let �
�� be the smallest solution of the equation

�
�� � �� � 	

Then� for any value of �� �
�� is an eigenvalue of B� with a corresponding eigen�
vector that can be normalized to have �rst component one	

Proof
 Suppose �rst that g is orthogonal to Si� i � �� �� 	 	 	 � � with � � � 
 d
 Then

�
�� � gT 
A� �I�yg

�
dX

j����

��

j


j � �
�

Let �
�� be the smallest solution of the equation �
�� � � � �
 Then �
�� �

�
� 
����
 Since �
�� is strictly increasing on its domain and f
�� � � � � is
a decreasing straight line� we conclude that �
�� is unique
 Since �
�� depends
continuously on �� so does p
�� � �
A� �
��I�yg and also v
�� � 
�� p
��T �T 
 Let
us see now that v
�� is an eigenvector of B� associated with �
��
 Consider�

� gT

g A

��
�

p
��

�
�

�
� � gTp
��
g �Ap
��

�
and note that

�� gTp
�� � � � �
�
���

� �
��� by de�nition of �
��


Now� g 	 Si� i � �� �� 	 	 	 � � implies that g � R
A� �I� for � � 
�
� 
����
 Thus�
g � R
A� �
��I� and we have 
A� �
��I�p
�� � �g
 It follows that

g �Ap
�� � �
��p
��

and therefore� B�v
�� � �
��v
��

Suppose now that g is not orthogonal to S�
 Then �
�� � 
�
� 
�� and this implies
A��
��I is nonsingular and the previous proof holds with p
�� � �
A��
��I���g

�

The following result characterizes the smallest ��� distinct eigenvalues of B� if
g is orthogonal to the eigenspaces corresponding to the smallest � distinct eigenvalues
of A
 In case g is not orthogonal to S� then the lemma characterizes the smallest
eigenvalue of B�
 We will denote by �j
��� j � �� �� 	 	 	 � n� � the eigenvalues of B�

in nondecreasing order
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Lemma 
�
 ���
�	 Let f�
��� v
��g be the eigenpair of B� given by Theorem 
	�
and de�ne ��i as in Lemma 
	�	 Then� if g �	 S� then ��
�� � �
��	
If g 	 Sk� for k � �� �� 	 	 	 � � and � � � 
 d� then

�i� If � � ��i� � � i � � then �j
�� � 
j� j � �� �� 	 	 	 � �	 In this case� ����
�� is
the second smallest root of equation �
�� � �� �	

�ii� If � 
 ��� then ��
�� � �
�� and �j
�� � 
j��� j � �� 	 	 	 � �� �	

�iii� If ��i�� 
 � 
 ��i� � � i � � then �i
�� � �
��� �j
�� � 
j for
j � �� 	 	 	 � i� �� and �j
�� � 
j�� for j � i� �� 	 	 	 � �� �	

�iv� If � � ��� then �j
�� � 
j� j � �� �� 	 	 	 � � and ����
�� � �
��	

Proof
 These results are a direct consequence of Cauchy�s Interlace Theorem� Lem�
mas �
� and �
�� and the properties of the functions �
�� and � � �
 �

We can expect di�culties in practice when the vector g is nearly orthogonal
to the eigenspace S�
 If this happens� there still exists �� 
 
� and x� such that

A���I�x� � �g� kx�k � �� with �� quite close to 
�
 We call this situation a near
hard case and Figure �
c illustrates it
 In the detail shown in Figure �
d� we can see
that in this case� the derivative �� changes rapidly for � close to 
�� so the problem
of �nding �� satisfying the correct slope ��
��� � �� is very ill�conditioned


In the remainder of the section we discuss the hard case and present the results
that allow us to compute a nearly optimal solution for the trust�region subproblem
in this situation
 The hard case can only occur when g 	 S�� the matrix A is
inde�nite or positive semide�nite and singular� and for certain values of �
 This
case was analyzed in ��� for medium�scale problems and discussed in ���� ��� in the
large�scale context
 The precise statement is the following


Lemma 
�� �����	 Assume g is orthogonal to S� and let p � �
A � 
�I�yg

If 
� � 	 and kpk 
 �� then the solutions of 
�� consist of the set
fx j x � p� z � z � S� � kxk � �g


Proof
 See ����
 �

As we can see� it is precisely in the hard case that in the process of adjusting
� we will compute values such that � � ���
 As Lemma �
� establishes� in this
case all the eigenvectors corresponding to the smallest eigenvalue of B� have �rst
component zero
 Moreover� in a near hard case the eigenvectors will have very small
�rst components and dividing by these values will introduce large roundo� errors

Theorem �
� and Lemma �
� suggest a strategy for handling this situation� namely
using the eigenvector of B� with the desired structure guaranteed by Theorem �
�
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and the corresponding eigenvalue to obtain the interpolation points� so we can pro�
ceed with the adjustment of the parameter �
 We will need a safeguarding strategy
to enforce convergence of this iteration
 We will describe this strategy in the next
section where we present the algorithm in detail


The following results provide the theoretical bases for declaring convergence in
the hard case
 Results within the same philosophy are presented in ��� ���
 The idea
behind these results is to exploit the information available at each iteration and�
with practically no additional cost� detect a nearly optimal solution in the hard case
or near hard case
 Theorem �
�� Lemma �
� and Lemma �
� contain these results

Theorem �
� establishes that� under certain conditions� the last n components of a
special linear combination of eigenvectors of B�� form a nearly optimal solution for
problem 
��
 Lemma �
� establishes the conditions under which we can compute the
special linear combination and Lemma �
� shows how to compute it
 Theorem �
�
follows from a more general result from ���� but we present a di�erent proof here

Lemma �
� is a reformulation of a result from ���� and Lemma �
� is from ����


Theorem 
�� ���
�	 Let ��
�� be the smallest eigenvalue of B� with a correspond�
ing eigenvector z� � 
��� ezT� �T 	 Let �i
�� be any of the remaining n eigenvalues of
B� with a corresponding eigenvector zi � 
�i� ezTi �T 	 De�ne Z � �z� zi�� eZ � �ez� ezi��
and assume ZTZ � I	 Let � � 		

If there exists t � 
��� ���T � with ktk � � such that

�i� 
eT�Zt�
� �

�

� ���
� and

�ii� 
�i
��� ��
��� �
�

� 
� � ��� � ����
ex�� for ex �
eZt

eT�Zt

then

�
x�� � �
ex� � �

� � �
�
x��

where x� is a boundary solution for problem ��� with �
x�� � 		

Proof
 Since x� is a boundary solution of 
��� we have �
x�� � �
x�� � x � IRn

such that kxk � �
 Therefore� in order to prove that �
x�� � �
ex�� it will su�ce
to show that kexk � �


Note that
Zt

eT�Zt
� 
�� exT �T and therefore

k
�� exT �k� � � � kexk� �

����� Zt

eT�Zt

�����
�

�
�


eT�Zt��
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since ktk � � and ZTZ � I by hypothesis
 Thus� by �i�

� � kexk� � � ���	

This implies kexk � � and therefore� �
x�� � �
ex�

Let us now prove the other part of the inequality

Observe that ����
x�� � 
�� xT� �B� 
�� xT� �

T 
 Thus� by Rayleigh quotient properties

� � ��
x�� � ��
��k
�� xT� �Tk�	
Since kx�k � � it follows that k
�� xT� �Tk� � � ���� and therefore

� � ��
x�� � ��
��
� � ���	 
��

Now observe that � � ��
ex� � 
�� exT � B� 
�� exT �T � and since 
�� exT �T �
�

eT�Zt
Zt� it

follows that

�� ��
ex� � tTZTB�Zt
�


eT�Zt��

� ���
���
�

� � �i
���
�

� � 
� � ����

by �i� and the fact that z�� zi are eigenvectors of B�
 Since � �� � � �� � �� we have

� � ��
ex� � ���
��
� � � ��� � �i
���
�

� � 
� � ���

� ���
�� � 
�i
��� ��
����
�

� � 
� � ���

and therefore

�� ��
ex�� 
�i
�� � ��
����
�

�
� � ��� � ��
�� 
� � ���

� �� ��
x��� by 
��


If 
�i
��� ��
���� ��
� � ��� � ����
ex�� then
� � ��
ex� � ���
ex� � �� ��
x��

and we can conclude �
ex� � �

� � �
�
x��


Therefore �
x�� � �
ex� � �
����
x�� as claimed
 �

It follows directly from this result that

	 � �
ex�� �
x�� � � �

� � �
�
x��

j�
ex�� �
x��j � �

� � �
j�
x��j 	 
��

The inequality 
�� implies that under the conditions of Theorem �
�� �
ex� will be
arbitrarily close to �
x��
 We will call such ex a quasi�optimal solution for prob�
lem 
��

The next result establishes conditions for computing the vector t in Theorem �
�
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Lemma 
�� ���
�	 Let zi � 
�i� ezTi �T � with �i � IR� ezi � IRn for i � �� �	 De�ne

the matrices Z � �z� z�� and eZ � �ez� ez��� and assume ZTZ � I	 If kZT e�k� � �

�
�

for � � 	 then there exists t � IR� with t �� 	 that satis�es

kZtk� � �
eT�Zt�
�	 
��

Proof
 Observe that we can rewrite 
�� as

tTZTZt � � 
eT�Zt�
�

� � 
tTZTe�e
T

�Zt�

which is equivalent to

tT �I � � ZT e�e
T

�Z� t � 	 
�	�

since ZTZ � I by hypothesis
 Equation 
�	� will have a nontrivial solution only if the
matrixM � I�� ZT e�e

