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OPTIMAL SAMPLING STRATEGIES FOR
MULTISCALE STOCHASTIC PROCESSES

By VINAY J. RBEIRO, RUDOLF H. RIEDI, AND RICHARD G. BARANIUK *
Rice University

In this paper, we determine which non-random sampling ofdfisize
gives the best linear predictor of the sum of a finite spatdyation. We
employ different multiscale superpopulation models ang the minimum
mean-squared error as our optimality criterion. In a medtis superpopu-
lation tree models, the leaves represent the units of thalptpn, interior
nodes represent partial sums of the population, and thenaxte represents
the total sum of the population. We prove that the optimal@ang pattern
varies dramatically with the correlation structure of treetnodes. Whileni-
form samplings optimal for trees with “positive correlation progressipit
provides the worst possible sampling with “negative catieh progression.”
As an analysis tool, we introduce and study a classm@épendent innova-
tions treeghat are of interest in their own right. We derive a fast wdiléng
algorithm to determine the optimal sampling of the leavesstamate the root
of an independent innovations tree.

1. Introduction. In this paper we design optimal sampling strategies for spa-
tial populations under different multiscale superpopalatmodels. Spatial sam-
pling plays an important role in a number of disciplines luding geology, ecol-
ogy, and environmental science. See, e.g., Cressie [5].

1.1. Optimal spatial sampling. Consider a finite population consisting of a
rectangular grid of? x C units as depicted in Fig. 1(a). Associated with the unit
in the*" row and;'" column is an unknown valug ;. We treat the/; ;'s as one
realization of a superpopulation model.

Our goal is to determine which sample, among all sampleszefisigives the
best linear estimator of the population sush;= >, . ¢; ;. We abbreviatevari-
ance covariance andexpectatiorby “var”, “cov”, and “E” respectively. Without
loss of generality we assume th&t/; ;) = 0 for all locations(z, j).
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Fic 1. (a) Finite population on a spatial rectangular grid of dze« C' units. Associated
with the unit at positior(i, j) is an unknown valué; ;. (b) Multiscale superpopulation
model for a finite population. Nodes at the bottom are cakbewés and the topmost node
the root. Each leaf node corresponds to one véjye All nodes, except for the leaves,
correspond to the sum of their children at the next lowerlleve

Denote an arbitrary sample of sizeby L. We consider linear estimators §f
that take the form ~
(1) S(L,a) :==a’L,

wherea is an arbitrary set of coefficients. We measure the accurbéyb, o) in
terms of themean-squared errofMSE)

) E(S|L,a) :=E (S ~8(L, a)>2

and define thdinear minimum mean-squared errgt MMSE) of estimating.S
from L as

(3) E(S|L) := Orﬁréiﬂgng(sw,a).

Restated, our goal is to determine
4 L* = argn%nE(S|L).

Our results are particularly applicable to Gaussian pseEsfor which linear esti-
mation is optimal in terms of mean-squared error. We noteftracertain multi-
modal and discrete processes linear estimation may besirhas.

1.2. Multiscale superpopulation modelsWe assume that the population is one
realization of a multiscale stochastic process (see Fig)) 16ee Willsky [20]).
Such processes consist of random variables organized ee.a\odes at the bot-
tom, calledleaves correspond to the populatiof) ;. All nodes, except for the
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FiG 2. (a) Binary tree for interpolation of Brownian motioB(t). (b) Form child nodes
V,1 andV.,, by adding and subtracting an independent Gaussian randdablelV’,
fromV, /2. (c¢) Mid-point displacement. Sé(1) = Vg and formB(1/2) = (B(1) —
B(0))/2 + Wg = V. ThenB(1) — B(1/2) = Vg/2 — Wg = V. In general a node at
scalej and positiori: from the left of the tree correspondsif(k + 1)277) — B(k277).

leaves, represent the sum total of their children at theloesdr level. The topmost
node, theoot, hence represents the sum of the entire population. Theégonolve
address in this paper is thus equivalent to the followigrong all possible sets of
leaves of sizer, which set provides the best linear estimator for the rodeims
of MSE?

