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Abstract� Parallel continuous optimization methods are motivated here by

applications in science and engineering� The key issues are addressed at di�erent

computational levels including local and global optimization as well as strategies

for large� sparse versus small but expensive problems� Topics covered include

global optimization� direct search with and without surrogates� optimization of

linked subsystems� and variable and constraint distribution� Finally� there is a

discussion of future research directions�

Key Words� Parallel optimization� local and global optimization� large�scale

optimization� direct search methods� surrogate optimization� optimization of linked

subsystems� design optimization� cluster simulation� macromolecular modeling

� Introduction

Optimization has broad applications in engineering� science� and manage�
ment� Many of these applications either have large numbers of variables or
require expensive function evaluations� In some cases� there may be many
local minimizers� and the user naturally wants to know how solutions found
by the algorithm compare to other local solutions� These factors contribute
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to the need for more intensive computation than traditional architectures
can support� High�performance computing provides powerful tools for solv�
ing these problems with a degree of practicality that would otherwise be
impossible�
Example applications where parallel optimization can play an important

role include aircraft shape design �Cramer� Dennis� et al ��	
� and macro�
molecular modeling �Mor�e and Wu �
�
��
In aircraft shape design� one attempts to match an ideal pressure distri�

bution by manipulating the shape variables� The number of shape variables
is in the order of hundreds at most� but they are constrained by at least two
systems of PDEs� This is typical of many important applied optimization
problems� there may not be so many decision variables for the optimizer� but
there may be many ancillary variables that must be determined to compute
the objective function and constraints� In order to obtain a feasible solution�
the systems must match the input of each with the output of the others� in
addition to satisfying side constraints such as range� The systems require
expensive PDE solves for millions of grid points� di�erent grids for di�erent
PDEs� and at least� there is one PDE to be solved for the air �ow and one
to be solved for the structural de�ection�
This problem is computationally intensive because there is a great deal of

linear and nonlinear algebra going on at each function and constraint eval�
uation� We will describe some domain decomposition type methods for this
problem� As in that case� the sequential e�ciency of the parallel optimization
procedure can be better than more traditional methods�
In macromolecular modeling� one attempts to determine molecular struc�

ture by minimizing a given potential energy function� One of the most im�
portant applications is the determination of protein structures in structural
molecular biology� The challenge in solving this problem is that the poten�
tial energy function has many local minimizers� while the structure to be
determined is believed to correspond to a global or nearly global optimal
solution to the minimization problem� Global optimization algorithms have
been developed to solve the problem� Not surprisingly� they rely heavily on
using computing power that only parallel high�performance architectures can
provide�
Substantial research e�orts on parallel optimization have been made for

twenty years� and in the past ten years or so� some have born fruit by focusing
on special applications and others by exploring more general parallel schemes�
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Optimization has close relationships with numerical linear algebra and
partial di�erential equations� For example� a typical optimization procedure
requires solving a linear system in every iteration to predict a step to a better
approximate solution� function or constraint evaluation often requires solving
a partial di�erential equation� Thus� parallel optimization algorithms and
software development certainly bene�ts from advances in parallel numerical
linear algebra and partial di�erential equations�
General algorithms have also been developed such as parallel direct search

methods by Dennis and Torczon �	�� ��
 and Torczon �	�
� parallel methods
for optimization of linked subsystems by Dennis and Lewis ���
 and Dennis
� Li� and Williamson ���
� and variable and constraint distribution schemes
by Ferris and Mangasarian ���� ��
�
Parallel global optimization has been one of the most active areas in par�

allel continuous optimization� Work in this area is motivated by important
applications in chemical and biological disciplines such as cluster simulation
and protein modeling� Algorithms and software developed in recent years
include parallel stochastic global optimization algorithms for molecular con�
formation and protein folding by Byrd and Schnabel ���� �	
� parallel global
continuation software DGSOL for protein structure determination with NMR
distance data by Mor�e and Wu �
�� 
�� 
�� 


� and parallel e�ective energy
simulated annealing for protein potential energy minimization by Coleman�
Shalloway� and Wu ���� �

�
Optimization problems take di�erent forms arising from the motivating

applications� They can be linear or nonlinear� constrained or unconstrained�
and local or global� They can be either large� sparse or small but very expen�
sive to evaluate� This means that quite di�erent parallel algorithms may be
required and quite di�erent architectures may be appropriate� For example�
if the problem is large but sparse� a shared�memory system may be a good
choice� for otherwise the distribution of a sparse� irregular structure over mul�
tiprocessors may cause load imbalance and severe communication overhead�
On the other hand� most global optimization algorithms are coarsely paral�
lel� They can be implemented on distributed�memory architectures� or even
loosely connected networks of workstations� and still maintain scalability�
In the following sections� we discuss various parallel optimization meth�

ods in greater detail� We describe optimization problems and algorithms
and their associated parallelism at di�erent computational levels� function
evaluation� algebraic calculation� and optimization� In particular� we review
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parallel methods for local and global optimization� and compare strategies
for large� sparse versus small but expensive problems� Parallel techniques
including parallel direct search� optimization of linked subsystems� and vari�
able and constraint distribution are introduced� Future research directions
are discussed in the end�

� Local Optimization

Let us consider the problem of minimizing a nonlinear function� f�x�� where f
is continuous and di�erentiable for all x � Rn� Generally� we would be given
some incumbent approximate minimizer x�� The most popular methods for
this problem construct a quadratic model for the objective function �and a
linear model of the constraints if they are present�� This model problem
is intended to represent the problem of interest in some neighborhood of
x�� Generally this is true because the model is built by using at least the
�st order Taylor series term� Often �nite di�erence approximations to the
derivatives are used� and this is an obvious opportunity for parallelism� In
fact� the kind of parallelism used is one of the most useful for optimization�
it is that values of the true function are obtained in parallel �see discussions
in Byrd� Schnabel� and Shultz ���
��
Since the model is thought to represent the problem locally� one hopes

that by �nding a really good minimizer for the model� one will obtain a point
that improves the real objective function� Thus� Newton or quasi�Newton
algorithms choose a putative next iterate by solving the model problem� The
di�culty with this procedure is that the solution to the model problem may
be outside the region about x� where the model represents the problem well�
If the iterate found in this way is a better solution� then one moves to it

