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ABSTRACT

In this paper we develop a wavelet-based statistical method
for solving the image restoration problem. In this approach,
a signal prior is set up by modeling the image wavelet coef-
ficients as independent Gaussian mixture random variables.
We first specify a uniform (non-informative) distribution on
the mixing parameters, which leads to a simple and efficient
iterative algorithm for MAP estimation. This algorithm is
similar to the EM algorithm in that it alternates between a
state estimation step and a maximization step. Moreover,
we show that our algorithm converges monotonically to a
local maximum of the posterior distribution. We next gen-
eralize the result to non-uniform priors and develop an effi-
cient integer programming algorithm that enables a similar
alternating optimization procedure.

1. INTRODUCTION

Image restoration belongs to the class of problems named
as linear inverse problems, which are common in areas such
as medical diagnostics, radar and sonar target estimation,
seismology, radio astronomy, microscopy [1, 2, 3]. Such
problems are mathematically described as

� � ��� � (1)

where � is the original signal or image of interest, � is a
linear operator, � is the additive noise term, and � is the
observed data. The goal of the inverse problem is to recover
� from �; i.e., to find an operator� (not necessarily linear)
such that the estimate

�� � �� (2)

is as close to � as possible according to some prescribed
measure.

In practice the operator� is often near-singular, making
such inverse problems ill-posed. Many classical methods
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and some more recent methods have been proposed to solve
such problems, including several multiscale and wavelet-
based approaches [1, 4, 5, 6, 7]. In this paper we present an
alternative wavelet-based Bayesian approach to linear in-
verse problems. Our approach was first described in [8].
Here we investigate its performance and theoretical prop-
erties in greater detail and develop an extension of it. The
method makes use of the wavelet domain statistical model
proposed in [8, 9], and we develop a joint MAP estima-
tor through a clean, direct and mathematically sound de-
velopment. The suitable choice of Gaussian mixture model
for the wavelet coefficients and an alternating maximization
method leads to a very simple and efficient iterative algo-
rithm.

2. BASIC FORMULATION

It is widely accepted that the wavelet coefficients of natural
images tend to be decorrelated. In addition, the distribution
of these coefficients usually has a peaky and heavy-tailed
symmetric shape, centered at the origin [9]. This motivates
the use of prior densities based on independent Gaussian
mixture models (IGMMs) for the wavelet coefficients. Let

� ���

where� is the wavelet transform operator, then (1), formu-
lated in terms of wavelet coefficients �, becomes

� � ����
� � �

� ��� � �� (3)

We model each wavelet coefficient as a Gaussian two-
mixture random variable,

����� � ��� ���� ��� ���� � ��� ��� ����� ��� � ��� (4)

where� ��� ��� represents a Gaussian distribution with mean
� and variance ��.

Let � � ����, then the joint MAP estimator of � and �



is

���� ��� � argmax
�� �

����� 	 ��

� argmax
�� �

���	�����	������� (5)

For simplicity let’s first set ���� � ����� � �. In this
case,
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where 
� is a constant.
Usually the maximization of � is difficult because of

the presence of mixture densities. However, the following
lemma provides a necessary condition on any local maximal
solution and will later on lead to an iterative algorithm that
monotonically converges to a local maximum.

Lemma 1 Let ���� ��� be any local maximum of ������, i.e.,

������ 
 ����� ���
for all ����� in a sufficiently small neighborhood of ���� ���.
Then

1. Each element ��� of �� is equal to either 0 or 1, and is
given by
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2. �� is uniquely expressed through �� as

�� � � ������ ��������� ������� (8)

where � is a diagonal matrix with diagonal elements
��� � ��

���
.

The immediate result of the lemma is the following iter-
ative algorithm for the MAP estimator described in Table 1.

We point out two aspects regarding the algorithm. First,
even though the total number of possible iterations to reach
a local maximum can be as high as 
� , in practice it usually
converges to a fixed point in less than 10 iterations. Also,
since the linear operator within the bracket to be inversed in

Step 0 Initialization: ���	 � ��  � �

Step 1 Estimate ���
�	 using ���	 as
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(9)

Step 2 Using estimated ���
�	 in step 1 to form the diago-
nal matrix ���
�	 with �

��
�	
�� � ��

�
�����
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, then com-

pute ���
�	 as
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����� �������
(10)

Step 3 If ���	 �� �
��
�	, then  �  � � and repeat steps 1

and 2; otherwise exit.

Table 1. Bayesian IGMM model restoration algorithm.

(10) is positive definite, we use conjugate gradient descent
method to compute its inverse. This inversion step is the
most time-consuming part in the algorithm. Next, this it-
erative algorithm is highly nonlinear and signal dependent.
Wavelet coefficients of large magnitude will tend to evolve
into the high variance state, while wavelet coefficients of
small magnitude will tend to be suppressed. These opera-
tions are carried out in a global way. The following theorem
summarizes the convergence behavior of the algorithm.

