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OPTIMAL SAMPLING STRATEGIES FOR
MULTISCALE STOCHASTIC PROCESSES

BY V INAY J. RIBEIRO, RUDOLF H. RIEDI , AND RICHARD G. BARANIUK ∗

Rice University

In this paper, we determine which non-random sampling of fixed size
gives the best linear predictor of the sum of a finite spatial population. We
employ different multiscale superpopulation models and use the minimum
mean-squared error as our optimality criterion. In a multiscale superpopu-
lation tree models, the leaves represent the units of the population, interior
nodes represent partial sums of the population, and the rootnode represents
the total sum of the population. We prove that the optimal sampling pattern
varies dramatically with the correlation structure of the tree nodes. Whileuni-
form samplingis optimal for trees with “positive correlation progression”, it
provides the worst possible sampling with “negative correlation progression.”
As an analysis tool, we introduce and study a class ofindependent innova-
tions treesthat are of interest in their own right. We derive a fast water-filling
algorithm to determine the optimal sampling of the leaves toestimate the root
of an independent innovations tree.

1. Introduction. In this paper we design optimal sampling strategies for spa-
tial populations under different multiscale superpopulation models. Spatial sam-
pling plays an important role in a number of disciplines, including geology, ecol-
ogy, and environmental science. See, e.g., Cressie [5].

1.1. Optimal spatial sampling. Consider a finite population consisting of a
rectangular grid ofR × C units as depicted in Fig. 1(a). Associated with the unit
in the ith row andjth column is an unknown valuèi,j. We treat thè i,j ’s as one
realization of a superpopulation model.

Our goal is to determine which sample, among all samples of sizen, gives the
best linear estimator of the population sum,S :=

∑
i,j `i,j . We abbreviatevari-

ance, covariance, andexpectationby “var”, “cov”, and “E” respectively. Without
loss of generality we assume thatE(`i,j) = 0 for all locations(i, j).
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FIG 1. (a) Finite population on a spatial rectangular grid of sizeR × C units. Associated
with the unit at position(i, j) is an unknown valuèi,j. (b) Multiscale superpopulation
model for a finite population. Nodes at the bottom are called leaves and the topmost node
the root. Each leaf node corresponds to one value`i,j . All nodes, except for the leaves,
correspond to the sum of their children at the next lower level.

Denote an arbitrary sample of sizen by L. We consider linear estimators ofS
that take the form

Ŝ(L,α) := α
TL,(1)

whereα is an arbitrary set of coefficients. We measure the accuracy of Ŝ(L,α) in
terms of themean-squared error(MSE)

E(S|L,α) := E

(
S − Ŝ(L,α)

)2
(2)

and define thelinear minimum mean-squared error(LMMSE) of estimatingS
from L as

E(S|L) := min
α∈Rn

E(S|L,α).(3)

Restated, our goal is to determine

L∗ := arg min
L

E(S|L).(4)

Our results are particularly applicable to Gaussian processes for which linear esti-
mation is optimal in terms of mean-squared error. We note that for certain multi-
modal and discrete processes linear estimation may be sub-optimal.

1.2. Multiscale superpopulation models.We assume that the population is one
realization of a multiscale stochastic process (see Fig. 1(b)) (see Willsky [20]).
Such processes consist of random variables organized on a tree. Nodes at the bot-
tom, calledleaves, correspond to the populatioǹi,j. All nodes, except for the
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FIG 2. (a) Binary tree for interpolation of Brownian motion,B(t). (b) Form child nodes
Vγ1 andVγ2 by adding and subtracting an independent Gaussian random variableWγ

from Vγ/2. (c) Mid-point displacement. SetB(1) = Vø and formB(1/2) = (B(1) −
B(0))/2 +Wø = Vø1. ThenB(1) − B(1/2) = Vø/2 −Wø = Vø2. In general a node at
scalej and positionk from the left of the tree corresponds toB((k + 1)2−j) −B(k2−j).

leaves, represent the sum total of their children at the nextlower level. The topmost
node, theroot, hence represents the sum of the entire population. The problem we
address in this paper is thus equivalent to the following:Among all possible sets of
leaves of sizen, which set provides the best linear estimator for the root interms
of MSE?

Multiscale stochastic processes efficiently capture the correlation structure of a
wide range of phenomena, from uncorrelated data to complexfractal data. They
do so through a simple probabilistic relationship between each parent node and its
children. They also provide fast algorithms for analysis and synthesis of data and
are often physically motivated. As a result multiscale processes have been used in a
number of fields, including oceanography, hydrology, imaging, physics, computer
networks, and sensor networks (see Willsky [20] and references therein, Riedi et
al. [15], and Willett et al. [19]).

We illustrate the essentials of multiscale modeling through a tree-based interpo-
lation of one-dimensionalstandard Brownian motion. Brownian motion,B(t), is
a zero-mean Gaussian process withB(0) := 0 and var(B(t)) = t. Our goal is to
begin withB(t) specified only att = 1 and then interpolate it at all time instants
t = k2−j , k = 1, 2, . . . , 2j for any given valuej.

Consider a binary tree as shown in Fig. 2(a). We denote the root by Vø. Each
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nodeVγ is the parent of two nodes connected to it at the next lower level,Vγ1

andVγ2, which are called itschild nodes. The addressγ of any nodeVγ is thus a
concatenation of the form øk1k2 . . . kj , wherej is the node’sscaleor depth in the
tree.

We begin by generating a zero-mean Gaussian random variablewith unit vari-
ance and assign this value to the root,Vø. The root is now a realization ofB(1). We
next interpolateB(0) andB(1) to obtainB(1/2) using a “mid-point displacement”
technique. We generate independentinnovationWø of variance var(Wø) = 1/4
and setB(1/2) = Vø/2 +Wø (see Fig. 2(c)).

Random variables of the formB((k+ 1)2−j)−B(k2−j) are calledincrements
of Brownian motion at time-scalej. We assign the increments of the Brownian
motion at time-scale1 to the children ofVø. That is, we set

Vø1 = B(1/2) −B(0) = Vø/2 +Wø, and

Vø2 = B(1) −B(1/2) = Vø/2 −Wø
(5)

as depicted in Fig. 2(c). We continue the interpolation by repeating the procedure
described above, replacingVø by each of its children and reducing the variance of
the innovations by half, to obtainVø11, Vø12, Vø21, andVø22.

Proceeding in this fashion we go down the tree assigning values to the different
tree nodes (see Fig. 2(b)). It is easily shown that the nodes at scalej are now
realizations ofB((k + 1)2−j) − B(k2−j). That is, increments at time-scalej.
For a given value ofj we thus obtain the interpolated values of Brownian motion,
B(k2−j) for k = 0, 1, . . . , 2j − 1, by cumulatively summing up the nodes at scale
j.

By appropriately setting the variances of the innovationsWγ , we can use the
procedure outlined above for Brownian motion interpolation to interpolate sev-
eral other Gaussian processes (Abry et al. [1], Ma and Ji [12]). One of these
is fractional Brownian motion(fBm), BH(t) (0 < H < 1)), that has variance
var(BH(t)) = t2H . The parameterH is called theHurst parameter. Unlike the
interpolation for Brownian motion which is exact, however,the interpolation for
fBm is only approximate. By setting the variance of innovations at different scales
appropriately we ensure that nodes at scalej have the same variance as the incre-
ments of fBm at time-scalej. However, except for the special case whenH = 1/2,
the covariance between any two arbitrary nodes at scalej is not always identical
to the covariance of the corresponding increments of fBm at time-scalej. Thus
the tree-based interpolation captures the variance of the increments of fBm at all
time-scalesj but does not perfectly capture the entire covariance (second-order)
structure.