and iterates the procedure� It will not surprise the reader that this procedure
is likely to �nd the bottom of the same function valley one starts in� i�e�� a
nearby local minimizer x�� assuming there is one� in the sense that for any x
in a neighborhood of x�� f�x� is greater than or equal to f�x���
If the pure iteration does not succeed in �nding a better point� then it

resorts to a globalization strategy� In this sense� globalization means conver�
gence to some solution from any point� not solution to the global minimizer�
The two main classes of globalization algorithms for this problem are

line searches and trust regions� Trust regions adaptively estimate a region
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in which the local model can be �trusted� to adequately represent the true
function� The next iterate is chosen by approximately minimizing the model
over the trust region� Line search algorithms backtrack �usually� from the
solution to the model problem along the direction from the incumbent� Each
approach has its place in the optimization toolbox� and each has its own
opportunities for parallelism�
Trust region algorithms can use parallelism in the linear algebra needed to

solve the trust region subproblem � minimize the model in the region where it
is trusted to represent the function �see Santos and Sorensen ���
 and Rendl
and Wolkowicz ���
�� Line search algorithms can use parallel linear algebra
to compute the solution to the model problem� and they can also use parallel
function evaluations to �nd the best step along the direction they compute�
Parallel multiple line searches �Nash and Sofer ���
�� and parallel inexact
Newton step computation �Nash and Sofer �
	
� can be applied here�
For large�scale optimization� it is often useful to take advantage of the

property of partial separability� That is� the objective function can be written
in the following form�

f�x� �
mX
i��

fi�x�� ���

where fi is called the element function of f and depend only on a small
subset of the variables� This class of functions can be computed in parallel by
distributing the element functions to the processors� Each processor will then
be responsible for computing only the contributions of the element functions
to the whole function� gradient� and Hessian�
Let processor i compute element functions fi� � � � � � fimax

� Then the func�
tion� gradient� and Hessian can be computed in the following procedure�

initialize f� rf� r�f
on processor i�

do for j � fi�� � � � � imaxg
f � f � fj
rf � rf �rfj
r�f � r�f �r�fj

end do
end
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where updates to f � rf � and r�f require global reduction on distributed�
memory machines or access to shared�variables on shared�memory machines�
However� the updates for the gradient and the Hessian can be done e�ciently
by updating only the elements for which the corresponding elements of rfj
and r�fj are non�zeros �Averick and Mor�e ��
 and Mor�e� Walenz� and Wu
�
�
��
The computation of the step� or its direction� with methods using the Hes�

sian or Hessian approximations can be parallelized in several ways� In gen�
eral� this is a place where a �plug�and�play� approach can be used by calling
existing parallel linear algebra software such as LAPACK or SCALAPACK
��� ��
� For example� a parallel direct solver with Cholesky factorization can
be used to compute the search direction �B�xi�
��rf�xi� at any iterate xi

if the Hessian or its approximation B�xi� is symmetric positive de�nite� a
parallel matrix�vector multiplication routine can be used for computing all
matrix�vector products in the truncated Newton or trust region subproblem
solves� Byrd� Schnabel� and Shultz ���
 showed that the quasi�Newton step
can be obtained by using the inverse BFGS updates which then require only
matrix�vector multiplications and can be parallelized straightforwardly with
a parallel matrix�vector multiplication routine�
If one wishes to exploit sparsity� the above parallelization becomes more

complicated� Several issues arise� First� an iterative solver can always be used
for either a line search or trust region algorithm in the truncated Newton�s
method� This requires a pre�conditioner� which not only depends on the
problem but also is more di�cult to parallelize� Work on this issue can be
found in Gropp� Smith� and Curfman ��
 and Jones and Plassman ���� ���
��� ��
� who developed a parallel incomplete Cholesky factorization algorithm
that seems e�cient in practice�
Second� parallel direct sparse solves are di�cult on distributed�memory

machines� because data and computation are tricky to distribute to balance
the load among processors� A symbolic factorization phase is a potential se�
rial bottle neck in addition to the sparse triangular system solves� Coleman
and Sun ���
 developed a group of parallel direct sparse solvers for optimiza�
tion using a multi�frontal approach�
Bokhari and Mavriplis ���
� Feo� Kahan� and Wu ��

� and Zaslavsky�

Kahan� et al �	

 demonstrated that the Tera multi�threaded architecture
is particularly good for parallel sparse and irregular calculations� However�
there is no general sparse matrix software available yet on this architec�






ture� Finally� sparsity patterns often change from application to application�
Classes of optimization problems having the same sparsity patterns� like some
large linear programming problems� need to be identi�ed� and special parallel
sparse solvers targeted to these classes of problems can then be developed�
Work in this direction includes Bixby and Martin �	
� Schneider and Wise
���
� and Coleman and Wright ���
�

� Global Optimization

Research on global optimization has increased dramatically in recent years�
An important reason is that the increasing power of parallel high�performance
architectures makes it possible to attack many large� di�cult global optimiza�
tion problems of practical interest� Ten years ago� work in this area was still
limited to toy problems of about �� variables� but now� with the help of
parallel computing� advanced algorithms have been developed and applied
to problems with hundreds or even thousands of variables in such applica�
tions as cluster simulation �Byrd and Schnabel ���� ��� �	� �
� ��
� Rosen and
Xue �	�� 	�
� Coleman� Shalloway� and Wu ���� �

