Parallel Continuous Optimization®

J. E. Dennis Jr.Tand Zhijun Wu?

Abstract. Parallel continuous optimization methods are motivated here by
applications in science and engineering. The key issues are addressed at different
computational levels including local and global optimization as well as strategies
for large, sparse versus small but expensive problems. Topics covered include
global optimization, direct search with and without surrogates, optimization of
linked subsystems, and variable and constraint distribution. Finally, there is a
discussion of future research directions.

Key Words. Parallel optimization, local and global optimization, large-scale
optimization, direct search methods, surrogate optimization, optimization of linked
subsystems, design optimization, cluster simulation, macromolecular modeling

1 Introduction

Optimization has broad applications in engineering, science, and manage-
ment. Many of these applications either have large numbers of variables or
require expensive function evaluations. In some cases, there may be many
local minimizers, and the user naturally wants to know how solutions found
by the algorithm compare to other local solutions. These factors contribute

tDepartment of Computational and Applied Mathematics, and Center for Research on
Parallel Computation, Rice University, Houston, Texas, 77005. Work supported by DOE
DEFGO03-95ER25257, AFOSR F49620-98-1-0267, The Boeing Company, Sandia LG-4253,
Mobil and CRPC CCR-9120008.

'Department of Computational and Applied Mathematics, Center for Research on Par-
allel Computation, and Keck Center for Computational Biology, Rice University, Houston,
Texas, 77005. Work supported in part by DOE/LANL Contract 03891-99-23, the Keck
Center for Computational Biology, the Robert A. Welch Foundation and NSF training
grant 9413229.

to the need for more intensive computation than traditional architectures
can support. High-performance computing provides powerful tools for solv-
ing these problems with a degree of practicality that would otherwise be
impossible.

Example applications where parallel optimization can play an important
role include aircraft shape design (Cramer, Dennis, et al [29]) and macro-
molecular modeling (Moré and Wu [64]).

In aircraft shape design, one attempts to match an ideal pressure distri-
bution by manipulating the shape variables. The number of shape variables
is in the order of hundreds at most, but they are constrained by at least two
systems of PDEs. This is typical of many important applied optimization
problems, there may not be so many decision variables for the optimizer, but
there may be many ancillary variables that must be determined to compute
the objective function and constraints. In order to obtain a feasible solution,
the systems must match the input of each with the output of the others, in
addition to satisfying side constraints such as range. The systems require
expensive PDE solves for millions of grid points, different grids for different
PDEs, and at least, there is one PDE to be solved for the air flow and one
to be solved for the structural deflection.

This problem is computationally intensive because there is a great deal of
linear and nonlinear algebra going on at each function and constraint eval-
uation. We will describe some domain decomposition type methods for this
problem. Asin that case, the sequential efficiency of the parallel optimization
procedure can be better than more traditional methods.

In macromolecular modeling, one attempts to determine molecular struc-
ture by minimizing a given potential energy function. One of the most im-
portant applications is the determination of protein structures in structural
molecular biology. The challenge in solving this problem is that the poten-
tial energy function has many local minimizers, while the structure to be
determined is believed to correspond to a global or nearly global optimal
solution to the minimization problem. Global optimization algorithms have
been developed to solve the problem. Not surprisingly, they rely heavily on
using computing power that only parallel high-performance architectures can
provide.

Substantial research efforts on parallel optimization have been made for
twenty years, and in the past ten years or so, some have born fruit by focusing
on special applications and others by exploring more general parallel schemes.

Optimization has close relationships with numerical linear algebra and
partial differential equations. For example, a typical optimization procedure
requires solving a linear system in every iteration to predict a step to a better
approximate solution; function or constraint evaluation often requires solving
a partial differential equation. Thus, parallel optimization algorithms and
software development certainly benefits from advances in parallel numerical
linear algebra and partial differential equations.

General algorithms have also been developed such as parallel direct search
methods by Dennis and Torczon [90, 34] and Torczon [90], parallel methods
for optimization of linked subsystems by Dennis and Lewis [32] and Dennis
, Li, and Williamson [33], and variable and constraint distribution schemes
by Ferris and Mangasarian [37, 38|.

Parallel global optimization has been one of the most active areas in par-
allel continuous optimization. Work in this area is motivated by important
applications in chemical and biological disciplines such as cluster simulation
and protein modeling. Algorithms and software developed in recent years
include parallel stochastic global optimization algorithms for molecular con-
formation and protein folding by Byrd and Schnabel [21, 19], parallel global
continuation software DGSOL for protein structure determination with NMR
distance data by Moré and Wu [65, 64, 68, 66|, and parallel effective energy
simulated annealing for protein potential energy minimization by Coleman,
Shalloway, and Wu [25, 26].

Optimization problems take different forms arising from the motivating
applications. They can be linear or nonlinear, constrained or unconstrained,
and local or global. They can be either large, sparse or small but very expen-
sive to evaluate. This means that quite different parallel algorithms may be
required and quite different architectures may be appropriate. For example,
if the problem is large but sparse, a shared-memory system may be a good
choice, for otherwise the distribution of a sparse, irregular structure over mul-
tiprocessors may cause load imbalance and severe communication overhead.
On the other hand, most global optimization algorithms are coarsely paral-
lel. They can be implemented on distributed-memory architectures, or even
loosely connected networks of workstations, and still maintain scalability.

In the following sections, we discuss various parallel optimization meth-
ods in greater detail. We describe optimization problems and algorithms
and their associated parallelism at different computational levels: function
evaluation, algebraic calculation, and optimization. In particular, we review

parallel methods for local and global optimization, and compare strategies
for large, sparse versus small but expensive problems. Parallel techniques
including parallel direct search, optimization of linked subsystems, and vari-
able and constraint distribution are introduced. Future research directions
are discussed in the end.

2 Local Optimization

Let us consider the problem of minimizing a nonlinear function, f(z), where f
is continuous and differentiable for all x € R™. Generally, we would be given
some incumbent approximate minimizer °. The most popular methods for
this problem construct a quadratic model for the objective function (and a
linear model of the constraints if they are present). This model problem
is intended to represent the problem of interest in some neighborhood of
2%, Generally this is true because the model is built by using at least the
1st order Taylor series term. Often finite difference approximations to the
derivatives are used, and this is an obvious opportunity for parallelism. In
fact, the kind of parallelism used is one of the most useful for optimization,
it is that values of the true function are obtained in parallel (see discussions
in Byrd, Schnabel, and Shultz [23]).

Since the model is thought to represent the problem locally, one hopes
that by finding a really good minimizer for the model, one will obtain a point
that improves the real objective function. Thus, Newton or quasi-Newton
algorithms choose a putative next iterate by solving the model problem. The
difficulty with this procedure is that the solution to the model problem may
be outside the region about z° where the model represents the problem well.

If the iterate found in this way is a better solution, then one moves to it
and iterates the procedure. It will not surprise the reader that this procedure
is likely to find the bottom of the same function valley one starts in, i.e., a
nearby local minimizer z*, assuming there is one, in the sense that for any z
in a neighborhood of z*, f(z) is greater than or equal to f(z*).

If the pure iteration does not succeed in finding a better point, then it
resorts to a globalization strategy. In this sense, globalization means conver-
gence to some solution from any point, not solution to the global minimizer.

The two main classes of globalization algorithms for this problem are
line searches and trust regions. Trust regions adaptively estimate a region

in which the local model can be “trusted” to adequately represent the true
function. The next iterate is chosen by approximately minimizing the model
over the trust region. Line search algorithms backtrack (usually) from the
solution to the model problem along the direction from the incumbent. Each
approach has its place in the optimization toolbox, and each has its own
opportunities for parallelism.

Trust region algorithms can use parallelism in the linear algebra needed to
solve the trust region subproblem - minimize the model in the region where it
is trusted to represent the function (see Santos and Sorensen [78] and Rendl
and Wolkowicz [75]). Line search algorithms can use parallel linear algebra
to compute the solution to the model problem, and they can also use parallel
function evaluations to find the best step along the direction they compute.
Parallel multiple line searches (Nash and Sofer [70]), and parallel inexact
Newton step computation (Nash and Sofer [69]) can be applied here.

For large-scale optimization, it is often useful to take advantage of the
property of partial separability. That is, the objective function can be written
in the following form,

F(z) = ifi(x), 1)

where f; is called the element function of f and depend only on a small
subset of the variables. This class of functions can be computed in parallel by
distributing the element functions to the processors. Each processor will then
be responsible for computing only the contributions of the element functions
to the whole function, gradient, and Hessian.

