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ABSTRACT

NUCLEON RECURRENCES IN QUARK BAG MODELS

Eric Alexander Umland

The c¢loudy bag model introduces a fundamental scalar
field taken to be the pion into the MIT bag Lagrangian so as
to restore <chiral invariance to the theory. One also ac-
quires the capability of calculating pion-baryon interaction
guantities such as decay widths and coupling constants. 1In
this work we review the MIT and cloudy bag formalism. We
calculate the AAr coupling constant and show that it dis-
agrees with the single experimental determination of fAAn’
We also investigate the N*(1470) in the context of the
cloudy bag theory. We use gluonic and pionic self-energy
terms to mix the two orthogonal SU(6) N* states. After cor-
recting the masses for spurious center-of-mass motion we ob-
tain excellent agreement with those found in Ayed's two
level phase shift analysis of nN scattering in the N* re-
gion. A calculation of N*~Nn and N*-An partial widths is
also in good agreement with those of Ayed. Finally, we show
that the bag theory predicts the existence of 3 quark + 1
gluon bound states. There are two degenerate low-lying such

. *
states, with zeroth-order masses near those of the N and



ii

with quantum numbers of the nucleon, which we call '"gluonic
nucleons" (NG). We discuss preliminary results of cloudy
bag calculations of the N® decay widths infto the N»n channel.
These results indicate that after gluon and pion exchange
effects split the two states, the lower mass NG would be in-

visible in a 7N scattering experiment while the higher state

is a viable candidate for the P11(1710) resonance.
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CHAPTER 1

INTRODUCTION

It is possible that a complete theory of the strong in-
teractions is at hand. This latest attempt, called Quantum
Chromodynammics [1] (QCD), is a non-abelian local gauge the-
ory of gquarks and gluons. Though still attacked by doubters
[2], QCD is not yet in contradiction with any experimental
test and has the advantage of elegance and analogy with
history's most successful scientific theory, Quantum Elec-

trodynamics (QED). The minimal QCD Lagrangian

o= -8 (16,5 - igder G ) Y9

-1
Fu Ee,

(in the notation of Appendix A) is invariant under local

(1)

+

"ecolor" SU(3) transformations. The G:(x) (i=1,...,8) are
the massless vector gluon fields, qa(x) are guark spinors
with color subscript (a=1,2,3), and g is the color coupling

constant. The eight 3 x 3 matrices k;b are the generators



of SU{(3). The field tensor
' i J k

) EV: é,qu-byG;L * %chkG,L,G}

where the fijk are the SU(3) structure constants.

QCD has several important features which distinguish it
from QED. From the non-commuting nature of the generators
it follows that the gluons carry color (unlike photons which
are electrically neutral). Thus there exists in the theory
three and four gluon vertices. This form of direct coupling
is responsible for the property known as "asymptotic free-

dom" whereby the effective coupling constant decreases as

the momentum transfer increases, At high enough energy,
therefore, perturbation theory converges rapidly even for
the "strong" interaction. This is why most of the calcula-

tional successes of QCD have occurred for experiments at
high energy accelerators, such as the prediction of tthe

correct form of scaling behavior.

Since there seems to exist in nature only color singlet
states, the true theory must account for this color '"con-
finement". Though such an effect has not been given a dy-
namical proof in QCD, there is reason to hope that the theo-
ry does confine color at large distances. This optimism is

based upon the fact that the non-abelian nature of the



theory is not only responsible for asymptotic freedom but
also ‘"infrared slavery", or the increase in coupling
strength with distance between color charges. Such a pheno-
menon can be naively understood by realizing that the color
force lines between color charges would tend to collapse
into a tube because of their self-interactions. Consequent-
ly, the energy required to separate color charges grows with
distance and may even become infinite. This effect does not
occur for an abelian field like the photon, and the energy

required to separate electric charge decreases with increas-

ing separation.

Primarily because of the non-linear nature of the theo-
ry inherent in the gluon self-coupling terms in the QCD La-
grangian, no one has demonstrated the existence of bound
state solutions to the equations of motion. Neither has the
rich structure seen in low energy (<2 GeV) hadron scattering
been reproduced, since this is the strong coupling region
where perturbation theory breaks down. One is forced to em-
ploy approximation schemes in order to do bound state or low
energy phenomenology. One of the most interesting and suc-

cessful such attempts is called the MIT Bag Model.

The MIT Bag Model, invented in 1974 by members of the

theoretical group at the Massachusetts Institute of



Technology [3] and detailed in Chapter 2, is motivated in
part by the success of the so-called "parton model" in the
description of deep inelastic scattering. The interior of
hadrons is said to be composed of freely moving point-like
scattering centers or partons (now known as guarks and glu-
ons). The MIT group allowed the gquarks to move freely with-
in the hadron (weakly perturbed by gluon exchange) but pos-
tulated a positive energy density B in a region where quarks
and gluons could exist and a boundary condition forbidding
the flow of color current normal to the surface. The result
was a "bubble" in the vacuum (called by them "bags") stabil-
ized by the momentum pressure of the gquarks on the inside
and the pressue of the vacuum on the outside of the bag. It
can be shown that the model permits the existence of <color
singlet states only. In the static bag, spherical boundary
limit the calculation of the hadronic spectrum and various
hadronic properties such as magnetic moments and charge
radii can be rapidly performed. Rather good agreement with

experiment was obtained [4,5].

One of the problems of the original MIT Bag Model is
that a symmetry possessed by the QCD Lagrangian, namely chi-
ral inv.riance, is lost [6]. As shown in Chapter 3, chiral
invariance (which for massless particles is equivalent to

helicity conservation) can be restored at the expense of



adding a fundamental spin-zero field taken to be the pion.
Moreover, one is now able to calculate "pion" interactions
with bag states and derive hadron-pion form factors. The
interpretation of these results is not gquite clear since we
now have two kinds of pions - the standard gquark-antiquark
pair from SU(6) and the Goldstone boson of PCAC (partially
conserved axial vector current). Nonetheless, the success
of both concepts in describing hadron spectroscopy and weak
interaction phenomenology gives us hope that the two views

can be reconciled.

In the face of this ambiguity, "cloudy" bag models
(describing bags with pionic clouds in and around them) have
been developed [7,8]. One can then calculate pionic contri-
butions to the quark wave function renormalization, pionic
radiative corrections, and pion emission amplitudes [9,13].
Employing these and other techniques such as center-of-mass
motion corrections, pion-nucleon (nN) and pion-delta (nd)
coupling constants and corrections to the MIT bag results

have been calculated with reasonable success [9-13].

It is the purpose of this work to extend these calcula-
tions to more complicated systems, in particular the first
excited state of the nucleon, the Roper resonance. At an

S-matrix pole position of around (1.47-i0.25/2) GeV, the



Roper or N* is thought to possess one radially excited quark
in a (15)2(25) configuration [14]. It then appears in two
internal spin-isospin-space symmetry states that can mix via
gluon and pion exchange. 1In Chapter 4 we calculate the
masses of the two physical N* states as well as N*Nn and
N*An coupling constants and achieve excellent agreement with

experiment [15].

In Chapter 5 we introduce a new object into particle
physics; a 3 quark + 1 gluon bag state called the NG [16].
We show that there can exist two color singlet NG states
with the spin and parity of the nucleon and with zeroth
order mass near that of the N*. In the context of the clou-
dy bag model, preliminary calculations indicate that the NG
can decay into Nn and Anm final staes via gluon absorption
and pion emission by one of the valence quarks. After gluon
and pion radiative corrections mix the two states, the lower
mass physical NG is found to be essentially decoupled from
the Nn channel while the higher state is a potential candi-
date for the P11(1710) resonance. The existence of such a

quark-gluon bound state would be an interesting manifesta-

tion of OCD at medium energies.

A short summary is also given in the fifth chapter.



CHAPTER 2

THE MIT BAG MODEL

2.1 FORMALISM

We begin our discussion of gquark bag models by writing
down the minimal MIT bag model Lagrangian [3,6] (in the no-

tation of Appendix A):

(3) L= --;: ‘f—’(x)z;/roq - B+ &L(lﬁ) '}‘-(r) }p(;()) "(376 |
v

Notice that the Lagrangian density is manifestly invariant
under Lorentz transformations. The first term in L will
yield the kinetic energy of the guarks in the bag. B is the
positive energy density presumed to exist wherever hadron
fields exist. Such a region is V, the volume in space occu-
pied by the bag. The last term involves a Lagrange multi-

plier, lu(x), and is there to insure the correct boundary



conditions [6]. As we shall see, these boundary conditions
render the bag impermeable to the gquark current; hence con-
finement. In the original formulation of the bag model [3],

the boundary conditions are generated by the comparatively
awkward artifice of requiring the guark mass to go to infin-
ity outside the bag, while remaining small or zero inside.

We shall always set the gquark mass to zero identically.

To derive the equations of motion and the boundary con-

ditions, we form the action
t,

(4) W:‘-j L At
€,

and require the variations of W with respect to the fields
and their gradients, xu(x) and its divergence, and the sur-

face of the bag vanish. We have

O=5W = g [Jx 257«

5 3 S(%ﬂ*— a-f-fsf +

where the last term is the variation of W with respect to
the surface S. Upon performance of the indicated opera-

tions, the variational integral becomes



We have used Green's first identity [21)

(7) jJ‘;é F}u;wl?= ‘EJ;‘ ’BV,QLQM’{J‘; BQ“'QM,

where the four-normal np is normalized as n“np=l, in the

derivation of eq.(6). Here V is'the volume and S the sur-
face of the space-time hypertube swept out by the bag. Each
generalized coordinate is varied independently, so the re-

gquirement &W=0 is equivalent to

b ')‘f—: O
8(b) (aw?)b;,: o

in V and

ORI A G A S 2
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L @ W =
9(b) —7 ‘I‘/"},’LKM P, Ao = O

9(c) qr‘f)=: O

on S. Egs. (8a,b) are the Dirac equation for massless fer-

2

mions. It is easy to show that (n ) =1 so Egs. (9a,b)

¥
MM
. 2
require (n X = 1/4. We can choo n ax = +1/72.
q (uu) / se n, +1/
We now turn to the last term in equation (5); the re-
quirement that W be stationary with respect to independent

variations of the position of the surface of the bag. By

analogy with the fundamental theorem of calculus,

dw _ d ¢° -
1s ;JSS fe) dx = £(5)

(10)

one sees that the Lagrangian density vanishes on the sur-

face,

|
(11) 2

FYr-B =Tl a2 (FY)=0.

Application of Egs. (Ba,b) and (9c¢) gives

(12) lMAM(?Tf’) =0 (on S) .

Since nuxp = +1/2 and n“n“ = 1 we have xu = %nu and



o n 3 (FF)= 28 (o S).

For a theory involving colored gquarks and gluons the

derivation is similar [6]:

W= Sc}?fi (x,) B*ELQ&c(GZ‘;{aZ«)}

Q{RCD

where gl is now the Lagrange multiplier and LQCD is eg.(1).

The equations of motion are:

P =
o (5 0 oy &)L 49T B3

(14b) a%q——-,og,‘za"@.; abq, = O

The boundary conditions on S become:
(15a) L O
a =
n’»u. Eu.l/

(15b) = nw_,b,/a,%a_: b

i
(15¢) "o E'LVEAV+"'1 (@ %)"8: O,

We can now prove that only color singlet bag states can

exist [3]. The color generators are
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(16) th jdéc ZO(L?C)

where the current j;(x) is derived from Eg.(l4a):

: I
(17) j() 2K ""‘?("m ):»:glfb);-%b)'

The two terms in j; are the color current of the gluons and

quarks, respectively. We have

t A

w1y

L

where the sum runs over spatial indices only (since Foo

0). By the divergence theorenm,

) Q ija jAs

where the integral is over the bag surface. But from

i _ i
Eq. (15a) we have anlo = nMFUO = 0. Therefore the bag

transforms as a color singlet.
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2.2 STATIC LIMIT

The MIT bag model as written in Egs. (8-15) has been
completely solved only for one spatial dimension [3]. In
the real world of three spatial dimensions, one is forced to
make approximations that render the bag equations tractable.
1f we work in the rest frame of the bag surface, the bag

equations admit a class of solutions for a spherical surface

of fixed radius. This is the "static" approximation to thé

bag model. The normal to the bag surface reduces to
-,0)

(20) YLM— <—-I",O

where we have established a convention by taking nu to be
the interior normal. The bag boundary conditions on the

quark wave functions become

(21a) Q S-;%% = %a, (on S)
) _
(21b) —5}1(%«%“) =28 (OV\ S).

We treat the equations of motion perturbatively. That is,
the bag equations are solved to zeroth order in the color
coupling parameter ms=gz/4n. The quark wave functions ob-

tained satisfy the free particle Dirac equation (8a) subject

to the boundary conditions (2la,b). The spin - isospin
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structure of the 1lowest 1lying 3-quark (baryons) and
quark-antiquark (meson) states formed from these solutions
are that of the SU(6) quark model. The familiar degenerate
multiplets of SU(6) are obtained with the scale of the spec-
trum determined by the adjustable parameter B. The SU(2)
spin symmetry can be broken to first order in o, by quark

hyperfine interactions arising from colored gluon exchange.

The general solution, when quantized, is [4,8]
1,t) = {‘f L (xt) b (nkgm)  #
‘.KI\(I) n:’Z*Jm hXJW\ J W, )
{22) c

L
Lf)hkjm(x/t) dd(n)(\)m) .