�� protein folding �Byrd
and Schnabel ���� ��
� Scheraga �
�� ��� ��� ��� ��
� Shalloway ���� ��� ��
�
Coleman and Wu ���
� and molecular docking �Meza� Plantenga� and Judson
���
� Dill� Phillips� and Rosen ���
��
A global optimization problem requires a local minimizer with the lowest

function value among all local optimizers� Certain classes of problems� like
convex programming problems� have only one local minimum� but most func�
tion arising in applications are non�convex and they may have many local
minima� constrained or unconstrained�
It is quite easy to see that general smooth continuous global optimization

problems are intractable� Furthermore� even if one had the global minimizer
in hand� it is an intractable problem to verify that it is anything more than
a local minimizer�
Nevertheless� just because a problem is impossible to solve in general does

not precludes useful research in the area� Often practical problems are posed
as global optimization problems because that is the nearest model problem
in the optimization toolkit to what the user really wants� and modern global
optimization methods can �nd valuable solutions that satisfy the user�
This point is far less subtle than it may seem at �rst� To see this� consider
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a hypothetical problem in engineering design� The designer wishes to �nd
the best design for a widget in terms of a single design variable which is
constrained to lie in a bounded interval� Suppose that there are three local
minimizers as in the �gure below� The left hand local minimizer and the
wide shallow middle minimizer will be found by a good global optimization
algorithm� On the other hand� the wide shallow middle minimizer is likely to
be the only one found by a local algorithm� However the narrow right hand
local minimizer� which is also the global minimizer� is unlikely to be found
without an impractical amount of e�ort by any algorithm�
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Figure �� A function with three local minimizers

In practice� this may not be important at all� such a narrow minimum for
the function is likely to have little practical value because if the process for
manufacturing the widget leads to any variability in the decision variable�
then the actual design criterion for the �nished good will end up high up on
the narrow valley at a much worse value than that in the more stable left
hand valley� Of course� any decision maker would want to make that decision
for themselves in possession of the location of the true global optimizer� but
our point is that the more di�cult a given global optimizer is to �nd� the
less important it is likely to be to �nd it�
We describe some applications areas and related parallel global optimiza�

tion work below�
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Protein Folding

Protein folding is a fundamental unsolved problem in structural molecular
biology� The problem is to determine how the protein amino acids fold to a
unique three�dimensional structure� There are no direct physical means to
detect this� X�ray crystallography and NMR spectroscopy have been used
to derive approximate structures� but this requires months or even years of
laboratory e�orts for each protein�
The goal is to determine the structure with only the knowledge of the

amino acid sequence of the protein by �nding a structure corresponding to
the global potential energy minimum� While this is possible in theory� it is
computationally intense since it requires solving a global optimization prob�
lem with many thousands of degrees of freedom�
The potential energy function usually is given in an empirical form� It

includes energy terms for such atomic interactions in proteins as electrostatic�
van der Waal�s� bonded� torsional� etc� Typically� the total energy E has the
following form�

E � Eelec � Evand � Ebond � Eangl � Etors� ���

where

Eelec �
X

ij�electro

qiqj
�rij

� ���

Evand �
X

ij�vander

�
�ij
rij

���

� �

�
�ij
rij

��

� ���

Ebond �
X

ij�bonded

kij�rij � r�ij�
�� ���

Eangl �
X

��bonded

k��� � ����� �
�

Etors �
X

��torsional

k��� � cos�n�� ���
� ���

where �� �� and rij are bond angle� torsional angle� and pairwise distance and
depend on the atomic positions� and everything else are given parameters�
Note that the potential energy function is de�ned in terms of the atomic

positions xi� i � �� � � � � n� where n is the number of the atoms in the protein
and usually is in the range of ����� to �������� Recent work to develop

	



special methods for this problem includes Scheraga et al ���� ��� ��� ��
�
Straub et al ��	
� Coleman� Shalloway� and Wu ���� �

� Byrd and Schnabel
���� ��� �
� ��
�

Cluster Simulation

Another class of global optimization problems comes from the emerging �eld
of cluster science �Reynolds ��

 and Haberland ���
�� Clusters important for
material design include argon clusters �Hoare and Pal ���� ��� ��
�� various
metal clusters �Jellinek ��	� �	
�� and clusters of carbon molecules such as the
famous carbon 
�� the Buckyball �Smalley ��

�� A key research problem is
to �nd the most stable con�guration for any given cluster� The clusters may
not exist in nature or be hard to observe� However� given a potential energy
function� its global minimizer corresponds to the most stable con�guration
for that model of potential energy� As an example� the potential energy
function for simulating argon clusters is�

Eargon �
X
ij

�

kxi � xjk��
�

�

kxi � xjk�
� ���

where xi and xj are positions of the atoms�
Note that this function is very similar to the van der Waal�s term in

the protein potential energy function� As a matter of fact� they are indeed
models of the same type of potentials due to the so�called van der Waal�s
weak forces between pairs of atoms� The potential energy function for the
argon cluster is simpler than for proteins� but it is by no means easy to
minimize� Hoare and Pal ���
 estimated that this function has exponentially
many local minimizers which grow as a function en

�

of the number of atoms n
in the cluster� Recent work on this problem includes Northby ���
� Xue �	�
�
Byrd and Schnabel ��	
� Coleman� Shalloway� and Wu ���� �

� and many
others�

Distance Geometry

Strong motivation for solving distance geometry problems is their applica�
tion in NMR macromolecular modeling� where a protein structure can be
determined by solving a distance geometry problem using the NMR distance
data�
They can be formulated as global nonlinear least�squares optimization

problems �Crippen and Havel ���
�� or� from a graph�theoretic point of view�
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they are a class of NP�complete graph�embedding problems �Hendrickson
���
� Saxe ��	� ��
� Mor�e and Wu �
�
�� Recent attempts to solve these
problems on parallel high�performance architectures are by �Hendrickson ���
�
Mor�e and Wu �


� Byrd� Schnabel et al �	�
� etc��
A simple version of the distance geometry problem is to �nd a set of points

to realize a given set of distances between some of the points� A more general
version is to satisfy a given set of bounds on the distances� Mathematically�
the problem is to �nd a set of points xi � R�� i � �� � � � � n such that the
distance kxi � xjk between points xi and xj is equal to a given distance dij
or in between a given pair of bounds lij and uij of the distance� It can be
formulated as a global optimization problem as follows� If dij are given�

min
X

�i�j��S

�kxi � xjk
� � d�ij�

�� �	�

where S is a given set of �i� j� pairs� If lij and uij are given�

min
X

�i�j��S

min�
�
kxi � xjk� � l�ij

l�ij
� �

�
�max�

�
kxi � xjk� � u�ij

u�ij
� �

�
� ����

Note that S may have �i� j� ranging from only a few to all possible pairs�
For less than n pairs� the problem can be trivial� For all possible pairs� the
problem still can be solved in polynomial time �Blumenthal ���
� Crippen
and Havel ���
�� However� in practice� S is sparse� and the problem is hard
to solve�

Stochastic Global Optimization

A stochastic global optimization method was proposed by Kan and Timmer
���
� Byrd and Schnabel ���
 developed a parallel version� The method has
these basic steps� A set of points is chosen in the problem domain� and the
objective function is evaluated at the points� A subset of the points with low
function values are selected as starting points for local minimization� which
then is performed�
If one of the local minimizers is accepted as the global minimizer� the

algorithm stops� Otherwise the process is repeated� Each time the starting
points are selected from all previous� as well as current� sampled points�
Therefore� as the algorithm proceeds� more and more points are sampled�
and there are increasing chances to �nd the global minimizer�
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Kan and Timmer ���
 showed that with probability one the algorithm
converges to a global minimizer in a �nite number of iterations� Byrd and
Schnabel ���
 developed a parallel version of the algorithm by sampling start�
ing points and performing local minimizations all in parallel� The problem
domain is divided into smaller regions� each of which is assigned to a proces�
sor� Some regions are further re�ned if lower function values or local minima
are found� and the subregions are reassigned to other processors when nec�
essary to achieve load balance�
Although it requires dynamic load balancing� the stochastic global opti�

mization algorithm is easy to parallelize and performs well on both shared�
and distributed�memory architectures� Byrd and Schnabel ���
 reported the
development of the algorithm on KSR�� and IBM SP� and the performance
results on protein and related molecular conformation problems� The algo�
rithm has also been used by research groups in other institutions� including
some at CRPC�

E�ective Energy Simulated Annealing

The e�ective energy simulated annealing algorithm was developed by Cole�
man� Shalloway� and Wu ���
� The algorithm was parallelized and imple�
mented on Intel iPSC��
� and IBM SP�� We describe the parallel imple�
mentation of this algorithm to show a general parallelization strategy for all
simulated annealing type algorithms�
A physical annealing process starts from a high temperature� and then

cools down by stages gradually to the zero temperature where the system
reaches the ground state� The process has to proceed slowly so that at each
cooling stage the system has enough time to reach equilibrium� for otherwise
it will be trapped in a local state�
A simulated annealing algorithm tries to mimic this process by consider�

ing the objective function of the global minimization problem as the energy
function of a simulated system� A parameter corresponds to the tempera�
ture and is decreased by stages� At each stage� function values are randomly
sampled� Each time a point of lower potential energy is found� it is accepted
as the current point� Otherwise a point is accepted or rejected randomly
using the Metropolis criterion� which depends on the temperature� If the
temperature is higher� the probability of accepting the point is also higher�
This property allows the algorithm to sample and accept more points at high
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temperature� while gradually settling down at lower temperatures to smaller
regions where the lowest point of potential energy may be located� It has
been proved that the sequence of the points sampled by the simulated an�
nealing algorithm form a Boltzmann distribution and converges to a global
minimizer with probability one as the temperature goes to zero �Aarts and
Korst ��
��
The e�ective energy simulated annealing algorithm is similar to the sim�

ulated annealing algorithm except that a class of objective functions� called
e�ective energy functions� are used� one at each temperature� The higher the
temperature� the smoother the corresponding objective function� Coleman�
Shalloway� and Wu ���
 demonstrated experimentally that this algorithm
converges faster with fewer function evaluations than the standard simulated
annealing algorithm�
As in all simulated annealing type algorithms� the e�ective energy sim�

ulated annealing algorithm can be parallelized by sampling and evaluating
all the points in parallel at every cooling stage� A general strategy is that
at each cooling stage� each processor generates its own sequence of points�
or in other words� random walks� compares the results with other proces�
sors� and chooses the lowest point among all processors as the starting point
in the next stage� Coleman� Shalloway� and Wu ���
 demonstrated scalable
performance of the algorithm using this strategy on the Intel iPSC��
� with
application to molecular cluster conformation problems�

Global Continuation

Global continuation algorithms� as named in Mor�e and Wu �
�
� are a class
of homotopy�type algorithms applied to global optimization problems� A
special integral transform is used to generate the homotopy� A set of curves
tracing the solutions to the homotopy at each parameter value is then traced
to locate a global solution at the end� The special transform makes the
function smoother with fewer local minimizers� Also� the local minimizers are
concentrated in regions with low function values� where a global minimizer
is likely to be located� Therefore� by tracing the local minimizers on the
smoothed functions back to the original function� there is a good chance
that at least one curve will lead to a global minimizer of the original function
�Wu �	�
� Mor�e and Wu �
�
��
The global continuation algorithms have been studied by several research
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groups including Scheraga et al ���
� Shalloway ���� ��
� Coleman� et al ���
�
Straub ���� �	
� Mor�e and Wu �
�� 
�� 
�� 


�� and Byrd and Schnabel
��

� each having slightly di�erent transforms� In particular� Mor�e and Wu
�
�� 
�
 developed a class of parallel global continuation algorithms for solv�
ing distance geometry problems with application to NMR macromolecular
modeling�
The algorithms are embarrassingly parallel� multiple solution curves are

traced in parallel� The best solution found by the processors is selected at
the end� The computation on each processor is intensive since it involves a
sequence of local minimizations� However� the load on all processors is almost
the same� and little communication is required except for at the beginning
and end of the computation� The algorithms have been implemented on
several parallel architectures as a parallel software package called DGSOL
available through the NEOS� the Network Enabled Optimization System� at
Argonne National Lab� This parallel implementation has been used to solve
large distance geometry problems of practical interest�

� Direct Search Methods

Direct search �pattern search� methods are longtime favorites of users� but
they have only recently become interesting to optimization researchers� One
of the reasons is that direct search methods are more interesting to try to
parallelize than Newton methods� The work in a Newton�s method usually
is dominated by the cost of the function evaluations and the linear algebra
required to solve the underlying local model problem� Direct search methods
require essentially no linear algebra� but they are pro�igate users of function
evaluations� This is because there is no underlying local model to suggest
where a better next iterate is likely to be found as in a Newton method� In�
stead� direct search methods sample the function to �nd the next iterate� Of
course� Newton methods use function evaluations to con�rm or reject a sug�
gested next iterate� but direct search methods use function values to explore
for a next iterate� This exploration phase makes it possible to invent new
intrinsically parallel direct search methods rather than simply to parallelize
an existing method as in Newton�s method�
This approach led to the parallel direct search method PDS ���� 	�
� and

to the novel convergence theory for more general pattern search methods
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�	�� 	�� ��� ��� 
�� 
�
� Audet ��
 showed by several examples that Lewis and
Torczon�s convergence analysis in ���
 is sharp� Lewis and Torczon ��	
 and
Audet and Dennis ��� 

 extended these methods and the convergence analysis
to nonlinear problems with discrete as well as continuous variables and to
those with general constraints� Hough and Meza ���
 proposed using the
PDS method for the trust�region subproblem and developed a parallel trust�
region algorithm for nonlinear optimization� Hough� Kolda� and Torczon ��


also developed an asynchronous version of PDS� which demonstrated better
parallel performance than the standard PDS in real applications�
Indeed� the sequential version of PDS called MDS or multidirectional

direct search was a �sequentialization� of PDS rather than the usual way
around� In order to discuss parallel aspects of the algorithms� we will give
the algorithm for continuous variables and no constraints� Thus� we consider

minx�Rnf�x�

The following formulation of Generalized Pattern Search �GPS� is from ���
�
It di�ers from Torczon�s original formulation in �	�
� but it is equivalent� For
simplicity� we say that if there are constraints� and if x either is infeasible or
if f�x� cannot be evaluated successfully� then we set f�x� � �� Note that
both steps have ample opportunities for parallel evaluations of the objective
function and constraints� Indeed� one would certainly tailor the search step
to the number of function evaluations it would be convenient to compute in
parallel� There is also a nice place here for hierarchical parallelism if the
evaluation of a single f�x� is already a parallel program�

GPS� Let M� denote a mesh on Rn and suppose that x� � M� has been
given� �Typically� x� � x�� where x� is a preliminary baseline solution� but
any choice of x� �M� is allowed�� Let X� �M� contain x� and any �n points
adjacent to x� for which the di�erences between those points and x� form
a maximal positive basis �composed of multiples of the coordinate vectors�
for Rn� As the algorithm generates xk � Mk� let Xk � Mk be de�ned in the
same way� For k � �� �� � � �� do�

�� Search� Employ some �nite strategy to try to choose xk	� �Mk such
that f�xk	�� � f�xk�� If such an xk	� is found� declare the Search
successful� set Mk	� �Mk� and increment k�
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�� else Poll�
if xk minimizes f�x� for x � Xk� then declare the Poll unsuccessful�
set xk	� � xk� and re�ne Mk to obtain Mk	� by halving the mesh size
�write this as Mk	� �Mk	���
else declare the Poll successful� set xk	� to a point in Xk at which
f�xk	�� � f�xk�� and set Mk	� �Mk�
Increment k�

Step � provides the safeguard that guarantees convergence� as in the
following result from ��
 which extends �	�
� The extension of GPS to GMIPS
�x has some discrete components� di�ers from GPS in the de�nition of the
poll set Xk� and the convergence result is a bit di�erent� though equally
satisfying�

If f is continuously di�erentiable� then there are in�nitely many unsuccessful
iterates produced by any GPS method� and some limit point of the unsuccess�
ful iterates is a stationary point for problem ����

This result says that one needs only monitor the unsuccessful iterates of GPS
to �nd a stationary point� and this is without regard to how naive the search
strategy is in Step �� In practice� of course� the search strategy matters a lot
to the number of function values required to �nd a good optimizer� We now
turn to using global model functions as surrogates for f�x� to try to Search
with greater parsimony and thereby reduce the total number of objective
function evaluations� or parallel objective function evaluations� Intuitively�
surrogate methods use global models to predict where to �nd a successful
next iterate in just the way that Newton methods use local models� Of
course� the local models must be �rst order accurate for Newton methods to
work � but then they work very well indeed� It is unrealistic to expect much
accuracy of a global model� and that is one reason why we avoid calling them
approximations� The poll step has the same opportunities for parallelism as
before� but parallel function evaluations of the inexpensive surrogate can
allow a sort of rough global surrogate optimization in the search strategy�
One can return a number of candidates for xk	�� evaluate them in parallel�
and accept the best�

The Surrogate Management Framework

�




The description of SMF that we present here is a set of strategies for using
approximations in both the Search and Poll steps of a GPS algorithm� For
greater clarity� we have also identi�ed a separate Evaluate�Calibrate step�
In what follows� we assume that a family of approximating functions has
been speci�ed� that an initial approximation has been constructed� and that
an algorithm to re�calibrate the approximation is available� �See ���
� ��

�
���
� ���
 for more details��

SMF� Given s�� an initial approximation of f � and x� � M�� let X� � M�

contain x� and any �n points adjacent to x� for which the di�erences between
those points and x� form a maximal positive basis �composed of multiples
of the coordinate vectors� for Rn� As the algorithm generates xk � Mk� let
Xk �Mk be de�ned in the same way� For k � �� �� � � �� do�

�� Search� Use any method to choose a trial set Tk � Mk� If Tk �� � is
chosen� then it is required to contain at least one point at which f�x�
is not known� If Tk � �� then go to Poll�

�� Evaluate�Calibrate� Evaluate f on elements in Tk until either it is
found that xk minimizes f on Tk or until xk	� � Tk is identi�ed for
which f�xk	�� � f�xk�� If such an xk	� is found� then declare the
Search successful� Re�calibrate sk with the new values of f computed
at points in Tk�

�� If Search was successful� then set sk	� � sk� Mk	� � Mk� and incre�
ment k�
else return to Search with the re�calibrated sk� but without increment�
ing k�

�� Poll�
If xk minimizes f�x� for x � Xk� then declare the Poll unsuccessful�
set xk	� � xk� and set Mk	� �Mk	��
else declare the Poll successful� set xk	� to a point in Xk at which
f�xk	�� � f�xk�� and set Mk	� �Mk�
Re�calibrate sk with the new values of f computed at points in Xk� Set
sk	� � sk�
Increment k�
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Asynchronous Parallel Search