This approximate interpolation of fBm, nevertheless, suffices for several ap-
plications including network traffic synthesis and queuingexperiments (Ma and
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Ji [12]). They provide fastO(N) algorithms for both synthesis and analysis of data
sets of sizeN . By assigning multivariate random variables to the tree nodesVγ as
well as innovationsWγ , the accuracy of the interpolations for fBm can be further
improved (Willsky [20]).

In this paper we restrict our attention to two types of multiscale stochastic
processes:covariance trees(Ma and Ji [12], Riedi et al. [15]) andindependent
innovations trees(Chou et al. [3], Willsky [20]). In covariance trees the covariance
between pairs of leaves is purely a function of their distance. In independent inno-
vations trees, each node is related to its parent nodes through a unique independent
additive innovation. One example of a covariance tree is themultiscale process
described above for the interpolation of Brownian motion (see Fig. 2).

1.3. Summary of results and paper organization.We analyze covariance trees
belonging to two broad classes: those withpositive correlation progressionand
those withnegative correlation progression. In trees with positive correlation pro-
gression, leaves closer together are more correlated than leaves father apart. The
opposite is true for trees with negative correlation progression. While most spatial
data sets are better modeled by trees with positive correlation progression, there
exist several phenomena in finance, computer networks, and nature that exhibit
anti-persistent behavior, which is better modeled by a treewith negative correlation
progression (Li and Mills [11], Kuchment and Gelfan [9], Jamdee and Los [8]).

For covariance trees with positive correlation progression we prove that uni-
formly spaced leaves are optimal and that clustered leaf nodes provides the worst
possible MSE among all samples of fixed size. The optimal solution can, however,
change with the correlation structure of the tree. In fact for covariance trees with
negative correlation progression we prove that uniformly spaced leaf nodes give
theworstpossible MSE!

In order to prove optimality results for covariance trees weinvestigate the closely
related independent innovations trees. In these trees, a parent node cannot equal the
sum of its children. As a result they cannot be used as superpopulation models in
the scenario described in Section 1.1. Independent innovations trees are however
of interest in their own right. For independent innovationstrees we describe an effi-
cient algorithm to determine an optimal leaf set of sizen calledwater-filling. Note
that the general problem of determining whichn random variables from a given
set provide the best linear estimate of another random variable that is not in the
same set is an NP-hard problem. In contrast, the water-filling algorithm solves one
problem of this type in polynomial-time.

The paper is organized as follows. Section 2 describes various multiscale sto-
chastic processes used in the paper. In Section 3 we describethe water-filling tech-
nique to obtain optimal solutions for independent innovations trees. We then prove
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FIG 3. Notation for multiscale stochastic processes.

optimal and worst case solutions for covariance trees in Section 4. Through numer-
ical experiments in Section 5 we demonstrate that optimal solutions for multiscale
processes can vary depending on their topology and correlation structure. We de-
scribe related work on optimal sampling in Section 6. We summarize the paper
and discuss future work in Section 7. The proofs can be found in the Appendix.
The pseudo-code and analysis of the computational complexity of the water-filling
algorithm are available online (Ribeiro et al. [14]).

2. Multiscale stochastic processes.Trees occur naturally in many applica-
tions as an efficient data structure with a simple dependencestructure. Of particular
interest are trees which arise from representing and analyzing stochastic processes
and time series on different time scales. In this section we describe various trees
and related background material relevant to this paper.

2.1. Terminology and notation.A tree is a special graph, i.e., a set of nodes
together with a list of pairs of nodes which can be pictured asdirected edges point-
ing from one node to another with the following special properties (see Fig. 3):
(1) There is a unique node called theroot to which no edge points to. (2) There is
exactly one edge pointing to any node, with the exception of the root. The starting
node of the edge is called theparentof the ending node. The ending node is called
a child of its parent. (3) The tree isconnected, meaning that it is possible to reach
any node from the root by following edges.

These simple rules imply that there are no cycles in the tree,in particular, there
is exactly one way to reach a node from the root. Consequently, unique addresses
can be assigned to the nodes which also reflect the level of a node in the tree. The
topmost node is the root whose address we denote by ø. Given anarbitrary node
γ, its child nodes are said to be one level lower in the tree and are addressed byγk
(k = 1, 2, . . . , Pγ), wherePγ ≥ 0. The address of each node is thus a concatena-
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tion of the form øk1k2 . . . kj, or k1k2 . . . kj for short, wherej is the node’sscale
or depth in the tree. The largest scale of any node in the tree is called thedepthof
the tree.

Nodes with no child nodes are termedleavesor leaf nodes. As usual, we denote
the number of elements of a set of leaf nodesL by |L|. We define the operator↑
such thatγk ↑= γ. Thus, the operator↑ takes us one level higher in the tree to
the parent of the current node. Nodes that can be reached fromγ by repeated↑
operations are calledancestorsof γ. We termγ adescendantof all of its ancestors.

The set of nodes and edges formed byγ and all its descendants is termed the
tree ofγ. Clearly, it satisfies all rules of a tree. LetLγ denote the subset ofL that
belong to the tree ofγ. LetNγ be the total number of leaves of the tree ofγ.

To every nodeγ we associate a single (univariate) random variableVγ . For the
sake of brevity we often refer toVγ as simply “the nodeVγ” rather than “the random
variable associated with nodeγ.”

2.2. Covariance trees. Covariance trees are multiscale stochastic processes
defined on the basis of the covariance between the leaf nodes which is purely a
function of theirproximity. Examples of covariance trees are the Wavelet-domain
Independent Gaussian model (WIG) and the Multifractal Wavelet Model (MWM)
proposed for network traffic (Ma and Ji [12], Riedi et al. [15]). Precise definitions
follow.

Definition 1 Theproximity of two leaf nodes is the scale of their lowest common
ancestor.

Note that the larger the proximity of a pair of leaf nodes, thecloser the nodes are
to each other in the tree.

Definition 2 A covariance treeis a multiscale stochastic process with two prop-
erties. (1) The covariance of any two leaf nodes depends onlyon their proximity.
In other words, if the leavesγ′ and γ have proximityk thencov(Vγ , Vγ′) =: ck.
(2) All leaf nodes are at the same scaleD and the root is equally correlated with
all leaves.

In this paper we consider covariance trees of two classes: trees with positive
correlation progression and trees with negative correlation progression.

Definition 3 A covariance tree has apositive correlation progressionif ck >
ck−1 > 0 for k = 1, . . . ,D − 1. A covariance tree has anegative correlation
progressionif ck < ck−1 for k = 1, . . . ,D − 1.

Intuitively in trees with positive correlation progression leaf nodes “closer” to each
other in the tree are more strongly correlated than leaf nodes “farther apart.”
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Our results take on a special form for covariance trees that are also symmetric
trees.

Definition 4 A symmetric treeis a multiscale stochastic process in whichPγ , the
number of child nodes ofVγ , is purely a function of the scale ofγ.

2.3. Independent innovations trees.Independent innovations trees are partic-
ular multiscale stochastic processes defined as follows.

Definition 5 An independent innovations treeis a multiscale stochastic process in
which each nodeVγ , excluding the root, is defined through

Vγ := %γVγ↑ +Wγ .(6)

Here,%γ is a scalar andWγ is a random variable independent ofVγ↑ as well as
of Wγ′ for all γ′ 6= γ. The root,Vø, is independent ofWγ for all γ. In addition
%γ 6= 0, var(Wγ) > 0 ∀γ andvar(Vø) > 0.

Note that the above definition guarantees that var(Vγ) > 0 ∀γ as well as thelinear
independence1 of any set of tree nodes.

The fact that each node is the sum of a scaled version of its parent and an inde-
pendent random variable makes these trees amenable to analysis (Chou et al. [3],
Willsky [20]). We prove optimality results for independentinnovations trees in
Section 3. Our results take on a special form for scale-invariant trees defined be-
low.