Let processor ¢ compute element functions f;,,..., f;, ... Then the func-
tion, gradient, and Hessian can be computed in the following procedure,

initialize f, Vf, V2f
Oon Processor i:
do for] € {7;17 cee aimax}

f=f+1

Vi=Vf+Vf;

V2f:V2f—|—V2fj
end do

end

where updates to f, Vf, and V2f require global reduction on distributed-
memory machines or access to shared-variables on shared-memory machines.
However, the updates for the gradient and the Hessian can be done efficiently
by updating only the elements for which the corresponding elements of V f;
and V2f; are non-zeros (Averick and Moré [7] and Moré, Walenz, and Wu
[63]).

The computation of the step, or its direction, with methods using the Hes-
sian or Hessian approximations can be parallelized in several ways. In gen-
eral, this is a place where a “plug-and-play” approach can be used by calling
existing parallel linear algebra software such as LAPACK or SCALAPACK
[3, 10]. For example, a parallel direct solver with Cholesky factorization can
be used to compute the search direction [B(z%)] 'V f(z%) at any iterate z°
if the Hessian or its approximation B(z') is symmetric positive definite; a
parallel matrix-vector multiplication routine can be used for computing all
matrix-vector products in the truncated Newton or trust region subproblem
solves. Byrd, Schnabel, and Shultz [23] showed that the quasi-Newton step
can be obtained by using the inverse BFGS updates which then require only
matrix-vector multiplications and can be parallelized straightforwardly with
a parallel matrix-vector multiplication routine.

If one wishes to exploit sparsity, the above parallelization becomes more
complicated. Several issues arise: First, an iterative solver can always be used
for either a line search or trust region algorithm in the truncated Newton’s
method. This requires a pre-conditioner, which not only depends on the
problem but also is more difficult to parallelize. Work on this issue can be
found in Gropp, Smith, and Curfman [8] and Jones and Plassman [50, 51,
53, 52|, who developed a parallel incomplete Cholesky factorization algorithm
that seems efficient in practice.

Second, parallel direct sparse solves are difficult on distributed-memory
machines, because data and computation are tricky to distribute to balance
the load among processors. A symbolic factorization phase is a potential se-
rial bottle neck in addition to the sparse triangular system solves. Coleman
and Sun [27] developed a group of parallel direct sparse solvers for optimiza-
tion using a multi-frontal approach.

Bokhari and Mavriplis [12], Feo, Kahan, and Wu [36], and Zaslavsky,
Kahan, et al [96] demonstrated that the Tera multi-threaded architecture
is particularly good for parallel sparse and irregular calculations. However,
there is no general sparse matrix software available yet on this architec-

ture. Finally, sparsity patterns often change from application to application.
Classes of optimization problems having the same sparsity patterns, like some
large linear programming problems, need to be identified, and special parallel
sparse solvers targeted to these classes of problems can then be developed.
Work in this direction includes Bixby and Martin [9], Schneider and Wise
[82], and Coleman and Wright [24].

3 Global Optimization

Research on global optimization has increased dramatically in recent years.
An important reason is that the increasing power of parallel high-performance
architectures makes it possible to attack many large, difficult global optimiza-
tion problems of practical interest. Ten years ago, work in this area was still
limited to toy problems of about 10 variables, but now, with the help of
parallel computing, advanced algorithms have been developed and applied
to problems with hundreds or even thousands of variables in such applica-
tions as cluster simulation (Byrd and Schnabel [21, 18, 19, 86, 20], Rosen and
Xue [95, 94], Coleman, Shalloway, and Wu [25, 26]), protein folding (Byrd
and Schnabel [22; 31], Scheraga [62, 74, 73, 54, 55|, Shalloway [85, 84, 72],
Coleman and Wu [28], and molecular docking (Meza, Plantenga, and Judson
[48], Dill, Phillips, and Rosen [35]).

A global optimization problem requires a local minimizer with the lowest
function value among all local optimizers. Certain classes of problems, like
convex programming problems, have only one local minimum, but most func-
tion arising in applications are non-convex and they may have many local
minima, constrained or unconstrained.

It is quite easy to see that general smooth continuous global optimization
problems are intractable. Furthermore, even if one had the global minimizer
in hand, it is an intractable problem to verify that it is anything more than
a local minimizer.

Nevertheless, just because a problem is impossible to solve in general does
not precludes useful research in the area. Often practical problems are posed
as global optimization problems because that is the nearest model problem
in the optimization toolkit to what the user really wants, and modern global
optimization methods can find valuable solutions that satisfy the user.

This point is far less subtle than it may seem at first. To see this, consider

a hypothetical problem in engineering design. The designer wishes to find
the best design for a widget in terms of a single design variable which is
constrained to lie in a bounded interval. Suppose that there are three local
minimizers as in the figure below. The left hand local minimizer and the
wide shallow middle minimizer will be found by a good global optimization
algorithm. On the other hand, the wide shallow middle minimizer is likely to
be the only one found by a local algorithm. However the narrow right hand
local minimizer, which is also the global minimizer, is unlikely to be found
without an impractical amount of effort by any algorithm.

Figure 1: A function with three local minimizers

In practice, this may not be important at all, such a narrow minimum for
the function is likely to have little practical value because if the process for
manufacturing the widget leads to any variability in the decision variable,
then the actual design criterion for the finished good will end up high up on
the narrow valley at a much worse value than that in the more stable left
hand valley. Of course, any decision maker would want to make that decision
for themselves in possession of the location of the true global optimizer, but
our point is that the more difficult a given global optimizer is to find, the
less important it is likely to be to find it.

We describe some applications areas and related parallel global optimiza-
tion work below.

Protein Folding

Protein folding is a fundamental unsolved problem in structural molecular
biology. The problem is to determine how the protein amino acids fold to a
unique three-dimensional structure. There are no direct physical means to
detect this. X-ray crystallography and NMR spectroscopy have been used
to derive approximate structures, but this requires months or even years of
laboratory efforts for each protein.

The goal is to determine the structure with only the knowledge of the
amino acid sequence of the protein by finding a structure corresponding to
the global potential energy minimum. While this is possible in theory, it is
computationally intense since it requires solving a global optimization prob-
lem with many thousands of degrees of freedom.

The potential energy function usually is given in an empirical form. It
includes energy terms for such atomic interactions in proteins as electrostatic,
van der Waal’s, bonded, torsional, etc. Typically, the total energy E has the
following form.

E = Eelec + Evand + Ebond + Eangl + Etorm (2)

where

Eelec = Z %, (3)

ij/electro €Tij

ij Jvander \ T Tij

Eoona = D kij(riy —13)%, (5)
ij /bonded

Eangl = Z k9(9 - 90)27 (6)
0 /bonded

Eiors = Z k¢>[1 + COS(n¢ - ¢0)]7 (7)
¢/torsional

where 6, ¢, and r;; are bond angle, torsional angle, and pairwise distance and
depend on the atomic positions, and everything else are given parameters.
Note that the potential energy function is defined in terms of the atomic
positions x;, i = 1,...,n, where n is the number of the atoms in the protein
and usually is in the range of 1,000 to 100,000. Recent work to develop

special methods for this problem includes Scheraga et al [73, 54, 55, 81],
Straub et al [89], Coleman, Shalloway, and Wu [25, 26], Byrd and Schnabel
21, 22, 86, 31].

Cluster Simulation

Another class of global optimization problems comes from the emerging field
of cluster science (Reynolds [76] and Haberland [40]). Clusters important for
material design include argon clusters (Hoare and Pal [45, 44, 43]), various
metal clusters (Jellinek [39, 49]), and clusters of carbon molecules such as the
famous carbon 60, the Buckyball (Smalley [56]). A key research problem is
to find the most stable configuration for any given cluster. The clusters may
not exist in nature or be hard to observe. However, given a potential energy
function, its global minimizer corresponds to the most stable configuration
for that model of potential energy. As an example, the potential energy
function for simulating argon clusters is:

1 2

Eargon = - 8)
B [1 [1

where z; and x; are positions of the atoms.

Note that this function is very similar to the van der Waal’s term in
the protein potential energy function. As a matter of fact, they are indeed
models of the same type of potentials due to the so-called van der Waal’s
weak forces between pairs of atoms. The potential energy function for the
argon cluster is simpler than for proteins, but it is by no means easy to
minimize. Hoare and Pal [45] estimated that this function has exponentially
many local minimizers which grow as a function e”* of the number of atoms n
in the cluster. Recent work on this problem includes Northby [71], Xue [94],
Byrd and Schnabel [19], Coleman, Shalloway, and Wu [25, 26], and many
others.