The subscript « represents color and isospin internal quan-
tum numbers while n, &, j, m are the radial, Dirac, and an-
gular momentum quantum numbers respectively. The charge
conjugated wave function Wc=82w* and the operator <coeffi-
cients obey the standard fermion creation and destruction

operator anticommutation relations

. t _
{l:of“kw)) E*C“MM)} =

(23)

1}
=

+ .
PREEINREHSY

and all other anticommutators zero.
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The non-linear boundary condition (21b) admits only so-
lutions with spherically symmetric densities, requiring

j = 1/2 and &« = t(j + 1/2) = 1. These guark states are

Slhr% r')
T(?“ f) = N"’:"; h jo ( R )(M ~ASL
S
wamo ur "j: - ™

, state) and

'y =
% ;% (éz%%?— )fﬂ)ﬂl)aﬂ -Athnf;%g

{positive parity or nsl/

n+l (8
(24b)
: { r
iVH —4140 ('jlnfl ‘))L
(negative parity or nPl/) state). The eigenfrequencies are

determined from the linear boundary condition (2la):

(25) jo (flnx) = =X Z, (—Q—w)-

The first few solutions are [4]:

Ql)_l = 2.04 “:,-1 = 5.40
(26)
01'+1 = 3,81 02,+1 = 7.00
We shall only be concerned with the positive parity (& = -1)

solutions and shall drop the the & = -1 and 3j=1/2
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subscripts. The normalization constants Nn are functions of

the bag radius R and eigenfrequency nn according to

2 5 @ + al .
o N [0 52

The bag radius R is not arbitrary; it is related to B
via the non-linear boundary condition. For 3 ls quarks we
have f£rom Eq. (21b):

IS () £ (%)) - 2B

pm—

3
YrR~ or r=R
The solution is

R=( X g
e K= 7B

where we have used Eg. (25) and explicit forms of the spher-
ical Bessel functions [22]. One can also derive Eq. (28)
from an energy-variational principal [4]. The energy of 3

1s gquarks in a bag of radius R, derived from the Hamiltonian

(29)

_ d &; oL
H = 2t 2(28/dt) L
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for all fields ¢i‘ is

3L, , 4 TR’
s E(R)= T +-3-HR S .

Equilibrium is obtained by minimizing E such that J3E/oR =0.
The result is Eg. (28). The non-linear boundary condition
is actually a pressure balance equation; the pressure of
the quarks on the interior shell of the bag is balanced by

the vacuum pressure B on the exterior.

2.3 STATIC PROPERTIES OF BARYONS

Armed with these results, we can proceed to the calcu-

lation of static baryon properties. We work in the symmetry

X suU(2) X suU(2), {ignoring strange-

group SU(3) isospin

color spin
ness reduces SU(3)flavor to the subgroup su(z)isospin)'
There exist in the theory color singlets only, so the bary-
ons transform as a 1l; the color wave functions are totally

anti-symmetric. We shall write this wave function as

| b‘nr Ber L'):
(31) ‘ CA> = \)—Z— b’; g E: \ °>
+

*
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where the operators in the determinant create quarks 1, 2,
and 3 (superscript) of a given color (subscript Red, Blue,
or Green). From now on we shall omit the superscript; the
gquark number will be implied by the operator's location in a

particular term, e.g.

+
ICA>=;JL"ZZQR(§BBZ— gc, B) *
t + + 1+ +
o (550 5) + B CRE B )10

For three gquarks in SU(2) we have states whose wave
functions are symmetric or mixed under interchange. The
mixed symmetry states can be chosen to be either "mixed sym-
metric" (symmetric under the interchange 1-2, no symmetry
under 1«3 or 2«3) or "mixed antisymmetric" (antisymmetric
under 1-2). A mixed symmetric state for isospin quantum

numbers (I=1/2, I3= +1/2) is written [23]

(32a) I‘Ms V__{(ud-toiu.)u, Zou&d}

where u, d stand for up and down gquarks, respectively. The

mixed antisymmetric state is
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L (bto‘-—rj.,ut)bt .

(32b) —Ma VR

A symmetric state for (I=3/2, I3= +1/2) is simply

I = \IJ:% (uuwd + udu + oI.bLM).

(32¢)
The SU(2)spin states are of the same form with (u,d) re-
placed by (t,4). The spinor representations for these

states are { ; ) and ( : ), respectively.

The baryon wave functions must be totally
antisymmetric; since the color wave function is always an-
tisymmetric it follows that the SU(2) . X SU(2), . part

spin isospin
must be symmetric under interchange of any two quarks.

These are written as the dimension 20 symmetric class of

wave functions that result from combining three fundamental
representations of SU(2) X SU(2) [23]:
(33a) (I=3/2, 8=3/2): ISSS = (4,4) "Deltas"”
(33b) (I=1/2, 8=1/2): 2”Y*(1__s
’ . + I s ) = (2,2)

ms ms mama

"Nucleons"

where the S refers to the SU(2)spin wave function and the

numbers in parentheses are the (Su(z)isospin' SU(2)spin)
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subgroup dimensionalities. These wave functions are
multiplied by the color state CA and 3(ls) spatial wave
functions (24a) to produce the complete nucleon or delta

state.

In this simplest version of the bag model the

Su(2), symmetry is unbroken. Consegquently

isespin
the nucleons and deltas are degenerate with their mass being

X SU(2)spin
given by Eq. (30). One typically chooses B so that, after
determining the radius R by Eq. (28), the energy E(R) is
midway between the nucleon and delta or 1180 MeV. This

1 (1.4 fm).

scheme yields B*/* = .120 GeV and R = 7 GeV~
We can now reproduce one of the immediate successes of
the static bag model, the calculation of the axial vector

coupling constant of beta decay defined in the static limit

by [23]:
. 3 3 - -
iﬂ - <P' Se“";'—‘ “Z}JJ x 3(")[3“) ‘{/'ES&-‘%)
"'
— ’ . '
(34) - <Pn Sg”""é ig Z;CL)C);L{) ‘F’Sez-fl,_) x

[ 2 (4 car)- 4 270%)).

We can exploit the symmetry of the proton wave function by
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replacing

3
2. GUGRE) — 3 (()G(3) .
L=/
The spin-isospin matrix elements are easily done:
LT, om) | T LeR)) ={seb g [S.41)) = --3!
(35) <.LC" )I[ (DL 1’)‘ <va$;¥), (3)IS(+_!>
(LTI = G2 B 5k1>= ©.

The integral is also simple

jﬁ {/ (Z ")—-76"'"")} { - %%‘)Z

(36) urr

yielding a value [4] for

(|_2'Q' ) = 1,09.

(37) 3(_-“—“‘)
The experimental result is 1.25; the bag model value,
therefore, is a substantial improvement over the

non-relativistic guark model''s 9y 5/3. This reduction is
brought about by the non-negligible lower component of the

relativistic wave function,
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Other static properties such as the magnetic moments
3 L2 Oy
sy KNI Jd% $(Xx PYP)IND>
and charge-radius squared

9y 4w ) Sl ?"+Q‘// 1) V>

with Q = ( 2{3_1;3) in isospin space, have been calculated
[4] with results generally better than the old SU(4)

non-relativistic quark model.

2.4 GLUONIC INTERACTIONS IN THE BAG MODEL

The fit to the hadronic spectrum can be considerably
improved by including gluon exchange terms [5] (Fig. 2-1).
We will show that these terms are of the form of a spin-spin

(01002) ipteraction that breaks SU(2) symmetry. This

spin
breaking will remove the degeneracy of j=3/2 and j=1/2 bary-
ons as well as j=1 and j=0 mesons. To order ms=92/4n the
gluons appear as eight independent abelian gauge fields.
This result is probably necessary for the bag model to be
self-consistent, since the non-abelian terms (presumably the

cause of confinement) have been lumped into the phenomeno-

logical constant B.
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4+ all possible permutations
Fig. 2-1. Time-Ordered Gluon Exchange Rmplitudes.

Since the theory is now essentally abelian all the for-
malism of electrodynamics can be brought to bear. In par-
ticular, the solution to Maxwell's equations in a rigid
fixed spherical cavity with boundary conditions imposed on
the surface is available. This solution is written in terms
of transverse electric (TE) and transverse magnetic (TM)

modes [24,25}:
= ¢ — ? (klm)
Gcot)=—§m~l’ﬁ{ \{1‘;,,)@ +

(40) TM — } -kt

u \/k @) a_(klm) + H.C.

where i=1,...,8 is the color index, k is the gluon eigenen-

ergy and l,m are angular momentum gquantum numbers. The
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spatial functions are

- TE - -
() \/ (R)= Vx(F Bran )

KLwm
and
— —
wm V(= Vx (T2 (FEL)
Kewm
where

(42a) ¢,(£M= 4(k") rem(alﬁ)

is a solution to the Helmholtz egquation

(Vz+ k*) ‘Z[kzm = 0.

(42b)

The left and right coefficients in (40) are normalization
constants and annihilation operators, respectively. The

boundary conditions these functions must satisfy at r = R is

the static limit of Eg. (1l5a):

43 Fi'——7" Bl =PEY =0
(43) Nk, X X r= R =R
where
§TE (Tm) T x \71'5 (™M)
“O ey gream '\'/"‘rfcm}
= "j;t vV = A,k .
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It can be shown (App. B) that the boundary conditions (43)

require
(45a) a-ar(ré(kr)) IT':R = 0 (TE)
and

Lisn) ‘%u«)}hn = O (M)

which determine the eigenenergy k for a given mode and angu-

lar momentum.

The guark-gluon interaction Hamiltonian in the Coulomb

gauge is
: 3 - "";l'" ‘-‘J .
wr My =g [4% §st) ¥ TR 600

We shall be concerned only with positive parity, j=1/2 quark
states; the requirement that Hint conserve angular momentum

and parity limits the gluons to 1=1 TE modes. The solutions

to the boundary condition 4(a) for 1=1 are [26]:
K = kR = 2.75, 6.12, 9.32, 12.49, ..., nu (large n).
The normalization condition
NTE 2 R VT[ 2 1
(any ( ) ( )J = |
k4 A k1,0 r=

leads to [25]
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(3] bl

NN, 77 ;
o NN e g, A K5-20 )

Lee [24] and Close and Horgan [25] have studied the
problem of how the Feynmann rules are modified for perturba-
tion theory inside a fixed spherical cavity. Their formal-
ism, developed in part above, is more convenient than the

semi-classical approach of the original MIT work [6].

The energy shift for the one gluon exchange graph of

Fig. 2-1 is familiar from bound state perturbation theory

[25]:

W AE=Y AL Z_L“X“l Hint | 2

where ¢ is a 2 quark state and the n are all possible inter-

n

mediate 2 quark + 1 gluon states. The result for 3 1ls

quarks, derived in App. C, is

R

§ o ) 2 3,
AE"‘;‘R‘ foLrN, NkR
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RACIVAC S PIOL A

(50)

RGP TN

where H is a spin-isospin hadron state. If we let My egual
the square of the gquantity in brackets and evaluate the in-
tegral numerically (this is possible since My is independent

of R) we generate the following table [25]:

Table 2.1 Values of My for four lowest gluon modes

k1 L1757

k .0004
2

k3 .0004

k L0002
s =2PPZ

M = 177

The total i is identical to the one calculated

semi-classically in Ref. 5 and verifies the consistency of

the perturbation approach.

To illustrate how this interaction removes the degener-
acy between hyperfine baryons of different spin, we will

calculate the matrix element of Te 0, for nucleon and delta
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states, Write

(51) Tfl = Z(Sz, S'?'_ g:)

[

where § = §1 + §2 is the total spin of quarks 1 and 2 and

Sl' S, are their respective spins. For symmetric combina-
|S> = +1 while for

tions of the 2 quark spins (S=1) <S|a-1°o-2

antisymmetric combinations (S=0) <A|al°¢2|A> -3, Cross
terms are zero, <A|al°¢2|8> = 0, since A and S are each ei-
genstates of CloT, . Because we have chosen our mixed sym-
metry components of baryon states to be either symmetric or
antisymmetric under interchange of quarks 1 and 2, the eval-

uation of <H|¢10021H> for nucleon and delta states is par-

ticularly simple. For the nucleon we have
! T . T
(52a) ’;{<SmsIms+ Smalmalqg;.,gmslm: gmaI”w(): - ,
while for the delta
s S I |G a | S L) =4

The energy shift for the delta is positive and equal in mag-

nitude to the negative shift for the nucleon. This split-
ting is, of course, exactly what is needed given a zeroth
order multiplet mass midway between the two states. Isospin

symmetry remains exact.

The energy of a hadron state is now written
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jusnd 'n'. 3 gd _3— .
(53) EH" Z—é— +—;—rrk B'f‘ 3—*5'2 m <H16;G;IH>M
l

and can be minimized as above to find R as a function of B
and L These last two are treated as adjustable parame-

ters.

2.5 ZERO POINT ENERGY CORRECTIONS

In any quantum field theory there is a zero-point ener-
gy f%ﬁb associated with each mode of frequency w (+ for bo-
sons, - for fermions). In unconfined theories this (infin-
ite) energy is unobservable and the scale is redefined such
that the vacuum expectation value of the energy is zero. In
the bag model however, this infinite term is accompanied by
a finite term proportional to 1/R which is observable since
R will vary for different hadrons. The infinite term is ab-
sorbed by a renormalization of the vacuum energy density B,

while the finite zero point energy is parameterized by [5]
(54) E =- 2 / R (2,7 0).