Definition 6 A scale-invariant treeis an independent innovations tree which is
symmetric and where%γ and the distribution ofWγ are purely functions of the
scale ofγ.

While independent innovations trees are not covariance trees in general, it is easy
to see that scale-invariant trees are indeed covariance trees with positive correlation
progression.

3. Optimal leaf sets for independent innovations trees. In this section we
determine the optimal leaf sets of independent innovationstrees to estimate the
root. We first describe the concept of water-filling which we later use to prove opti-
mality results. We also outline an efficient numerical method to obtain the optimal
solutions.

1A set of random variables is linearly independent if none of them can be written as a linear
combination of finitely many other random variables in the set.
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3.1. Water-filling. While obtaining optimal sets of leaves to estimate the root
we maximize a sum of concave functions under certain constraints. We now de-
velop the tools to solve this problem.

Definition 7 A real functionψ defined on the set of integers{0, 1, . . . ,M} is
discrete-concaveif

ψ(x+ 1) − ψ(x) ≥ ψ(x+ 2) − ψ(x+ 1), for x = 0, 1, . . . ,M − 2.(7)

The optimization problem we are faced with can be cast as follows. Given in-
tegersP ≥ 2, Mk > 0 (k = 1, . . . , P ) andn ≤

∑P
k=1Mk consider the discrete

space

∆n(M1, . . . ,MP ) :=

{
X = [xk]

P
k=1 :

P∑

k=1

xk = n;xk ∈ {0, 1, . . . ,Mk},∀k

}
.

(8)
Given non-decreasing, discrete-concave functionsψk (k = 1, . . . , P ) with domains
{0, . . . ,Mk} we are interested in

h(n) := max

{
P∑

k=1

ψk(xk) : X ∈ ∆n(M1, . . . ,MP )

}
.(9)

In the context of optimal estimation on a tree,P will play the role of the number of
children that a parent nodeVγ has,Mk the total number of leaf node descendants
of thek-th child Vγk, andψk the reciprocal of the optimal LMMSE of estimating
Vγ given xk leaf nodes in the tree ofVγk. The quantityh(n) corresponds to the
reciprocal of the optimal LMMSE of estimating nodeVγ givenn leaf nodes in its
tree.

The following iterative procedure solves the optimizationproblem (9). Form
vectorsG(n) = [g

(n)
k ]Pk=1, n = 0, . . . ,

∑
k Mk as follows:

Step (i): Setg(0)
k = 0, ∀k.

Step (ii): Set

g
(n+1)
k =

{
g
(n)
k + 1, k = m

g
(n)
k , k 6= m

(10)

where
m ∈ arg max

k

{
ψk

(
g
(n)
k + 1

)
− ψk

(
g
(n)
k

)
: g

(n)
k < Mk

}
.(11)

The procedure described in Steps (i) and (ii) is termedwater-filling because it
resembles the solution to the problem of filling buckets withwater to maximize
the sum of the heights of the water levels. These buckets are narrow at the bottom
and monotonically widen towards the top. Initially all buckets are empty (compare
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Step (i)). At each step we are allowed to pour one unit of waterinto any one bucket
with the goal of maximizing the sum of water levels. Intuitively at any step we
must pour the water into that bucket which will give the maximum increase in
water level among all the buckets not yet full (compare Step (ii)). Variants of this
water-filling procedure appear as solutions to different information theoretic and
communication problems (Cover and Thomas [4]).

Lemma 8 The functionh(n) is non-decreasing and discrete-concave. In addition,

h(n) =
∑

k

ψk

(
g
(n)
k

)
,(12)

whereg(n)
k is defined through water-filling.

When all functionsψk in Lemma 8 are identical, the maximum of
∑P

k=1 ψk(xk)
is achieved by choosing thexk ’s to be “near-equal”. The following Corollary states
this rigorously.

Corollary 9 If ψk = ψ for all k = 1, 2, . . . , P withψ non-decreasing and discrete-
concave, then

h(n) =
(
P − n+ P

⌊ n
P

⌋)
ψ

(⌊ n
P

⌋)
+

(
n− P

⌊ n
P

⌋)
ψ

(⌊ n
P

⌋
+ 1

)
.(13)

The maximizing values of thexk are apparent from (13). In particular, ifn is a
multiple ofP then this reduces to

h(n) = Pψ
( n
P

)
.(14)

Corollary 9 is key to proving our results for scale-invariant trees.

3.2. Optimal leaf sets through recursive water-filling.Our goal is to determine
a choice ofn leaf nodes that gives the smallest possible LMMSE of the root. Recall
that the LMMSE ofVγ givenLγ is defined as

E(Vγ |Lγ) := min
α

E(Vγ − α
TLγ)2,(15)

where, in an abuse of notation,α
TLγ denotes a linear combination of the elements

of Lγ with coefficientsα. Crucial to our proofs is the fact that (Chou et al. [3] and
Willsky [20]),

1

E(Vγ |Lγ)
+
Pγ − 1

var(Vγ)
=

Pγ∑

k=1

1

E(Vγ |Lγk)
.(16)
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Denote the set consisting of all subsets of leaves of the treeof γ of sizen by Λγ(n).
Motivated by (16) we introduce

µγ(n) := max
L∈Λγ(n)

E(Vγ |L)−1(17)

and define
Lγ(n) := {L ∈ Λγ(n) : E(Vγ |L)−1 = µγ(n)}.(18)

Restated, our goal is to determine one element ofLø(n).
To allow a recursive approach through scale we generalize (17) and (18) by

defining
µγ,γ′(n) := max

L∈Λγ′ (n)
E(Vγ |L)−1(19)

and
Lγ,γ′(n) := {L ∈ Λγ′(n) : E(Vγ |L)−1 = µγ,γ′(n)}.(20)

Of course,Lγ(n) = Lγ,γ(n). For the recursion, we are mostly interested inLγ,γk(n),
i.e., the optimal estimation of a parent node from a sample ofleaf nodes of one of
its children. The following will be useful notation

X∗ = [x∗k]
Pγ

k=1 := arg max
X∈∆n(Nγ1,...,NγPγ )

Pγ∑

k=1

µγ,γk(xk).(21)

Using (16) we can decompose the problem of determiningL ∈ Lγ(n) into
smaller problems of determining elements ofLγ,γk(x

∗
k) for all k as stated in the

next theorem.

Theorem 10 For an independent innovations tree, let there be given one leaf
setL(k) belonging toLγ,γk(x

∗
k) for all k. Then

⋃Pγ

k=1 L
(k) ∈ Lγ(n). Moreover,

Lγk(n) = Lγk,γk(n) = Lγ,γk(n). Alsoµγ,γk(n) is a positive, non-decreasing,
and discrete-concave function ofn, ∀k, γ.

Theorem 10 gives us a two step procedure to obtain the best setof n leaves in
the tree ofγ to estimateVγ . We first obtain the best set ofx∗k leaves in the tree of
γk to estimateVγk for all children ofγk of γ. We then take the union of these sets
of leaves to obtain the required optimal set.

By continuing to sub-divide the problem of obtaining optimal leaf nodes into
smaller sub-problems we arrive at the following recursive technique to construct
L ∈ Lγ(n). Starting atγ we move downward determining how many of then leaf
nodes ofL ∈ Lγ(n) lie in the trees of the different descendants ofγ until we reach
the bottom. Assume for the moment that we are given the functionsµγ,γk(n) for
all γ.
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Scale-Recursive Water-filling schemeγ → γk
Step (a):Split n leaf nodes between the trees ofγk, k = 1, 2, . . . , Pγ .
First determine how to split then leaf nodes between the trees ofγk by maximizing∑Pγ

k=1 µγ,γk(xk) overX ∈ ∆n(Nγ1, . . . ,NγPγ ) (see (21)). The split is given by
X∗ which is easily obtained using the water-filling procedure for discrete-concave
functions (defined in (10)) sinceµγ,γk(n) is discrete-concave for allk. Determine

L(k) ∈ Lγ,γk(x
∗
k) sinceL =

⋃Pγ

k=1 L
(k) ∈ Lγ(n).