Distance Geometry

Strong motivation for solving distance geometry problems is their applica-
tion in NMR macromolecular modeling, where a protein structure can be
determined by solving a distance geometry problem using the NMR distance
data.

They can be formulated as global nonlinear least-squares optimization
problems (Crippen and Havel [30]), or, from a graph-theoretic point of view,

10

they are a class of NP-complete graph-embedding problems (Hendrickson
[41], Saxe [79, 80], Moré and Wu [64]). Recent attempts to solve these
problems on parallel high-performance architectures are by (Hendrickson [42],
Moré and Wu [66], Byrd, Schnabel et al [97], etc).

A simple version of the distance geometry problem is to find a set of points
to realize a given set of distances between some of the points. A more general
version is to satisfy a given set of bounds on the distances. Mathematically,
the problem is to find a set of points z; € R3, ¢ = 1,...,n such that the
distance ||z; — «;|| between points z; and z; is equal to a given distance d;;
or in between a given pair of bounds /;; and u;; of the distance. It can be
formulated as a global optimization problem as follows. If d;; are given,

min > ([lo; - z;* — df))”, (9)

(i,5)eS
where S is a given set of (4, j) pairs. If ;; and u;; are given,

z; — xj||* = 1% z; — x> — u
min Z min2{” il Z],O}+max2{” J2|| ”,0}. (10)

2
(i)es L u;

Note that S may have (7,j) ranging from only a few to all possible pairs.
For less than n pairs, the problem can be trivial. For all possible pairs, the
problem still can be solved in polynomial time (Blumenthal [11], Crippen
and Havel [30]). However, in practice, S is sparse, and the problem is hard
to solve.

Stochastic Global Optimization

A stochastic global optimization method was proposed by Kan and Timmer
[77]. Byrd and Schnabel [21] developed a parallel version. The method has
these basic steps. A set of points is chosen in the problem domain, and the
objective function is evaluated at the points. A subset of the points with low
function values are selected as starting points for local minimization, which
then is performed.

If one of the local minimizers is accepted as the global minimizer, the
algorithm stops. Otherwise the process is repeated. Each time the starting
points are selected from all previous, as well as current, sampled points.
Therefore, as the algorithm proceeds, more and more points are sampled,
and there are increasing chances to find the global minimizer.

11

Kan and Timmer [77] showed that with probability one the algorithm
converges to a global minimizer in a finite number of iterations. Byrd and
Schnabel [21] developed a parallel version of the algorithm by sampling start-
ing points and performing local minimizations all in parallel. The problem
domain is divided into smaller regions, each of which is assigned to a proces-
sor. Some regions are further refined if lower function values or local minima
are found, and the subregions are reassigned to other processors when nec-
essary to achieve load balance.

Although it requires dynamic load balancing, the stochastic global opti-
mization algorithm is easy to parallelize and performs well on both shared-
and distributed-memory architectures. Byrd and Schnabel [21] reported the
development of the algorithm on KSR-1 and IBM SP2 and the performance
results on protein and related molecular conformation problems. The algo-
rithm has also been used by research groups in other institutions, including
some at CRPC.

Effective Energy Simulated Annealing

The effective energy simulated annealing algorithm was developed by Cole-
man, Shalloway, and Wu [25]. The algorithm was parallelized and imple-
mented on Intel iPSC/860 and IBM SP2. We describe the parallel imple-
mentation of this algorithm to show a general parallelization strategy for all
simulated annealing type algorithms.

A physical annealing process starts from a high temperature, and then
cools down by stages gradually to the zero temperature where the system
reaches the ground state. The process has to proceed slowly so that at each
cooling stage the system has enough time to reach equilibrium, for otherwise
it will be trapped in a local state.

A simulated annealing algorithm tries to mimic this process by consider-
ing the objective function of the global minimization problem as the energy
function of a simulated system. A parameter corresponds to the tempera-
ture and is decreased by stages. At each stage, function values are randomly
sampled. Each time a point of lower potential energy is found, it is accepted
as the current point. Otherwise a point is accepted or rejected randomly
using the Metropolis criterion, which depends on the temperature: If the
temperature is higher, the probability of accepting the point is also higher.
This property allows the algorithm to sample and accept more points at high

12

temperature, while gradually settling down at lower temperatures to smaller
regions where the lowest point of potential energy may be located. It has
been proved that the sequence of the points sampled by the simulated an-
nealing algorithm form a Boltzmann distribution and converges to a global
minimizer with probability one as the temperature goes to zero (Aarts and
Korst [1]).

The effective energy simulated annealing algorithm is similar to the sim-
ulated annealing algorithm except that a class of objective functions, called
effective energy functions, are used, one at each temperature. The higher the
temperature, the smoother the corresponding objective function. Coleman,
Shalloway, and Wu [25] demonstrated experimentally that this algorithm
converges faster with fewer function evaluations than the standard simulated
annealing algorithm.

As in all simulated annealing type algorithms, the effective energy sim-
ulated annealing algorithm can be parallelized by sampling and evaluating
all the points in parallel at every cooling stage. A general strategy is that
at each cooling stage, each processor generates its own sequence of points,
or in other words, random walks, compares the results with other proces-
sors, and chooses the lowest point among all processors as the starting point
in the next stage. Coleman, Shalloway, and Wu [25] demonstrated scalable
performance of the algorithm using this strategy on the Intel iPSC/860 with
application to molecular cluster conformation problems.

Global Continuation

Global continuation algorithms, as named in Moré and Wu [65], are a class
of homotopy-type algorithms applied to global optimization problems. A
special integral transform is used to generate the homotopy. A set of curves
tracing the solutions to the homotopy at each parameter value is then traced
to locate a global solution at the end. The special transform makes the
function smoother with fewer local minimizers. Also, the local minimizers are
concentrated in regions with low function values, where a global minimizer
is likely to be located. Therefore, by tracing the local minimizers on the
smoothed functions back to the original function, there is a good chance
that at least one curve will lead to a global minimizer of the original function
(Wu [93], Moré and Wu [65]).

The global continuation algorithms have been studied by several research

13

groups including Scheraga et al [54], Shalloway [85, 84], Coleman, et al [25],
Straub [88, 89], Moré and Wu [65, 64, 68, 66]), and Byrd and Schnabel
[86], each having slightly different transforms. In particular, Moré and Wu
[65, 67] developed a class of parallel global continuation algorithms for solv-
ing distance geometry problems with application to NMR macromolecular
modeling.

The algorithms are embarrassingly parallel: multiple solution curves are
traced in parallel. The best solution found by the processors is selected at
the end. The computation on each processor is intensive since it involves a
sequence of local minimizations. However, the load on all processors is almost
the same, and little communication is required except for at the beginning
and end of the computation. The algorithms have been implemented on
several parallel architectures as a parallel software package called DGSOL
available through the NEOS, the Network Enabled Optimization System, at
Argonne National Lab. This parallel implementation has been used to solve
large distance geometry problems of practical interest.

4 Direct Search Methods

Direct search (pattern search) methods are longtime favorites of users, but
they have only recently become interesting to optimization researchers. One
of the reasons is that direct search methods are more interesting to try to
parallelize than Newton methods. The work in a Newton’s method usually
is dominated by the cost of the function evaluations and the linear algebra
required to solve the underlying local model problem. Direct search methods
require essentially no linear algebra, but they are profligate users of function
evaluations. This is because there is no underlying local model to suggest
where a better next iterate is likely to be found as in a Newton method. In-
stead, direct search methods sample the function to find the next iterate. Of
course, Newton methods use function evaluations to confirm or reject a sug-
gested next iterate, but direct search methods use function values to explore
for a next iterate. This exploration phase makes it possible to invent new
intrinsically parallel direct search methods rather than simply to parallelize
an existing method as in Newton’s method.

This approach led to the parallel direct search method PDS [34, 90], and
to the novel convergence theory for more general pattern search methods

14

[91, 92, 57, 58, 61, 60]. Audet [4] showed by several examples that Lewis and
Torczon’s convergence analysis in [57] is sharp. Lewis and Torczon [59] and
Audet and Dennis [5, 6] extended these methods and the convergence analysis
to nonlinear problems with discrete as well as continuous variables and to
those with general constraints. Hough and Meza [47] proposed using the
PDS method for the trust-region subproblem and developed a parallel trust-
region algorithm for nonlinear optimization. Hough, Kolda, and Torczon [46]
also developed an asynchronous version of PDS, which demonstrated better
parallel performance than the standard PDS in real applications.