The quantity Zo can be calculated exactly for a slab of

thickness L and volume V but cannot be derived analytically

for a sphere. It has been estimated to be of order 1 but is
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treated as a free parameter in the MIT f£fit [S5]. The
phenomenological value of 1.84 [5] is consistent with the

crude estimate.

The energy of a hadron is now expressed as

Ey (RY= 20 =2 47R° B
P L i m I - S

(55)

2.6 REFIT TO STATIC HADRON PROPERTIES

The MIT group [5] used equation (55) in an attempt to
fit the low lying spectrum of all baryons and mesons. They
included the strange hadrons by increasing the flavor symme-
try to SU(3)flavor and broke it by giving the strange quarks
a mass. The degeneracy of the baryon decuplet and octet as
well as the vector and pseudoscalor meson nonets is removed
by the gluon exchange term. Four free parameters are pre-
sent in the model: B, L Zo, and the strange quarks mass
m . The first three were adjusted to fit the A, N-and v and
the mass cf the strange quark was varied' to fit the 07
(strangeness -3) [5]. The spectrum fit of Ref. 5 is shown

in Fig. 2-2. The best fit is to the baryon decuplet but the

model does rather poorly (as do all constituent quark
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models ) for the psuedoscalar mesons, where the pion mass is

about twice the experimental value.

Other static properties, namely the magnetic moments,
axial vector coupling constants, and mean sguare charge ra-
dius were recalculated and are available in Ref. 5. It
should be noted that for the non-strange hadrons the only
effect on these gquantities caused by the addition of the
gluonic and zero point corrections is that due to the change
in bag radius. (This can be quite significant: the proton
bag radius shrinks from 7 to 5 GeV~'.) For instance, the
value of 9a calculated above (1.09) remains unchanged since
9p is independent of bag radius. However, the magnetic mo-
ments and charge radii are affected. The magnetic moment of
the proton, for example, is reduced from the old value of
2.6/2Mp to 1.9/2Mp {where Mp is the proton mass). Since the
experimental value is 2'79/2Mp’ this was an unhelpful re-
sult. General improvement in the fits, however, will be ob-
tained via renormalization due to pionic emission in the

context of the Cloudy Bag Model, to which we turn in the

next section.
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CHAPTER 3

THE CLOUDY BAG MODEL

The QCD Lagrangian (Eq. (1)) is invariant under global
chiral transformations of the form
Y
T

561 4 (x) — 6451-9 %Oc)

This 1is an exact symmetry because the quarks are massless
and has ats a consequence the conservation of gquark helicity.
The MIT Bag Lagrangian (Eg. (3)) is also chirally invariant
in the interior of the bag, but because of the masslike EW
term chiral symmetry is broken at the surface [6]. This is
1859

easily seen after realizing that 8“ and e do not

commute :

R A
(57) ag;’cz' S = _ (EE‘K>}£}<£;2y’ .

4%

33
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A consequence of this chiral symmetry breaking is that the

isoaxial vector current of the confined quarks,

._3

5 H (x) = c&cx)b’ ?j’ %Lx) &, (x)

is not conserved at the surface but satifies

=@ — -
Q’eu(*): %Cx)n/u};‘_y; %%O&)&Cx)

(59) = =

20 T B 6,09

where au9V=nu6$ and we have used the boundary condition
(15b). The standard method for restoring chiral invariance
is to introduce a compensating degree of freedom for each
generator of the broken symmetry [26]. In the bag model it
is by now common to add a point-like isovector pseudoscalar
field to the bag Lagrangian [7,8] that is identified as a
zero-mass pion. The resulting Lagrangian density possesses
a term that couples the pion to the gquarks; one immediately
envisions baryon-pion interactions. The venerable picture
of a baryon surrounded by a pion cloud is thus realized at

the quark level; to emphasize this point Miller, Theberge

and Thomas have named their theory the "Cloudy Bag Model"

[7,91.
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The Cloudy Bag Lagrangian density is [7]

£y 4300 Yo - B) 6y -

- - — L-£;¢Qxﬂr
+ a‘b(zﬁcx)-aa Gx) + ;;lz 2¢e 5430‘) )

(60)

where ¢ is the pion field and £ = 93 MeV is the pion decay
constant. To first order in g8/f, iCBM is invariant under

the infinitesimal chiral transformations [7]:

(6la)

200 -2 §x)+ 4 %‘ab’r g
o o = Foo-FE-

(It is possible to write a aCBM that is chirally symmetric

to all orders [9].)

In order to quantize the theory, we shall linearize the
Lagrangian by assuming the pion field is small and expanding

the exponential:

53 exp(4 TEY/f)g I &
1306, +5%52P8%864

where the pion field is written (using "box" quantization in

some volume V)
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-
4.'(")(

I I
-} —— aL.—‘ ‘: F*.c:‘
(63) é(X)—ngwk « k *

and extends throughout space. Other chirally symmetric bag
models with an elementary pion exclude the pion field from
the interior of the bag [27] but are not amenable to a quan-

tum perturbative theoretic treatment and are not suitable

ror our purpose,

3.1 "CALCULATING IN THE CLOUDY BAG MODEL

If one considers only the first term in the expansion
(57) then one recovers the original MIT Lagrangian with a
free pion field. The second term is the pion-quark interac-

tion term and leads to an interaction Hamiltonian

(64) Huvt = ’f?_ i(«")?'¢0‘)§$0‘)§0‘)

where the quark-pion pseudoscalar coupling occurs only on
the surface of the bag with a strength 1/2f to this order.
The gquark operator in the static bag limit is just Eq. (22)

while the c-number field takes the form (24a) (for 1721

quarks ).

We are now in a position to calculate, for example,
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NNn, NAn, and AAn coupling constants. To lowest ‘order in
@/f the NNn interaction in the static cloudy bag model is

given by

% (42 ]-£ Ty 275 ce-njim.

(65) H,wf J

Employing the gquark wave functions (24a) and making the re-
3
placement £ - 3 (with 3=3), Eq. (60) reduces to (for

3=1
spin-up protons)

ds
Herppme * <PZI{ 2 | 57 WRE 20, )
« ef ket oy P Z’BCB)“ ff){:&'&_\_/

If we choose the pion momentum to be in the +z direction and

(66)

perform the integration

1

(671

jxﬂ' kR e r —/C%(/zR)F X

we derive

_ L Nia .
Hprppyo © J___ 3{, R / CJZ)

(68) 3/’0('2)/1(’2 \ 34(1'6“(3)2'0)‘“)

The matrix element is the same as that found in the calcula-

tion of 9p:
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(69) 3 L PH| GBI [Pt = _éé‘,. :

In order to calculate coupling constants familiar from
nucleon-nucleon scattering analyses we must relate Egq. (68)

to the free particle NNm interaction Hamiltonian [28,29]

. 0 — .,
H/wvrr = - 3/wwr u (Y u CP) Yy (k) =
(70) p — ‘
{ X | C'¢Ck)“5;50>
where the X, o are isospinors, VN(k) is a normalized nucleon

form factor, and g;N“ is the NNn pseudoscalar coupling con-

stant. In the limit of no nucleon recoil (P,P'-~0) and cal-

culating for ppno, we have (see App. D)
p

Finally, we replace 9§N“/2MN by the pseudoscalar coupling
fan/m" (see App. D) and equate Egs. (68) and (71). It is
apparent that

|
T m 2 YA — e
(72a) 'F:M/ir - q.?:"" = /DLJL‘) 1,-/;@7.,)

and

720) Y (k) = 3%(/05)/’(){
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where we have used (27). Notice that vN(k~0)~1. It is
interésting that when (72a) is evaluated (recall m"=138 MeV,

£=93 MeV, Ql=2.04) we £f£ind

0
(73) ‘FN/V}T = 0.§

which is close to the experimental value fNNn:l'O'

To this order the coupling constants involved in A-N
and A-A transitions are related to fSNn by Clebsch-Gordan
coefficients in the same fashion as in the non-realtivistic

gquark model. For the ANmn coupling,

.

’CAMT (FT()} zSF)(<Sr|;0;m(3ci) l Fr>)
.,.

(74) ‘f:,m,. (A Sz Ts F) ((ff , ‘Z_VEG)C;U)IF‘D)

where P is a m = +1/2, 13= +1/2 nucleon spinor-isospinor, A

is a four component (I=S=3/2) MS= +1/2, I3= +1/2 delta
spinor-isospinor and Sz (T3) is a 2 X 4 "spin (isospin) -

transistion" matrices defined by [28, 29]

- M r wm | 2r
(75) Smsm - (3/2—‘1 V2 8

where the €° are the standard 1 = 1 spherical tensors;
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7(1,24,0) ; go—‘- (201).

(76)

Defining the quark-pion coupling constant

o1 Fegr = 2 Awen =16

we obtain

b4 °
o _ 1’ [ 3 3v . ez
(78) 'FA/VIT— 7E3;77' ( ,_/33""‘) 2(‘%;,7 S mr

The lowest order AAm coupling is also easily calculated:
o (D 11]2— (:ZC)I'HH}
BT (gt 5,6 (0711)

) is the spin (isospin) - 3/2 operator that is
++

0
= 1

zz (8,
sandwiched between delta spinors. Using the Sz = 3/2 A

matrix element, we find
/]

174 - 0 .3 ’ - fL = fL .
(80) _FAAIT-’{% % % - 3 %8871' 5'7r/V/V77_

3.2 RENORMALIZATION AND CENTER-OF-MASS CORRECTIONS

There are two aspects to the perturbative treatment of

pionic effects in the «cloudy bag model. The first,
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discussed above, 1is the assumption that the pion field is
small enough to replace the exponential with a linear pion
coupling to the guarks at the bag surface. Second, we use
the resulting linear interaction Hamiltonian (59) to calcu-
late only low order pionic corrections, such as self-mass
insertions and vertex renormalization, to baryon observ-
ables. These corrections, to be described below, are sensi-
ble because perturbation theory in the cloudy bag model is
rapidly convergent {[9,10,12]. For the nucleon with a bag

radius of 5 GeV™! , the relevant expansion parameter [12]

Y

g - AR

271'7( R,\)
is less than .2 and the upper bound on the mean number of
pions in the cloud is 0.9 as compared to 2.16 in Chew-Low
theory [10}. Another way of understanding this rapid con-
vergence, remarkable in a strong interaction theory, 1is to
note that the form factor (72b) decreases rapidly with k for

R not toco small.

3.2.1 Pionic Corrections In The Cloudy Bag Model

Pionic corrections to order l/f2 in the Cloudy Bag
Model arise via two processes. The first is a modification

to the baryon propagator illustrated in Fig. 3-1 while the
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second is a vertex radiative correction shown in Fig. 3-2,
Let wus consider Fig. 3-1 first. The physical propagator is
viewed as a sum of the bare baryon 1line plus the 1lowest
order self-interaction due to pion emission. In Appendix E

we show how such an interaction leads to a renormalization

of the baryon mass

{8la) M — M +* Z(M)
while the propagator is multiplied by a factor:
/
| | + ZCE),E:.M
(8lb) =
E-M E-M

Here X(E) is the "self-energy" interaction of Fig. 3-1 and

- i

T'(E) is its derivative with respect to the baryon energy.
The square root of Z = 1+2'(E)IE=M multiplies each external

line in a zero order graph. We now turn to an explicit cal-

culation of Z(E).

i
+

Fig. 3-1. First Order Pion Cloud Contribution to the Baryon
Self-Energy.
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In the spirit of the static bag model, we neglect bary-

on recoil. The self-mass term is then given by

Yot | T Ba S8y 1Nt | B>l
E:" Ynﬁg;"‘Jk E=wM

£ Bl
(82) Z(MB):Z’:

where n ennumerates all intermediate states and W, is the
energy of the virtual pion. This can take on any value and
is included in the sum over intermediate states. The masses
are taken to be the real parts of the physical masses of the
baryons B and B' [12]. Let us specialize to nucleons for
the purpose of illustration and employ Egs. (66-72) to get
expressions for the matrix elements in Eq. (82). One der-

ives

’ —!—— ° e z
2 (mv) = 5 l(ﬂnlm %ﬂrnkt-af |N>I
n K T

N (V)

(82) VE(kRW)

X

E--W)N—(Jk E:\M,,,

where N and N' are static nucleon spinors and isospinors.
All the content of the gquark bag model is contained in the
value of f&Nn and in the form of v(kRN). We let the gquanti-

zation volume V for the pion wave function go to infinity;
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this leads to the well-known replacement

. ——Z L [k

@ar)’®

The intermediate nucleon can carry any spin and isospin
guantum numbers consistent with angular momentum and isospin
conservation. The evaluation of matrix elements involving

intermediate states is therefore facilitated by working in a

spherical basis. This will be particularly true when we
must consider A-N transitions. We make the transformation
[29]:

J:o _a =) = ZL

g>8T Stk I° , 'Y(k) B, 28T
i . . o

(85) g, | Ar *g Mo | Mr Wg‘f

]a% 1. 1;} S;Bi 1- Séf

where S and T stand for only spin and isospin operators and
the right hand side involves a spherical harmonic multiplied
by Clebsch-Gordan coefficients for spin and isospin transi-
tions. Setting the direction of k=z (with m_=0) and consid-
ering n® emission (I3=0) we calculate the following propor-

tionality relations:



45 -

0

7‘/‘»’—7,«/17 NMT ﬁ“:ﬁww 3 2T 1, Ik

lﬂ-mr = Ay "f"‘sr‘f',.,m,- = ‘*!%T 'F;g'n‘"
- - _[9F ¢° o
" A powr® AA”F_E'FAN"' =2 l‘%’r?‘zzﬂ'
o /]
Lasor= dpor= Zgﬂ-’famr: %W{-xz”__.