Step (b):Split x∗k nodes between the trees of child nodes ofγk.
It turns out thatL(k) ∈ Lγ,γk(x

∗
k) if and only if L(k) ∈ Lγk(x

∗
k). Thus repeat

Step (a) withγ = γk andn = x∗k to constructL(k). Stop when we have reached
the bottom of the tree.

We outline an efficient implementation of the scale-recursive water-filling al-
gorithm. This implementation first computesL ∈ Lγ(n) for n = 1 and then in-
ductively obtains the same for larger values ofn. GivenL ∈ Lγ(n) we obtain
L ∈ Lγ(n+1) as follows. Note from Step (a) above that we determine how to split
then leaves atγ. We are now required to splitn + 1 leaves atγ. We easily obtain
this from the earlier split ofn leaves using (10). The water-filling technique main-
tains the split ofn leaf nodes atγ while adding just one leaf node to the tree of one
of the child nodes (sayγk′) of γ. We thus have to perform Step (b) only fork = k′.
In this way the new leaf node “percolates” down the tree untilwe find its loca-
tion at the bottom of the tree. The pseudo-code for determiningL ∈ Lγ(n) given
var(Wγ) for all γ as well as the proof that the recursive water-filling algorithm can
be computed in polynomial-time are available online (Ribeiro et al. [14]).

3.3. Uniform leaf nodes are optimal for scale-invariant trees.The symmetry
in scale-invariant trees forces the optimal solution to take a particular form irre-
spective of the variances of the innovationsWγ . We use the following notion of
uniform split to prove that in a scale-invariant tree a more or less equal spread of
sample leaf nodes across the tree gives the best linear estimate of the root.

Definition 11 Given a scale-invariant tree, a vector of leaf nodesL hasuniform
split of sizen at nodeγ if |Lγ | = n and |Lγk| is eitherb n

Pγ
c or b n

Pγ
c + 1 for all

values ofk. It follows that#{k : |Lγk| = b n
Pγ

c + 1} = n− Pγb
n
Pγ

c.

Definition 12 Given a scale-invariant tree, a vector of leaf nodes is called a uni-
form leaf sampleif it has a uniform split at all tree nodes.

The next theorem gives the optimal leaf node set for scale-invariant trees.

Theorem 13 Given a scale-invariant tree, the uniform leaf sample of sizen gives
the best LMMSE estimate of the tree-root among all possible choices ofn leaf
nodes.
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Proof: For a scale-invariant tree,µγ,γk(n) is identical for allk given any location
γ. Corollary 9 and Theorem 10 then prove the theorem. �

4. Covariance trees. In this section we prove optimal and worst case solu-
tions for covariance trees. For the optimal solutions we leverage our results for
independent innovations trees and for the worst case solutions we employ eigen-
analysis. We begin by formulating the problem.

4.1. Problem formulation. Let us compute the LMMSE of estimating the root
Vø given a set of leaf nodesL of size n. Recall that for a covariance tree the
correlation between any leaf node and the root node is identical. We denote this
correlation byρ. Denote ani× j matrix with all elements equal to1 by 1i×j. It is
well known (Stark and Woods [17]) that the optimal linear estimate ofVø givenL
(assuming zero-mean random variables) is given byρ11×nQ

−1
L L, whereQL is the

covariance matrix ofL and that the resulting LMMSE is

E(Vø|L) = var(Vø) − cov(L, Vø)TQ−1
L cov(L, Vø)

= var(Vø) − ρ2
11×nQ

−1
L 1n×1.(22)

Clearly obtaining the best and worst-case choices forL is equivalent to maximizing
and minimizing the sum of the elements ofQ−1

L . The exact value ofρ does not
affect the solution. We assume that no element ofL can be expressed as a linear
combination of the other elements ofL which implies thatQL is invertible.

4.2. Optimal solutions. We use our results of Section 3 for independent inno-
vations trees to determine the optimal solutions for covariance trees. Note from
(22) that the estimation error for a covariance tree is a function only of the co-
variancebetween leaf nodes. Exploiting this fact, we first construct an independent
innovations tree whose leaf nodes have the same correlationstructure as that of the
covariance tree and then prove that both trees must have the same optimal solution.
Previous results then provide the optimal solution for the independent innovations
tree which is also optimal for the covariance tree.

Definition 14 A matched innovations treeof a given covariance tree with positive
correlation progression is an independent innovations tree with the following prop-
erties. It has (1) the same topology (2) and the same correlation structure between
leaf nodes as the covariance tree, and (3) the root is equallycorrelated with all leaf
nodes (though the exact value of the correlation between theroot and a leaf node
may differ from that of the covariance tree).

All covariance trees with positive correlation progression have corresponding
matched innovations trees. We construct a matched innovations tree for a given
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covariance tree as follows. Consider an independent innovations tree with the same
topology as the covariance tree. Set%γ = 1 for all γ,

var(Vø) = c0(23)

and
var(W (j)) = cj − cj−1, j = 1, 2, . . . ,D,(24)

where cj is the covariance of leaf nodes of the covariance tree with proximity
j and var(W (j)) is the common variance of all innovations of the independent
innovations tree at scalej. Call c′j the covariance of leaf nodes with proximityj in
the independent innovations tree. From (6) we have

c′j = var(Vø) +

j∑

k=1

var
(
W (k)

)
, j = 1, . . . ,D.(25)

Thus,c′j = cj for all j and hence this independent innovations tree is the required
matched innovations tree.

The next lemma relates the optimal solutions of a covariancetree and its matched
innovations tree.

Lemma 15 A covariance tree with positive correlation progression and its matched
innovations tree have the same optimal leaf sets.

Proof: Note that (22) applies to any tree whose root is equally correlated with all
its leaves. This includes both the covariance tree and its matched innovations tree.
From (22) we see that the choice ofL that maximizes the sum of elements ofQ−1

L

is optimal. SinceQ−1
L is identical for both the covariance tree and its matched

innovations tree for any choice ofL, they must have the same optimal solution.�

For a symmetric covariance tree that has positive correlation progression, the
optimal solution takes on a specific form irrespective of theactual covariance be-
tween leaf nodes.

Theorem 16 Given a symmetric covariance tree that has positive correlation pro-
gression, the uniform leaf sample of sizen gives the best LMMSE of the tree-root
among all possible choices ofn leaf nodes.

Proof: Form a matched innovations tree using the procedure outlined previously.
This tree is by construction a scale-invariant tree. The result then follows from
Theorem 13 and Lemma 15. �

While the uniform leaf sample is the optimal solution for a symmetric covari-
ance tree with positive correlation progression, it is surprisingly the worst case
solution for certain trees with a different correlation structure, which we prove
next.



OPTIMAL SAMPLING STRATEGIES 15

4.3. Worst case solutions.Theworst case solutionis any choice ofL ∈ Λø(n)
that maximizesE(Vø|L). We now highlight the fact that the best and worst case
solutions can change dramatically depending on the correlation structure of the
tree. Of particular relevance to our discussion is the set ofclustered leaf nodes
defined as follows.

Definition 17 The set consisting of all leaf nodes of the tree ofVγ is called the set
of clustered leavesof γ.

We provide the worst case solutions for covariance trees in which every node
(with the exception of the leaves) has the same number of child nodes. The follow-
ing theorem summarizes our results.