Indeed, the sequential version of PDS called MDS or multidirectional
direct search was a “sequentialization” of PDS rather than the usual way
around. In order to discuss parallel aspects of the algorithms, we will give
the algorithm for continuous variables and no constraints. Thus, we consider

mingege f(2)

The following formulation of Generalized Pattern Search (GPS) is from [14].
It differs from Torczon’s original formulation in [92], but it is equivalent. For
simplicity, we say that if there are constraints, and if x either is infeasible or
if f(z) cannot be evaluated successfully, then we set f(z) = oco. Note that
both steps have ample opportunities for parallel evaluations of the objective
function and constraints. Indeed, one would certainly tailor the search step
to the number of function evaluations it would be convenient to compute in
parallel. There is also a nice place here for hierarchical parallelism if the
evaluation of a single f(z) is already a parallel program.

GPS: Let M, denote a mesh on R"™ and suppose that zo € M, has been
given. (Typically, zg ~ z*, where z* is a preliminary baseline solution, but
any choice of zy € M, is allowed.) Let X, C My contain o and any 2n points
adjacent to xg for which the differences between those points and z, form
a maximal positive basis (composed of multiples of the coordinate vectors)
for R™. As the algorithm generates x;, € My, let X}, C Mj, be defined in the
same way. For £ =0,1,..., do:

1. Search: Employ some finite strategy to try to choose z;,1 € M} such
that f(zry1) < f(zg). If such an x; is found, declare the Search
successful, set My ; = M}, and increment k;

15

2. else Poll:
if 5 minimizes f(z) for € Xj, then declare the Poll unsuccessful,
set xpy 1 = oy, and refine M}, to obtain M}, by halving the mesh size
(write this as M1 = My/2);
else declare the Poll successful, set x,; to a point in X} at which
f($k+1) < f(ﬂ?k), and set Mk+1 = M.
Increment k.

Step 2 provides the safeguard that guarantees convergence, as in the
following result from [5] which extends [92]. The extension of GPS to GMIPS
(z has some discrete components) differs from GPS in the definition of the
poll set Xj, and the convergence result is a bit different, though equally
satisfying:

If f is continuously differentiable, then there are infinitely many unsuccessful
iterates produced by any GPS method, and some limit point of the unsuccess-
ful iterates is a stationary point for problem (4).

This result says that one needs only monitor the unsuccessful iterates of GPS
to find a stationary point, and this is without regard to how naive the search
strategy is in Step 1. In practice, of course, the search strategy matters a lot
to the number of function values required to find a good optimizer. We now
turn to using global model functions as surrogates for f(z) to try to Search
with greater parsimony and thereby reduce the total number of objective
function evaluations, or parallel objective function evaluations. Intuitively,
surrogate methods use global models to predict where to find a successful
next iterate in just the way that Newton methods use local models. Of
course, the local models must be first order accurate for Newton methods to
work - but then they work very well indeed. It is unrealistic to expect much
accuracy of a global model, and that is one reason why we avoid calling them
approximations. The poll step has the same opportunities for parallelism as
before, but parallel function evaluations of the inexpensive surrogate can
allow a sort of rough global surrogate optimization in the search strategy.
One can return a number of candidates for zj, 1, evaluate them in parallel,
and accept the best.

The Surrogate Management Framework

16

The description of SMF that we present here is a set of strategies for using
approximations in both the Search and Poll steps of a GPS algorithm. For
greater clarity, we have also identified a separate Evaluate/Calibrate step.
In what follows, we assume that a family of approximating functions has
been specified, that an initial approximation has been constructed, and that
an algorithm to re-calibrate the approximation is available. (See [14], [16],
[15], [83] for more details.)

SMF: Given sy, an initial approximation of f, and zy € M,, let Xy C M,
contain xy and any 2n points adjacent to xy for which the differences between
those points and zp form a maximal positive basis (composed of multiples
of the coordinate vectors) for R". As the algorithm generates z; € M, let
X C My, be defined in the same way. For £ =0,1,..., do:

1. Search: Use any method to choose a trial set T, C My. If Ty, # 0 is
chosen, then it is required to contain at least one point at which f(z)
is not known. If T, = (), then go to Poll.

2. Evaluate/Calibrate: Evaluate f on elements in T}, until either it is
found that x; minimizes f on T} or until x5, € T} is identified for
which f(zgs1) < f(zg). If such an zg,q is found, then declare the
Search successful. Re-calibrate s; with the new values of f computed
at points in Tj.

3. If Search was successful, then set s; 1 = si, M1 = My, and incre-
ment k;
else return to Search with the re-calibrated s, but without increment-
ing k.

4. Poll:
If x; minimizes f(x) for # € X}, then declare the Poll unsuccessful,
set Tp11 = T, and set My = My/2;
else declare the Poll successful, set x;,; to a point in X} at which
f($k+1) < f(ﬂ?k), and set Mk+1 = M.
Re-calibrate s, with the new values of f computed at points in X;. Set
Sk+1 = Sk-
Increment k.

17

Asynchronous Parallel Search

In general, the PDS algorithm assumes a homogeneous and tightly-coupled
parallel system and it synchronizes in every iteration to compare the function
values among all processors. The problem is that in practice, the machines
available may be loosely-coupled and heterogenneous. Synchronization may
force many of the processors idle while others are busy. The problem can be
more serious when the cost for function evaluation also varies with varying
evaluation points and the load will not be balanced among processors.

To address this problem, Hough, Kolda, and Torczon [46] developed an
asynchronous version of PDS and obtained better performance than the PDS
algorithm on standard test problems and some problems arising in practical
applications.

The idea of the asynchronous algorithm is that in the PDS algorithm, each
processor takes an independent direction to search for a decreasing point; it
broadcasts the point when it finds one, or returns to next iteration when
informed that a decreasing point has been found elsewhere. The communi-
cation among the processors are managed by some daemon processes and the
cost is justified by much better balanced computation across all processors.

The following is an outline of the algorithm. For more details, readers
are referred to [46].

APDS: On each processor, define =, Tpest, Tiriat t0 be current, best, and
trial iterates, respectively, and let f., frest, firiar and A Apest, Agriqr be cor-
responding function values and step sizes. Let tol be a small tolerance for
the step size.

1. Consider each incoming triplet {z, f1, A} received from another pro-

Cessor. If f+ < fbest; then {xbest,fbest,A+} $— {x+,f+,A+}, Atrial $—
Abest-

2. Compute Tipiq ¢ Tpest + Apriard and evaluate fipiar = f(Z4riar), where d
is the local direction.

3. Set {.’L‘+, f+; A+} < {xtrialv ftriah Atrial}-

4. If f+ < fbesta then {xbestafbestaAbest} — {x-l-af-l—aA-I—}a Atrial — Abesta
a’nd bI‘O&dC&St {xbesta fbest7 Abest}- Else Atrial < %Atrial-

5. If Ay > tol, goto Step 1. Else broadcast a local covergence message.

18

6. Wait until either (a) enough of processes have converged for this point
or (b) a better point is received. In case (a), exit. In case (b), goto
Step 1.

5 Optimization of Linked Subsystems

The formulation we will discuss in this section applies to a class of optimiza-
tion problems arising in multidisciplinary design optimization (MDO). In
MDO, the design variables and the system variables are correlated through
coupled nonlinear subsystems each of which may involve expensive calcula-
tions such as PDE solves. The idea here is that parallelism can be exploited
at the coupling level where the subsystems can be solved independently, if
an appropriate MDO formulation is employed. The technique we employ is
related closely to domain decomposition for PDE or multiple shooting for
ODE.

A general MDO problem can be formulated as the following nonlinear
optimization problem.

min f(z,u(x))
st. g(z,u(z)) >0, (11)

where z is a set of design variables and u(x), the vector of system or ancillary
variables, is defined implicitly by the blocked system of equations:

Al(xaul(a:)?"'au]\f(x)) =0

: (12)
An(z,ui(z),...,un(z)) = 0.

This system represents the linking of all the subsystems, and the act of

solving it numerically for u(z), given z, is known as multidisciplinary analysis

(MDA). This terminology is in line with standard engineering terminology

that a disciplinary analysis is a single disciplinary simulation run.

The most conventional approach to (11) is sometimes called the control
theory or closed equations or black box approach which formulates the problem
as:

min f(z)
st. g(z) >0, (13)

19

where f(z) = f(z,u(z)) and §(z) = g(z, u(z)).