Expression (83) becomes

ZN(M) ) = "””ﬂ' s‘& l<2 \)zCkR/_v_) .
“t?' (A")a 2 w (_wk)

(87) (.sz)) | My M..""” )r '\
m-' ' 11 '/7, -,& ) %2 /.

The angular integral and sums over Clebsch-Gordan coeffi-

cients are all unity leaving

> (my) = S kYol k R/v i V(kRY)

N ) @ M}r 2 W, (4.

(88)

=-3 fk%‘w 'fmvir V CHZ,«I)

(JN) “ﬁ? W

The nucleon self-energy with a delta intermediate state is

also easily calculated;
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00 o 2 2
(BQ)Z (“‘\”): ...l. k3°lW fNAﬂ' 4 (’(R/V)
AL IR VR

for a total nucleon self-energy

(90) ZN = ZN(N) + Z,N(A) .

These integrals are evaluated numerically. We choose an
upper cut-off for the pion momentum at the first zero of
Y{(kR) (kR = 4.5). This is justifiable since for small wave-
lengths the static approximation for the bag surface is not
valid as the pion would be sensitive to the space-time

structure of the surface. Increasing the cut-off has little

effect on the results [12].

The wave function renormalization constant for the nu-

cleon ZN is easily calculated:

Z,-1 = f5<zﬂm)le——-m -

0 oz
910 ¢ Kol oy VECRRY) [ Rebwf i V(AR

: +
3 (2m)* g w? 3J@am) e (m,-m, -w)*

The zeroth-order NNn coupling constant, for example, is mod-

ified as
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(2) ‘)( (E)
(921 ,v,vﬂ *J20 Tuwn V20 {wwr v
where
/
(2) _ 2 (E) /
(33) A/,wr - 'F/V/Vil‘ N E=My,
One sees that the bare value is reduced since the integrals

in Eq. (91) are positive definite.

T,
f
/
/’
/
B y B
Bj \ / Bt
N /
~ ___ -
™
Fig. 3-2. Pion Radiative Vertex Correction.

Let us consider now the vertex correction represented

by Fig. 3-2. Specializing to p*p*no we have

M\/Tﬁ (u \

K
S dﬁ( Lwar L g’ rrlwu VUkRy)
(ar) W v \mg"-(ELvu co)(g>w4r—ad

x ."‘ 'I‘-r)(llﬂ | r e\ E
r' ’t 3 { g’ l,_z | SB' )

(94)
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where the factor in brackets is squared since the spin and
isospin Clebsch-Gordan algebra (for nucleons or deltas) is
the sanme. There are four terms corresponding to the four
permutations of B and B' over N and A, Upon refering ¢to
(78 ) and performing the sum over spin and isospin components

we derive:

S‘f”A S'flw _ 8 k3o(4.o f”” A’A’Ij@’” V(kl?”)
NMVTT

27 c:nr)z Wy w (Mma-Mytw)
(950 _ 128 KA §, ,,M,r V(kRN)
75’ (9.7)7' i w (Ma=Mytw)

k3w ‘fmnr VL(-"R"')

58
(95e)  Of Wi @? Wy (My Wu""’)

All of these contributions are positive and tend to oppose

the wave function renormalization correction.

Two final points remain to be discussed concerning pi-
onic radiative corrections. The reader may have wondered
why the nucleon form factor only appears in the equations
for &f when the amplitudes often involve N-A or A-A transi-

tions. Moreover, since the pion-bag coupling is a delta
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function surface interaction one may ask how a transition
between different bag states with presumably different radii
could even take place. This feature is indeed a potential
weakness and has been addressed in the work of Barnhill
[43], where a formalism for handling transition matrix ele-
ments between bags of different radii was developed. It is
traditional to ignore the small difference in the nucleon
and delta bag radii since they are so nearly the same (both

are near 5 GeV™ ! and differ by no more than .05 fm). [12,9]

The reader may also have noticed that we have truncated
the sum over intermediate states so that only the 1I=1/2,
J=1/2% nucleon and 1I=3/2, J=3/2% delta are included. The
reason is that these are the two lowest lying baryon states;
other excited states ' large mass reduce the size of the pfo—

pagator so that the amplitudes become negligible [15].

3.2.2 Spurious Center-Of-Mass Motion Effects

In the static bag model the bag is viewed as fixed with
its center at the origin; all quark wave functions in the
bag are referred to that origin. This artificial immobility
leads to a spurious motion of the <center-of-mass of the
quarks in the bag. Because of its lack of translational in-

variance the static bag theory does not admit center-of-mass
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momentum eigenstates. Instead there exists a wave packet

g(P) yielding fluctuations of the momentum
* N (A ) P®
(96 ) <ch>" P ]

These fluctuations will lead to corrections to the masses of
bag states as
2 2
Aﬂz - é;- - ‘:’ian;>
HADRON BAG

and also to corrections to the static parameters calculated

(97)

above. It is the purpose of this section to constuct a for-

malism that will enable us to estimate these corrections.

We follow the formalism of Donoghue and Johnson [31]
and of Wong [32], who corrected some aspects of the work of

the former. A bag state with center at X is decomposed into

momentum eigenstates P> as [31, 32]

o8y | B> = IJ% et " dp) 7> .

3 J
If we integrate both sides over x with a factor elP X ye

derive the inverse relation
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091 B(P) IPD = 27,3}/% —&PX’BCK)>

With the normalization

(100 ¢ F’H’): Js(Pil’)

one finds [32]

3/ Pk’
2 4 .
[6c] "= S Lmr)a czn)’ "‘PQB(*))BOO)

(101) :(2_1_[”3 5‘017_” C-AF\X L B(?) , BC’O>

where the overlap function <B(0)IB(x)> is found using the

explicit quark wave functions referred to the bag center:

n T
%t t
(102) <B(0)l30<)>= -”.SJ'Y; () (v, -x)
azt
where n is the number of quarks in the bag. The region of

integration is the intersection of the two bags.

The integrals involved in (101) and (102) are impossi-
ble to perform analytically (and also present a formidable
numerical problem) if the normal static bag wave functions

are used. Instead, let wus consider solutions to the
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relativistic harmonic oscillator Hamiltonian [35]:
-
(103) H:o(-P + /ﬁm +MCT)1‘,@VCV')
where u(r)=V(r)=-1-;k3r2 and & is an adjustable pararmeter.
Choosing m=0 we find a series of energy eigenvalues:

2/ 3

2
(104) E—: x<5n+') ; n.: 0/’,2)"' .

For ground state (ls) wave functions (n = 0)

(105) ‘7& /V (xo"- e"f’ <-)‘2r1—/‘)

where N is the normalization. If we calculate the proton
charge radius using Eq. (105) and compare to the MIT value

[S] we relate & to the bag radius R:

{106a) k=3.22/R
while
(106b) k=2 .,67/R

reproduces the correct value <r;>=,59 for R=S5 GeV™!. fThe
overlap function (102) and momentum probability (101) can be

calculated analytically:
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xzrz N L4
(107) <8(°)}30")>N= [e— /'?-('_ %2]

for N 1ls gquarks. The integral in (101) is tedious but
straightforward, with a result
- P/
T (P)= ____H s € /x
T X
(108) ¢
(3.? go Pt 247p" n%)
9-——- -————-— Somm——— °
3" x¢ 3 x 3% xr 3

Suppose one wishes to calculate a matrix element of a

xX

momentum operator function F(ﬁop) for a bag state at the

origin:

<o | F(F,) 180> =
(109) 5.0{% j‘[:}’ ¢*(F’) %(P) { P// F(Pop)“’>.

This reduces immediately to

a0y £ B(o) ' F(E‘P)]B(O)>: _fal;I(P)F(F)-’(HP)),

Using Eqs. (108) and (110) we can find the expectation value

for the fluctuation of CM momentum:

(111) Sapr IcP) p2= |66 )(2.
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If we refer to Eq. (98) and choose x=2.67/R we find

(112) <P2> = I‘{-3/R7’

In the past, many authors [9,12,13,31] have used the

intuitively appealing estimate
2
2 L
(113) R

where n is the number of quarks in the 1ls mode and nlS/R is
the mode energy. If we set n = 3 and equate Egs. (104) and

(105), we find
1) L, = 2.18

which is not very far from the static bag theory eigenvalue

2.04. In general, the above formalism gives

k k
(115) <F >,|_ ~ (LE—)

independent of the particular form of the wave function cho-

sen [32], justifying the intuitive result,.

It is interesting to observe the effect of CM correc-

tions on bag state masses. If we write
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2
' z N _ L Pim)

(116 ) M: EBHG— <F"“> % E;MG 2E
BAc

with

E :‘t‘n-ﬂ-us

(117) BﬂG- 3 _E—

from Egs. (28) and (30) of the minimal static bag model and

Eq. (113) above we find

~ - 09
(118 ) M = bsm;.— - EBHG- R

Recall that the "zero-point" term -ZO/R has the same form as
{118) with Zozl.s (see Sect. 2.5). VWe now see that Zo is
partially accounted for by the momentum fluctuation effect

and that the "true" zero-point energy constant

(119) Z = 1,

CM motion effects also alter the values of other static
properties of hadrons. As an example we will consider the

NNn coupling constant, defined in the bag model as
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(B He B = (2. plr) [ .43 b

(120) |\ - JK ¢ Zp)
s B LELRS) i 3

where we have used the axial vector coupling and Eqgs. (B4)

and (98). From App. D we have

U, Y

‘F://VT_ }3 I¢P) fwnt () My _ o 4
e [ O R R L,

(121)
1C,w'r(| 4 <P>)

M
to first order in <P’>. The first order correction to fNN

due to CM effects is therefore

(em)

U’
(122) Il /VA/ﬂ' ('+ "™t )‘
v

Since this is about a 20% increase it is of the same order
as the perturbative pion emission effects discussed previ-
ously. If we neglect CM effects (i.e. assume that IB{x)>
is a CM momentum eigenstate with, in the static bag model,

<PéM>=0) then we recover the static bag result,
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3.3 SOME RESULTS OF EARLIER CALCULATIONS

The formalism developed in this chapter has been em-
ployed by several authors [12,9], with notable success, to
calculate properties of the N-A system including masses,
widths, magnetic moments, charge radii, and the axial vector
coupling constant. We briefly review this work before

proceeding to new results.

Pionic and CM corrections were treated as independent
perturbations of the same order as justified in the last
section. Gluon exchange corrections to the masses were re-
duced for the following reason. The pionic self-mass terms
{see Egs. (88-90) and in following section) tend to reduce
the zeroth order masses of both the delta and the nucleon.
Moreover, the nucleon mass is depressed even further than
the delta, breaking the degeneracy in the right direction.
A smaller value of g is required to achieve the desired
mass splitting of about 300 MeV. For instance, Thomas [9]
derived a value of xs=1.2 as compared to the original MIT
value of 2.2. This reduction is welcome since it makes QCD

perturbation theory in the bag model converge more rapidly.

Results for several N,A properties as calculated in

Ref. [9,12] are presented in Table 3.1. A general
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improvement over the MIT results is noted.

TABLE 3.1

DETAR THOMAS MIT EXP
2m, (p) 2.49 2.60 1.9 2.79
2m, (n)  -1.73 -2.01 1.2 -1.91

2 2

> .53 £m 53 .53 69
<r2>n - .18 fm? -.12 0 -.12
g, 1.20 1.33 1.09 1.25
£\ 96 - 1.0
P A 112  (MeV) 100

We omit the coupling constants calculated in Thomas et. al.
since instead of calculating these directly from the
pion-quark coupling (59) they were used as parameters to fit
the P33 nN total cross section [9]. It should be noted that
DeTar's values of 9 and fNNn are proportional via the

Goldberger-Trieman relation

- w
(123) {;M/W' = éﬁ%:i_ﬁf,

This is not strictly true for Thomas et. al. since theirs

is a phenomenological fit, though the numerical values are

very close.
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3.4 THE AANT COUPLING CONSTANT

We complete our introduction to the cloudy bag model by
pointing out an interesting discrepancy between theoretical
[13] and experimental [33] values for the AAm coupling con-
stant. Arndt and collaborators deduce fAAn from an analysis

of A production in n p~w'n"n reactions. They obtain [33]

(124) f ) = ,4¢ x|
a4am Arnd ¢ ‘/6

which is to be compared to our zeroth order CBM calculation

0
(125) ‘Foorr < 'fnwr = .64

We proceed to the calculation of radiative corrections.

The self-energy of the delta is

= e)
}_—_A(e) i) + E’_ (F) -

a (o)
\ kol f kR
L BPIER v
75 RBJ“) ‘f’oorr V4 199,
76 Y @)? E-Mp- W

where RA=RN=5 GeV™! and we must do a principal value integ-

ral to calculate £ (E) since a singularity exists in the
A(N)

propagator for E=mA due to m, >my The wave function
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renormalization constant is

3 Z(E)

= = 0.
o B= 1+ 52 /E_’_mA 9

where the integrals, evaluated numerically, range from w=m

to [(4.5/R)+m?]/?