T

�Z is inde�nite or positive semide�nite and singular
 So� let
us study the eigenvalues of M 
 The two eigenpairs of the matrixM � I�� ZTe�e

T

�Z
are given by

f�� � eT�ZZ
T e�� Z

Te�g and f�� vg with v 	 ZTe� 	

Therefore� equation 
�	� will have nontrivial solutions if �� � � � � eT�ZZ
Te� � 	


In other words� if kZTe�k� � eT�ZZ
Te� � �

�
then there exists t � IR� with t �� 	 such

that t satis�es 
�	�
 �

Note that choosing � � � ��� in Lemma �
� and normalizing t to have ktk � ��
will give a vector that satis�es the conditions of Theorem �
�
 The following lemma
provides a way of computing such vector


Lemma 
�� ���
�	 Let � � IR� � � 	 and let z � IRn	 The equation

tT �I � �zzT �t � 	 
���

in t with t � IRn� has �
n � �� nontrivial solutions if the matrix
M � I � �zzT is inde�nite and one nontrivial solution if M is positive semidef�
inite and singular	

Proof
 Let P � IRn�n be such that P Tz � kzke� with P TP � I and apply this
orthogonal transformation to the matrix M to obtain

P T �I � �zzT �P � I � �kzk�e�eT� 	
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Therefore the solutions of equation 
��� in this new basis are the solutions of

yT
� �� 	

	 I

�
y � 	

where � � �� � �kzk�e�eT� 

The nontrivial solutions of 
��� are then given by t � Py where


�� y � 
��
p
�eTi �

T and y � 
���
p
�eTi �

T with ei the i�th canonical vector in
IRn��� i � �� �� 	 	 	 � n� �� if M is inde�nite� i
e
 if � � 	� or


�� y � e�� if M is positive semide�nite and singular� i
e
 if � � 	


Therefore equation 
��� has �
n� �� nontrivial solutions if M is inde�nite and one
nontrivial solution if M is positive semide�nite and singular
 �

Remark
 Suppose n � � and z � 
��� �i�T in Lemma �
�
 Then if ��� � �i
� � �

�
�

the vector t � 
��� ���T is given by

�� �
�� � �i

q
�
��� � �i��� �


��� � �i��
p
�

� �� �
�� � �i

q
�
��� � �i��� �


��� � �i��
p
�

or

�� �
�i � ��

q
�
��� � �i��� �


��� � �i��
p
�

� �� �
�� � �i

q
�
��� � �i��� �


��� � �i��
p
�

�

If ��� � �i
� � �

�
then t is given by

�� �
��p

��� � �i�
� �� �

�ip
��� � �i�

�

The previous results are the bases for the algorithm in next section� since they
provide the necessary tools for handling the hard case in the same iteration designed
for the standard case and for computing a solution in this case


� The Algorithm

Keeping in mind the availability of a well�suited variant of the Lanczos method�
namely the Implicitly Restarted Lanczos Method 
cf
 ������ we will develop a rapidly
convergent iteration to adjust � based on this process
 Our goal is to adjust � so
that

�� � � �
�� � ��
�� � �� �
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where

�
�� � �gTx � ��
�� � xTx �

with 
A� �I�x � �g

The approach of this work is similar to the one in ���� in the following sense


We compute a function b� which interpolates � and �� at two properly chosen points

Then� from the interpolating function b� we determine b� satisfying

b��
b�� � �� 	 
���

Finally� we use b� and �
b�� to update the parameter � and compute the next
iterates f�� xg
 The new elements in our algorithm are the introduction of safe�
guards for the sequence in �� the use of the information relative to the second
smallest eigenvalue of the matrix B� and the introduction of a di�erent interpo�
lating scheme� where the currently available information is exploited to a greater
extent
 Considering that the interpretation of the primal feasibility equations of
���� can be related to 
���� the description of our algorithm has also some �avor of
the approach in ����� where an inverse interpolation scheme is used to satisfy primal
feasibility
 However� in the presence of the hard case� we do not need to combine
distinct interpolating functions� as in ���� nor switch to another algorithm as in ����

In this section we will assume that the vector g is nonzero
 If g � 	 then problem

�� reduces to solving an eigenvalue problem for the smallest eigenvalue of A
 We
shall �rst describe the components of the algorithm and then present the complete
method


��� Interpolating Schemes

To begin the iteration� we need a single�point interpolating scheme
 We use
the approach derived in ���� which gives the following expression for ��


�� � b�� b�
b�� � �� �
�� � ��
kx�k

�
�� kx�k

�

��
��

�

kx�k
�


���

where

b� � 
 �
gTx�
kx�k� �

This method is linearly convergent and may be slow in some cases� so we will
use it just to obtain a second pair of iterates� which together with ��� x� will be the
starting values for a two�point method
 In the two�point method we use the four
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pieces of information available at the k�th iteration� namely �
�k���� ��
�k���� �
�k�
and ��
�k� as follows
 We compute b� such that

�

�
�

�q
��
�k���

�
�k � b�

�k � �k��

�
�

�q
��
�k�

� b� � �k��
�k � �k��

�
� 
���

obtaining

b� �
�k��kxk��k
kxkk ��� � �kkxkk
�� kxk��k�

�
kxkk � kxk��k� � 
���

This is equivalent to de�ning

b�
�� � ��


 � �
� � 
���

for any � and computing b� such that
�qb��
b�� �

�

�

 It is easy to verify using 
���

that

�� �

�k � �k����kxk��k�kxkk�


kxkk � kxk��k�� and 
 �
�kkxkk � �k��kxk��k
kxkk � kxk��k �

Ideally� � � �
b��� ��


 � b� � where �
b�� is the value we are going to estimate in order

to update �
 Using the values �
�k��� and �
�k�� we �rst de�ne �j � �
�j�� ��


 � �j
�

for j � k � �� k
 Then� applying the linear interpolation philosophy on �j � �j� and

de�ning the weights by means of the already computed value b�� we choose

� �

�
�k � b�

�k � �k��

�
�k�� �

� b� � �k��
�k � �k��

�
�k 	

After some manipulation we can express the updating formula for � as

�k�� � b�� ��
�k��� � 
� � ���
�k�

�
kxk��kkxkk
kxkk � kxk��k�
�kxkk� 
� � ��kxk��k


�k�� � b��
�k � b��

�k � �k���

� ��k�� � 
� � ���k

�
kxk��kkxkk
kxkk � kxk��k�
�kxkk� 
� � ��kxk��k


�k�� � b��
�k � b��

�k � �k���

� 
���

where � �
�k � b�

�k � �k��
� �k�� � �k�� � �
�k��� and �k � �k � �
�k�


As we discussed in Section �� we need a special strategy to obtain interpolation
points in potential hard cases
 We describe this strategy in x�
�
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��� Choice of Interpolation Points

According to Lemma �
�� if the �rst component of the eigenvector correspond�
ing to the smallest eigenvalue of B�k is zero� this will indicate a potential hard case
and we will have ��
�k� � 
�
 However� Lemma �
� establishes that for �k slightly
larger than ��� there is an eigenvector with signi�cant �rst component that corre�
sponds to the second smallest eigenvalue of B�
 Therefore� we propose to use an
eigenpair corresponding to an eigenvalue that is close to the second smallest eigen�
value of the bordered matrix to obtain the interpolation point whenever we detect
a potential hard case
 As we shall explain� not only can we keep the size of the
iterate xk under control� but we can also ensure convergence of f�k� xkg to f
�� pg
by driving the parameter �k to the value ��� given by Lemma �
�
 Recall� Lemma
�
� established that there will be an eigenvector with signi�cant �rst component
corresponding to ��
�k�� precisely when �k assumes the special value ��� � 
�� gTp

Moreover� the use of this second eigenvector prevents numerical di�culties in a near
hard�case situation


There is an easy way to detect a potential hard case during an iteration
 Let

��� uT� �

T be a unitary eigenvector of B�k corresponding to ��
�k�
 Then� we declare
�� to be �small � indicating a near hard case has been detected� if the condition
kgkj��j � �

p
� � ��� holds for a given � � 
	� ��
 This is motivated as follows
 Since


A� ��
�k�I�u� � �g��� we have

k
A� ��
�k�I�u�k
ku�k �

kgkj��jp
�� ���

and hence kgkj��j � �
p
�� ��� assures that k
A � ��
�k�I�u�k � �ku�k
 In other

words� f��
�k�� u�g is an approximate eigenpair of A and the eigenvector 
��� uT� �
T

from the bordered matrix is essentially impossible to normalize
 This is approxi�
mately the situation described in Lemma �
�
 Of course� this test can be made scale
independent by choosing � � b�kAk� for b� � 
	� ��


When a near hard case has been detected� we need an alternative way to
de�ne the pair f�k� xkg
 At each iteration� at essentially no extra cost� we compute
an eigenpair corresponding to the smallest eigenvalue of B�k � which we denote by
f��
�k�� 
��� uT� �

Tg� and also an eigenpair corresponding to an eigenvalue close to the
second smallest eigenvalue of B�� which we denote by f�i
�k�� 
��� uT� �

Tg
 If both
j��j and j��j are small� that is� if kgkj��j � �

p
�� ��� and kgkj��j � �

p
�� ��� then

we decrease the parameter �k
 According to Theorem �
� there always exists an
eigenvector of the bordered matrix with signi�cant �rst component for any value
of � and as we mentioned before� according to Lemma �
�� as �k approaches the
critical value� this normalizable eigenvector will correspond either to the �rst or to
the second smallest eigenvalue of B�k 
 In other words� for values of �k near the
critical value� either kgkj��j � �

p
� � ��� or kgkj��j � �

p
�� ��� will hold
 Hence�
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after a possible reduction of the parameter �k� the pair f�k� xkg is well de�ned if we
compute it by the following procedure�

If kgkj��j � �
p
� � ��� then set �k � �i
�k� and xk �

u�
��
�

Otherwise� set �k � ��
�k� and xk �
u�
��
�

Since �k�� and �k are not constrained to 
�
� 
�� but might well belong to the
interval 

�� 
����� the value b� given by 
��� may be greater than 
�
 In this case�
we set b� � 
U� where 
U is an upper bound for 
�
 In x�	� we will show how to
obtain an initial value for 
U and how to update this value
 We will also show how
to safeguard � computed by 
���


��� Safeguarding

We need to introduce safeguarding to assure global convergence of the iteration

Let ��� x� be an optimal pair for problem 
��� satisfying the conditions in Lemma
�
�� except when there is only an interior solution in which case we de�ne x� �
�
A� ��I�yg such that kx�k � �
 Let �� � �� � gTx�
 Rendl and Wolkowicz ����
presented the following bounds for the optimal parameter ���


� � kgk
�

� �� � 
� � kgk� 	 
���

Computing a good approximation to 
� can be nearly as expensive as solving
the given trust�region subproblem
 For this reason� as observed in ����� we shall
replace the above bounds by some simple alternatives
 First� note that any Rayleigh

quotient 
U � vTAv

vTv
gives an upper bound for 
�
 Therefore� if the diagonal of the

matrix A is explicitly available� we take 
U � minfaii j i � �� 	 	 	 � ng� otherwise we

take 
U � vTAv

vTv
where v is a random vector
 From 
��� we see that �� � �U�

for �U � 
U � kgk�
 Since � � 	 implies B� is not positive de�nite� we set
�� � minf	� �Ug to assure that ��
��� � 	
 After solving for ��
��� and setting


L � ��
��� and �L � 
L � kgk
�

� we immediately have that �L � ��� since the

interlacing property implies 
L � 
�
 Using this simple scheme to obtain 
L and 
U
as initial lower and upper bounds for 
�� we can start with

�L � 
L � kgk
�

and �U � 
U � kgk� 	 
���

We update the upper bound 
U at each iteration using information from the
eigenpair corresponding to the smallest eigenvalue of the bordered matrix in the
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following way� 
U � min
�

U�

uT
�
Au�

uT
�
u�

�
� where

uT
�
Au�

uT
�
u�

� ��
�k� � ��
gTu�
uT
�
u�

 As stated

in x�
�� whenever we detect a potential hard case� f��
�k�� u�g approximates an
eigenpair of A and ��
�k� is a very good approximation to 
�
 Thus� 
U becomes a
sharp estimate of 
� in this case


At every iteration� we update one of the safeguarding bounds �L or �U � so that
we always reduce the length of the interval ��L� �U �
 In case the value �k�� predicted
by the interpolating schemes 
��� or 
��� does not belong to the current safeguarding
interval� we rede�ne �k�� by means of a linear adjustment based on the upper bound


U
 If this choice is not in the interval ��L� �U�� we simply set �k�� �
�L � �U

�



��� Initialization of �

As mentioned in x�
�� there is a simple choice for initializing �� given by
�� � minf	� �Ug� with �U as in 
���
 This assures that ��
��� � 	 but it has
no additional properties
 In an attempt to improve this initial guess� we have de�
veloped a more sophisticated hot�start strategy� based on the Lanczos process
 To
begin� we compute the following j�step Lanczos factorization� for the j smallest
eigenvalues of A


AV � V T � feTj 
�	�

where V TV � Ij� with Ij the identity matrix of order j 
j � n �� T � IRj�j

tridiagonal� V Tf � 	 and ej denotes the jth canonical unit vector in IRj

The hot�start strategy consists of �rst changing variables in 
�� using x � V y

and solving the j�dimensional problem

min �
�y

TTy � gTV y
s
t
 kyk � � 	

Then� we compute a solution f��� y�g to this lower dimensional trust�region sub�
problem by using the algorithm in ���� based on the Cholesky factorization of the
tridiagonal matrix T � �I� � 
 
�
 The initial value to be used is � � ��� gTV y�
 In
numerical experiments� the use of this hot start for � did not substantially improve
the performance of the method


We now show that we can use 
�	� to compute an eigenpair corresponding to
the smallest eigenvalue of B��
 Observe�

�� gT

g A

��
� 	
	 V

�
�

�
� 	
	 V

��
�� gTV
V Tg T

�
�

�
	
f

�
eTj�� 	 
���

If we run the standard Lanczos process for A using v� � g�kgk as initial vector
then we obtain a tridiagonal matrix on the right�hand side of 
���
 This provides a
way of computing the smallest eigenvalue of B��
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��� Stopping Criteria

At each iteration we check for a boundary solution� an interior solution or a
quasi�optimal solution according to Theorem �
�
 We can also stop if we reach
a maximum number of iterations or if the length of the safeguarding interval is
too small
 Given the tolerances ��� �HC� �� � 
	� �� and �Int � �	� ��� we declare
convergence of the algorithm according to the following criteria
 Let 
��� uT� �

T be
the eigenvector corresponding to ��
�k� and let f�k� xkg be the current iterates� then
we can write the stopping criteria in the following way


�� Boundary Solution�
We detect a boundary solution if


j kxkk �� j � �� 
�� and 
��
�k� � 	�	

If this condition is satis�ed� the solution is

�� � ��
�k� and x� � xk 	

�� Interior Solution�
We detect an interior solution if


ku�k 
 �j��j� and 
��
�k� � ��Int� 	
In this case� the solution is ��� x� where �� � 	 and x� satis�es the linear system
Ax � �g� with A positive de�nite
 The Conjugate Gradient Method is a natural
choice for solving this system for most large�scale problems



� Quasi�optimal Solution�
To declare that we have found a quasi�optimal solution� we �rst compute t

and ex as in Lemma �
�� provided that the conditions of the lemma are satis�ed
 If
t � 
��� ���T and ex satisfy condition �ii� of Theorem �
� then ex is a quasi�optimal
solution for problem 
�� and we set �� � ��
��� �� � �i
��� �� and x� � ex

�� The safeguarding interval is too small�

If j�U��Lj � ��maxfj�Lj� j�Ujg then we stop the iteration and set �� � ��
�k�

If this criterion is satis�ed and we do not have a boundary solution then we are in

the hard case and �� is within �� of ���
 If �� is large enough� we set p �
u�
��


 Since

kpk 
 � in this case� we compute x� as x� � p� �z such that kx�k � �� where the
vector z is an approximate eigenvector associated with the smallest eigenvalue of A

Of the two possible choices for � � we choose the one with smaller magnitude since
this value minimizes �
p� �z� 
see ��� p
 �����
 This choice of � is given by

� �
�� � kpk�

pT z � sign
pTz�
q

pT z�� � 
�� � kpk��

�
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The vector z is usually available in potential hard cases since in those cases the
eigenvectors corresponding to the smallest eigenvalue of B�k will often have a small
�rst component
 In the rather unlikely situation where this vector is not available�
we increase the parameter and solve an eigenproblem for the smallest eigenvalue
of the bordered matrix
 This strategy will provide an approximate vector in S� as
Lemma �
� guarantees


If �� is too small or zero� we cannot compute a solution
 This situation can
arise in practice because the eigensolver might not provide the eigenvector with
signi�cant �rst component that the theory guarantees
 We have not encountered
this case in our experiments


��� The Algorithm

Let us now put all these pieces together and present our algorithm for the large�
scale trust�region subproblem 
LSTRS�
 We describe Steps �
� and �
� of Algorithm
�
� separately
 In Step �
� we adjust the parameter �k so that the eigenvector
corresponding to the �rst or to an eigenvalue equal or close to the second smallest
eigenvalue of B�k � has a signi�cant �rst component
 We might reduce the interval
��L� �U� during this adjustment
 In Step �
� we correct the parameter predicted
by the interpolation schemes in case it does not belong to the current safeguarding
interval ��L� �U �
 We try a linear adjustment �rst and adopt the middle point of the
current interval as a last resort
 Figure � shows Algorithm �
�� while Figures � and
� show Steps �
� and �
�� respectively
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Algorithm ��� LSTRS	

Input
 A � IRn�n� g � IRn� � � 	� ��� �� � �HC� �� � 
	� ��� �Int � �	� ��	
Output
 ��� x� satisfying conditions of Lemma �	�	

�� Initialization

��� Compute 
U � 
�� initialize �U using ����� set �� � minf	� �Ug�
��� Compute eigenpairs f��
���� 
��� u