At each iteration of an optimization procedure applied to (13), any call
to the function routines causes the design variable z to be passed to the
MDA solver and the linked system (12) is solved for u(x). This reduces the
optimization problem to its essential decision variables x, which can be large
when z is a distributed parameter, but it is often an order of magnitude lower
dimensional than the dimension of u.

To get more of an idea of the expense of solving (12), think of MDA
as solving a perhaps huge nonlinear system of equations, which will have
to be done iteratively, whose residuals at a given iterate u(z), can only
be evaluated in blocks, and where to evaluate the ith block may require
doing a single discipline analysis for the discipline represented by A; perhaps
several times in every iteration. Even more scary is to think about the
problem of computing derivative approximations in order to use a Newton-
type method for MDA. Even getting derivatives to use in an optimization
algorithm applied to (13) is expensive. For example, if one is to use finite
differences, then V f(z) for any z will cost dim(z) MDA solves. One can try
to find and use adjoint formulations, but that is generally not practical if the
dimension of the range of g is at all large.

The MDA system (12) is naturally decomposed into disciplinary equa-
tions, which can be distributed to multiprocessors and solved in parallel.
For example, A; is solved for u; on processor 1, A, for us on processor
2, etc. However, given x, u; depends on x as well as other u;, and so on
for us,...,uy. Thus, this procedure is just a block nonlinear Jacobi iter-
ation, which is problematic at best, though it easily allows parallel single
disciplinary analyses. Of course, in many cases, load balancing is a problem
because of the different cost of executing different single disciplinary analyses.

Probably the most often used procedure is the almost equally problematic,
and less parallel, Gauss-Seidel or successive replacements procedure; that is,
first assume some values for x and u;, solve A; for uy; then with the new value
for u; along with given values for x and other u;, solve Ay for us, and so on
until a new set of values for all u; are found. The procedure then repeats until
the whole system reaches equilibrium, or in other words, converges to u that
satisfies all the equations. This method can only be executed sequentially,
and as with the Jacobi procedure, there is no reason to believe it will converge
for a given problem. Still, the method does not require a system Jacobian
for (12), and sometimes intuition helps to order the single discipline solves

20

to obtain convergence.

At the other end of the spectrum of formulations is the simultaneous
analysis and design or nonlinear programming or open equations formulations.
This formulation can best be seen by rewriting (11) as:

min f(z,u)
st. g(z,u) >0, (14)
and A(z,u)=0

where z, u are both treated as independent variables, and the inclusion of the
MDA equations as a constraint ensures that u = u(x) at all feasible points.
There are many reasons why this is the ideal formulation for most problems,
but, it is likely to be extremely large and to need special linear algebra to
handle the linear algebra needed for a sequential quadratic programming
implementation. But, a major difficulty is that one must be able to open up
the single discipline analysis codes and extract the residual computations for
the equations solved by that code.

Recent work on MDO, for example, Cramer et al [29], Dennis and Lewis
[32], and Alexandrov and Lewis [2], demonstrated that the MDA equations as
well as the MDO problem can be solved in parallel if appropriate formulations
and algorithms are used. We describe some of the ideas in the following.

For simplicity, consider a two-discipline MDO problem,

xo; S1(u1); S2(ug)) >0 (15)

where, u; and us depend on zg, x1, and x3 through the MDA system,

A1($0;$1;U1;T1(U2)) =0 (16)
AQ(.’EO;.’L‘Q;UQ;TQ(Ul)) = 0. (17)
Here the design variable x is partitioned into x = (xg; z1; 22) with z; and
xy specific to discipline 1 and 2, respectively, and x, shared by both. The

function gq is called the design constraint, g; and g, are the disciplinary
design constraints, and A; and A, are the disciplinary analysis constraints.

21

As we have discussed before, a major difficulty is that the disciplinary
analysis constraints are coupled through variables u; and us. A very impor-
tant property that generally holds is that the coupling through 77,75 may
involve small subvectors of u; and us. This is analogous to the domain de-
composition approach to PDE solutions where at most a band around the
boundary values at the subdomain interfaces are exchanged between subdo-
main solves. Thus, without making the problem too much larger than (13),
we can introduce new variables w1 and ug; to replace T (uz) and T (uq) and
add new constraints to make w5 equal to 77 (us) and ug; to To(ug). Again,
a feasible point will satisfy (12). This gives one of the [29] IDF formulations
for the MDO problem:

min f(zg; Ry(u1); Ra(uz)) (18)
st. go(wo; S1(u1);S2(ug)) >0 (19)
91(wo; T1;u1) > 0 (20)
92(20; T3 u2) > 0 (21)
w12 — T1(ug) =0 (22)
ugr — To(ug) =0, (23)

where, u; and us depend on zg, x1, and x3 through the MDA system,

A1($0;$1;U1;U12) =0 (24)

As(zo; mo; ug;ugr) = 0. (25)

Note that in this formulation, u» and us; are considered as independent
variables, therefore, given g, =1, T2, u12 and us, A; and A, can be solved in
parallel for u; and us. The coupling between the two equations is handled by
the consistency constraints (22) and (23) at the MDO level. Thus, a complete
MDA is not required at each iteration of a standard SQP optimizer. A major
point is that the individual discipline solver codes are used as they are.

The model we show above is for a two-discipline MDO problem, but
the technique for decoupling or decomposing the MDO/MDA system into
parallel, independent subsystems can be extended to problems with more
than two disciplines especially when they are loosely-coupled, i.e., each equa-
tion/constraint is connected with only a few other equations/constraints, and
thus only a small number of auxilliary variables will be required.

22

MDO or linked subsystems problems are one of the “grand challenges”
of scientific computation. There is little hope of solving realistic problems
without significant advances in automatic differentiation.

Finally, we remark that Braun [17] and Sobieski and Kroo [87] suggested
a way of posing linked subsystem problems called collaborative optimization.
Only in special circumstances is this problem equivalent to (11), but there are
other ways to pose optimization with linked subsystems than the straight-
forward (11), and “CO” has the comforting feature of mimicing the way
“parallel” teams of disciplinary specialists would attach such problems.

6 Variable and Constraint Distribution

Ferris and Mangasarian [37, 38] developed two classes of parallel algorithms
for constrained optimization problems. Algorithms of the first class distribute
the variables on multiple processors. Each processor updates its own vari-
ables in parallel while allowing the other variables to change in a restricted
fashion. Once a new step is obtained, all processors communicate and com-
bine the steps to obtain the new iterate in the whole space. The second class
of algorithms distribute the constraints over the processors instead. Each
processor then solves a subproblem with a subset of constraints and a mod-
ified objective function. The processors then exchange Lagrange multipliers
and repeat.

Ferris and Mangasarian [37, 38| presented algorithms of these classes de-
signed for various types of optimization problems, gave a convergence theory,
and provided preliminary performance results. We refer the reader there for
more details.

Variable Distribution

Consider the problem

min,cy f(z) (26)

where X is a nonempty closed convex set in R™ and f a continuous and
differentiable function. The variable distribution algorithm first distributes
p blocks z1, ..., z, of variable z, where z; € R™, Y], n; = n, over p proces-
sors. At iteration 7 with an iterate z* € R", processor [updates block z} by

23

solving a subproblem,

minﬂﬂl)\z f(xla 37;_ + D%AI_) (27)
st. (z,zi+DiN)€X (28)
where [denotes the complement of [in 1,...,p, A\; € RP~!. The matrix

Dt is an npby-(p — 1) matrix. It is formed by taking arbitrary direction
d' € R", breaking it into blocks of d; € R™, [= 1,...,p, consistent with
the distribution of the variables, and placing these vectors along the block
diagonal of D,

Dlz:dlag(d?pa ;.717 ;+17""d1i7)' (29)

Let (y;,Af) be the optimal solution of problem (27), and z" = (y}, \%).
Then after all processors obtain their 2%, [= 1,...,p, the next iterate z**!
for the original problem (26) can be obtained by solving the subproblem,

. p .
ming, . f(por' + Y wea'™) (30)
k=1
. p . p
s.t. tox’ + Z et € X, Z ur =1, (31)
k=1 k=0

with 21 set to pex® + Sh_; pura'.