Theorem 18 Consider a covariance tree of depthD in which every node (exclud-
ing the leaves) has the same number of child nodesσ. Then for leaf sets of size
σp, p = 0, 1, . . . ,D, the worst case solution when the tree has positive correlation
progression is given by the sets of clustered leaves ofγ, whereγ is any node at
scaleD − p. The worst case solution is given by the sets of uniform leaf nodes
when the tree has negative correlation progression.

Theorem 18 gives us the intuition that “more correlated” leaf nodes give worse
estimates of the root. In the case of covariance trees with positive correlation pro-
gression, clustered leaf nodes are strongly correlated when compared to uniform
leaf nodes. The opposite is true in the negative correlationprogression case. Essen-
tially if leaf nodes are highly correlated then they containmore redundant informa-
tion which leads to poor estimation of the root.

While we have proved the optimal solution for covariance trees with positive
correlation progression. we have not yet proved the same forthose with negative
correlation progression. Based on the intuition just gained we make the following
conjecture.

Conjecture 19 Consider a covariance tree of depthD in which every node (ex-
cluding the leaves) has the same number of child nodesσ. Then for leaf sets of size
σp, p = 0, 1, . . . ,D, the optimal solution when the tree has negative correlation
progression is given by the sets of clustered leaves ofγ, whereγ is any node at
scaleD − p.

Using numerical techniques we support this conjecture in the next section.

5. Numerical results. In this section, using the scale-recursive water-filling
algorithm we evaluate the optimal leaf sets for independentinnovations trees that
are not scale-invariant. In addition we provide numerical support for Conjecture 19.
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5.1. Independent innovations trees: scale-recursive water-filling. We consider
trees with depthD = 3 and in which all nodes have at most two child nodes.
The results demonstrate that the optimal leaf sets are a function of the correlation
structure and topology of the multiscale trees.

In Fig. 4(a) we plot the optimal leaf node sets of different sizes for a scale-
invariant tree. As expected the uniform leaf nodes sets are optimal.

We consider a symmetric tree in Fig. 4(b), that is a tree in which all nodes have
the same number of children (excepting leaf nodes). All parameters are constant
within each scale except for the variance of the innovationsWγ at scale1. The
variance of the innovation on the right side is five times larger than the variance
of the innovation on the left. Observe that leaves on the leftof the tree are now
preferable to those on the right and hence dominate the optimal sets. Comparing
this result to Fig. 4(a) we see that the optimal sets are dependent on the correlation
structure of the tree.

In Fig. 4(c) we consider the same tree as in Fig. 4(a) with two leaf nodes missing.
These two leaves do not belong to the optimal leaf sets of sizen = 1 to n = 5 in
Fig. 4(a) but are elements of the optimal set forn = 6. As a result the optimal sets
of size1 to 5 in Fig. 4(c) are identical to those in Fig. 4(a) whereas that for n = 6
differs. This result suggests that the optimal sets depend on the tree topology.

Our results have important implications for applications because situations arise
where we must model physical processes using trees with different correlation
structures and topologies. For example, if the process to bemeasured is non-
stationary over space then the multiscale tree may be unbalanced as in Fig. 4(b). In
some applications it may not be possible to sample at certainlocations due to phys-
ical constraints. We would thus have to exclude certain leafnodes in our analysis
as in Fig. 4(c).

The above experiments with tree-depthD = 3 are “toy-examples” to illustrate
key concepts. In practice, the water-filling algorithm can solve much larger real-
world problems with ease. For example, on a Pentium IV machine running Matlab,
the water-filling algorithm takes22 seconds to obtain the optimal leaf set of size
100 to estimate the root of a binary tree with depth11, that is a tree with2048
leaves.

5.2. Covariance trees: Best and worst cases.This section provides numerical
support for Conjecture 19 that states that the clustered leaf node sets are optimal
for covariance trees with negative correlation progression. We employ the WIG
tree, a covariance tree in which each node hasσ = 2 child nodes (Ma and Ji [12]).
We provide numerical support for our claim using a WIG model of depthD = 6
possessing a fractional Gaussian noise-like2 correlation structure corresponding to

2Fractional Gaussian noise is the increments process of fBm (Mandelbrot and Ness [13]).
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FIG 4. Optimal leaf node sets for three different independent innovations trees: (a) scale-
invariant tree, (b) symmetric tree with unbalanced variance of innovations at scale1, and
(c) tree with missing leaves at the finest scale. Observe thatthe uniform leaf node sets are
optimal in (a) as expected. In (b), however, the nodes on the left half of the tree are more
preferable to those on the right. In (c) the solution is similar to (a) for optimal sets of size
n = 5 or lower but changes forn = 6 due to the missing nodes.

H = 0.8 andH = 0.3. To be precise, we choose the WIG model parameters such
that the variance of nodes at scalej is proportional to2−2jH (see Ma and Ji [12] for
further details). Note thatH > 0.5 corresponds to positive correlation progression
whileH ≤ 0.5 corresponds to negative correlation progression.

Fig. 5 compares the LMMSE of the estimated root node (normalized by the vari-
ance of the root) of the uniform and clustered sampling patterns. Since an exhaus-
tive search of all possible patterns is very computationally expensive (for example
there are over1018 ways of choosing32 leaf nodes from among64) we instead
compute the LMMSE for104 randomly selected patterns. Observe that the clus-
tered pattern gives the smallest LMMSE for the tree with negative correlation pro-
gression in Fig. 5(a) supporting our Conjecture 19 while theuniform pattern gives
the smallest LMMSE for the positively correlation progression one in Fig. 5(b) as
stated in Theorem 16. As proved in Theorem 18, the clustered and uniform patterns
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give the worst LMMSE for the positive and negative correlation progression cases
respectively.
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FIG 5. Comparison of probing schemes for a WIG model with (a) negative correlation
progression and (b) positive correlation progression. Observe that the clustered nodes are
optimal in (a) while the uniform is optimal in (b). The uniform and the clustered leaf sets
give the worst performance in (a) and (b) respectively, as expected from our theoretical
results.

6. Related work. Earlier work has studied the problem of designing optimal
samples of sizen to linearly estimate the sum total of a process. For a one dimen-
sional process which is wide-sense stationary with positive and convex correlation,
within a class of unbiased estimators of the sum of the population, it was shown that
systematic sampling of the process (uniform patterns with random starting points)
is optimal (Hájek [6]).

For a two dimensional process on ann1 × n2 grid with positive and convex
correlation it was shown that an optimal sampling scheme does not lie in the class
of schemes that ensure equal inclusion probability ofn/(n1n2) for every point on
the grid (Bellhouse [2]). In Bellhouse [2], an “optimal scheme” refers to a sam-
pling scheme that achieves a particular lower bound on the error variance. The
requirement of equal inclusion probability guarantees an unbiased estimator. The
optimal schemeswithin certain sub-classes of this larger “equal inclusion proba-
bility” class were obtained using systematic sampling. More recent analysis refines
these results to show that optimal designs do exist in the equal inclusion probability
class for certain values ofn, n1, andn2 and are obtained by Latin square sampling
(Lawry and Bellhouse [10], Salehi [16]).

Our results differ from the above works in that we provide optimal solutions for
the entire class of linear estimators and study a different set of random processes.

Other work on sampling fractional Brownian motion to estimate its Hurst pa-
rameter demonstrated that geometric sampling is superior to uniform sampling
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(Vidàcs and Virtamo [18]).
Recent work compared different probing schemes for traffic estimation through

numerical simulations (He and Hou [7]). It was shown that a scheme which used
uniformly spaced probes outperformed other schemes that used clustered probes.
These results are similar to our findings for independent innovation trees and co-
variance trees with positive correlation progression.