In general� the PDS algorithm assumes a homogeneous and tightly�coupled
parallel system and it synchronizes in every iteration to compare the function
values among all processors� The problem is that in practice� the machines
available may be loosely�coupled and heterogenneous� Synchronization may
force many of the processors idle while others are busy� The problem can be
more serious when the cost for function evaluation also varies with varying
evaluation points and the load will not be balanced among processors�
To address this problem� Hough� Kolda� and Torczon ��

 developed an

asynchronous version of PDS and obtained better performance than the PDS
algorithm on standard test problems and some problems arising in practical
applications�
The idea of the asynchronous algorithm is that in the PDS algorithm� each

processor takes an independent direction to search for a decreasing point� it
broadcasts the point when it �nds one� or returns to next iteration when
informed that a decreasing point has been found elsewhere� The communi�
cation among the processors are managed by some daemon processes and the
cost is justi�ed by much better balanced computation across all processors�
The following is an outline of the algorithm� For more details� readers

are referred to ��

�

APDS� On each processor� de�ne x	� xbest� xtrial to be current� best� and
trial iterates� respectively� and let f	� fbest� ftrial and  	� best� trial be cor�
responding function values and step sizes� Let tol be a small tolerance for
the step size�

�� Consider each incoming triplet fx	� f	� 	g received from another pro�
cessor� If f	 � fbest� then fxbest� fbest� 	g � fx	� f	� 	g�  trial �
 best�

�� Compute xtrial � xbest� triald and evaluate ftrial � f�xtrial�� where d
is the local direction�

�� Set fx	� f	� 	g � fxtrial� ftrial� trialg�

�� If f	 � fbest� then fxbest� fbest� bestg � fx	� f	� 	g�  trial �  best�
and broadcast fxbest� fbest� bestg� Else  trial �

�
�
 trial�

�� If  trial 
 tol� goto Step �� Else broadcast a local covergence message�

��
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� Wait until either �a� enough of processes have converged for this point
or �b� a better point is received� In case �a�� exit� In case �b�� goto
Step ��

� Optimization of Linked Subsystems

The formulation we will discuss in this section applies to a class of optimiza�
tion problems arising in multidisciplinary design optimization �MDO�� In
MDO� the design variables and the system variables are correlated through
coupled nonlinear subsystems each of which may involve expensive calcula�
tions such as PDE solves� The idea here is that parallelism can be exploited
at the coupling level where the subsystems can be solved independently� if
an appropriate MDO formulation is employed� The technique we employ is
related closely to domain decomposition for PDE or multiple shooting for
ODE�
A general MDO problem can be formulated as the following nonlinear

optimization problem�

min f�x� u�x��

st� g�x� u�x�� 	 �� ����

where x is a set of design variables and u�x�� the vector of system or ancillary
variables� is de�ned implicitly by the blocked system of equations�

A��x� u��x�� � � � � uN�x�� � �
��� ����

AN�x� u��x�� � � � � uN�x�� � � �

This system represents the linking of all the subsystems� and the act of
solving it numerically for u�x�� given x� is known as multidisciplinary analysis
�MDA�� This terminology is in line with standard engineering terminology
that a disciplinary analysis is a single disciplinary simulation run�
The most conventional approach to ���� is sometimes called the control

theory or closed equations or black box approach which formulates the problem
as�

min !f�x�

st� !g�x� 	 �� ����

�	



where !f�x� 
 f�x� u�x�� and !g�x� 
 g�x� u�x���
At each iteration of an optimization procedure applied to ����� any call

to the function routines causes the design variable x to be passed to the
MDA solver and the linked system ���� is solved for u�x�� This reduces the
optimization problem to its essential decision variables x� which can be large
when x is a distributed parameter� but it is often an order of magnitude lower
dimensional than the dimension of u�
To get more of an idea of the expense of solving ����� think of MDA

as solving a perhaps huge nonlinear system of equations� which will have
to be done iteratively� whose residuals at a given iterate u�x�k can only
be evaluated in blocks� and where to evaluate the ith block may require
doing a single discipline analysis for the discipline represented by Ai perhaps
several times in every iteration� Even more scary is to think about the
problem of computing derivative approximations in order to use a Newton�
type method for MDA� Even getting derivatives to use in an optimization
algorithm applied to ���� is expensive� For example� if one is to use �nite
di�erences� then r !f�x� for any x will cost dim�x� MDA solves� One can try
to �nd and use adjoint formulations� but that is generally not practical if the
dimension of the range of g is at all large�
The MDA system ���� is naturally decomposed into disciplinary equa�

tions� which can be distributed to multiprocessors and solved in parallel�
For example� A� is solved for u� on processor �� A� for u� on processor
�� etc� However� given x� u� depends on x as well as other ui� and so on
for u�� � � � � uN � Thus� this procedure is just a block nonlinear Jacobi iter�
ation� which is problematic at best� though it easily allows parallel single
disciplinary analyses� Of course� in many cases� load balancing is a problem
because of the di�erent cost of executing di�erent single disciplinary analyses�
Probably the most often used procedure is the almost equally problematic�

and less parallel� Gauss�Seidel or successive replacements procedure� that is�
�rst assume some values for x and ui� solve A� for u�� then with the new value
for u� along with given values for x and other ui� solve A� for u�� and so on
until a new set of values for all ui are found� The procedure then repeats until
the whole system reaches equilibrium� or in other words� converges to u that
satis�es all the equations� This method can only be executed sequentially�
and as with the Jacobi procedure� there is no reason to believe it will converge
for a given problem� Still� the method does not require a system Jacobian
for ����� and sometimes intuition helps to order the single discipline solves

��



to obtain convergence�
At the other end of the spectrum of formulations is the simultaneous

analysis and design or nonlinear programming or open equations formulations�
This formulation can best be seen by rewriting ���� as�

min f�x� u�

st� g�x� u� 	 �� ����

and A�x� u� � �

where x� u are both treated as independent variables� and the inclusion of the
MDA equations as a constraint ensures that u � u�x� at all feasible points�
There are many reasons why this is the ideal formulation for most problems�
but� it is likely to be extremely large and to need special linear algebra to
handle the linear algebra needed for a sequential quadratic programming
implementation� But� a major di�culty is that one must be able to open up
the single discipline analysis codes and extract the residual computations for
the equations solved by that code�
Recent work on MDO� for example� Cramer et al ��	
� Dennis and Lewis