Note that the subproblem (27) is to solve the problem in the subspace
spanned by its allocated variables. Since each involves only its own local
variables, all can be solved in parallel. The subproblem (30), is again to
solve the problem on a subspace, but now it is the subspace spanned by the
steps from the current iterate to each of the subspace optima found at the
previous level. Since these steps were computed on different processors, a
synchronization step among processors is required for solving (30). Clearly,
this process can be applied to generate multiple levels until a good fit is found
for the given problem on the given machine.

The variable distribution method can be used for unconstrained opti-
mization problems and problems with block separable constraints. Ferris
and Mangasarian [38] showed that the algorithms for these problems con-
verge with certain optimality conditions. They also tested the algorithms
with a subset of optimization problems in CUTE [13] and obtained reason-
able speedups on CM-5 with up to 32 processors.

24

Constraint Distribution

The constraint distribution method applies to quadratic programs with strictly
convex objective functions. It can also be extended to general convex pro-
grams, but with relatively weaker convergence results.

In general, consider the following convex program,

min f(z) (32)
st. gi(z) <0,...,9,(z) <0, (33)

where f is a strictly convex function, and g; are convex functions from R"
to R™ | = 1,...,p. The method distributes the block constraints to p
processors. On processor [, a subproblem with only constraint block g;(xz) < 0
and a modified objective function is solved. Then the solutions and the
Lagrange multipliers are shared among processors, and the whole process
is repeated. Note that the modified objective function on one processor is
composed of the original function plus some augmented Lagrangian terms
formed by the constraints assigned to other processors.

For illustrative purposes, consider a quadratic program with 3 blocks of
inequality constraints,

1
min 'z + ExTQx (34)
s.t. Alﬂf < al,l = 1, 2,3, (35)

where ¢ € R™, Q € R™*" a; € R™, and @ is symmetric and positive
definite. A constraint distribution algorithm for this problem would first
distribute the constraints to 3 processors, with constraint [to processor .
Then at iteration ¢, a subproblem can be solved on each processor in parallel,
that is, on processor [:

. 1 1 & i i
min,, c a;+ iszsz + o Yo NOv(Ajz — ag) + pl1? | + a7 (36)
T =15
s.t. Alﬂfl S ap, (37)

where v is a positive number and p¥; and 7}, j,1 = 1,2,3 are parameters to
be determined. The p;'-l play the roles of the multipliers and converge to the
optimal multipliers eventually, while r! replaces estimates of the multipliers

25

by their most recent values obtained from each of the other subproblems.
Note that the objective functions for the subproblems in (36) are quadratic
augmented Lagrangian functions perturbed by the linear terms zf 7{. Thus
in each subproblem, some constraints are treated explicitly as constraints
while the remaining ones are terms in the augmented Lagrangian objective
function.

Given the values for all the parameters, each subproblem in (36) can be
solved in parallel. However, the parameters are updated using their most re-
cent values from other processors. Therefore, communication is required at
certain points. Ferris and Mangasarian [37] showed the convergence results
for the constraint distribution algorithm for strictly convex quadratic pro-
grams and extended them to general convex programs. Five small quadratic
programming problems were tested with the algorithm on the Sequent Sym-
metry S-81. Encouraging results were obtained.

7 Future Research and Development

Despite much effort and some solid developments, the use of parallelism
in general optimization has not been as fruitful as its use in other areas
of numerical computation, like numerical linear algebra. There are special
successful applications, and some software packages available, but not much
performance analysis or benchmarking work. One of possible reasons is that
practical optimization problems often have many ancillary variables, but only
a few decision variables. The great opportunities for finding parallelism might
then lie in parallelizing the computation of the ancillary variables by using
domain decomposition to solve a PDE for example. If tools for hierarchical
parallelism become more generally available, this situation may change.

Another reason for our slow progress may be the tradition favoring inher-
ently sequential Newton-like methods where one carefully builds local models
and extracts all the information one can before evaluating a trial step. After
all, in locally modeling methods, there is generally a clearly preferred trial
step, and if that is not successful, then the fall back strategies use infor-
mation gotten from the failure. Methods such as parallel line searches or
sector searches have not been great successes, probably because they kluge
one paradigm onto another rather than find a single consistent algorithmic
paradigm.

26

Global optimization methods have attracted more and more attention as
usable parallel and high performance computing resources became available.
Indeed, there are many cases where scientific problems of an interesting size
have been solved by these methods. Still, the general global optimization
problem is intractable, even for infinitely smooth functions. Empirically, the
computing time needed to get a reasonable solution using a general global
optimization algorithm seems to grow exponentially with the problem size
while the speed-up can at best be counted upon to be linear with the number
of processors. Thus, the future of global optimization is in the development
of efficient and reliable algorithms for specific classes of problems. Without
such algorithms, problem sizes will remain limited despite gains from parallel
computation.

Parallel direct search methods are another successful development in the
quest for parallel optimization algorithms. The theory is developing rapidly,
and they are easy to use either as sequential or parallel algorithms. There
are many successful applications, but the methods are slower than Newton
methods, and as with all derivative-free methods, it is difficult to know when
to terminate. Thus the algorithm is more suitable for small problems with
uncertain accuracy in the function. Constraints are problematic for these
algorithms as well. If one has no derivatives, then Lagrange multipliers, a
mainstay of constrained optimization are not available. However, algorithms
for constraints and large-scale applications are interesting research directions.

We call the problem class MDO in Section 5, but in fact, it is much more
general than design. As simulation is used to aid decision makers in more
and more areas, such as crisis management, instances of these problems will
arise. Picture a library of standard simulation codes, like fluid flow, thermal
conductivity, structures, etc. One might want to make decisions concerning
systems governed by coupling various choices from among these systems. It
may not be practical to have in the library special simulations for all these
combinations. Here, we provide a completely equivalent formulation for the
original problem for which this would not be necessary because the separate
“closed” subsystems could be linked numerically for each required x without
recoding to obtain a solver that works for any x. However, since the method
is relatively new, and the computational demands for MDO are so high,
computational experiments are limited. Indeed, this field is in its infancy.

The variable and constraint distribution algorithms are interesting. Dif-
ferent from many other algorithms, which are obtained by parallelizing their

27

serial counterparts, these algorithms are developed with parallel computation
in mind. Therefore, standard optimization components, like computation of
a search direction, are designed as parallel procedures. Convergence results
have also been established for the algorithms. They have not been exten-
sively tested or applied in practice. Further research on these algorithms
and their applications can be promising and fruitful. For example, parallel
variable distribution and parallel direct searches seem an interesting pairing
for extending the latter to larger problems. Partial separability seems also
to be clearly related to parallel variable distribution.

References

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines.
John Wiley & Sons, 1989.

[2] N. M. Alexandrov and R. M. Lewis. Comparative properties of collab-
orative optimization to mdo. Technical Report 99-14, ICASE, NASA
Langley Research Center, Hampton, VA, July 1999.

(3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide. SIAM Publications, 1995.

[4] C. Audet. Convergence results for pattern search algorithms are tight.
Technical Report CRPC-TR98779, CRPC, Rice University, 1998.

[5] C. Audet and J. E. Dennis Jr. On the convergence of mixed integer
pattern search algorithms. Technical Report CRPC-TR98785, CRPC,
Rice University, 1999.

6] C. Audet and J. E. Dennis Jr. A pattern search filter method for nonlin-
ear programming without derivatives. Technical Report TR00-09, De-
partment of Computational and Applied Mathematics, Rice University,
2000.

(7] B. M. Averick and J. J. Moré. Evaluation of large-scale optimization
problems on vector and parallel architectures. SIAM J. Optimization,
4:708-721, 1994.

28

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Balay, W. Gropp, L. McInnes, and B. Smith. Efficient management of
parallelism in object-oriented numerical software libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
in Scientific Computing. Birkhauser Press, 1997.

R. E. Bixby and A. Martin. Parallelizing the dual simplex method.
Technical Report CRPC-TR95706, CRPC, Rice University, 1997.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stan-
ley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. STAM
Publishers, 1997.

L. M. Blumenthal. Theory and Applications of Distance Geometry. Ox-
ford University Press, 1953.

S. H. Bokhari and D. J. Mavriplis. The Tera multithreaded architecture
and unstructured meshes. Technical Report ICASE Interim Report No.
33, ICASE, NASA Langeley Research Center, Hampton, VA, 1998.

I. Bongartz, A. R. Conn, N. Gould, and P. Toint. Constrained and un-
constraned optimization testing environment. Technical Report 93/10,
Départment de Mathématique, Facultés Universitaires De Namur, 1993.

A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B.Serafini, V. Torczon,
and M. Trosset. A rigorous framework for optimization of expensive
functions by surrogates. Structural Optimization, 1999.