7. Conclusions. This paper has addressed the problem of obtaining optimal
leaf sets to estimate the root node of two types of multiscalestochastic processes:
independent innovations trees and covariance trees. Our findings are particularly
useful for applications which require the estimation of thesum total of a correlated
population from a finite sample.

We have proved for an independent innovations tree that the optimal solution
can be obtained using an efficient water-filling algorithm. Our results show that
the optimal solutions can vary drastically depending on thecorrelation structure
of the tree. For covariance trees with positive correlationprogression as well as
scale-invariant trees we obtained that uniformly spaced leaf nodes are optimal.
However, uniform leaf nodes give the worst estimates for covariance trees with
negative correlation progression. Numerical experimentssupport our conjecture
that clustered nodes provide the optimal solution for covariance trees with negative
correlation progression.

This paper raises several interesting questions for futureresearch. The general
problem of determining whichn random variables from a given set provide the
best linear estimate of another random variable that is not in the same set is an NP-
hard problem. We, however, devised a fast polynomial-time algorithm to solve one
problem of this type, namely determining the optimal leaf set for an independent
innovations tree. Clearly, the structure of independent innovations trees was an
important factor that enabled a fast algorithm. The question arises as to whether
there are similar problems that have polynomial-time solutions.

We have proved optimal results for covariance trees by reducing the problem to
one for independent innovations trees. Such techniques of reducing one optimiza-
tion problem to another problem that has an efficient solution can be very powerful.
If a problem can be reduced to one of determining optimal leafsets for independent
innovations trees in polynomial-time, then its solution isalso polynomial-time.
Which other problems are malleable to this reduction is an open question.

Appendix. Proof of Lemma 8:We first prove the following statement.
Claim (1): If there existsX∗ = [x∗k] ∈ ∆n(M1, . . . ,MP ) that has the following
property:

ψi(x
∗
i ) − ψi(x

∗
i − 1) ≥ ψj(x

∗
j + 1) − ψj(x

∗
j),(26)
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∀i 6= j such thatx∗i > 0 andx∗j < Mj, then

h(n) =

P∑

k=1

ψk(x
∗
k).(27)

We then prove that such anX∗ always exists and can be constructed using the
water-filling technique.

Consider anyX̂ ∈ ∆n(M1, . . . ,MP ). Using the following steps, we transform
the vectorX̂ two elements at a time to obtainX∗.
Step 1: (Initialization) SetX = X̂.
Step 2: IfX 6= X∗, then since the elements of bothX andX∗ sum up ton, there
must exist a pairi, j such thatxi 6= x∗i andxj 6= x∗j . Without loss of generality
assume thatxi < x∗i andxj > x∗j . This assumption implies thatx∗i > 0 and
x∗j < Mj . Now form vectorY such thatyi = xi + 1, yj = xj − 1, andyk = xk

for k 6= i, j. From (26) and the concavity ofψi andψj we have

ψi(yi) − ψi(xi) = ψi(xi + 1) − ψi(xi) ≥ ψi(x
∗
i ) − ψi(x

∗
i − 1)

≥ ψj(x
∗
j + 1) − ψj(x

∗
j ) ≥ ψj(xj) − ψj(xj − 1)

≥ ψj(xj) − ψj(yj).

(28)

As a consequence
∑

k

(ψk(yk) − ψk(xk)) = ψi(yi) − ψi(xi) + ψj(yj) − ψj(xj) ≥ 0.(29)

Step 3: IfY 6= X∗ then setX = Y and repeat Step 2, otherwise stop.
After performing the above steps at most

∑
kMk times,Y = X∗ and (29) gives

∑

k

ψk(x
∗
k) =

∑

k

ψk(yk) ≥
∑

k

ψk(x̂k).(30)

This proves Claim (1).
Indeed for anyX̃ 6= X∗ satisfying (26) we must have

∑
k ψk(x̃k) =

∑
k ψk(x

∗
k).

We now prove the following claim by induction.
Claim (2):G(n) ∈ ∆n(M1, . . . ,MP ) andG(n) satisfies (26).
(Initial Condition) The claim is trivial forn = 0.
(Induction Step) Clearly from (10) and (11)

∑

k

g
(n+1)
k = 1 +

∑

k

g
(n)
k = n+ 1,(31)

and0 ≤ g
(n+1)
k ≤ Mk. ThusG(n+1) ∈ ∆n+1(M1, . . . ,MP ). We now prove that

G(n+1) satisfies property (26). We need to consider pairsi, j as in (26) for which
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eitheri = m or j = m because all other cases directly follow from the fact that
G(n) satisfies (26).
Case (i)j = m, wherem is defined as in (11). Assuming thatg(n+1)

m < Mm, for
all i 6= m such thatg(n+1)

i > 0 we have

ψi

(
g
(n+1)
i

)
− ψi

(
g
(n+1)
i − 1

)
= ψi

(
g
(n)
i

)
− ψi

(
g
(n)
i − 1

)

≥ ψm

(
g(n)
m + 1

)
− ψm

(
g(n)
m

)

≥ ψm

(
g(n)
m + 2

)
− ψm

(
g(n)
m + 1

)

= ψm

(
g(n+1)
m + 1

)
− ψm

(
g(n+1)
m

)
.(32)

Case (ii)i = m. Considerj 6= m such thatg(n+1)
j < Mj . We have from (11) that

ψm

(
g(n+1)
m

)
− ψm

(
g(n+1)
m − 1

)
= ψm

(
g(n)
m + 1

)
− ψm

(
g(n)
m

)

≥ ψj

(
g
(n)
j + 1

)
− ψj

(
g
(n)
j

)

= ψj

(
g
(n+1)
j + 1

)
− ψj

(
g
(n+1)
j

)
.(33)

Thus Claim (2) is proved.
It only remains to prove the next claim.

Claim (3): h(n), or equivalently
∑

k ψk(g
(n)
k ), is non-decreasing and discrete-

concave.
Sinceψk is non-decreasing for allk, from (10) we have that

∑
k ψk(g

(n)
k ) is a

non-decreasing function ofn. We have from (11)

h(n+ 1) − h(n) =
∑

k

(
ψk(g

(n+1)
k ) − ψk(g

(n)
k )

)

= max
k:g

(n)
k

<Mk

{
ψk(g

(n)
k + 1) − ψk(g

(n)
k )

}
.(34)

From the concavity ofψk and the fact thatg(n+1)
k ≥ g

(n)
k we have that

ψk(g
(n)
k + 1) − ψk(g

(n)
k ) ≥ ψk(g

(n+1)
k + 1) − ψk(g

(n+1)
k ),(35)

for all k. Thus from (34) and (35),h(n) is discrete-concave. �

Proof of Corollary 9:Setx∗k =
⌊

n
P

⌋
for 1 ≤ k ≤ P−n+P

⌊
n
P

⌋
andx∗k = 1+

⌊
n
P

⌋

for all otherk. ThenX∗ = [x∗k] ∈ ∆n(M1, . . . ,MP ) andX∗ satisfies (26) from
which the result follows. �

The following two lemmas are required to prove Theorem 10.
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Lemma 20 Given independent random variablesA,W,F , defineZ andE through
Z := ζA+W andE := ηZ+F whereζ, η are constants. We then have the result

var(A)

cov(A,E)2
·
cov(Z,E)2

var(Z)
=
ζ2 + var(W )/var(A)

ζ2
≥ 1.(36)

Proof: Without loss of generality assume all random variables havezero mean. We
have

cov(E,Z) = E(ηZ2 + FZ) = ηvar(Z),(37)

cov(A,E) = E((η(ζA+W ) + F )A)ζηvar(A),(38)

and
var(Z) = E(ζ2A2 +W 2 + 2ζAW ) = ζ2var(A) + var(W ).(39)

Thus from (37), (38) and (39)

cov(Z,E)2

var(Z)
·

var(A)

cov(A,E)2
=

η2var(Z)

ζ2η2var(A)
=
ζ2 + var(W )/var(A)

ζ2
≥ 1.(40)

�

Lemma 21 Given a positive functionzi, i ∈ Z and constantα > 0 such that

ri :=
1

1 − αzi
(41)

is positive, discrete-concave, and non-decreasing, we have that

δi :=
1

1 − βzi
(42)

is also positive, discrete-concave, and non-decreasing for all β such that0 < β ≤
α.