T

� �
Tg and f�i
���� 
��� u

T

� �
Tg�

corresponding to smallest eigenvalue and an eigenvalue

close to the second smallest eigenvalue of B��

��
 Initialize �L using �����

��� Set k � 	�
�� repeat

��� Adjust �k�

��� Update 
U � min

�

U�

uT�Au�
uT�u�

�
�

��
 if kgkj��j � ��
p
�� ��� then

set �k � ��
�k� and xk �
u�
��
�

if kxkk 
 � then �L � �k end if
if kxkk � � then �U � �k

else set �k � �i
�k�� xk �
u�
��

and �U � �k end if

end if
��� Compute �k�� by interpolation scheme

using ���� if k � 	 or ��	� and ��
� otherwise�

��� Safeguard �k���

��� Set k � k � ��
until convergence

Figure �� Method for the Large�Scale Trust�Region Subproblem
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Step ��� Adjust �k	

Input
 ��� �� � 
	� ��� �L� �U � �k with �k � ��L� �U�

Output
 �k� f��
�k�� 
��� uT� �

Tg and f�i
�k�� 
��� uT� �
Tg


� Set � � �k

� if k � 	 then
compute eigenpairs f��
��� 
��� uT� �Tg and f�i
��� 
��� uT� �Tg�
corresponding to smallest eigenvalue and an eigenvalue

close to the second smallest eigenvalue of B�

end if
� while

kgkj��j � ��
p
� � ��� and kgkj��j � ��

p
�� ���

and j�U � �Lj � �� 
maxfj�Lj� j�Ujg do
�U � �
� � 
�L � �U���
Compute f��
��� 
��� uT� �Tg and f�i
��� 
��� uT� �Tg

end while
� Set �k � �

Figure �� Adjustment of �

Step ��� Safeguard �k��	

Input
 �k�� computed by Step �
� of Algorithm �
�� 
U � 
�� �L� �U �
�i � �gTxi and ��i � kxik�� for i � k � �� k


Output
 Safeguarded value for �k��


if �k�� �� ��L� �U �
if k � 	 then �k�� � 
U � �k � ��k

U � �k� end if
else if kxkk 
 kxk��k then �k�� � 
U � �k � ��k

U � �k�

else �k�� � 
U � �k�� � ��k��

U � �k����
end if

end if
if �k�� �� ��L� �U �� set �k�� � 
�L � �U��� end if

end if

Figure �� Safeguarding of �
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� Convergence Analysis

��� Iterates are well de�ned

Lemma ��� The iterates generated by Algorithm �	� are well de�ned	

Proof
 In order to de�ne the current iterate xk in Algorithm �
�� we must ensure
that we can safely normalize an eigenvector corresponding to either the smallest
eigenvalue or a value equal or close to the second smallest eigenvalue of B�k � to have
�rst component one
 This is accomplished in Step �
� where we adjust the parameter
�k until one of these two eigenvectors can be normalized to have �rst component
one
 Theorem �
� and Lemma �
� guarantee that the adjusting procedure in Step �
�
yields a value of � such that for the smallest eigenvalue or a value equal or close to
the second smallest eigenvalue of B�� there exists a corresponding eigenvector with
signi�cant �rst component
 �

��� Local Convergence

����� Preliminary Results

Lemma ��� Let �k� xk be the iterates at iteration k of Algorithm �	�	 Then

g � R
A� �kI�	

Proof
 If �k� xk are the iterates at iteration k of Algorithm �
�� then�
�k gT

g A

��
�
xk

�
� �k

�
�
xk

�
	

Therefore� 
A� �kI�xk � �g which implies that g � R
A� �kI�
 �

Lemma ��
 Let �� � 
� be the Lagrange multiplier corresponding to a boundary
solution of problem ���	 Then

g � R
A� ��I�	

Proof
 If �� 
 
� then A� ��I is nonsingular and g � R
A� ��I�
 If �� � 
� then
g 	 N 
A� ��I� must hold and therefore g � R
A� ��I�
 �

Remark
 Since 
A��I�
A��I�y and 
A��I�y
A��I� are orthogonal projectors
onto R
A� �I�� we have that

g � 
A� �I�
A� �I�yg � 
A� �I�y
A� �I�g 
���

for any � such that g � R
A� �I�
 In particular� Lemmas �
� and �
� imply that

��� holds for � � �k and � � ��
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����� Technical Lemmas

We present several technical lemmas that allow us to prove our local conver�
gence result
 We will use the following notation�

Ak � A� �kI and A� � A� ��I	 
���

The �rst lemma establishes a key relationship satis�ed by the iterates computed
by Algorithm �
�


Lemma ��� Let �k� xk be the iterates at iteration k of Algorithm �	�	 Then

xk � �
A� �kI�
yg	

Proof
 First note that if �k� xk are the iterates at iteration k of Algorithm �
�� then
they satisfy �

�k gT

g A

��
�
xk

�
� �k

�
�
xk

�
	

and therefore


A� �kI�xk � �g	 
���

In order to prove the result we need to consider two cases


Case �
 �k �� 
i� i � �� �� 	 	 	 � d

In this case we have that A��kI is nonsingular� 
A��kI��� � 
A��kI�y and from

��� we conclude

xk � �
A� �kI�
yg	

Case �
 �k � 
i� � � i � d

If �k � 
i then 
��� implies that g 	 Si
 This follows from the observation that
for any q � Si� we have 	 � qT
A� 
iI�xk � �qTg
 Corollary �
� now implies that
�k � ��i and

xk � pi

� �
A� 
iI�
yg�

since 
�� xT
k
�T is an eigenvector of B�k 
 This concludes the proof
 �

Before presenting the next lemma� which provides useful relationships for the con�
vergence analysis� we introduce the following de�nition
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De�nition ��� Let �i� xi and �j� xj be the iterates computed by Algorithm �	� at
iteration i and j� respectively	 Then we de�ne

�
i� j� � xT
i
Ay
jxi � xT

j
Ay
ixj	 
���

We can substitute any of the iterates by ��� y� with y � �Ay
�g	 We denote this by

�

� j� and �
i� 
�� respectively	
Assuming that A � QDQT is an eigendecomposition of A� i
e
 Q is an orthog�

onal matrix and D is a diagonal matrix with the eigenvalues of A on the diagonal�
we can write �
i� j� in the following way


�
i� j� � gTQDy
i 
D

y
i �Dy

j �D
y
jQ

Tg

where Di � D � �iI and Dj � D � �jI
 From this expression we obtain

�
i� j� �
dX

k��

��

k
�
k � �i � �j�



k � �i��

k � �j��

���

where ��

k is the sum of the expansion coe�cients of g in the eigenvector basis�
corresponding to all the eigenvectors associated with 
k
 As before� we are assuming
that 
�� 
�� 	 	 	 � 
d are the distinct eigenvalues of A in nondecreasing order


Lemma ��� Let �i� xi� �j� xj and �k� xk be the iterates computed by Algorithm �	�
at iteration i� j and k� respectively	 Then

�i� 
xi � xj�Tg � 
�j � �i�xTi xj 	

�ii� 
xi � xj�
Txk � 
�i � �j�x

T

j
Ay
ixk 	

�iii� xT
i
xi � xT

j
xj � 
�i � �j��
i� j�� with �
i� j� given by ��
�	

Moreover� 
i��
iii� also hold if we substitute any of the pairs above by ��� y� where
�� is the Lagrange multiplier corresponding to a boundary solution of problem ���
and y � �Ay

�g	

Proof
 Let us �rst prove �i�
 Observe that by Lemma �
�


xi � xj�
Tg � 
Ay

jg �Ay
ig�

T g	

Therefore� using 
��� and the fact that Ai� A
y
i � Aj� A

y
j commute� we have


xi � xj�
Tg � gT 
Ay

j �Ay
i�g

� gTAy
i 
Ai �Aj�A

y
jg

� 
�j � �i�x
T

i
xj	
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To prove �ii�� we use 
���� Lemma �
� and the fact that Ai� A
y
i � Aj� A

y
j commute�

obtaining


xi � xj�
Txk � gT 
Ay

i �Ay
j�xk

� gTAy
j
Aj �Ai�A

y
ixk

� 
�i � �j�x
T

j
Ay
ixk	

Finally� let us prove �iii�
 By 
���� Lemma �
� and the fact that Ai� A
y
i � Aj� A

y
j

commute� we have

xT
i
xi � xT

j
xj � gT �
Ay

i�
� � 
Ay

j�
��g

� gT �
Ay
i�

�A�

j �A�

i
A
y
j�

��g

� gT 
Ay
i�

�
Aj �Ai�
Aj �Ai�
A
y
j�

�g

� 
�i � �j�x
T

i

Ay

i �Ay
j�xj

� 
�i � �j��
i� j�	

Observe that �i���iii� hold for ��� y� since 
��� holds for ��� y � �Ay
�g� and A�

commutes with the matrices above
 This observation concludes the proof
 �

Using the updating formula 
���� we obtained the following result relating
�k�� � �� with �k�� � �� and �k � �� This lemma provides a key relationship for
establishing the local convergence properties of Algorithm �
�


Lemma ��� Let �� � 
� be the Lagrange multiplier corresponding to a boundary
solution of problem ���� with g �� 		 Let �k��� xk�� be the 
k���st iterates computed
by Algorithm �	� using the two�point interpolating scheme given by ���� to update �	
Then� there exists a neighborhood B of �� such that if �k��� �k � B then �k��
satis�es

j�k�� � ��j � C j�k�� � ��jj�k � ��j 
���

with C independent of k	

Proof
 Let y � �Ay
�g and �� � ���gTy
 We divide the proof in two cases� kyk � �

and kyk 
 �
 In each case� we �rst �nd an appropriate neighborhood of ��� and
then prove 
��� for �k��� �k in that neighborhood