���
� and Alexandrov and Lewis ��
� demonstrated that the MDA equations as
well as the MDO problem can be solved in parallel if appropriate formulations
and algorithms are used� We describe some of the ideas in the following�
For simplicity� consider a two�discipline MDO problem�

min f�x��R��u���R��u���

st� g��x��S��u���S��u��� 	 � ����

g��x�� x�� u�� 	 �

g��x�� x�� u�� 	 ��

where� u� and u� depend on x�� x�� and x� through the MDA system�

A��x�� x�� u��T��u��� � � ��
�

A��x�� x�� u��T��u��� � �� ����

Here the design variable x is partitioned into x � �x�� x�� x�� with x� and
x� speci�c to discipline � and �� respectively� and x� shared by both� The
function g� is called the design constraint� g� and g� are the disciplinary
design constraints� and A� and A� are the disciplinary analysis constraints�
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As we have discussed before� a major di�culty is that the disciplinary
analysis constraints are coupled through variables u� and u�� A very impor�
tant property that generally holds is that the coupling through T�� T� may
involve small subvectors of u� and u�� This is analogous to the domain de�
composition approach to PDE solutions where at most a band around the
boundary values at the subdomain interfaces are exchanged between subdo�
main solves� Thus� without making the problem too much larger than �����
we can introduce new variables u�� and u�� to replace T��u�� and T��u�� and
add new constraints to make u�� equal to T��u�� and u�� to T��u��� Again�
a feasible point will satisfy ����� This gives one of the ��	
 IDF formulations
for the MDO problem�

min f�x��R��u���R��u��� ����

st� g��x��S��u���S��u��� 	 � ��	�

g��x�� x�� u�� 	 � ����

g��x�� x�� u�� 	 � ����

u�� � T��u�� � � ����

u�� � T��u�� � �� ����

where� u� and u� depend on x�� x�� and x� through the MDA system�

A��x�� x�� u�� u��� � � ����

A��x�� x�� u�� u��� � �� ����

Note that in this formulation� u�� and u�� are considered as independent
variables� therefore� given x�� x�� x�� u�� and u��� A� and A� can be solved in
parallel for u� and u�� The coupling between the two equations is handled by
the consistency constraints ���� and ���� at the MDO level� Thus� a complete
MDA is not required at each iteration of a standard SQP optimizer� A major
point is that the individual discipline solver codes are used as they are�
The model we show above is for a two�discipline MDO problem� but

the technique for decoupling or decomposing the MDO�MDA system into
parallel� independent subsystems can be extended to problems with more
than two disciplines especially when they are loosely�coupled� i�e�� each equa�
tion�constraint is connected with only a few other equations�constraints� and
thus only a small number of auxilliary variables will be required�

��



MDO or linked subsystems problems are one of the �grand challenges�
of scienti�c computation� There is little hope of solving realistic problems
without signi�cant advances in automatic di�erentiation�
Finally� we remark that Braun ���
 and Sobieski and Kroo ���
 suggested

a way of posing linked subsystem problems called collaborative optimization�
Only in special circumstances is this problem equivalent to ����� but there are
other ways to pose optimization with linked subsystems than the straight�
forward ����� and �CO� has the comforting feature of mimicing the way
�parallel� teams of disciplinary specialists would attach such problems�

� Variable and Constraint Distribution

Ferris and Mangasarian ���� ��
 developed two classes of parallel algorithms
for constrained optimization problems� Algorithms of the �rst class distribute
the variables on multiple processors� Each processor updates its own vari�
ables in parallel while allowing the other variables to change in a restricted
fashion� Once a new step is obtained� all processors communicate and com�
bine the steps to obtain the new iterate in the whole space� The second class
of algorithms distribute the constraints over the processors instead� Each
processor then solves a subproblem with a subset of constraints and a mod�
i�ed objective function� The processors then exchange Lagrange multipliers
and repeat�
Ferris and Mangasarian ���� ��
 presented algorithms of these classes de�

signed for various types of optimization problems� gave a convergence theory�
and provided preliminary performance results� We refer the reader there for
more details�

Variable Distribution

Consider the problem

minx�X f�x� ��
�

where X is a nonempty closed convex set in Rn and f a continuous and
di�erentiable function� The variable distribution algorithm �rst distributes
p blocks x�� � � � � xp of variable x� where xl � Rnl �

Pp
l�� nl � n� over p proces�

sors� At iteration i with an iterate xi � Rn� processor l updates block xil by

��



solving a subproblem�

minxl��l f�xl� x
i

l �Di


l�
l� ����

s�t� �xl� x
i

l �Di


l�
l� � X ����

where "l denotes the complement of l in �� � � � � p� �
l � Rp��� The matrix
Di


l is an n
l�by��p � �� matrix� It is formed by taking arbitrary direction
di � Rn� breaking it into blocks of dil � R

nl � l � �� � � � � p� consistent with
the distribution of the variables� and placing these vectors along the block
diagonal of Di


l �

Di

l � diag�di�� � � � � d

i
l��� d

i
l	�� � � � � d

i
p�� ��	�

Let �yil � �
i

l� be the optimal solution of problem ����� and xil � �yil � �

i

l��

Then after all processors obtain their xil � l � �� � � � � p� the next iterate xi	�

for the original problem ��
� can be obtained by solving the subproblem�

min��������p f���x
i �

pX
k��

�kx
ik� ����

s�t� ��x
i �

pX
k��

�kx
ik � X �

pX
k��

�k � �� ����

with xi	� set to ��x
i �

Pp
k�� �kx

ik �
Note that the subproblem ���� is to solve the problem in the subspace

spanned by its allocated variables� Since each involves only its own local
variables� all can be solved in parallel� The subproblem ����� is again to
solve the problem on a subspace� but now it is the subspace spanned by the
steps from the current iterate to each of the subspace optima found at the
previous level� Since these steps were computed on di�erent processors� a
synchronization step among processors is required for solving ����� Clearly�
this process can be applied to generate multiple levels until a good �t is found
for the given problem on the given machine�
The variable distribution method can be used for unconstrained opti�

mization problems and problems with block separable constraints� Ferris
and Mangasarian ���
 showed that the algorithms for these problems con�
verge with certain optimality conditions� They also tested the algorithms
with a subset of optimization problems in CUTE ���
 and obtained reason�
able speedups on CM�� with up to �� processors�
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Constraint Distribution