Proof: Defineκi := zi − zi−1. Sincezi is positive andri is positive and non-
decreasing,αzi < 1 andzi must increase withi, that isκi ≥ 0. This combined
with the fact thatβzi ≤ αzi < 1 guarantees thatδi must be positive and non-
decreasing.

It only remains to prove the concavity ofδi. From (41)

ri+1 − ri =
α(zi+1 − zi)

(1 − αzi+1)(1 − αzi)
= ακi+1ri+1ri.(43)

We are given thatri is discrete-concave, that is

0 ≥ (ri+2 − ri+1) − (ri+1 − ri)

= αriri+1

[
κi+2

(
1 − αzi

1 − αzi+2

)
− κi+1

]
.(44)
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Sinceri > 0 ∀i, we must have
[
κi+2

(
1 − αzi

1 − αzi+2

)
− κi+1

]
≤ 0.(45)

Similar to (44) we have that

(δi+2 − δi+1) − (δi+1 − δi) = βδiδi+1

[
κi+2

(
1 − βzi

1 − βzi+2

)
− κi+1

]
.(46)

Sinceδi > 0 ∀i, for the concavity ofδi it suffices to show that
[
κi+2

1 − βzi
1 − βzi+2

− κi+1

]
≤ 0.(47)

Now
1 − αzi

1 − αzi+2
−

1 − βzi
1 − βzi+2

=
(α− β)(zi+2 − zi)

(1 − αzi+2)(1 − βzi+2)
≥ 0.(48)

Then (45) and (48) combined with the fact thatκi ≥ 0, ∀i proves (47). �

Proof of Theorem 10:We split the theorem into three claims.
Claim (1):L∗ := ∪kL

(k)(x∗k) ∈ Lγ(n).
From (16), (17), and (19) we obtain

µγ(n) +
Pγ − 1

var(Vγ)
= max

L∈Λγ(n)

Pγ∑

k=1

E(Vγ |Lγk)
−1

≤ max
X∈∆n(Nγ1,...,NγPγ )

Pγ∑

k=1

µγ,γk(xk).(49)

ClearlyL∗ ∈ Λγ(n). We then have from (16) and (17) that

µγ(n) +
Pγ − 1

var(Vγ)
≥ E(Vγ |L

∗)−1 +
Pγ − 1

var(Vγ)
=

Pγ∑

k=1

E(Vγ |L
∗
γk)

−1

=

Pγ∑

k=1

µγ,γk(x
∗
k) = max

X∈∆n(Nγ1,...,NγPγ )

Pγ∑

k=1

µγ,γk(xk).(50)

Thus from (49) and (50) we have

µγ(n) = E(Vγ |L
∗)−1 = max

X∈∆n(Nγ1,...,NγPγ )

Pγ∑

k=1

µγ,γk(xk) −
Pγ − 1

var(Vγ)
,(51)

which proves Claim (1).
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Claim (2): If L ∈ Lγk(n) thenL ∈ Lγ,γk(n) and vice versa.
Denote an arbitrary leaf node of the tree ofγk asE. ThenVγ , Vγk, andE are
related through

Vγk = %γkVγ +Wγk,(52)

and
E = ηVγk + F(53)

whereη and%γk are scalars andWγk, F andVγ are independent random variables.
We note that by definition var(Vγ) > 0 ∀γ (see Definition 5). From Lemma 20 we
have

cov(Vγk, E)

cov(Vγ , E)
=

(
var(Vγk)

var(Vγ)

)1/2


%2

γk +
var(Wγk)
var(Vγ )

%2
γk




1/2

=: ξγ,k ≥

(
var(Vγk)

var(Vγ)

)1/2

.(54)

From (54) we see thatξγ,k is not a function ofE.
Denote the covariance betweenVγ and leaf node vectorL = [`i] ∈ Λγk(n) as

Θγ,L = [cov(Vγ , `i)]
T . Then (54) gives

Θγk,L = ξγ,kΘγ,L.(55)

From (22) we have
E(Vγ |L) = var(Vγ) − ϕ(γ, L)(56)

whereϕ(γ, L) = ΘT
γ,LQ

−1
L Θγ,L. Note thatϕ(γ, L) ≥ 0 sinceQ−1

L is positive
semi-definite. Using (55) we similarly get

E(Vγk|L) = var(Vγk) −
ϕ(γ, L)

ξ2γ,k

.(57)

From (56) and (57) we see thatE(Vγ |L) andE(Vγk|L) are both minimized over
L ∈ Λγk(n) by the same leaf vector that maximizesϕ(γ, L). This proves Claim
(2).

Claim (3):µγ,γk(n) is a positive, non-decreasing, and discrete-concave function
of n, ∀k, γ.
We start at a nodeγ at one scale from the bottom of the tree and then move up the
tree.
Initial Condition: Note thatVγk is a leaf node. From (6) and (56) we obtain

E(Vγ |Vγk) = var(Vγ) −
(%γkvar(Vγ))2

var(Vγk)
≤ var(Vγ).(58)
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For our choice ofγ, µγ,γk(1) corresponds toE(Vγ |Vγk)
−1 andµγ,γk(0) corre-

sponds to1/var(Vγ). Thus from (58),µγ,γk(n) is positive, non-decreasing, and
discrete-concave (trivially sincen takes only two values here).
Induction Step:Given thatµγ,γk(n) is a positive, non-decreasing, and discrete-
concave function ofn for k = 1, . . . , Pγ , we prove the same whenγ is replaced
by γ ↑. Without loss of generality choosek such that(γ ↑)k = γ. From (17), (19),
(56), (57) and Claim (2), we have forL ∈ Lγ(n)

µγ(n) =
1

var(Vγ)
·

1

1 − ϕ(γ,L)
var(Vγ )

, and

µγ↑,k(n) =
1

var(Vγ↑)
·

1

1 − ϕ(γ,L)
ξ2
γ↑,k

var(Vγ↑)

.(59)

From (51), the assumption thatµγ,γk(n) ∀k is a positive, non-decreasing, and
discrete-concave function ofn, and Lemma 8 we have thatµγ(n) is a non-
decreasing and discrete-concave function ofn. Note that by definition (see (17))
µγ(n) is positive. This combined with (6), (59), (54) and Lemma 21,then prove
thatµγ↑,k(n) is also positive, non-decreasing, and discrete-concave. �

We now prove a lemma to be used to prove Theorem 18. As a first step we
compute the leaf arrangementsL which maximize and minimize the sum of all
elements ofQL = [qi,j(L)]. We restrict our analysis to a covariance tree with
depthD and in which each node (excluding leaf nodes) hasσ child nodes. We
introduce some notation. Define

Γ(u)(p) := {L : L ∈ Λø(σp) and L is a uniform leaf node set} and(60)

Γ(c)(p) := {L : L is a clustered leaf set of a node at scale D − p}(61)

for p = 0, 1, . . . ,D. We number nodes at scalem in an arbitrary order fromq =
0, 1, . . . , σm − 1 and refer to a node by the pair(m, q).