The four terms in the vertex renormalization are

o 3
20 l?,/ oo faur VICRS)

m—

Hasel S'):oorr:. @r)® Tmp w?®

/] d L 2
ér{:a' Aao _ o f?:[ kol 4;£ﬁT'£sA/”'”’<gk£;>
(128b) AAIT - ‘5— (ﬂﬂ)z W";;: w (\MA-M”’N)

NN k> olew £ wwr ‘f:,::r Vi(kR)
(128¢) Sfoorrs ;‘7 Pj (am* V“*%- (W'A‘V"M'w)z

yielding a value

vertex
= ,I"

(129) é;{;horr

The renormalized coupling constant

(130)  Ehpg = (.64)(.89) + .17 = .74
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and is in even greater disagreement with the value (116)
from the analysis of ref. [33]. CM connections further in-
crease fiAn [13]. It is therefore necessary to examine pos-

sible new effects in an attempt to resolve the discrepancy.

Ve consider the gluonic radiative corrections of
Fig. 3-3 with xs=l.2. A vertex <correction is shown in
Fig. 3-3(a) and 3-3(b), while Figs. 3-3(c) and 3-3(d) exhi-
bit corrections due to the gluonic components of the delta
wave function. Finally Figs. 3-3(e) and 3-3(f) illustrate
contributions from gluonic radiative corrections to the 3
gquark wave function. These perturbations involve an excita-
tion to higher quark modes or they will be lost by renormal-
ization of the delta wave function. We will encounter
higher quark modes in the next chapter; for now, suffice it
to say that all gluonic corrections to the AAm coupling are
negligible. The lowest gluon mode gives less than 1% cor-

rection and the next mode is an order of magnitude below

that [13].

What, then, of the rather serious discrepancy between
the perturbative cloudy bag theoretic predictions for fAAn
and the results of Arndt et. al.? We state in Ref. [13]:
"The easiest speculation is that the experiment's analysis

was inadequate. For example, does the isobar analysis take
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full account of unitarity especially in the three particle
sector?" Following this line we should mention that a recent
calculation employing a very different formalism predicts
[34] fAA"w.76 in good agreement with Eq. (130). We feel

further contributions from experiment is needed before this

question is definitively resolved.

e) f)

Fig. 3-3, Gluon Radiative Corrections to fAAn'
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3.5 SOME COMMENTS ON THE BAG MODEL

Before proceeding to applications of the cloudy bag
model to higher mass nucleonic baryons, it is perhaps worth-

while to emphasize a few points concerning the bag theory:

(1) The bag model, for all its calculational success,
is not a complete field theory. In conventional field theo-
ry all the dynamics in the theory are the result of interac-
tions mediated by gquantized fields. In the bag Tangrangian
(3) confinement occurs via the vacuum energy density B, an
arbitrary constant. There are no creation and destruction
operators for bags, only for bag constituents. To the ex-
tent that we believe the world is described by gauge field
theories then, the bag model is a phenomenological approxi-
mation to reality. An attempt to combine the theoretical
rigor of field theory with the calculational success of the
MIT bag model is the soliton bag theory of Friedberg and Lee
[17,18]). Confinement occurs dynamically via quark Yukawa cou-
pling to the "soliton", or o field. The introduction of o
in a non-linear way into the Lagrangian preserves gauge in-
variance, renormalizability and other desirable characteris-
tics of a complete field theory while reproducing MIT bag
results in an appropriate limit [17,18]. We have shown

elsewhere [19] that one can restore chiral invariance to the
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Yukawa term in the soliton theory Lagrangian by introducing
a massless pion as in the cloudy bag model. CBM quantities
like qu“ are recovered. It may be that the soliton model,
though suffering from the rather ad hoc and unobserved soli-

ton field, represents a more esthetic way to calculate ha-

dron properties than the original MIT bag model.

(2) Nevertheless, the bag model possesses several at-
tractive features. Because the action is a2 minimum for all
generalized coordinates including the bag surface, strict

Lorentz covariance is maintained. The property of asymptot-

ic freedom, or the vanishing of o« at very short distances
observed in high momentum transfer hadron scattering
processes, is reproduced in the model by treating quarks in

the interior of the bag as essentially free particles weakly
coupled via gluon exchange. Confinement of color is obta-
ined by the reguirement that the quark or gluon color cur-
rent not penetrate the bag surface. Finally, the model's
simplicity makes possible through the static approximation

the calculation of many hadron parameters with relative

ease.

{(3) The cloudy bag model assusmes that the pion is an
elementary field; namely the Goldstone boson of chiral

symmmetry breaking. However, the pion is also firmly
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ensconced in the SU(3) quark model as the S=0, I=1 member of
the 0 meson nonet and is a g bound state. In fact the or-
iginal MIT calculations, as shown in Fig. 2-2, yield a mass
of the pion bag state about twice the correct value. It is
hard to reconcile this result with the assumption of a mass-
less pion in the ~cloudy bag. However, it has been shown
[31] that <center-of-mass corrections have an especially
large effect on the pion bag state because of its low mass.
CM corrections can, in fact, reduce the pion mass to zero
[31]. Thus the cloudy bag picture of the pion can perhaps

be reconciled with that of the MIT bag (or SU(3)).



CHAPTER 4

*
THE N (1470) IN THE CLOUDY BAG MODEL

In this chapter we consider the application of bag mo-
dels to the radially excited nucleon states. The lowest
mass excitation, the N*(l470) or Roper resonance, is thought
to be a (15)2(25) [14]) configuration of three quarks and 1is
of interest because it provides a test of 2s - 1ls transi-
tions amplitudes in the bag theory. we shall see that
X suU(2), X sU(2) symmetry predicts two

spin isospin space

*
distinct N 's that are degenerate and orthogonal if one ne-

SUu(2)

glects gluonic and pionic interactions. These symmetry
breaking effects remove the degeneracy and mix the two
states. In addition, we present the first calculation of
the pionic decay widths of the N* (for the channels N*~Nn

and N*—An) in the context of the cloudy bag model [15].

Previous work has concentrated solely on the effects of

*
gluon exchange on the N mass matrix [14,25]. Both groups

66
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find large off-diagonal contributions to the mass matrix and
produce physical state masses generally too large. We will
show that when one includes pionic as well as gluonic
self-energy terms a cancellation in the mixing elements of
the mass matrix occurs; the physical states remain over 80%

X SU(2) symmetry states.

pure SU(2)Spin X sU(2),

isospin space

We find that center-of-mass corrections reduce the zeroth

order masses to agree with experiment. Finally, we calcu-
* x

late N Nn and N Am coupling constants, again in reasonable

accord with experiment.

4.1 THE N (1470)

4,1.1 Experimental Properties

*
The N is a wide (I' = 250 MeV) resonance in the P

11
phase shift of nN elastic scattering with a pole around 1.47
GeV. Other than mass, its guantum numbers are those of the
nucleon; JP=1/2+, I=1/2. Most phase shift analyses treat
the N* as a single P11 state, Of interest to us, however,
is the two level analysis of Ayed [36]. He finds two P11
states with masses 1413 and 1532 MeV. The total widths are
claimed to be 182 and 75 MeV with nN partial widths of .54

and .16, respectively. Partial decay widths into An have
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not been produced in a two-level analysis and are rather

poorly known from conventional analyses. Nonetheless, the
k.

data is consistent with an N -An branching ratio of about

0.2.

A cautionary note: the controversy among experimental-
ists over the existence of this extra structure in the 1470
region in the Pll "N phase shift is unresolved at present.

This debate is reviewed rather extensively in ref. 15.

*
4.1.2 N Quark Wave functions

The wave function of the N* is complicated by the addi-
tion of an extra degree of freedom, namely the occupation of
a 2s state by one of three guarks. There is now another
SU(2) symmetry generated by the permutation of the 1ls and 2s
indices of the quark modes [37]. This index has always been
implicit in our previous work, where all states are in a

(ls)a totally symmetric radial state (the analog of, for in-

++). For

stance, the {(uuu) isospin wave function for the &
clarity, we shall represent the ls state by "g" {"ground"
state) and the 2s by "e" ("excited" state). For the

(15)2(25) configuration there exist symmetric combinations:

(131) R5=J';-'_<?3’e,1 Feg te 5!-})
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as well as mixed symmetric,

(132) RMs = é-((}e—e})} "23}6)

and mixed antisymmetric,

139 Ryo = 75 (pe-ep) g

combinations. These are to be combined with the spin, isos-

pin, and color wave functions in a totally antisymmetric

x
state. There are two orthogonal N 's:

(134a) N*<56)=\f"'f Rs ( Tug Sws + Ling Sm._)c-f-\

and

N*(70)= '}L {Rms (Imau gma."'lwssus)
s R LS.

where the numbers in parentheses refer to the SU(3)flavor X

sSuU(2) multiplicities [37]. One can check that the

spin
non-color part of these wave functions is totally symmetric

under interchange of any pair of quarks.

4.1.3 N* Mass Before Symmetry Breaking

*
To lowest order in o the bag energy of the N state is
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written

U
s, E= Enﬁg+ 2.(2/,;.&;__,;_:_5

where 02=5.4 is the second solution to jo(0)=j1(0). Using
Bl/4 = .15 and 2% ~ 1 for the parameters and minimizing E

with respect to the radius gives

(1362 E(M¥) = 1,972 GeV
aseey R = 6.04 GeV™!

The bag energy E is large compared to the experimental

*
mass of the N #1470 if E is interpreted as the mass. We re-
call, however, that when spurious center-of-mass motion is

subtracted, the mass is given by
2 -2 * 1
a3y M7= ET(N )- <Em>

if we approximate

< T

2 Sl
~ — Su
SRS ERIC AR B, = 103 eV’

we find

w0 M = 1573 6oV
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much closer to the measured value,

The nominal N* mass {139) will be renormalized by gluon
and pion interactions that will also break the degeneracy

* *
between the N (56) and N (70). We turn to these effects in

the next section.

4.2 GLUONIC MASS SPLITTING

Gluonic exchange interactions within the N* include the
25-15 and 2s-2s transition vertices of Fig. 4-1(a,b) as well
as the ls-1s amplitudes of Fig. 2-1. The qlsqlsG vertex was
calculated in App. C (Egq. (Cl2)). The q25q2sG {or "di-
rect") vertex is of exactly the same form after replacing

the 1s index with 2s. The g G (or "“exchange" ) vertex is

2sT1s
found from Eg. (Cl2) by making the substitution

N: z/o(wl ")/I(Wf") —>
(140) le st (%"(w,y) %,(wlr)q-%o(w,_r)/,(w‘; r)>

The propagtor for Fig. 4-la remains —l/k2 but for Fig. 4-1b

the energy transfer w in Eg. (Cl) is equal to w,-w, = 3.36.
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> T

A

*
Fiy. 4-1. Gluon Exchange Amplitudes for the N . Bold Lines
Represent 2s Quark States.

The propagator for Fig. 4-1lb is

\ L Y. —
(141) ﬂ(-w_k *w,k> w"-—kz'

The direct energy shift is given by

og 32 g1 Rpn
| *
2,027 1.05) () T} 3 Ml 5108

(142)

while the exchange shift is
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2

2E =14 23 ({7 NN N R

3R k
vor (o (B2 (I (2T 55
(G JRlEdvie) | g NG

If we denote the guantities inside the curly brackets

as M and p; ) (the notation of Ref. 25) and solve the

1,2
numerical integration problem, we generate the following

table

Table 4.1 Values of u and u; ) for the four

1,2

lowest gluon modes

“1,2 “f,z
k1 0709 -,0070
k2 0031 0564
ka -,0005 -.0003
K, -.0004 -.00004

totals .073 .049

Again the convergence is rapid, though due to the different
propagator the dominant contribution for the exchange term

comes from the second gluon mode.
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The calculation of the matrix elements follow from

Egqs. (52a,b) and Egs. (131-134). We find

(144a) <€éIAEl$;6> = - %"I? (,a,,,, +2/c¢,,z.+2/a;:z)

(144b) <_§/AE”0>= §ols ;(2%// Ay~ 2’“’/,2)

- & - 2.4
(144C’<2.0,Ab129>=“‘;-;$(’“h/ +2M’/Z ZA,/&)
where Hy , 7 M of Table 2.1. The N* mass matrix becomes

M,-56 +15

v M2 (s ) (Y

where we have used R = 6.04 GeV™! from Eq. (136b) and
o, = 1.2 from Sect 3.3. Mo is the zeroth order mass. The
perturbative values in the matrix (145) are a little less
than half the values found in Ref. 25 because they wused
R = RN and L 2.2 (the old MIT value before pionic correc-
tions). However, one might expect that, because of the a-
symptotic freedom property of QCD, g would increase with
increasing bag radius. That is, since the energy trans-

X
ferred by the gluon decreases with increasing R, the N sys-

tem is closer to the infrared slavery, or strong coupling,
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region than the nucleon. In our calculation of gluon
*

induced N mixing, therefore, we ignored the difference

RN* - Ry in computing the factor xS/R. The gluon exchange

mass matrix used is

A/ ~ -56 15 ‘%V* -6:7 'fif
asy M-ML={ ¢ ) 7 °
RN *lg -93

*
4,3 PIONIC INTERACTIONS IN THE N , N, A SYSTEM

The cloudy bag formalism of the previous chapter can be
immediately applied, at least formally, to the consideration
of N*N'n, N*-Nn and N -An amplitudes. R possible difficul-
ty presents itself when one recalls the almost 20% differ-
ence between the nominal bag radii of the N' (R = 6.04
GeV ') and the N or A (Rw5 GeV™}). An immediate consequence
of the difference is that the N* is not orthogonal to the
nucleon. There is also an ambiguity concerning the limit of
radial integration when one wishes to calculate overlap in-
tegrals. As in subsection 3.2.1 we find it convenient to
ignore the difference between bag radii and set RN* = RN'
Admittedly artificial, this ansatz has the virtue of restor-
ing orthogonality to the bag states in question as well as

defining the limits of integration. Later we shall see that
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varying the bag radius has rather little effect on results.