The constraint distribution method applies to quadratic programs with strictly
convex objective functions� It can also be extended to general convex pro�
grams� but with relatively weaker convergence results�
In general� consider the following convex program�

min f�x� ����

s�t� g��x� � �� � � � � gp�x� � �� ����

where f is a strictly convex function� and gl are convex functions from Rn

to Rml � l � �� � � � � p� The method distributes the block constraints to p
processors� On processor l� a subproblem with only constraint block gl�x� � �
and a modi�ed objective function is solved� Then the solutions and the
Lagrange multipliers are shared among processors� and the whole process
is repeated� Note that the modi�ed objective function on one processor is
composed of the original function plus some augmented Lagrangian terms
formed by the constraints assigned to other processors�
For illustrative purposes� consider a quadratic program with � blocks of

inequality constraints�

min cTx �
�

�
xTQx ����

s�t� Alx � al� l � �� �� �� ����

where c � Rn� Q � Rml�n� al � Rml � and Q is symmetric and positive
de�nite� A constraint distribution algorithm for this problem would �rst
distribute the constraints to � processors� with constraint l to processor l�
Then at iteration i� a subproblem can be solved on each processor in parallel�
that is� on processor l�

minxl cTxl �
�

�
xTl Qxl �

�

�


�
� �X
j���j ��l

k�
�Ajxl � aj� � pijlk
�

�
	� xTl r

i
l ��
�

s�t� Alxl � al� ����

where 
 is a positive number and pijl and ril � j� l � �� �� � are parameters to
be determined� The pijl play the roles of the multipliers and converge to the
optimal multipliers eventually� while ril replaces estimates of the multipliers

��



by their most recent values obtained from each of the other subproblems�
Note that the objective functions for the subproblems in ��
� are quadratic
augmented Lagrangian functions perturbed by the linear terms xTl r

i
l � Thus

in each subproblem� some constraints are treated explicitly as constraints
while the remaining ones are terms in the augmented Lagrangian objective
function�
Given the values for all the parameters� each subproblem in ��
� can be

solved in parallel� However� the parameters are updated using their most re�
cent values from other processors� Therefore� communication is required at
certain points� Ferris and Mangasarian ���
 showed the convergence results
for the constraint distribution algorithm for strictly convex quadratic pro�
grams and extended them to general convex programs� Five small quadratic
programming problems were tested with the algorithm on the Sequent Sym�
metry S���� Encouraging results were obtained�

� Future Research and Development

Despite much e�ort and some solid developments� the use of parallelism
in general optimization has not been as fruitful as its use in other areas
of numerical computation� like numerical linear algebra� There are special
successful applications� and some software packages available� but not much
performance analysis or benchmarking work� One of possible reasons is that
practical optimization problems often have many ancillary variables� but only
a few decision variables� The great opportunities for �nding parallelismmight
then lie in parallelizing the computation of the ancillary variables by using
domain decomposition to solve a PDE for example� If tools for hierarchical
parallelism become more generally available� this situation may change�
Another reason for our slow progress may be the tradition favoring inher�

ently sequential Newton�like methods where one carefully builds local models
and extracts all the information one can before evaluating a trial step� After
all� in locally modeling methods� there is generally a clearly preferred trial
step� and if that is not successful� then the fall back strategies use infor�
mation gotten from the failure� Methods such as parallel line searches or
sector searches have not been great successes� probably because they kluge
one paradigm onto another rather than �nd a single consistent algorithmic
paradigm�

�




Global optimization methods have attracted more and more attention as
usable parallel and high performance computing resources became available�
Indeed� there are many cases where scienti�c problems of an interesting size
have been solved by these methods� Still� the general global optimization
problem is intractable� even for in�nitely smooth functions� Empirically� the
computing time needed to get a reasonable solution using a general global
optimization algorithm seems to grow exponentially with the problem size
while the speed�up can at best be counted upon to be linear with the number
of processors� Thus� the future of global optimization is in the development
of e�cient and reliable algorithms for speci�c classes of problems� Without
such algorithms� problem sizes will remain limited despite gains from parallel
computation�
Parallel direct search methods are another successful development in the

quest for parallel optimization algorithms� The theory is developing rapidly�
and they are easy to use either as sequential or parallel algorithms� There
are many successful applications� but the methods are slower than Newton
methods� and as with all derivative�free methods� it is di�cult to know when
to terminate� Thus the algorithm is more suitable for small problems with
uncertain accuracy in the function� Constraints are problematic for these
algorithms as well� If one has no derivatives� then Lagrange multipliers� a
mainstay of constrained optimization are not available� However� algorithms
for constraints and large�scale applications are interesting research directions�
We call the problem class MDO in Section �� but in fact� it is much more

general than design� As simulation is used to aid decision makers in more
and more areas� such as crisis management� instances of these problems will
arise� Picture a library of standard simulation codes� like �uid �ow� thermal
conductivity� structures� etc� One might want to make decisions concerning
systems governed by coupling various choices from among these systems� It
may not be practical to have in the library special simulations for all these
combinations� Here� we provide a completely equivalent formulation for the
original problem for which this would not be necessary because the separate
�closed� subsystems could be linked numerically for each required x without
recoding to obtain a solver that works for any x� However� since the method
is relatively new� and the computational demands for MDO are so high�
computational experiments are limited� Indeed� this �eld is in its infancy�
The variable and constraint distribution algorithms are interesting� Dif�

ferent from many other algorithms� which are obtained by parallelizing their

��



serial counterparts� these algorithms are developed with parallel computation
in mind� Therefore� standard optimization components� like computation of
a search direction� are designed as parallel procedures� Convergence results
have also been established for the algorithms� They have not been exten�
sively tested or applied in practice� Further research on these algorithms
and their applications can be promising and fruitful� For example� parallel
variable distribution and parallel direct searches seem an interesting pairing
for extending the latter to larger problems� Partial separability seems also
to be clearly related to parallel variable distribution�
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