Case �
 kyk � �

We will �rst �nd a neighborhood B of �� such that if �k��� �k � B then b� � B�
with b� given by 
���
 In this part of the proof we de�ne the numbers � and m in
the following way
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Let 	 � � 
 n and assume that g 	 Si� i � �� �� 	 	 	 � �� where � � 	 indicates that
g �	 S�
 Let m � 	 if �� 
 
� and m � � if �� � 
�
 De�ne

r� �

m�� � ��

�
and B� � f� j j� � ��j � r�g

and suppose that �k��� �k � B�
 Then by 
���� Lemma �
� �iii� and the fact that
kyk � �� we have

b�� �� � �k � �� �
kxk��k
kxk��k� kxkk�
�� kxkk�

�
k � �� k��

� 
�k � ���

�
� � �

� k�kxk��k
kxk��k� kxkk�

�
k � �� k��
� � kxkk�
	
	 
���

We will prove now that jb�� ��j � j�k � ��j�� with � � 
	� ��

Let �max � max

��B�
k
A� �I�ygk and �min � min

��B�
k
A� �I�ygk
 Therefore

kxk��k
kxk��k� kxkk�
�
�� kxkk� �



�min

�max

��
	 
���

In view of 
��� we have that for �k��� �k � B�

�

� k� � 
�
��� � �� � �k�



d � ����

d � �k��
kgk� 	

Since 
m�� � 
��� and since
�
m�� � ��

�
� �� � �k � 
m�� � ��

�
� we have

�

� k� � 
�
m�� � �� � �k�



d � ����

d � �k��
kgk�

�
�

m�� � ��� � 
�� � �k�



d � �����

d � ��� � 
�� � �k���
kgk�

� �

�
kgk� 

m�� � ���



d � ����
� 
�	�

Using similar manipulations we obtain

�
k � �� k� � 
�
d � �k � �k���kgk�


��� � �k��

��� � �k����

� 
�
d � �k � �k���kgk�


m�� � �k��

m�� � �k����

� � � ��kgk�

d � ���



m�� � ����
� 
���
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It follows from 
���� 
���� 
�	� and 
��� that

jb�� ��j � j�k � ��j
�������



�min

�max

�� �

��



m�� � ����



d � ����

����� � j�k � ��j�

with � � 
	� ��
 Therefore b� � B� whenever �k��� �k � B�

Now� we use these results to establish 
���
 Let the neighborhood B be given by B�
and let �k��� �k � B� therefore b� � B and to prove 
��� we need to consider two
possibilities� b� 
 
� and b� � 
�


Case ���
 kyk � � and b� 
 
�

In this case� we use formulas 
��� and 
��� obtaining

�k�� � T� � T�

where

T� �
�k��kxk��k
kxkk ��� � kxkk
�� kxk��k�

�
kxkk � kxk��k�
and

T� �
kxkkkxk��k
�� kxkk�
�� kxk��k�
�k � �k���

�
kxkk � kxk��k�
We will now �nd an upper bound for jT�j
 From Lemma �
� �iii�� we have

T� �
kxkkkxk��k
�� kxkk�
�� kxk��k�
kxkk� kxk��k�

��
k � �� k�

and since kyk � � we can write

T� �
kxkkkxk��k
kxkk� kxk��k�

�
k � �� k�


kyk � kxkk�
kyk � kxk��k�
�

Using Lemma �
� �iii� we obtain

T� �
kxkkkxk��k
kxkk� kxk��k�

�
k � �� k�


�� � �k���
�� � �k��
k � �� 
��
k� 
�
�
�� kxkk�
�� kxk��k� �

Now� since �k��� �k � B and since 
m�� � 
����

�
k � �� k� � �

�
kgk� 

m�� � ���



d � ����
� 
���

�

� k�� �

� k � �� � �	

d � ��



m�� � ����
� 
���
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Since for �k��� �k � B we also have �min � kxk��k� kxkk � �max� we obtain

jT�j � C� j�� � �k��j j�� � �kj	 
���

We will use this estimate in a moment
 First� we need to relate it to �k�� � ��
 To
do this� consider

�k�� � �� �

�k�� � ���kxk��k
kxkk ��� � 
�k � ���kxkk
�� kxk��k�

�
kxkk � kxk��k� � T� 	


���

From Lemma �
��i�� the de�nition of ��� and since �j � �j � �gTxj for j � 	� we
have

�j � �� � �j � �� � gT 
xj � y�

� 
�j � ���
� � xT
j
y�	 
���

Using 
��� along with Lemma �
�� 
��� becomes


�k�� � ���
� � xT
k��

y� �

�k�� � ���kxk��k
kxkk ���
� � xT

k��
y�

�
kxkk � kxk��k�
� 
�k � ���kxkk
kxk��k ���
� � xT

k
y�

�
kxkk � kxk��k� � T�

�

�k�� � ���
�k � ���T�

�
kxkk � kxk��k�
kxkk���
kxk��k���
� T��

where

T� � 
kxk��k � kxkk�
kxk��k� kxkk���
� � xT
k
y��
k � �� 
�

� yT 
xk�� � xk�kxk��k
kxk��k����
k� 
�
� 
�
k� 
�� �
k � �� 
��kxk��k
kxk��k���
� � xT

k
y� 	

Now� by Lemma �
� �ii� we have

yT 
xk�� � xk� � 
�k�� � �k�y
TAy

kxk�� 
���

and by Lemma �
� �iii�

�
k� 
�� �
k � �� 
� � xT
k
Ay
�xk � yTAy

ky � xT
k��

Ay
�xk�� � yAy

k��y

� gTAy
kA

y
�A

y
kg � gTAy

k��A
y
�A

y
k��g � yT 
Ay

k �Ay
k���y

� gT 

Ay
k�

� � 
Ay
k���

��y � 
�k � �k���y
TAy

kA
y
k��y

� 
�k � �k���
y
TAy

k��A
y
ky � xT

k��

Ay

k �Ay
k���A

y
ky�	


���
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Therefore by 
���� 
���� 
��� and since �k��� �k � B� we have

jT�j � C�j�k � �k��j 	
We may now combine the estimates we have established for T�� T� and T� to give

j�k�� � ��jj� � xT
k��

yj � C� j�k�� � ��j j�k � ��j j�k � �k��j
�j
kxkk � kxk��k�
kxkk���
kxk��k���j � jT�j

� 
C� � C��j�k�� � ��j j�k � ��j

since �k��� �k � B and 
��� holds
 Let us see now that
�

� � xT
k��

y

 �
 Note that

xT
k��

y � gTAy
k��A

y
�g

�
dX

j����

��

j



j � �k���

j � ���
� kgk�



d � �k���

d � ���
� 
���

From this expression we can conclude xT
k��

y � 	 since �� 
 
m�� � 
d and also
�k�� 
 
m�� � 
d� by the way we compute the iterates in Algorithm �
�

We can now claim 
��� when kyk � � and b� 
 
�


Case ���
 kyk � � and b� � 
�

In this case we must use the ideal safeguard� setting b� � 
�
 Before proceeding with
the proof� we point out that this can only occur when �� � 
�
 To see this recall
that if �� 
 
� we have B � f� j j����j � �����

�
g� and we proved that �k��� �k � B

implies b� � B
 Therefore
b� � �� � 
� � ��

�b� � 
� � ��
�


 
�

if �� 
 
�

To continue with the proof we write the formula for �k�� in this case as

�k�� � T� � T�

where

T� � ��k�� � 
� � ���k

and

T� �
kxkkkxk��k
kxkk � kxk��k�
�kxkk� 
�� ��kxk��k


�k�� � 
��
�k � 
��


�k � �k���
�
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Since b� � 
� we have � �
�k � 
�
�k � �k��

and therefore

�kxkk� 
� � ��kxk��k �

�k � 
��kxkk� 

� � �k���kxk��k

�k � �k��

�

�k � 
���
k � �� k� � kxk��k
kxk��k� kxkk�

kxk��k� kxkk �

�	�

by Lemma �
� �iii�

Using 
�	�� 
��� and Lemma �
� �iii�� we obtain

T� �
kxkkkxk��k�
k� k � ��
�k�� � 
��
�k � 
��


�k � 
���
k � �� k� � kxk��k
kxk��k� kxkk� 	

By 
��� and the hypothesis that �k��� �k � B� we have

jT�j � C�j�k�� � 
�jj�k � 
�j	 
���

We now write

�k�� � �� � ��k�� � 
�� ���k � �� � T�

� �
�k�� � ��� � 
� � ��
�k � ��� � T� 	

Equation 
��� and the fact that �� � 
� yield

j�k�� � ��jj� � yTxk��j � j�k�� � ��jj�k � ��j
j�k � �k��j jyT 
xk � xk���j� jT�j 	

Observe that jyT 
xk � xk���j � jgT 
A � �kI�y
A � �k��I�y
A � ��I�ygj� and we
can compute and upper bound for this term using Cauchy�Schwartz inequality�
continuity of k�k and that �k��� �k � B
 Therefore� by 
��� and since �k��� �k � B

j�k�� � ��jj� � yTxk��j � 
C	 � C��j�k�� � ��jj�k � ��j	
Using 
���� we can now establish 
��� when kyk � � and b� � 
�


Case �
 kyk 
 �

In this situation� we are in the hard case and therefore �� � 
� and g 	 Si�
i � �� �� 	 	 	 � � with � � � 
 d
 For this case we will �nd a neighborhood B of
�� such that �k��� �k � B implies b� � 
�

Let the function �
�� � k
A��I�ygk
 Then �
�� is strictly increasing in 
�
� 
�����

and there exist �a� �b such that �
�a� �
�y

�
and �
�b� �

���y

�
� with �y � kyk
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Let

r� � min

�

� � �a

�
�

� � �b

�
�

��� � 
�

�

�
and B� � f� j j�� ��j � r�g	

Then for �k��� �k � B�
�y

�
� kxk��k� kxkk � ���y

�
and 
� � r� � �k��� �k � 
� � r� 
 
��� 	

Now observe that using 
��� and Lemma �
� �iii� we can write

b� � �� � b� � 
�

�

�k�� � 
��kxk��k
kxkk ��� � 
�k � 
��kxkk
�� kxk��k�

�
kxkk � kxk��k� � 
�

� �k � 
� �
kxk��k
�� kxkk�
kxk��k� kxkk�

��
k� k � ��

� �k � 
� �
�y

�
���y�

���
k� k � ��
	 
���

Observe now that for �k��� �k � B�

�
k� k � �� � � � ��kgk�

d � 
��



��� � 
���
� 
���

Using 
��� and 
��� we obtain

b�� 
� � �k � 
� �
�y

�
���y�

��� � 
���

� � �	�kgk�

d � 
��
�

Let � � �y
�
���y�

��� � 
���

� � �	�kgk�

d � 
��

 Observe that � is well de�ned since 
d � 
� would

imply g � IRn � � f	g
 Observe also that � � 	� since � � �y and 
��� � 
�
 Then�

for �k � 
� � � we have b� � 
�
 So� let

r� � minfr�� �g and B� � f� j j� � 
�j � r�g	
It follows that for �k��� �k � B�� we have b� � 
� and we must use the ideal
safeguard� setting b� � 
�
 The proof now proceeds as in Case �
� where the neigh�
borhood B is given by B�� and we use 
��� instead of 
���

The analysis of the two cases concludes the proof
 �

Note that the assumption in Lemma �
� that the trust�region constraint is
binding at the solution includes the possibility of the hard case� since in this case
x� � �Ay

�g � z� with z � S� and kx�k � �
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����
 Local Convergence Result

Theorem ��� Let �� � 
� be the Lagrange multiplier corresponding to a boundary
solution of problem ���� with g �� 		 Let f�kg� fxkg be the sequences of iterates
generated by Algorithm �	� using the two�point interpolating scheme given by ����
to update �	 There exists a neighborhood B of �� such that if �i��� �i � B then for
k � i� �

�i� f�kg remains in B and converges q�superlinearly to ��	

�ii� fxkg converges q�superlinearly to y � �
A� ��I�yg	

Proof
 First we show that f�kg converges to �� and that the rate of convergence is
superlinear

Let r � IR� r � 	 and B � f� j j� � ��j 
 rg be the neighborhood of �� stated in
Lemma �
� and suppose that �i��� �i � B� for i � �
 Then� Lemma �
� implies
that there exists C such that

j�i�� � ��j � C j�i � ��j j�i�� � ��j	 
���

Let !r � minfr� �
�Cg� de�ne bB � f� j j�� ��j 
 !rg and observe that bB � B
 Suppose

�i��� �i � bB� then �i��� �i � B and 
��� holds

Observe now that for �i��� �i � bB we have Cj�i�� � ��j � �

� and therefore

j�i�� � ��j � �

�
j�i � ��j

which implies �i�� � bB � B

It follows inductively that if �i��� �i � B then �k � B for k � i�� and this implies

j�k � ��j � �

�k�i��
j�i�� � ��j

and therefore �k � �� as k �


To see that the rate of convergence is q�superlinear� observe that by 
���� for k � i
we have

j�k�� � ��j
j�k � ��j � Cj�k�� � ��j�

which goes to zero as k goes to in�nity

In the second part of the proof we show that the sequence fxkg converges superlin�
early to y � �
A� ��I�yg
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Recall from Lemma �
� that xk � �Ay
kg and let us study xk � y which is given by

xk � y � 
A� ��I�
yg � 
A� �kI�

yg

� 
A� ��I�
y

A� �kI�� 
A� ��I��
A� �kI�

yg

� 
�� � �k�
A� ��I�
y
A� �kI�

yg	

using 
��� and rearranging terms
 Taking norms on both sides we have

kxk � yk � j�k � ��j k
A� ��I�
ykk
A� �kI�

yk kgk
� bCj�k � ��j 
���

for a positive constant bC� since �k � B� �� � 
� and kgk is constant
 Therefore� since
�k � �� as k � 
� we have that xk � y as k � 


To see that the rate of convergence is q�superlinear� observe that 
��� and 
���
imply

kxk�� � yk
kxk � yk � j�k�� � ��j

which goes to zero as k goes to in�nity
 This completes the proof
 �

����� Near Hard Case

The next lemma provides a relationship between the function � and the interpolating
function 
���
 We will use this relationship in the analysis of the near hard case


Lemma ��� At iteration k of Algorithm �	� the interpolating function ���� satisfy

b�
b��� �
�k� � 
b� � �k�

�
xT
k
xk�� �

kxk��kkxkk�
k� k � ��
b� � �k���


�k � b���
k� k � �� � kxk��k
kxkk� kxk��k�

	
�

with �
k� k � �� as in ��
� and b� given by ��
�	

Proof
 By 
��� and Lemma �
� �iii�� we have

b�
b�� �
��


 � b� � ��
�k���� �
��


 � �k��

� 
�� ���
�k�� 
� � ��
��


 � �k

� �
�k� � �gT 
xk � xk��� �
���
b�� �k���



 � b��

 � �k���

�

�� ����
b� � �k�



 � b��

 � �k�



Large�Scale Trust�Region Subproblem ��

� �
�k� � 
b�� �k�x
T

k
xk�� �

��
b�� �k�
b�� �k���



 � b��

 � �k�

 � �k���

� �
�k� � 
b�� �k�x
T

k
xk��

�
kxk��kkxkk
kxkk � kxk��k�
b� � �k�
b�� �k���


�kxkk� 
�� ��kxk��k�
�k � �k���
�

where � �
�k�� � b�
�k � �k��


 Thus� the result follows from Lemma �
�
 �

A few comments are in order concerning the near hard case
 As mentioned
in Section �� �nding �� 
 
� in a near hard case is a very ill�conditioned process

The di�erence 
�� �� can be very small to the extent of being undetectable within
the given tolerances
 The smaller the value 
� � ��� the harder it is to determine
f��� x�g
 Furthermore� rounding errors generally will convert an exact into a near
hard case
 Although 
� is still a pole of � when g is not exactly orthogonal to S��
the weight of such pole is very small in comparison to the other poles because the
expansion coe�cients of g in the basis of eigenvectors of A are practically zero for
those eigenvectors associated with 
�
 The strategy that we follow in Algorithm �
�
for dealing with this case consists in building an interpolating function that ignores
the pole 
� at early stages� using the eigenpair corresponding to the second smallest
eigenvalue of B�k to obtain the interpolation points
 In addition� we use the second
eigenpair to compute a vector that might be a quasi�optimal solution for the trust�
region subproblem as established in Theorem �
�
 Moreover� as that theorem and
related results established� it is not necessary to compute an eigenpair corresponding
to the second smallest eigenvalue
 This is especially useful when the vector g is
orthogonal or nearly orthogonal to several eigenspaces corresponding to the smallest
eigenvalues of A and those eigenvalues are clustered


If we use information concerning a second eigenpair then we will have �k � 
�

This occurs because the �rst component �� of the eigenvector 
��� u

T

��
T associated

with ��
�k� is too small� so that ku����k � kxkk becomes excessively large
 There�
fore f�k� xkg is de�ned as f�i
�k�� u����g
 Intuitively� this is a good strategy since
in the exact hard case this would continuously select the correct eigenvector that
will approach 
�� pT� �

T when � tends to the value ��� stated in Lemma �
� from either
side


Now� at iteration k the parameter �k is updated as �k�� � b�� b�
b�� with b� � 
U�
where either b� 
 
U� b��
b�� � �� or b� � 
U� b��

U� 
 ��
 By the same arguments of
the proof of case � in Lemma �
�� there exists a neighborhood B of �� such that if
�k��� �k � B then b� � B� with jb� � �kj � �j�� � �kj� for � � 
	� ��
 In other words�
eventually the safeguarding b� � 
U is no longer necessary
 If �k��� �k � B then
Lemma �
� implies that j b�
b����
�k�j � �jb���kjj����kj
 The agreement betweenb� and �k and between b�
b�� and �
�k� drive �k towards �� � �� � �
���
 As �k

approaches ��� the reduction of the safeguarding interval ��L� �U � at every iteration
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provides a means to avoid the numerical di�culties associated with a near hard case
and eventually there is no need to use a second eigenpair of B�k 
 At early stages�
however� it might be that b� � 
U
 Although �

�� is in�nite� the interpolating
function value b�

U� is �nite
 Using �k�� � 
U � b�

U� is essential in keeping the
process under control


��� Global Convergence

Theorem ��� Algorithm �	� is globally convergent	

Proof
 The goal of Algorithm �
� is to solve the trust�region subproblem by either
determining the existence of an interior solution� or by computing an optimal value
�� for the parameter �� such that the solution to the parameterized eigenvalue
problem for B�� can be used to compute a boundary solution for the trust�region
subproblem
 The global convergence of Algorithm �
� is achieved by keeping �k in
an interval that contains the optimal parameter ��

We �rst recall that the initial safeguarding interval ��L� �U � contains the optimal
value ��
 Starting with that interval� the updating procedure for �L and �U � guar�
antees that �� remains in the interval and that the safeguarding interval is reduced
at each iteration
 Therefore� since �k � �k � gTxk� after a �nite number of itera�
tions either the sequence f�kg reaches the neighborhood of �� of Theorem �
� that
guarantees convergence� or the length of the safeguarding interval j�U ��Lj goes to
zero with �L � �� � �U 
 �

� Numerical Experiments

In this section we present numerical experiments to demonstrate the viability of our
approach and to illustrate di�erent aspects of our method
 We implemented Algo�
rithm �
� 
LSTRS� in MATLAB 	�� using a Mex�le interface to access the Implicitly
Restarted Lanczos Method 
IRLM� ���� implemented in ARPACK ���
 We ran our ex�
periments on a SUN Ultrasparc �	 with a �		 MHZ processor and ��� Megabytes of
RAM� running Solaris �
�
 The �oating point arithmetic was IEEE standard double
precision with machine precision ���� � �	��	� ��	��� 
 We present �ve sets of exper�
iments
 In the �rst and second sets we study the sensitivity of LSTRS to di�erent
tolerances for the trust�region radius and to di�erent sizes of the trust�region radius�
respectively� for problems where the hard case is not present
 In order to put our
method in context� we include the number of matrix�vector products required by
the Conjugate Gradient Method to solve systems of the form 
A� �I�x � �g
 The
third set of experiments illustrates the local superlinear rate of convergence
 The
fourth set shows the behavior of LSTRS in the hard case
 In the �fth set we provide
a comparison with the semide�nite programming approach presented in ����
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The following tolerances are �xed in all the experiments
 �� � �	���
�� � �	��� �Int � �	��
 We will indicate the values for the rest of the parame�
ters when we describe each particular set of experiments


��� Di	erent Tolerances

In the �rst experiment� we show the behavior of the method when di�erent levels of
accuracies of the norm of the trust�region solution are required
 The matrix A in 
��
was A � L� �I� where L is the standard ��D discrete Laplacian on the unit square
based upon a ��point stencil with equally�spaced mesh points
 The shift of ��I was
introduced to makeA inde�nite
 The order of A was n � �	��
 We solved a sequence
of twenty related problems� di�ering only by the vector g� randomly generated with
entries uniformly distributed on 
	� ��
 We solved each of these problems for a �xed
trust�region radius � � �		 and for �� � �	�	� �	��� �	��� where �� is the relative
accuracy of the norm of the computed solution with respect to �
 The initial 
U was
the minimum of the diagonal of A and �� � 
U
 The tolerance for a quasi�optimal
solution was set to �HC � �	��� in order to allow the method to compute a boundary
solution� otherwise the quasi�optimal stopping criterion would be satis�ed �rst


For �� � �	�	� �	�� the number of Lanczos basis vectors was limited to nine
and six shifts 
i
e
 six matrix�vector products� were applied on each implicit restart�
while for �� � �	��� the number of vectors was twenty with fourteen shifts on
each implicit restart
 The maximum number of restarts allowed was forty �ve for
�� � �	�	� �	�� and one hundred for �� � �	��
 More basis vectors were needed for
�� � �	��� since in this case the eigenvalues were computed to a higher accuracy

We chose v�� the initial vector for the IRLM� in the following way
 In the �rst
iteration of LSTRS� v� � 
�� �� 	 	 	 � ���

p
n� � and subsequently� v� was the �rst

column of the matrix V containing the Lanczos vectors computed by the IRLM
for the previous bordered matrix
 This choice standardized the initial vector along
the set of tests and performed better than a randomly generated vector� or the
eigenvector corresponding to the smallest eigenvalue of B�k� or the vector 
	� gT �T 

Note that the last two options have the additional disadvantage of preventing the
IRLM from �nding the eigenspace of B� corresponding to 
� whenever a potential
hard case is present
 As in ���� we relaxed the accuracy required in the eigenvalue
solution and made it proportional to the relative accuracy in the computed solution

Speci�cally� kB�q � q�k 
 �Lan� where �Lan � maxfminf�Lan� j
�kxk
 jg� �maxg and
�max � 		���� 		�� 			�� for �� � �	�	� �	��� �	��� respectively


In Table � we report the average number of iterations of LSTRS 
LSTRS IT��
the average number of matrix�vector products required by LSTRS 
LSTRS MV� and
the average number of matrix�vector products required by the Conjugate Gradient
Method 
CG MV� to solve the system 
A � ��I�x � �g to the same accuracy ��
in the norm of the computed solution of LSTRS
 The value of �� was the optimal
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value computed by LSTRS


�� LSTRS IT LSTRS MV CG MV LSTRS MV

CG MV

�	�	 �
		 ��
		 ��
�� �
��
�	�� �
�	 ��
		 ��
		 �
��
�	�� �
�� ���
�	 ��
�� �
��

Table �� Average behavior for di�erent tolerances

We observe that for �� � �	�	� �	�� the behavior in ���� is reproduced� a
trust�region solution requires fewer than twice as many matrix�vectors products
on average than the number needed to solve a single linear system to the same
accuracy using conjugate gradients
 For �� � �	��� even though LSTRS requires
more matrix�vector products� the cost of LSTRS is less than three times the cost of
solving one system by conjugate gradients


If we repeat the experiment setting the tolerance for a quasi�optimal solution
to �HC � �	��� we obtain the results in Table �� where we observe the low number
of matrix�vector products required by LSTRS
 In this experiment we used nine
Lanczos basis vectors for all cases and allowed a maximum of forty �ve restarts


�� LSTRS IT LSTRS MV CG MV LSTRS MV

CG MV

�	�	 �
		 ��
		 ��
�	 �
��
�	�� �
�	 ��
		 ��
�	 	
��
�	�� �
�	 ��
�� ��
�� 	
��

Table �� Average behavior for di�erent tolerances allowing quasi�optimal solutions

��� Di	erent Trust
Region Radii

The second experiment illustrates the behavior of LSTRS for di�erent sizes of the
trust�region radius
 The matrix A in 
�� was of the form A � UDUT with D
diagonal and U � I��uuT � uTu � �
 The elements ofD were randomly selected from
a uniform distribution on 
��� ��
 Both vectors u and g were randomly generated
with entries uniformly distributed on 
�		�� 		�� and then u was normalized to have
unit length
 The order of A was n � �			
 We solved a sequence of ten problems
generated with di�erent seeds� for a �xed tolerance �� � �	�� and � varying from
�		 to 	
			� by a factor of �	� for a total of seventy problems
 The initial 
U was
set to ��	� and �� � minf	� �Ug
 The tolerance for a quasi�optimal solution was
set to �HC � �	��


The parameters for the IRLM were the following
 For � � �		� �	 the number
of Lanczos basis vectors was thirty and twenty shifts were applied on each implicit

I I I 

I I I 
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restart� while for � � �� the number of vectors was nine with six shifts on each
implicit restart
 The maximum number of restarts was one hundred and �fty and
forty �ve� respectively
 The di�erence in the number of basis vectors is due to the
fact that for larger radii the hard case and near hard case are more likely to occur
and therefore the smallest eigenvalues of the bordered matrix become more clustered
and the IRLM needs more space and iterations to compute the desired eigenpairs
to the required accuracy
 The initial vector for the IRLM was chosen as in x�
�
 We
relaxed the accuracy required in the eigenvalue solution in the following way
 The
initial values for �Lan was 			�� 		� and 		�� for � � �		� �	 and � 
 �	� respectively


The value of �Lan was kept the same until

������� kxkk
�

����� 
 		�� when �Lan � 			��� 			�

and 		��� for � � �		� �	 and � 
 �	� respectively
 The results of the experiment
are shown in Table �


� �		 �	 � 		� 			� 				� 					�
IT �
� �
� �
� � �
� � �

LSTR MV �	��
� ��� ��
� ��
� ��
� ��
� ��
�
CG MV ���
� ��	 ��
� ��
� ��
� �� ��
�

kg��A���I�x�k
kgk �	�
 �	�
 �	�� �	��� �	�� �	�� �	��
���
�kx�k


��� �	��� �	��� �	�� �	�� �	��� �	��� �	��

Table �� Average behavior for di�erent trust�region radii

As observed in ����� the Conjugate Gradient Method has a much easier time
for smaller values of �


��� Superlinear Convergence

The purpose of the third experiment was to verify superlinear convergence
 The
matrix A was again set to A � L � �I with L the ��D discrete Laplacian on the
unit square� but now n � ���
 The vector g was randomly generated with entries
uniformly distributed on 
�		�� 		��
 We studied problems with and without hard
case
 To generate the hard case� we orthogonalized the vector g randomly generated
as before against the eigenvector q corresponding to the smallest eigenvalue of A