4.3.1 Zeroth Order Pionic Couplings And Partial Widths

The lowest order coupling of the pion to the N* and pi-
onic radiative N*-N and N*—A transitions follow from
Figs. 4-2(a,b) and 4-3. The calculation is identical in
procedure to that of Chap. 3. The pseudoscalar surface in-
teraction Eg. (64) now involves ls or 2s radial wave func-

tions. The 2s5-2s guark-pion coupling constant

‘F%%ch)a'_ k T T é\ =
(147a) W"‘T z‘?
2{_ Jrclr ‘é CF’))} gz(r)c((f'R)e f

”UT‘N R?/ é—n"b> "30'

(147b) '%IZ(:_) = 3.[:

with a form factor

3/ ( kR)
(k)= (2) Y(k) = (o) A~
'Ff,z,w 'F;,z,n Vik) 626,77 kR

*
normalized to unity at k = 0, The N fn coupling constants

(148)
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are found using the SU(6) wave functions (134a,b):

o
. : fo 8,7, *
(a0 M M ﬂ; N l\|3rz(3)Z'3(3) _S.‘_g..'f-' IN (f)>
Mo Wi
They are
0 5
. =502f + =.71
(150a) 'FN*(“)N“‘“)T,. q ( ‘l‘?o,'ﬂ' qzz;tr)
o ' - -t 05—9
(150b) == (£ -
FN*(?D)/V”(?O)?T q( FQ,ZJ' 2&13’,’7)
o
(150¢) 4 - = 082
s:/1/“(!6)/11”(70)77" 9 (ﬁ'ilr 'fg,itir)
where fqlqln is the ls-1s quark-pion coupling constant. A&As
a check, notice that if quq;n is set egual to fq1q1" in Eq.

(150a) we recover the relation between f and £ {(80a).
NN# ggn
This is because the spatial wave functions for the N*(SB)

and nucleon are both symmetric under interchange of quark

indices.

x *
Fig. 4-2. Zeroth-Order Pion Emission Amplitudes for Ni*an.
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*

Ni N,a

Fig. 4-3. Zeroth-Order Pion Emission Amplitudes for
x
Ni~(N,A)n.

The 2s-1s quark-pion coupling constant is

mr

frar ) = 3T May RAC2) JotRe)

{151)

=—0.383 V(k)

The bag state transitions are (neglecting nucleon or delta
recoil)
L7
(k) = 53 k) = -
(1522) Ty*espomr 3 'Fg‘g'rr )= ~36q (k)
(152b) -FN,,W)“‘) = ‘L@ -F% gTr(k)= + 295 (k)

c (k) =
(152 ).F e A = 40—{-"’

(152d) {- >ovr“‘) ‘—H"',f‘ gp(= " —- (.25 V(k).

0 = ~1.25 VCk)

The value of k chosen for the form factor for these transi-

tions between states is the wvalue derived from the
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relativistic kinematics of two-body decay:

= Mo (M) Mo (M)
(153 ) k+= 2
i

where MN* = 1.47 GeV, Mf = MN = .93B GeV or MA = 1.232 GeV,

and M" = .138 GeV. We follow the policy of using the theory
to generate values for dynamical gquantities like matrix ele-
ments while using experimental results to give kinematic
quantities like the recoil pion momentum. The values of the

form factors at the decay momenta are

(154a) N=NT: v(k=.42 Gev/le) = .62
(154b) /\/*—>A?T‘.' ,/(/(; /5 kV/C) =92

To get an idea of the quality of these lowest order re-
sults we will calculate the predicted decay rates for N*~Nn
and N*nAn. The sum of the partial widths for the two N*
states is independent of the mixing and can be compared di-
rectly to the values of Ayed from subsection 4.1.1. The

formula for this decay rate is [38]:
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NN S N (o) +T) = k X
( ) a(q;r)’- M
Unzl i *2Myx 2, 4,

{155)

where

W = twty v T3 T 2 v (k)

(156) £i —

To perform the integration and sums in Eq. (155) it is again

convenient to make the transformation (85) with the result

o
(157a) lM*‘9/V1r = ,’]217" ‘F/V*A/F
)
(157b) A p¥saq = (¥T
AT 03 /V"A"‘

and

2Myx ZMy (s) A/v 2mor V (/c)
Zr)z wr ”hr

(158) F(M.*—)/V(A)ﬂ')”'é

Substituting Eq. (157) into (158) gives
0 . 3
3“:”*,1/"' vi(kv) My kv
AT Wl'n' M”*

(159b) F(’V '9671') ﬂ*mr Vi(k,) MA A

AN Wg? Adﬂn*

(159a) P(M*:’IV?T) E




Bl

We sum over the 56 and 70 rates to derive

2

(160a) I—'(N*-?N‘lr): ZF(M”—?N#):&Z-:-??; 101 MeV

=t
2
¥ -
(sopy [T(NDBAT) = ZF(M"A'T)—‘- 19+18= 76 MeV
131
These are to be compared to the experimental results des-

cribed in subsection 4.1.1:

as1ay [T(NVSwr) = 182284 + 78x.16 = 1)0 MeV

(161b) P(/V’,‘;)An—)-_- 250 .2 = &0 MeV

The agreement is remarkably good. A more detailed compari-
X
son must await a calculation of the N mixing and first

order corrections, to which we turn in the following subsec-

tions.

4.3.2 Self-Energy Calculations And Their Consequences

The self-energy amplitudes for the N* have the by now
familiar form of those calculated in Chap. 3. The most im-
portant new feature is the off diagonal elements in the
2 x 2 mass matrix which are generated by the pion loop

graphs of Fig. 4-4. We have (refer to Egs. (88) and (89)):
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duo k3y* ( )‘f:/’*ar -F;.*mr
“~ Reon
(162) SM (E) 2[3 B]F (ﬂ-) (E \mB—-W)

*
where B = [(N or N), A] and E = M;* for the purpose of cal-

culating the pionic contributions to the mass matrix ele-

ments. For each of these elements there are four terms
™
~ T~
/7 N
N / \ N
N N, A

*
Fig. 4-4. N Mixing Via Self-Interaction with the Pion
Cloud.

* *
in the sum corresponding to B = N, A, N {(56), and N (70).

The pionic radiative contributions are:

-é2 -66
~ Pion 0, _ ¢ (,”e[vc>
assy SM - (Mp)= \_¢s - 23
where M;* = 1.73 GeV from Eq. (140). The complete N* mass

matrix includes (163) plus the gluonic contributions of sec-

tion 4.2 (Eq. (146)):

~ Fon ’VJ/u L —oYg ¢ Vv
(164) M M I+‘S é‘ " ~04& 1507 (e)
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Notice how the off-diagonal pionic and gluonic contributions

are of opposite sign, reducing the mixing.

*
To find the physical N states we perform a unitary

transformation on the cloudy bag states in the standard way

~ Y, '
A 'f'n___u‘f

- =
(165) 4 %& - 936’ <BM

where the unitary matrix U is parameterized as

cos 6 siné
(166) U= -sin6 cosS 6

This matrix can be used to diagonalize the Hamiltonian since

Y +

AT ~ Ny ~
(167) 7: r’ 7;’ = f;l”" /v1 fiB/ﬂ

where H is chosen to be diagonal;

1

My o 1\ _ 3 17"
H:(;MB umy

(168)

and M is given by Eq. (164). Eq. (168) is easily solved to

give



B4

877 H&0
as) U= (upo 997
and

" (wrt o )
(170) H’ o 1,633

These physical state masses are in remarkably close agree-
ment with those of Ayed (MA = 1.413, My = 1.532) [36]. The
excellence of the fit, achieved with no adjustable parame-
ters, is probably fortuitous considering the approximations
involved. Furthermore, we have mentioned above the contro-
versial nature of Ayed's results [15]. Nonetheless, this
calculation demonstrates in a rather startling fashion the
ability of the cloudy bag model to predict excited baryon

masses sensibly.

The wave function renormalization constants for the
physical states are calculated in the usual fashion from the

energy derivatives of the self-energy terms. These are

~, d AU
(171) Z CE)}E’:M;“ = a(—E ( W IMEY ),E'=/";,

where £ '(E) is diagonal in the physical state basis and 6ﬁ =



85

smPLom 6Mgluon‘ Numerical calculation gives

/
(172a) ZA = ,+ ZH(E)IE;—M’;.’M =1

2oz 1e 20 | pe = L]

Note that ZA’ ZB > 1, conflicting with the interpretation of
Z as the probability for finding a bare N* in a dressed
state. The probabilistic interpretation is no longer valid
in this case since the N* can decay into on-shell Nun, An, or
baryon-gluon states. (Technically, this is also true for
the A wave function renormalization calculation because of
the on-shell decay A-Nn . Since ZA < 1 anyway (see
Egs. (126) and (127)), we have postponed the discussion of
this point until now). Nonetheless, the wave function re-
normalization per external baryon line, [Z, still exists and
must be included at this level of perturbation theory [39].
To recover a probabilistic interpretation of Z one must ac-
knowledge the existence of the open Nn, An, etc. channels
in an S-matrix or equivalent formalism that imposes unitari-
ty. Such a treatment is not necessary for our purposes

since £' is fairly small compared to 1.
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4.3.3 Pionic Radiative Vertex Corrections

These corrections have the form of Egq. (95) and are

generated by the amplitudes represented by Fig. 4-5. Here

* *
Ni is either of the two SU(4) N states, B1

of the four baryons in an intermediate state, B is either an

and 92 are any

N or aA , and g is the momentum of the intermediate pion.

The vertex correction formula is

[

3 t 3
(173)g v = ZCRBZ Fj’%d"’u (Z)ﬂ'?g”f&&"' fB;B"'___
N g5 or J an)? (Mg o) (Mo~ Mg ~)

where the static baryon approximation is used. The coeffi-

B B
cient cNiBi depends only on the spin and isospin of the par-
i
ticipating baryons and is therefore invariant under inter-
* x
change of N, Nss‘ and N7°.
/"
7/
. /’
Nj By 7 By B
\
N e
\ —— ™

*
Fig. 4-5. Pionic Radiative Corrections to the N Bn Vertex.
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The eight independent C's are given in Table 4.2.

Table 4.2: Pionic Vertex Correction Coefficients
NN - NN _
cN*Nn = 1/3 cN*An = 4/3
NA _ NA -
CN*Nn = B/27 cN*Am = 25/24
AN - AL -
CN*Nn = 8/27 CN*Am = 25/24
AA - OHN -
CN*Nn = 257108 cN*An = §/27

R principal value integration is performed where necessary
= = 1 2 = 22 g2
and we use fNNn =1, fAAn = stN", and fANn 6 fNNn’ All
*
couplings involving N 's use the zeroth-order coupling con-

stants of subsection 4.3.1.
Values of &f are presented in Table 4.3,

Table 4.3: Pionic Vertex Correction to

Pion Emission Amplitudes

Sf * = -,203 S§E % = -,241
Nsan N70Nﬂ
&§f * = .018 Sf * = -1.21
NssA" N7°An
With the exception of 5fN* Ay these are substantial correc-
§6

tions to the lowest order coupling constants and the conver-
gence of perturbation theory may be questioned. The largest

contributions to the vertex radiative corrections occur when
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there is a nucleon or a delta in an intermediate state;
this is primarily due to the fact that the denominator in
the principal value integral is small over some range of in-
tegration. Fortunately, individual terms in the sum in
Eq. (173) are generally less than 30% of f;*Bn; it is the
sum of the terms with the same sign that generate the large
corrections. Nonetheless, some caution should be used in

the interpretation of these results.

4.4 PREDICTED N* PARTIAL WIDTHS

The renormalized coupling constants for the physical N*
states to the Nm or Anm final state decay amplitudes are
found by rotating the renormalized foB" according to Egq.
(165);

£ Shagr

5%

.f

Ny B _ Ly o Ne, BT
= Ll

gor/ \ o ] \lgr gpr

where U is given by Eq. (169). For completeness we collect

the values of the wave function renormalization 2Z from

Egs. (91), (127), and (172a,b):
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Table 4.4: Wave function Renormalization Constants
ZA = 1.01 2., = 0.77
ZB = 1.11 ZA = 0,89

In Table 4.5 we present the LHS of Eg. (174).