Theorem 1 Let � be as in (6). Given any initial estimate
�
��	 and ���	, the iterative algorithm described in Table 1

will stop after � iterations with � 
 
� .
Let ���	 � �����	����	�, then
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Choose �� � �
�		 and �� � �

�		, then ���� ��� satisfies the
coupling conditions (7) and (8) in Lemma 1. If in addition
for all ����  � �� 
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then ���� ��� is a local maximum point for �.

3. EXTENSION TO NON-UNIFORM PRIORS

In this section we allow the prior ���� to be non-uniform.
We assume that ��	 ���� � ��� �. The following theo-



Bridge Mandrill Fruit Camera man Building
�
�

� 0.0033 0.0136 0.0005 0.0002 0.0008
�
�

� 0.4930 0.4911 0.6330 0.2841 0.7774

Table 2. ��� and ��� trained from EM algorithm. All image
pixel intensities are linearly scaled to the range [0,1].

rem provides an efficient integer programming procedure
to maximize � when � is concave on ���� �.

Theorem 2 Let
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for � 
  
� .
Without loss of generality, assume �� � �� � � � � �

�� .
If ���� is concave on ���� �, i.e.,

����� ���� � ����� � ��� ������� � ������

for any � � ��� �� and ��� �� � ���� �, then

1. �� � �� � � � � � �� .

2. A � that globally maximizes � is given by the follow-
ing formula

�� �
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where ������ is the sign function.

4. EXPERIMENTS

In this section we apply the method developed in this pa-
per to recover images distorted by the convolution operator.
We first examine the wavelet coefficient distributions of a
set of representative, natural images. In Table 2, we list
the ��� and ��� values trained from some common test im-
ages. We see that ��� stays in a fairly stable range, while ��

�

has a large variation. ��� tends to be large for images with
more texture content such as the “bridge” and “mandrill”
test images. While it tends to be significantly smaller for
less textural images such as the remaining 3 test images. So
we can first roughly set ��� � ���� for textural images and
��� � ������ for images such as “Fruit”.

After using this set of parameters for the initial image re-
covery, we can use it to reestimate the parameters and then
go through the process again to get a more accurate result.
It is known that wavelet coefficients have exponential decay

property across scales, so we can also estimate such prop-
erty based on the roughly estimated image at hand. In Fig-
ure 1 we compare the parameters trained from the original
image and those trained from the initially restored image.
We see that the exponential decay of ��

� is well preserved,
while ��� has a large change even though it remains roughly
constant.
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Fig. 1. Re-estimation of ��� and ��� across scales for the
“camera man” test image. (a), (b), from clean image. (c),
(d), from restored image.

Hence in the following experiments we only reestimate
��� across scales while keeping ��� unchanged.

One drawback of wavelet transform that limits its appli-
cation is its translation dependence, which is also the cause
of “blocky” artifacts in, for example, wavelet-based denois-
ing. In [10] a translation invariant approach is taken to yield
better performance. The idea is simple, for each circularly
translated version of the observed data, apply the wavelet-
based processing algorithm, then inverse translate the re-
sults back and take the average of them. This is equiva-
lent to using different wavelet bases, all of which are trans-
lated versions of each other, to process the data and then
take the average result. Here if we let �
 represent the
wavelet transform using the standard wavelet basis trans-
lated by vector �, then we have

� � ����

 �
 � �

Notice that translation is also a linear operator. For each
�, we apply the restoration process. In the end we take the
average, i.e.,
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where � is the set of possible translations.
In Figure 2 we apply our method to the restoration of

two test images. Harr wavelets are used. We first use a
rough set of parameters to do an initial recovery. Then we
use this recovery to estimate ��� scale by scale to get a better



estimate of the parameters. After that we apply the algo-
rithm for a collection of 25 translations (a �� � window of
circular translations) and then take the average. we see that
the texture regions are relatively well recovered, especially
in difficult areas such as the facial region of the mandrill.

5. CONCLUSIONS

In this paper we develop a new wavelet-based method for
solving linear inverse problem and apply it to image restora-
tion from noisy and distorted observations. This Bayesian
method employs a wavelet-domain independent GMM sig-
nal prior to produce a computationally efficient restoration
algorithm that has produced good results. The extensions
of the method developed in this paper are many. One is the
direct application to problems involving any multi-mixture
model, or use more realistic exponential decay across scale
property on wavelet coefficients. Recently, graphical mod-
els, such as the wavelet-domain hidden Markov models pro-
posed by Crouse et al.[9, 11], have been applied in image
processing with very good results. In this paper, we only
present the simplest independent wavelet coefficient prior to
illustrate the key ideas and basic results, but the framework
could be extended to handle more sophisticated HMM type
priors.
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Fig. 2. Experiments on “bridge” and “mandrill” test im-
ages. (a) (b), Clean images. (c) (d) Observed images after
blurring by � � � box-car matrix with added white Gaus-
sian noise (BSNR=30dB). (e) (f), Recovered images with
initially chosen ��� � ���� and ��� � ����.