A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. W. Moore, and
D. B. Serafini. Managing surrogate objectives to optimize a heli-

copter rotor design - further experiments. In Proceedings of the Seventh
ATAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, 1998.

A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, and V. Tor-
czon. Optimization using surrogate objectives on a helicopter test ex-
ample. In Optimal Design, 1998.

29

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

R. D. Braun. An architecture for large-scale distributed design. PhD the-
sis, Department of Aeronautics and Astronautics, Stanford University,
Stanford, CA, 1996.

R. H. Byrd, T. Derby, E. Eskow, K. P. B. Oldenkamp, and R. B. Schn-
abel. A new stochastic/perturbation method for large-scale gobal opti-
mization and its application to water cluster problems. In W. Hager,
D. Hearn, and P. Pardalos, editors, Large-Scale Optimization: State of
the Art. Kluwer Academic Publishers, 1994.

R. H. Byrd, E. Eskow, and R. B. Schnabel. A new large-scale global
optimization method and its application to Lennard-Jones problems.
Technical report, Department of Computer Science, University of Col-
orado, Boulder, CO, 1995.

R. H. Byrd, E. Eskow, and R. B. Schnabel. A large-scale stochastic-
perturbation global optimization method molecular cluster problems.
Technical report, Department of Computer Science, University of Col-
orado, Boulder, CO, 1999.

R. H. Byrd, E. Eskow, R. B. Schnabel, and S. L. Smith. Parallel global
optimization: Numerical methods, dynamic scheduling methods, and
application to molecular configuration. In B. Ford and A. Fincham,

editors, Parallel Computation, pages 187-207. Oxford University Press,
1993.

R. H. Byrd, E. Eskow, A. van der Hoek, R. B. Schnabel, C. Shao, and
Z. Zou. Global optimization methods for protein folding problems. In
P. M. Pardalos, D. Shalloway, and G. Xue, editors, Global Minimization
of Nonconvexr Energy Functions: Molecular Conformation and Protein
Folding. American Mathematical Society, 1996.

R. H. Byrd, R. B. Schnabel, and M. H. Shultz. Parallel quasi-newton
methods for unconstrained optimization. Technical report, Department
of Computer Science, University of Colorado, Boulder, CO, 1990.

T. F. Coleman, J. Czyzyk, C. Sun, M. Wagner, and S. J. Wright. ppcx:
Parallel software for linear programming. In Proceedings of the Eighth

30

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

SIAM Conference on Parallel Processing in Scientific Computing. STAM
Publications, 1997.

T. F. Coleman, D. Shalloway, and Z. Wu. Isotropic effective energy
simulated annealing searches for low energy molecular cluster states.
Comp. Optim. Applications, 2:145-170, 1993.

T. F. Coleman, D. Shalloway, and Z. Wu. A parallel build-up algorithm
for global energy minimizations of molecular clusters using effective en-
ergy simulated annealing. J. Global Optim., 4:171-185, 1994.

T. F. Coleman and C. Sun. Parallel orthogonal factorizations of large
sparse matrices on distributed-memory multiprocessors. In Proceedings
of the Sixth SIAM Conference on Parallel Processing for Scientific Com-
puting. SIAM Publications, 1993.

T. F. Coleman and Z. Wu. Parallel continuation-based global optimiza-
tion for molecular conformation and protein folding. J. Global Opt,
8:49-65, 1996.

E. J. Cramer, J. E. Dennis, Jr, P. D. Frank, R. M. Lewis, and G. R.
Shubin. Problem formulation for multidisciplinary optimization. STAM
Journal of Optimization, 4(4):754-776, 1994.

G. M. Crippen and T. F. Havel. Distance Geometry and Molecular
Conformation. John Wiley & Sons, 1988.

S. Crivelli, R. H. Byrd, E. Eskow, R. B. Schnabel, R. Yu, T. Phillips, and
T. Head-Gordon. A global optimization strategy for predicting protein
tertiary structure: a-helical proteins. Technical report, Department of
Computer Science, University of Colorado, Boulder, CO, 1998.

J. E. Dennis and M. Lewis. Problem formulation and other optimiza-
tion issues in multidisciplinary optimization. Technical Report CRPC-
TR92277, CRPC, Rice University, 1992.

J. E. Dennis, Jr. and R. M. Lewis. Problem formulation and other

optimization issues in multidisciplinary optimization. Technical Report
CRPC-TR94469, CRPC, Rice University, Houston, TX, 1994.

31

[34] J. E. Dennis, Jr. and V. Torczon. Direct search methods on parallel
machines. STAM J. Optimization, 1(4):448-474, November 1991.

[35] K. A. Dill, A. T. Phillips, and J. B. Rosen. CGU: An algorthm for molec-
ular structure prediction. In L. T. Biegler, T. Coleman, A. R. Conn,
and F. N. Santosa, editors, Large-Scale Optimization and Applications
Part III: Molecular Structure and Optimization. Springer, 1997.

[36] J. Feo, S. Kahan, and Z. Wu. Crash analysis on the Tera MTA. IEEE
Computational Science and Engineering, 5:53-59, 1998.

[37] M. C. Ferris and O. L. Mangasarian. Parallel constraint distribution.
SIAM Journal on Optimization, 1:487-500, 1991.

[38] M. C. Ferris and O. L. Mangasarian. Parallel variable distribution. STAM
Journal on Optimization, 4(4):815-832, 1994.

[39] I. L. Garzén and J. Jellinek. Melting of gold microclusters. Z. Phys. D
- Atoms, Molecules and Clusters, 20:235-238, 1991.

[40] H. Haberland, editor. Clusters of Atoms and Molecules, Springer Series
in Chemical Physics, volume 52. Springer-Verlag, 1994.

[41] B. A. Hendrickson. The molecule problem: Determining conformation
from pairwise distances. PhD thesis, Cornell University, Ithaca, New
York, 1991.

[42] Bruce A. Hendrickson. The molecule problem: Exploiting structure in
global optimization. SIAM J. Optimization, 5:835-857, 1995.

[43] M. R. Hoare. Structure and dynamics of simple microclusters. Advances
in Chemical Physics, 40:49-135, 1979.

[44] M. R. Hoare and J. McInnes. Statistical mechanics and morphology
of very small atomic clusters. Faraday Discuss. Chem. Soc., 61:12-24,
1976.

[45] M. R. Hoare and P. Pal. Statistics and stability of small assemblies of
atoms. J. Cryst. Growth, 17:77-96, 1972.

32

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

P. D. Hough, T. G. Kolda, and V. J. Torczon. Asynchronous parallel
pattern search for nonlinear optimization. Technical Report Sand2000-
8213, Sandia National Laboratories, 2000.

P. D. Hough and J. C. Meza. A class of trust-region methods for parallel
optimization. Technical Report Sand98-8245, Sandia National Labora-
tories, 1998.

T. D. Plantenga J. C. Meza and R. S. Judson. Novel applications of opti-
mization to molecular design. In L. T. Biegler, T. Coleman, A. R. Conn,
and F. N. Santosa, editors, Large-Scale Optimization and Applications
Part III: Molecular Structure and Optimization. Springer, 1997.

J. Jellinek. Theoretical dynamical studies of metal clusters and cluster-
ligand systems. In N. Russo, editor, Metal-Ligand Interactions: Struc-
ture and Reactivity. Kluwer Academic Publishers, 1995 (in press).

M. T. Jones and P. E. Plassmann. An efficient parallel iterative solver
for large sparse linear systems. In A. George, J. Gilbert, and J. Liu,
editors, Graph Theory and Sparse Matrix Computation, pages 229-245.
Springer-Verlag, 1993.

M. T. Jones and P. E. Plassmann. Scalable iterative solution of sparse
linear systems. Parallel Computing, pages 753-773, 1994.

M. T. Jones and P. E. Plassmann. Algorithm 740: Fortran subroutines
to compute improved incomplete cholesky factorizations. ACM Trans.
on Mathematical Software, pages 18-19, 1995.

M. T. Jones and P. E. Plassmann. An improved incomplete cholesky
factorization. ACM Trans. on Mathematical Software, pages 517, 1995.

J. Kostrowicki, L. Piela, B. J. Cherayil, and H. A. Scheraga. Performance
of the diffusion equation method in searches for optimum structures of
clusters of Lennard-Jones atoms. J. Phys. Chem., 95:4113-4119, 1991.

J. Kostrowicki and H. A. Scheraga. Application of the diffusion equa-
tion method for global optimization to oligopeptides. J. Phys. Chem.,
96:7442-7449, 1992.