*
Table 4.5: Physical N Pion Decay Constants
* 2 - * =
fN&Nu 0.446 fNBNn 0.288
£.,* = -2.18 £, = -1,55
NAAn NBAn

We are finally prepared to discuss the partial decay widths
of the N* into Nn and An. Employing the decay rate equa-

tions (159a,b) and replacing £° by £ we calculate

(175a) F(N,-Nn) = 91 MeV
{175b) P(N;»Nn] = 38 MeV
(175¢) F(N,~An) = 55 MeV
(175d) P(N,-An) = 28 MeV
83 MeV
Again, the results are in good gqualitaive and reasonable

quantitative agreement with the Nu partial widths derived
from Ayed's phase shift analysis of uN scattering,

PA = 98 MeV and FB = 12 MeV, and with the estimate of the Anm
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partial width " ~ 50 MeV. The lower mass state is predicted
to couple more strongly to the Nv channel than the higher
mass N*, and their total decay into An is well predicted by
the theory considering the large uncertainties in the meas-
urement. Notice £from the form of U (Eq. (169)) that N; is
77% 56. Thus the N* whose spin-isospin wave function most

similiar to that of the nucleon couples strongest to the Nn

channel.

For both decays the combined widths are somewhat higher
than experiment seems to indicate. This is due to the large

pionic radiative vertex corrections of subsection 4.3.3.

4.5 DISCUSSION

The alert reader will have noticed that nothing has
been said concerning center-of-mass corrections to the N*
coupling constants. These corrections are difficult to cal-
culate convincingly because of the mass and internal quark
momentum differences between initial and final states. One
might expect the corrections to be relatively unimportant
because of the larger masses involved. Preliminary esti-
mates wusing the formalism of subsection 3.2.2 for

(15)2(25)-—(15)3 transistions indicate CM effects of about

* *
+5% for both N -Nn and N -An coupling constants. We believe
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an upper limit for the CM effects is the crude approximation

SO fm e
{176) MN*M MB

The zeroth order couplings are then increased as

T4
N*NT 4
{177a) ~ ?; l.lg
Tutnr MMy

and for the delta decay

M
boor 1 ¢p
MM,

= .2

|

(177b) o 2
NfaT

The factor of 1/2 in Eq. (177b) is from the work of DeTar on

A-Nn [127.

A reasonable calculation of CM effects for transitions
between different bag states would be of interest and is

currently in progress [40].

One might attempt to improve upon the approximation of

a fixed bag radius equal to RN by setting
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Little significant change is noted, caused by the reduction

in form factors. They become

(179a) l/(kuan)-f- 556

(179b) V(/fAR,w)-': 905

The amount of mixing is slightly decreased:

y = 517 45
(180} Y ~4s2 . g92

and the physical masses are

(18la) M,q’ |.¥st

(1816) Mg = 1,635

The Nn partial widths predictions are somewhat reduced;

(182a) PAV (/1{:-)/{/”') =z 7 MeV

and

(182b) ﬂv(/\/g"?/\/"'): 27 MeV
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*
while the N -An decay rate becomes;

) [ (N*SAT) = 68 MeV

The 4increase in bag radius tends to improve the behavior of
the pion emission vertex renormalization integrals, reducing
the size of the correction terms. In general, all results

are relativiely stable against changes in radii.

DeGrand and Rebbi [41] relax the requirement of bag
surface rigidity in the static bag model by calculating per-
turbative surface oscillations about the radius R. These
occur because of a coupling between interior guark and bag
surface motion,. These radial oscillations, or "breathing
modes", couple only to the 56 N* and not to the 70. The en-

ergy of the 56 is driven down [41]:

<5.:"”osc Ié—_‘> Ar =200 MeV

(184) @ |Hpse 1297 = ©
{10 | Hosc) 29) = ©

because the system relaxes by the excitation of surface
modes. The important consequence of this additional element
in H is to split the N:s apart from the N:o so that the phy-
sical states are almost pure 56 and 70 and widely separated,
The authors of Ref. [4l1] as well as Close and Horgan [25]

x
employed such an effect in an attempt to identify the NSS
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with the N (1470) or P (1470) resonance, and the N, with
the P11(1710) resonance, with some success. The details of
gluon exchange or, in our case, both gluonic and pionic ra-
diative effects, become unimportant in the calculation of

masses or mixing and renders the system less interesting.

However, neither group included CM effects in the cal-
culation of the on-diagonal N* mass matrix elements. There-
fore their zero order masses were, before surface oscilla-
tion induced splitting, both near 1700 MeV. The surface os-
cillation term served to drive the 56 down into the vicinity
of the P11(1470). Our results do not admit a large breath-

ing mode effect. With an arbitrary choice of

ass) <S¢l Hos )56y = —100 MeV

so that

~ (osc)

T a4
- 100 o
(186) Mo = MOI - ( o 0) (Mev)
and R = 5.52 GeV™ ! we find

astay M, = 1.361 GeV
(1876) M = 525 GeV

and the agreement with Ayed is only slightly worse than in
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Eq. (170). Large surface oscillation terms drive the
*
smaller mass N down to unacceptably low levels, in disa-

greement with all phase shift analyses [43].

With the term (185) in the Hamiltonian the transforma-

tion matrix becomes

.979 .2
ass)y U= (-2 4%

so that N, is 96% §56. The pionic decay rates are:

F(N*NT) = 27 Mev
(189) P(A/;-?A‘lr) = 10 MeV
M(V*2am) = 67 MeV

in somewhat hetter agreement with Ayed's data than

Eqs. (182,183).

Our theory does admit, therefore, a surface oscillation
effect, but at a smaller level than in Ref. [24] or [41].
Though our low mass N* is primarily a 56 and the higher one
a 70, there is sufficient pion and gluon induced mixing such
that the high mass N*Nn coupling constant is raised in mag-
nitude from about .05 to .29, which leads to a factor of 30

' *
increase in its Nn partial width. Without any mixing the NB
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would be essentially decoupled from the Nnr channel, in
disagreement with Ayed. Most importantly, we claim that the
N; and N; are separated by on the order of 100 MeV ; la Ayed
rather than as two distinct nucleon resonances in conven-
tional one level phase shift analyses [43] as indicated by
the authors of References [25] and [41]. The crucial
difference is our subtraction of spurious center-of-mass mo-
tion from the kinetic energy of the gquarks in the bag. We
suggest that the existence of the P11(1710) may be ascribed
to a further radial quark excitation, perhaps in (35)(18)2
or (28)2(15) configurations, or, more interestingly, a (ls)a

+ 1 gluon bound state as discussed in Chap. 5.

The gqualitative features of all these solutions remain
the same. The two physical N* states' predicted masses
agree remarkably well with the two level nN phase shift
analysis of Ayed [36]. The lower mass state is predominant-
ly 56 and couples more strongly to the nN channel than the
higher mass, primarily 70, state. Both nN and nA partial
widths are in reasonable agreement with experiment. A high
resolution elastic n p - v p scattering experiment in the N
resonance region and concentrating on back angles in the
center-of-mass (where observables are particularly sensitive
to structure in individual partial waves) is clearly war-

ranted in an attempt to resolve the <current controversial
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experimental situation. Since any new structure in this
region is more likely to manifest itself in a polarization
rather than cross-section measurement, polarized targets or
polarimeters in the final state could profitably be em-
ployed. Experimental confirmation of an N* doublet with
something like the predicted masses and partial widths would

constitute strong support for the cloudy bag theory.



CHAPTER 5

LOOKING AHEAD: THE GLUONIC NUCLEON

The last chapter of this work will briefly introduce
some exciting preliminary results concerning a new kind of
particle that we call the "gluonic nuclecon" or NG [16]. The
NG comprises the I=1/2, J=1/2+, strangeness 0 sector of a
multiplet that consists of a color octet three quark state
with color indices contracted with those of a color octet
gluon so that the state is an overall color singlet. The
flavor and spin quark wave functions are combined in a mixed
symmetry SU(6) degenerate multiplet of dimension 70 coupled
to the mixed symmetry gquark color wave function of SU(3) di-
mension B8 to give a totally antisymmetric state. The
quarks ' total angular momentum is coupled to that of the

gluon so as to produce, in the case of the NG, a J=1/2

state.

We will consider the ground state of the NG, that is, a

98
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(ls)3 guark state and a TE(1=1) gluon. There are two

gluonic nucleons, one with total quark angular momentum 1/2

and the other with J=3/2. Since the gluon does not carry

any isospin , I = 1/2 for the quarks in both states. The

first has an SU(6) multiplicity 16 and the other 32, so we
G

shall henceforth refer to them as the le and the Nf:' res-

pectively. The (totally antisymmetric) guark wave functions

are [16]:

ING) = "i {(Imscms-I"“C"m) Sma *
(190a) (Imsc'"‘l."' Ima,cms)SmS }

Hooe] IN;>= F;l;_ (IMSCMQ—IM“'C"'S) 95 .

The zeroth order masses are calculated in the familiar

way. We have

3, +{Le 3 ,._g_g
(191) Eo= 2 +'%T7'RB R

with 0__ = 2.04, ng = 2.75, B'/* = .15 Gev, and Z,= 1. Min-
imizing E determines R to be 5.93 GeV'! and E = 1.77 GeV.
Substituting the CM momentum fluctuation of the bag consti-

tuents,

(192) M‘L’- Ez"’ <F:M>
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where,
A e \© N g\*
)
(193) <P¢M> ~ 3( R ) + (?‘g)
gives

Ne

(194) Ma < I,éO 6—&\/

for the degenerate lowest order mass.

Yoy et

.

c

Fig. 5-1. NG Mixing Via Gluon Exchange and Compton Scatter-
ing.

These states mix via gluon exchange as illustrated in

Fig. 65-1. Notice the appearance of the non-Abelian 3-gluon
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vertex in Fig. 5-1b., This interaction is now of order o
and must be included. The gluonic nucleons also mix via
pion exchange in the same manner as for the N* states. The
lowest order NG - Bn pion emission amplitudes are shown in
Fig. 5-2(a,b) for (a) B = N® and (b) B = N, A, N'. There is

no gluon-pion coupling in the cloudy bag theory.

Preliminary calculations have produced some very inter-
esting results. We find very large and negative contribu-
tions to the mass matrix £from the three gluon vertex
(Fig. 5-1b) while the "gluon Compton scattering” (Fig. 5-1c¢)
amplitudes are smaller but positive. fhe pion and gluon ex-
change graphs yield much smaller (negative) corrections.
Consequently the physical masses are driven down to about
1.49 and 1.58 GeV. The off-diagonal elements tend to can-
cel, leaving the physical gluonic nucleons almost pure SU(6)
states: NC =N°(1490) and NS =N®(1580). The lower state is
essentially decoupled £from the Nn channel but has a very
large partial width into Am. It would be invisible in 1nN
scattering experiments. The higher mass NG decays rapidly
to Nm (P"N ~ 60 MeV) and weakly to An. Except for the low

mass, it is a candidate for the P11(1710).
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Fig. 5-2. Pion Emission Amplitudes for NG*Bﬂ.

Our results imply that a possible and exciting in-
terprqtation of P11(1710) is that it is a medium energy man-
ifestation of the gluon guantum. It is therefore important
to understand clearly how bag model predictions of
quark-glue bound states relate to scattering observables.
In an important paper [20], Jaffe and Low show that color
singlet subunits confined by possibly artificial (bag) boun-
dary conditions do not necessarily correspond to poles in
the S-matrix. For instance q’ﬁ’ or q6 "exotic" bag states,

widely touted as meson-meson or dibaryon "resonances", may
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in fact never appear so listed in particle data tables
because the gg-gg and q3-q3 color singlet subunits that make
up the initial and final scattering states are unconfined.
Though the gluonic nucleon's valence gluon and quarks are
confined, the gg pion (to which the structureless pion of
the cloudy bag model is an approximation) and the q3 nucleon
scattering state is not. It may be that such a state could
be a true resonance but the implications of the work of Ref.

20 with regard to the NG need to be further explored.

Nevertheless, the possible existence of gquark-glue
bound states merits further attention. 1In particular, the
problem is complicated by two interesting additional fac-
tors. The first is that the gluon mode energy is renormal-
ized via the processes of Fig. 5-3(a-c) (Quark self-energy
terms have been implicitly taken into account in some sense
when the vacuum energy density B was adjusted to fit the
low-lying baryon spectrum. We do not consider such correc-
tions in order to avoid double counting.). Preliminary cal-
culations involving only the lowest mode intermediate states
indicate that these gluon mass renormalization amplitudes
increase the gluonic contribution to the mass of the NG on
the order of 10%. Questions concerning the renormalizabili-

ty to all orders of a field theory confined to a bag need to

be addressed, however [44].
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c)

Fig. 5-3. Gluon Mode Energy Renormaliztion Amplitudes.

Secondly, the gluonic nucleons are connected via gluon
absorption on a quark line (Fig. 5-4) to the N* and N
states. In particular, it is easy to show that while the
NG—N* coupling is rather weak, the mixing with the nucleon
can be quite large (~ 50%!) despite the fairly large mass
differences. A consequence is that static parameters of the
nucleon such as g, are altered. Unless the amplitude of
Fig. 5-4 is suppressed by some other mechanism [45], a read-
justment of bayg constants to recover the successful early

bag model fit will be necessary.
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Fig. 5-4. NG-N Mixing Amplitude.

Both of the effects discussed above will tend to in-
crease the mass of the NG, improving the fit to the P11 N
partial wave resonance near 1710 MeV. Certainly, a much

deeper understanding of the physics involved in these prob-

lems is necessary before a definitive judgement can be made.