Lemma 22 Assume a positive correlation progression. Then,
∑

i,j qi,j(L) is min-

imized overL ∈ Λø(σp) by everyL ∈ Γ(u)(p) and maximized by everyL ∈
Γ(c)(p). For a negative correlation progression,

∑
i,j qi,j(L) is maximized by every

L ∈ Γ(u)(p) and minimized by everyL ∈ Γ(c)(p).

Proof: Setp to be an arbitrary element in{1, . . . ,D − 1}. The cases ofp = 0 and
p = D are trivial. Letϑm = #{qi,j(L) ∈ QL : qi,j(L) = cm} be the number of
elements ofQL equal tocm. Defineam :=

∑m
k=0 ϑk,m ≥ 0 and seta−1 = 0.

Then

∑

i,j

qi,j =
D∑

m=0

cmϑm =
D−1∑

m=0

cm(am − am−1) + cDϑD



26 V. J. RIBEIRO, R. H. RIEDI, AND R. G. BARANIUK

=

D−1∑

m=0

cmam −
D−2∑

m=−1

cm+1am + cDϑD

=

D−2∑

m=0

(cm − cm+1)am + cD−1aD−1 − c0a−1 + cDϑD

=
D−2∑

m=0

(cm − cm+1)am + constant,(62)

where we used the fact thataD−1 = aD − ϑD is a constant independent of the
choice ofL, sinceϑD = σp andaD = σ2p.

We now show thatL ∈ Γ(u)(p) maximizesam,∀m while L ∈ Γ(c)(p) mini-
mizesam,∀m. First we prove the results forL ∈ Γ(u)(p). Note thatL has one
element in the tree of every node at scalep.
Case (i)m ≥ p. Since every element ofL has proximity at mostp − 1 with all
other elements,am = σp which is the maximum value it can take.
Case (ii)m < p (assumingp > 0). Consider an arbitrary ordering of nodes at scale
m+ 1. We refer to theqth node in this ordering as “theqth node at scalem+ 1”.

Let the number of elements ofL belonging to the sub-tree of theqth node at
scalem+ 1 begq, q = 0, . . . , σm+1 − 1. We have

am =
σm+1−1∑

q=0

gq(σ
p − gq) =

σ2p+1+m

4
−

σm+1−1∑

q=0

(gq − σp/2)2(63)

since every element ofL in the tree of theqth node at scalem + 1 must have
proximity at mostm with all nodesnot in the same tree but must have proximity
at leastm+ 1 with all nodeswithin the same tree.

The choice ofgq ’s is constrained to lie on the hyperplane
∑

q gq = σp. Ob-
viously the quadratic form of (63) is maximized by the point on this hyperplane
closest to the point(σp/2, . . . , σp/2) which is (σp−m−1, . . . , σp−m−1). This is
clearly achieved byL ∈ Γ(u)(p).

Now we prove the results forL ∈ Γ(c)(p).
Case (i)m < D − p. We haveam = 0, the smallest value it can take.
Case (ii)D − p ≤ m < D. Consider leaf nodèi ∈ L which without any loss of
generality belongs to the tree of first node at scalem+1. Letam(`i) be the number
of elements ofL to which `i has proximity less than or equal tom. Now since`i
has proximity less than or equal tom only with those elements ofL not in the same
tree, we must haveam(`i) ≥ σp−σD−m−1. SinceL ∈ Γ(c)(p) achieves this lower
bound foram(`i),∀i andam =

∑
i am(`i), L ∈ Γ(c) minimizesam in turn. �

We now study to what extent the above results transfer to the actual matrix of
interestQ−1

L . We start with a useful lemma.
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Lemma 23 Denote the eigenvalues ofQL by λj , j = 1, . . . , σp. Assume that no
leaf node of the tree can be expressed as a linear combinationof other leaf nodes,
implying thatλj > 0,∀j. SetDL = [di,j ]σp×σp := Q−1

L . Then there exist positive
numbersfi with f1 + . . .+ fp = 1 such that

σp∑

i,j=1

qi,j = σp
σp∑

j=1

fjλj, and(64)

σp∑

i,j=1

di,j = σp
σp∑

j=1

fj/λj .(65)

Furthermore, for both special cases,L ∈ Γ(u)(p) andL ∈ Γ(c)(p), we may choose
the weightsfj such that only one is non-zero.

Proof: Since the matrixQL is real and symmetric there exists an orthonormal
eigenvector matrixU = [ui,j] that diagonalizesQL, that isQL = UΞUT whereΞ
is diagonal with eigenvaluesλj, j = 1, . . . , σp. Definewj :=

∑
i ui,j. Then

∑

i,j

qi,j = 11×σpQL1σp×1 = (11×σpU)Ξ(11×σpU)T

= [w1 . . . wσp ]Ξ[w1 . . . wσp ]T =
∑

j

λjw
2
j .(66)

Further, sinceUT = U−1 we have
∑

j

w2
j = (11×σpU)(UT

1σp×1) = 11×σpI1σp×1 = σp.(67)

Settingfi = w2
i /σ

p establishes (64). Using the decomposition

Q−1
L = (UT )−1Ξ−1U−1 = UΞ−1UT(68)

similarly gives (65).
Consider the caseL ∈ Γ(u)(p). SinceL = [`i] consists of a symmetrical set

of leaf nodes (the set of proximities between any element`i and the rest does not
depend oni) the sum of the covariances of a leaf node`i with its fellow leaf nodes
does not depend oni, and we can set

λ(u) :=

σp∑

j=1

qi,j(L) = cD +

p∑

m=1

σp−mcm.(69)

With the sum of the elements of any row ofQL being identical, the vector1σp×1

is an eigenvector ofQL with eigenvalueλ(u) equal to (69).
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Recall that we can always choose a basis of orthogonal eigenvectors that in-
cludes1σp×1 as the first basis vector. It is well known that the rows of the cor-
responding basis transformation matrixU will then be exactly these normalized
eigenvectors. Since they are orthogonal to1σp×1, the sum of their coordinateswj

(j = 2, . . . , σp) must be zero. Thus, allfi but f1 vanish. (The last claim follows
also from the observation that the sum of coordinates of the normalized1σp×1

equalsw1 = σpσ−p/2 = σp/2; due to (67)wj = 0 for all otherj.)
Consider the caseL ∈ Γ(u)(p). The reasoning is similar to the above, and we

can define

λ(c) :=
σp∑

j=1

qi,j(L) = cD +

p∑

m=1

σmcD−m.(70)

�

Proof of Theorem 18:Due to the special form of the covariance vectorcov(L, Vø)=
ρ11×σk we observe from (22) that minimizing the LMMSEE(Vø|L) overL ∈
Λø(n) is equivalent to maximizing

∑
i,j di,j(L) the sum of the elements ofQ−1

L .
Note that the weightsfi as well as the eigenvaluesλi of Lemma 23 depend

on the arrangement of the leaf nodesL. To avoid confusion, we denote byλi the
eigenvalues ofQL for an arbitrary fixed set of leaf nodesL, and byλ(u) andλ(c)

the only relevant eigenvalues ofL ∈ Γ(u)(p) andL ∈ Γ(c)(p) according to (69)
and (70).

Assume a positive correlation progression, and letL be an arbitrary set ofσp

leaf nodes. Lemma 22 and Lemma 23 then imply that

λ(u) ≤
∑

j

λjfj ≤ λ(c).(71)

SinceQL is positive definite, we must haveλj > 0. We may then interpret the mid-
dle expression as an expectation of the positive “random variable” λ with discrete
law given byfi. By Jensen’s inequality,

∑

j

(1/λj)fj ≥
1∑

j λjfj
≥

1

λ(c)
.(72)

Thus,
∑

i,j di,j is minimized byL ∈ Γ(c)(p); that is, clustering of nodes gives the
worst LMMSE.

A similar argument holds for the negative correlation progression case which
proves the Theorem. �
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