33

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

H. W. Kroto, J. R. Heath, S. C. O’Brien, F. Curl, and R. E. Smalley.
C60: Buckminsterfullerene. Nature, 318, 1985.

R. M. Lewis and V. Torczon. Pattern search algorithms for bound con-
strained minimization. Technical Report 9620, ICASE, NASA Langley
Research Center, Hampton, VA, 1996.

R. M. Lewis and V. Torczon. Rank ordering and positive bases in pat-
tern search algorithms. Technical Report 96-71, ICASE, NASA Langley
Research Center, Hampton, VA, 1996.

R. M. Lewis and V. Torczon. A global convergent augmented lagrangian
pattern search algorithm for optimization with general constraints and
simple bounds. Technical Report TR 98-31, ICASE NASA Langley
Research Center, 1998.

R. M. Lewis and V. J. Torczon. A globally convergent augmented La-
grangian pattern search algorithm for optimization with general con-
straints and simple bounds. Technical Report 98-31, Institute for Com-
puter Applications in Science and Engineering, NASA Langley Research
Center, Hampton, VA, 1998.

R. M. Lewis and V. J. Torczon. Pattern search methods for linearly con-
strained minimization. Technical Report 98-3, Institute for Computer
Applications in Science and Engineering, NASA Langley Research Cen-
ter, Hampton, VA, 1998.

Z. Liand H. A. Scheraga. Monte Carlo approach to the multiple-minima
problem in protein folding. Proc. Natl. Acad. Sci., 84:15-29, 1987.

J. J. Moré, B. Walenz, and Z. Wu. Configuration of large, confined ionic
systems by potential energy minimization. Working paper, Mathematics

and Computer Science Division, Argonne National Laboratory, Argonne,
IL, 1996.

J. J. Moré and Z. Wu. g-optimal solutions to distance geometry prob-
lems via global continuation. In P. M. Pardalos, D. Shalloway, and
G. Xue, editors, Global Minimization of Nonconvex Energy Functions:
Molecular Conformation and Protein Folding, pages 151-168. American
Mathemtical Society, 1995.

34

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

J. J. Moré and Z. Wu. Global continuation for distance geometry prob-
lems. Preprint MCS-P505-0395, Argonne National Laboratory, Argonne,
IL, 1995.

J. J. Moré and Z. Wu. Issues in large-scale global molecular optimization.
Preprint MCS-P539-1095, Argonne National Laboratory, Argonne, IL,
1995.

J. J. Moré and Z. Wu. Distance geometry optimization for protein
structures. Preprint MCS-P628-1296, Argonne National Laboratory, Ar-
gonne, IL, 1996.

J. J. Moré and Z. Wu. Smoothing techniques for macromolecular global
optimization. In G. Di Pillo and F. Giannessi, editors, Nonlinear Opti-
mization and Applications, pages 297-312. Plenum Press, 1996.

S. G. Nash and A. Sofer. Block truncated-newton methods for parallel
optimization. Mathematical Programmaing, 45:529-546, 1989.

S. G. Nash and A. Sofer. A general purpose parallel algorithm for un-
constrained optimization. SIAM J. Optimization, 1:530-547, 1991.

J. A. Northby. Structure and binding of Lennard-Jones clusters: 13 <
n < 147. Journal of Chemical Physics, 87:6166—6177, 1987.

Matei Oresi¢ and D. Shalloway. Hierarchical characterization of energy
landscapes using Gaussian packet states. J. Chem. Phys., 101:9844—
9857, 1994.

L. Piela, J. Kostrowicki, and H. A. Scheraga. The multiple-minima
problem in the conformational analysis of molecules: Deformation of
the protein energy hypersurface by the diffusion equation method. J.
Phys. Chem., 93:3339-3346, 1989.

E. O. Purisima and H. A. Scheraga. An approach to the multiple-
minima problem in protein folding by relaxing dimensionality. J. Mol.
Biol., 196:697-709, 1987.

F. Rendl and H. Wolkowicz. A semidefinite framework to trust-region
subproblem with applications to large-scale minimization. Technical

35

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

Report CORR 94-32, Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada, 1994.

P. J. Reynolds, editor. On Clusters and Clustering. North-Holland,
1993.

A. H. G. Rinnooy Kan and G. T. Timmer. Global optimization. In
G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, editors,
Optimaization, pages 631-662. North-Holland, 1989.

S. A Santos and D. C. Sorensen. A new matrix-free algorithm for the
large-scale trust-region subproblem. Technical Report TR95-20, De-
partment of Computational and Applied Mathematics, Rice University,
Houston, TX, 1995.

J. B. Saxe. Embeddability of weighted graphs in k-space is strongly
NP-hard. Technical report, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA, 1979.

J. B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-
hard. In Proc. 17th Allerton Conference in Communications, Controli
and Computing, pages 480-489, 1979.

H. A. Scheraga. Predicting three-dimensional structures of oligopep-
tides. In Kenny B. Lipkowitz and Donald B. Boyd, editors, Reviews
in Computational Chemistry, volume 3, pages 73-142. VCH Publishers,
1992.

J. Schneider and T. H. Wise. Airline crew scheduling: supercomput-
ers and algorithms. In Greg Astfalk, editor, Applications on Advanced
Architecture Computers. STAM Publications, 1996.

D. B. Serafini. A framework for managing models in optimization for
computationally expensive functions. Ph.D. Thesis 90-7, Department
of Computational and Applied Mathematics, Rice University, Houston,
TX 77005-1892, 1997.

D. Shalloway. Application of the renormalization group to determinis-
tic global minimization of molecular conformation energy functions. J.
Global Optim., 2:281-311, 1992.

36

[85]

[86]

[87]

88

[89]

[90]

[91]

[92]

[93]

[94]

D. Shalloway. Packet annealing: A deterministic method for global
minimization, application to molecular conformation. In C. Floudas
and P. Pardalos, editors, Recent Advances in Global Optimization, pages
433-477. Princeton University Press, 1992.

C. Shao, R. H. Byrd, E. Eskow, and R. B. Schnabel. Global optimiza-
tion for molecular clusters using a new smoothing approach. In L. T.
Biegler, T. Coleman, A. R. Conn, and F. N. Santosa, editors, Large-
Scale Optimization and Applications Part III: Molecular Structure and
Optimization. Springer, 1997.

I. Sobieski and I. Kroo. Aircraft design using collaborative optimiza-
tion. ATAA Paper 96-0715, The 34th AIAA Aerospace Sciences Meeting,
Reno, NV, 1996.

J. E. Straub. Optimization techniques with applications to proteins.
Preprint, Department of Chemistry, Boston University, Boston, MA,
1994.

J. E. Straub, J. Ma, and P. Amara. Simulated anealing using coarse-
grained clasical dynamics: Fokker-Planck and Smoluchowski dynamics
in the Gaussian density approximation. J. Chem. Phys., 103:1574-1581,
1995.

V. Torczon. Multi-directional search: a direct search algorithm for par-
allel machines. Ph.D. Thesis 90-7, Department of Computational and
Applied Mathematics, Rice University, Houston, TX, 1990.

V. Torczon. On the convergence of the multidirectional search algorithm.
SIAM J. Optimization, 1(1):123-145, February 1991.

V. Torczon. On the convergence of pattern search methods. SIAM J.
Optimization, 7(1):1-25, February 1997.

Z. Wu. The effective energy transformation scheme as a special contin-
uation approach to global optimization with application to molecular
conformation. SIAM J. Opt, 6:748-768, 1996.

G. L. Xue. Improvement on the Northby algorithm for molecular con-
formation: Better solutions. J. Global. Optim., 4:425—-440, 1994.

37

[95]

[96]

[97]

G. L. Xue, R. S. Maier, and J. B. Rosen. Minimizing the Lennard-Jones
potential function on a massively parallel computer. Preprint 91-115,
AHPCRC, University of Minnesota, Minneapolis, MN, 1991.

L. Zaslavsky, S. Kahan, B. Elton, K. Macshoff, and L. Stern. A scal-
able approach for solving irregular sparse linear systems on the Tera
MTA multithreaded parallel shared-memory computer. In The Proceed-
ings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing. SIAM Publications, 1999.

Z. Zou, R. H. Byrd, and R. B. Schnabel. A stochastic/perturbation
global optimization algorithm for distance geometry problems. Techni-
cal report, Department of Computer Science, University of Colorado,
Boulder, CO, 1996.

38