We accomplished this by setting g � g�q
qTg�
 For the problem without hard case
the trust�region radius was � � �	 and �� � �	���
 For the problem with hard case
the radius was � � �		 and �HC � �	���
 The eigenproblems were solved with the
MATLAB routine eig
 The results are shown in Table �� were we report the quantity���
�kxkk


��� for the problem without hard case� and the quantity
��i���������� 	�

�
���
��

���
�ex�
from Theorem �
�� for the problem with hard case
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k
���
�kxkk


���
	 �
������e�	�
� �
�	����e�	�
� �
��	�	�e�	�
� �
������e�	�
� �
������e�	�
� �
������e�	�
� �
��	��	e�	�
� �
	�����e�	�
� �
	���	�e���
� �
�	����e���

k
��i��k������k�� 	�

�
���
��

���
�ex�
	 �
������e�	�
� 

� �
������e�	�
� �
����	�e�	�
� �
�	����e�	�
� �
������e�	�
� �
������e�	�
� �
������e�	�
� �
������e��	
� �
�����	e���


a� 
b�

Table �� Veri�cation of superlinear convergence for problems without hard case 
a�
and with hard case 
b�

The quantity k
A � ��I�x� � gk�kgk was of order �	��	 for problem 
a� and
�	�� for problem 
b�
 A 
 in the hard case means that we could not check for a
quasi�optimal solution since the conditions of Lemma �
� were not satis�ed


��� The Hard Case

The fourth experiment illustrates the behavior of the method in the hard case
 The
matrix A was of the form A � UDUT � with D � diag
d�� 	 	 	 � dn� and
U � I � �uuT � uTu � �
 The elements of D were randomly generated with a
uniform distribution on 
��� ��� then sorted in nondecreasing order and set di � ��
for i � �� �� 	 	 	 � �� allowing multiplicity � for the smallest eigenvalue of A
 Both
vectors u and g were randomly generated with entries selected from a uniform dis�
tribution on 
�		�� 		�� and then u was normalized to have unit length
 The order
of A was n � �			


In this case� the eigenvectors of the matrix A are of the form
qi � ei � �uui� i � �� 	 	 	 � n with ei the i�th canonical vector in IRn and ui the
i�th component of the vector u
 This provides complete control in the generation of
the hard case
 In fact� if � � � the vector g was orthogonalized against q� computed
by the formula given above
 For � � �� g was computed as the sum of the vectors in
an orthonormal basis for the orthogonal complement of S�
 After this� a noise vector
s was added to g and g � g�s

kg�sk 
 Both hard case and near hard case were generated
by adding noise vectors of norms �	�� and �	��� respectively
 To ensure that the
hard case really occurred� we computed �min � k
A� d�I�ygk and set � � ��min
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The problems were solved to the level �HC � �	��
 The initial 
U was set to ��	�
and �� � minf	� �Ug


The parameters for the IRLM were chosen as follows
 For the hard case� nine
Lanczos basis vectors with six shifts on each implicit restart and a maximum of forty
�ve restarts
 For the near hard case� eighteen Lanczos basis vectors with twelve shifts
on each implicit restart and a maximum of ninety restarts
 The di�erent number of
basis vectors is due to the fact that in the near hard case the smallest eigenvalues
of the bordered matrix become more clustered and the IRLM needs more space in
order to compute the desired eigenpairs
 The tolerance �Lan was �xed at �	��


In Table � 
a� and 
b� we summarize the average results for a sequence of ten
problems generated with di�erent seeds� for problems with hard case and near hard
case� respectively


� MV IT k�A���I�x��gk
kgk

� ���
� �
� �	��

� ��	
� ��
� �	��

�	 ��	�
� ��
� �	��


a�

� MV IT k�A���I�x��gk
kgk

� ����
� �	 �	�


� �	��
� �
� �	�


�	 �	��
� �
� �	�



b�

Table �� 
a� The Hard Case and 
b� Near Hard Case� when S� has dimension � � �


��� Comparison with the semide�nite programming approach

Finally� we compared LSTRS with the semide�nite programming approach of ����

In this experiment� we solved two di�erent families of problems
 For each family�
we generated ten problems of each type 
easy and hard case� with di�erent seeds
and solved them with Algorithm �
� 
LSTRS� and the semide�nite programming
approach 
SDP� of ����
 In both implementations the eigenproblems were solved by
the function eig of MATLAB so that the methods worked with eigenpairs with the
same level of accuracy� and also to avoid the inconsistencies associated with having
two di�erent eigensolvers
 We report average number of iterations 
IT�� average
magnitude of the residual k
A � ��I�x� � gk�kgk and average relative accuracy in
the norm of the trust�region solution� j�� kx�kj��
 Since we were using the func�
tion eig as eigensolver� we are also reporting the average number of calls to the
eigensolver 
SOLVES� to provide a means of comparing the amount of work needed
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by each method
 It is important to point out that in large�scale applications the
computational e�ort will concentrate on solving the eigenvalue problems and there�
fore in such situations we should also compare the cost of solving each eigenvalue
problem


In the �rst family of problems� the matrix A was A � L� �I of order n � ���
and the vector g was randomly generated with entries uniformly distributed on 
	� ��

As in x�
� we orthogonalized g against the eigenvector of A corresponding to 
� to
generate the hard case
 For both easy and hard case we added a noise vector to g�
of norm �	��
 The trust�region radius was � � �		
 We used �� � �	�� and we ran
the experiments with �HC � �	�� and �HC � �	��
 We report these results in Tables
� and �� respectively


IT SOLVES kg��A���I�x�k
kgk

���
�kx�k


���
A � L � �I easy LSTRS �
	 �
	 �	��
 �	��

case SDP �
� �
� �	�
 �	�


hard LSTRS �
	 �
� �	�� �	���

case SDP �
� �	
� �	�� �	��

Table �� Comparison with Semide�nite Programming approach
 First set of prob�
lems� �HC � �	��


IT SOLVES kg��A���I�x�k
kgk

���
�kx�k



���
A � L � �I easy LSTRS �
� �
� �	�� �	��

case SDP �
� �
� �	�
 �	�


hard LSTRS �
	 �
� �	�� �	���

case SDP �
� �	
� �	�� �	��

Table �� Comparison with Semide�nite Programming approach
 First set of prob�
lems� �HC � �	��


In the second family of problems A� g and �min were generated exactly as in
x�
�� where A � UDUT of order n � ���
 For the easy case� � � 		��min and for
the hard case � � ��min
 The tolerances used for Algorithm �
� were �� � �	��

and �HC � �	��
 The results are reported in Table �

The previous tests indicate a marginal advantage to our algorithm in most

cases
 We believe this is partially due to the fact that in the SDP approach it
is necessary to compute the smallest eigenvalue of A in order to begin the major
iteration� while our approach avoids this extra calculation
 From the comparative
results� we can see that LSTRS obtained solutions with improved feasibility over
the ones computed by the semide�nite programming approach
 Moreover� LSTRS
required slightly less computational e�ort overall to compute the solutions� especially
in the hard case
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IT SOLVES kg��A���I�x�k
kgk

���
�kx�k



���
A � UDUT easy LSTRS �
� �
� �	�
 �	��	

case SDP �
� �
� �	�	 �	�	

hard LSTRS �
� ��
� �	�
 �	��

case SDP ��
� ��
� �	�� �	��

Table �� Comparison with Semide�nite Programming approach
 Second set of prob�
lems


� Conclusions

We have presented a new algorithm for the large�scale trust�region subproblem

The algorithm is based upon embedding the trust�region problem into a family of
parameterized eigenvalue problems as developed in ����
 The main contribution of
this paper has been to give a better understanding of the hard�case condition and
to utilize this understanding to develop a better treatment of this case
 As a result�
we have designed a uni�ed algorithm that naturally incorporates both the standard
and hard cases


We have proved that the iterates for this new algorithm converge and that the
rate of convergence is superlinear� and we have demonstrated this computationally
for both the standard and hard cases
 This result represents a major improvement
over the performance of the method originally presented in ����
 That approach used
a di�erent iteration for the hard case that was linearly convergent
 In practice this
behavior seemed to occur often and greatly detracted from the performance
 It is
worthwhile stressing that in the hard case� the algorithm presented here produces a
sequence f�kg which converges superlinearly to the optimal multiplier �� � 
� and a
sequence fxkg which converges superlinearly to the vector p� � �
A� 
�I�yg
 Note
that� although p� is not the solution of the trust�region subproblem� it can be used
to compute a nearly optimal solution by means of Theorem �
�
 We also compared
our method to the semide�nite programming approach presented in ����� obtaining
better results in terms of feasibility


Our motivation for developing the LSTRS method came from some important
large�scale applications
 In particular� the regularization of ill�posed problems such
as those arising in seismic inversion ��	� provides an important class of trust�region
subproblems
 It was shown in ���� that near hard cases are the common situation
for this class of problems where the vector g is nearly orthogonal to eigenspaces
corresponding to several of the smallest eigenvalues of A
 The work in ���� also
reports the successful application of LSTRS to the regularization of discrete forms
of ill�posed problems from inverse problems� including problems with real data

Further work in this area should include the use of LSTRS within a trust�region
method for the solution of large�scale optimization problems
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