It is gratifying to be able to summarize this work on
an upbeat note. We have successfully extended the cloudy
bag model to higher mass baryon systems. We support the no-
tion of two resonances separated by about 100 MeV in the vi-
cinity of the N* by obtaining good agreement with the phase
shift analysis of Byed [36]. This success bhas stimulated
the medium energy group at the Bonner Laboratory to initiate
feasibility studies on experimental means of resolving the
current controversy over the structure seen in the P11 par-
tial wave in this region. Confirmation of the existence of
an N* double resonance would constitute substantial support

for the quark bag + pion cloud model. Moreover, we have
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calculated to 1low order the mass and partial widths of a
guark-gluon bound state called the "gluonic nucleon" and
find that it is a viable candidate for the next higher nuc-
leon recurrence, namely the P11(1710) state. The interest-
ing possibility of a "low" energy manifestation of the QCD

non-Abelian gauge field will motivate research for some time

to come.
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APPENDIX A

CONVENTIONS

We present the four-vector, Dirac matrix, and other

conventions that we have used in the text in this appendix.

A.l FOUR-VECTORS

We use the V"fourth component imaginary" convention

where a four-vector
a1 A, = (@, a,) = (&, <ao)

No distinction is made between covariant and contravariant

indices. Vectors are contracted as
¢ -t
b
~L=1
In particular, for an on-shell particle with four-momentum
Py’
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{A3) F,

The four-derivative, a“, is defined so that auxu 4:

3= (9, fe)

A.2 DIRAC MATRICES AND EQUATIONS

We work in a representation where all Dirac matrices

are hermitian:

(A5 Y (k _pr)). Y,f":(o':); Ys'z('a' -;)

(R6 ) i%)%g: 28, v

and

(A7) °'\ "’/3)/""'); (

The contraction of an arbitrary four-vector with the Dirac

matrices is often written as
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(A8) XMQM-.-,F(

The free particle Dirac equation in this representation is
(A9a) (X-I-m)%()‘)‘—‘o

(rop) (4 Fem)yp) =0

where Wp(x) is a solution with four momentum p;

M u )ed’-x
(A10 ) ’-,;(x).: EV _;Cf

and us(p) ia a Dirac spinor with spin projection s;

E+m xs

U CF)-’" 2wm Fp
(All) S L 4
’ E+m s

We are considering only E>0 solutions normalized to unity in

a guantization volume V.

A.3 LAGRANGIANS

The Dirac equation is derived from the Lagrangian:



114

(A13) :Fy'f: ?b;taawf—(an?)&,b

The interaction Lagrangian between the charge current and an

Abelian gauge field is

Df = = ielY %9
(Al4) I %/4“’ S !l
while for the field energy we have

- |
(A15) l’t’: - ”l;‘ E&V E‘-V

where
0 B'3 _Bz "A.-E.
"B o B, ~<E,

wer Ewsahone | 8 4 o e
&, iE, ~Es O [/

Finally, a free scalar field Lagrangian is written
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r

(R17) fsz > ¢D,a¢'/“z¢r¢

AN

for a scalar field ¢ of mass M.



APPENDIX B

BOUNDARY CONDITIONS FOR BAGGED GLUONS

The linear gluon boundary condition (15a) reduces in

the static approximation to

A = -
(B1a) K. E lr:R = 0
A A -——
(81b) K x[3 lv~=]{ = 0
as can be shown explicitly using Eq. (Al6). We will prove

that these conditions on the TM and TE gluons (Egqg. (44))

lead to the boundary conditions (45a,b).

B.1 TRANSVERSE ELECTRIC (TE) MODE BOUNDARY CONDITIONS

From Egs. (41-44) we have

— TE — TE erg-
L

2) EF = -V =

where
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o V' Tx(Ph,.) = Vo7

and
- — TE

e [3 "o —\73‘\/

The first boundary condition (Bla) is trivially satisfied
since by definition of the TE mode, r'E, as can be verified

by contracting T with relation (B2). For the B-field we

have

O-= ?x'VAxV"EINR = FxVx (7¢x =
(B5) =’QX6¢ +?$€(?a¢)

We have freely used the vector calculus equations on the

coverleaf of Jackson [21]. Now rxV e L, and recalling

Eqg. (42) we have

0=L #CNEM 1 (kr))

(36)  _ (-l: X'ﬁ-ﬂ.)) Z?'P(VZQ (kr) ) R

Since 1 is arbitrary, Eq. (B6) becomes Egq. (45a):

(B7) %—r("éur)) IT:-'R = 0
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B.2 TRANSVERSE MAGNETIC (TM) BOUNDARY CONDITIONS

For TM fields the vector potential
(38) \/ = V,g(V{IfKY‘)

with

—_ = = TM
(B9 ) Y‘-B = Y X\/ =0

as can be checked.

Consider the boundary condition (Bla). Employing (B2)

we have
(B10) A 5\* (6¢"F”rznz 0.
It we again make liberal use of Jackson [21] we derive

0= P Tx (TFrT)

= (PO F)- rV: 7 (P P)VE-Rlipd)r
LI & *’ﬁ';(%“f”))

- L4/ .

=

where we have made the substitution
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z - ’/ /
w2y VP = rar 2" (rg)

Finally,

= de/'-“ﬂ =(Lz n'")/l (/U") ,Y'.'-'R
" = L) R

as desired. One derives exactly the same boundary condition

from Egq. (Blb).



APPENDIX C

GLUON EXCHANGE AMPLITUDES

We derive the energy shift (46) that results from the
one gluon exchange amplitudes of Fig. 2.1. From Egs. (46)
and (49) and referring to Fig. 2.1 we write the energy
shift,

2( X7 Yy Xq o
Ab= -3 |4z JX CL"‘) "5_'%,'
n A{J
up
«p — B
c1 § — A
! "‘-S—- ‘zooY G g x
_u-k‘ n 2y

which for a hadron composed only of 1ls quarks is
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AE = 3_21‘01:}}/; 2 Z %(x)\’ ch') 7<;c)

;M 4-(

(c2) "%«Z )f'\{g)zm {Cq [/1 A, 1¢aY
t't

where the i,j are gquark dindices (i,3j=1,2 ,3), w is the
difference between the intial and final gquark mode energies
at a vertex (w=0 for exchanges involving only 1ls guarks ) and
k is the gluon mode energy. The matrix element of L is
taken between color singlet states and will be considered

later. The gluon wavefunction V is from Eq. (4la):
—TE, o -*

(r) = X ).._ % = -
€3 Vg, )= 7 (r?fkim = rka AL

A vertex interaction becomes

S‘[’, @'cn)F ch)gcx) =
(L3 25, ~°"‘-"/,)( o -RIg)[ 2o
m

1}]

A

Frﬂ 0 4&-0-‘1(/,

= &/'1'7/7' f/;—ﬁ(“/.f)/'(u{r) [TEg, & ]

The commutator

(C4)
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o [FLAT )= iegaLid L
;

in rectangular coordinates. It is convenient to work in a

spherical basis; after transforming (C5) we have
—-— o=t - A
[_O'.L@O’-r-_—l:
(C6) [V n r
vV /.- n ri{o
()t 2R (7 T)0)

where all indices run from -1 to +1 and repeated indices are
summed. The utility of this basis is that the LM are pro-

portional to the angular momentum raising and lowering oper-

ators and to Lz

Yy

- —I -
Li) © Vi e+ L+YM’— (1-”‘("”)) KMH

e Ly= Ly j Lalim® ™ ¥im
(C7c) L'z V-l%: L‘ ; L_ Y\m: (1“m(m—l))'h';,,.,,

(C7a)

»

Moreover, the spherical components of T, rj, are proportion-

al to the spherical harmonics Ylm

(c8) —;i-'- WI)VL }/
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Ignoring for the moment the Bessel function factor in 'kl-

we have

5=

(c9) Y r (_'j'm’“’ r'—(mm.)

MW

from Eq. (C7) and the well-known relation between Yl- and
¥y, [21]. Because of the orthogonality of the Y, , the only
surviving terms after the angular integration will be those
with v=-(m+pn). From (C6) and the addition rules for the

Clebsch-Gordan algebra we find that the index

(C10a) N=-m

and the index

(Cl1ob) P = +Wm

Se far

"~ (wr) 4Cwr) |7 L 0‘ 'S
w;-’j‘ rj / r) l: 2m J
(€11) ____4/_. I 1,6;,/[«2/‘)7 lwr)/ (kr) x

()

fa )G )T ST A
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Upon performing the sum over u for a given m and using

Egs. (C7) and (C9) we find

T

crzy -2 M f,.%//p (@), (7)1, (kr) 2.6

(v

The reduction of the vertex interaction with the com-
plex conjugated gluon wavefunction proceeds in the same

fashion. This time, the index relations are
(Cl3a) ns=+m
(C13b) r=-m

We have

J'p(,./,zu/r)/(u/r} [cr Lg” F =

¢ Wr) '/"-

(Cl4)

gtk fr%«/ () ftwn) 4, ter) 26

( wr)"z

where we have used the fact that

-

(C15) G:m _ (")Mc;a*
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The energy shift (C2) becomes

2
AE=-F L S 3<H)¢m*m-6;,,cz)l H>
¢ k,m

R . y R
(C16) [f()"‘ébv/‘/,sl\{‘l?%.!/o(%r)/,(%f) /_/E%'.)]a
<CF” R'—.%-%‘/Cn)-

We have replaced, because of the symmetry of the wavefunc-

tion,i§j with the factor 3 and set i=1 and 3j=2. Because
*

Ecm(l)am(2) is a scalar, the choice of basis is irrelevant

and we can make the replacement

-i“
il

(C1l7)

S .G 6 —
™

It now remains only to evaluate the color matrix ele-

ment. We first write

cn A= (K0T

Since a single gquark is a fundamental representation or a 3

of SU(3) it follows that in a color singlet state of 3

color’
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®
quarks, any combination of two quarks must be a 3 , since

1+8 (recall mesons in SU(3)). Then we use,
@) KROINIEgY= $(Frryrs®) s #(P8)

and the fact that (p,q) for a 3 is (1,0) and (0,1) for a ;*,

to derive

1 * 2 '
<Cn”-." lzicﬂ>= I{<3 ,llrz 125 -
20 21¢12>-<213T13)] =
_é’-’f “le_le) 2
2(3 3 3~ 3
Substituting Eg. (C20) into (Cl16) and setting us=g2/4n

R
AE = 8“‘ Z[jor‘l-h%zﬂ/k R'3/2
k

@ 2 L), (ugr) s Ckr (kr)7 2 2 ¢nIgIH)
kR~

yields

which is Eq. (46).



APPENDIX D

NUCLEON-PION COUPLING

In this appendix we derive some low energy theorems
concerning the nucleon-pion interaction. Let us consider

the axial vector coupling after integration:

£ m — -
o H=rtwer ZL ey Y Toue)) @
o My NEE ) “

After differentiating the pion field:

tr o m =
02y H = T PGy k. T ucP)¢

where k = p' - pu. Further reduction gives
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M JEE'] 2 2m zsv
x{ TR A+ 2 "R LS Py —
(D3) ’ (Ebm)(Etm)
-3 +._. A
)K E.[%‘ E;i:):xi} 7450

For small p and to first order in k we have

::-,;‘F,wr{ _PENyT= Ty
H 222 4 (1 m,)x kX

o X2BPEE- Pty - Tgf%%}

; ume
'. ? o)
xm Zoso T'; 74“ '

I1f we average over the direction of p we find

e o on
o 2~ £ R 2.0 4

=
z

Ih

which is directly related to Eq. (121).

The pseudoscalar coupling is written
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(D7) ~
[ 4 /, a‘c K C
2
where again Kk = p' -p. If we let p-0 in Eq. (D4) we £find

that in the static limit both the pseudoscalar and pseudo-
vector interactions give identical descriptions of NN»n ver-
tices if

tiwr  Jawi

#

(D8) <m

as assumed in Sect. 3.1.



APPENDIX E

MASS AND WAVEFUNCTION RENORMALIZATION

The baryon propagator to order l/f2 {or £2 ) in
BBn

’

pion coupling is shown in Fig. 3.1. In

the

our

non-relativistic, or no recoil, approximation the propagator

is written

(E1) SCE)" —L + _L Z(E)E-M

where 1/(E-M) 1is the free (or "bare") propagator, M is
bare mass, and Z(E) is the self-energy intéraction given

Eq. (82). 1If we expand Z(E) around E-M;

(E2) Z(E)—”'Z(M (E M) 42(5}

AE E=M

we have

130

the

in
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L =M 5E)e.
(E3) SCE):" E.Mf(mzf -E_:/—W- E=m

LS

0 2

Now to order fBBn

L - Z(M) v
BE-m o (e=m)E T E- (MrEM))

and

M) _ Z'M)
wsy E-M  E- (M+ZM))

so the modified propagator becomes
I+ M)
E- (M+3(M)

Notice that the modified propagator (E6) has the same form

(E6) £;<};) =

as the bare propagator in (El). We can therefore identify

the quantity MR = M ¢+ E(M) as a modified or renormalized

mass while the factor

(E7) Z= \+§’CM)

is called the wavefunction renormalization, The full
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propagator can now be written.

Zz _ Z
e SE)= Em. = Eom

where M is to taken as the renormalized mass in a bare pro-

pagator with factor Z. Refering to, for instance, Eq. (91),
it is seen that X '(M)<0. 2 is therefore regarded as the
probability for finding the bare baryon in a "dressed"
state. External lines in a diagram are multiplied by a fac-
tor {Z, reducing the bare values of the amplitude (see,
however, subsection 4.3.2 where an exception due to unstable

particles is discussed).