Multiscale stochastic processes efficiently capture tmeetadion structure of a
wide range of phenomena, from uncorrelated data to confphexal data. They
do so through a simple probabilistic relationship betwesthgyarent node and its
children. They also provide fast algorithms for analysid apnthesis of data and
are often physically motivated. As a result multiscale peses have been used in a
number of fields, including oceanography, hydrology, imggphysics, computer
networks, and sensor networks (see Willsky [20] and refarerherein, Riedi et
al. [15], and Willett et al. [19]).

We illustrate the essentials of multiscale modeling thtoadree-based interpo-
lation of one-dimensionadtandard Brownian motiarBrownian motion,B(t), is
a zero-mean Gaussian process Wif0) := 0 and vafB(t)) = t. Our goal is to
begin with B(t) specified only at = 1 and then interpolate it at all time instants
t=k277,k=1,2,...,2 for any given valug.

Consider a binary tree as shown in Fig. 2(a). We denote thebsody. Each
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nodeV, is the parentof two nodes connected to it at the next lower levél
andV,», which are called itghild nodes. The addressof any nodeV/, is thus a
concatenation of the formkgks, . . . k;, wherej is the node’sscaleor depth in the
tree.

We begin by generating a zero-mean Gaussian random variathleinit vari-
ance and assign this value to the rdgg, The root is now a realization d#(1). We
next interpolate3(0) andB(1) to obtainB(1/2) using a “mid-point displacement”
technique. We generate independamtovation Wy of variance vafiWg) = 1/4
and setB(1/2) = Vg/2 + Wy (see Fig. 2(c)).

Random variables of the for@((k + 1)277) — B(k277) are calledncrements
of Brownian motion at time-scalg¢. We assign the increments of the Brownian
motion at time-scalé to the children oftz. That is, we set

Voo = B(I/Z)—B(O):Vg/2—|—Wg, and

(5)
Voo = B(1)—B(1/2) =Vg/2 - Wpy

as depicted in Fig. 2(c). We continue the interpolation Ipeeting the procedure
described above, replacing; by each of its children and reducing the variance of
the innovations by half, to obtaiVig; |, V12, Vap1, andVgys.

Proceeding in this fashion we go down the tree assigningesdini the different
tree nodes (see Fig. 2(b)). It is easily shown that the notlesaej are now
realizations of B((k + 1)2=7) — B(k277). That is, increments at time-scaje
For a given value of we thus obtain the interpolated values of Brownian motion,
B(k277)fork=0,1,...,27 — 1, by cumulatively summing up the nodes at scale
7.

By appropriately setting the variances of the innovatidris, we can use the
procedure outlined above for Brownian motion interpolatio interpolate sev-
eral other Gaussian processes (Abry et al. [1], Ma and Ji)[X2he of these
is fractional Brownian motion(fBm), By (t) (0 < H < 1)), that has variance
var(By (t)) = t*1. The parametef? is called theHurst parameter. Unlike the
interpolation for Brownian motion which is exact, howewie interpolation for
fBm is only approximate. By setting the variance of innovas at different scales
appropriately we ensure that nodes at sgdtave the same variance as the incre-
ments of fBm at time-scalg However, except for the special case wiénr- 1/2,
the covariance between any two arbitrary nodes at scaenot always identical
to the covariance of the corresponding increments of fBmnag¢-scalej. Thus
the tree-based interpolation captures the variance ofritrements of fBm at all
time-scalesj but does not perfectly capture the entire covariance (skoother)
structure.

This approximate interpolation of fBm, nevertheless, saffifor several ap-
plications including network traffic synthesis and queuexgperiments (Ma and
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Ji [12]). They provide fas® (V) algorithms for both synthesis and analysis of data
sets of sizeV. By assigning multivariate random variables to the treeesdd as
well as innovationd¥V,, the accuracy of the interpolations for fBm can be further
improved (Willsky [20]).

In this paper we restrict our attention to two types of madile stochastic
processescovariance treegMa and Ji [12], Riedi et al. [15]) anthdependent
innovations tree¢Chou et al. [3], Willsky [20]). In covariance trees the cosace
between pairs of leaves is purely a function of their distatic independent inno-
vations trees, each node is related to its parent nodesgihi@unique independent
additive innovation. One example of a covariance tree isntiétiscale process
described above for the interpolation of Brownian moticee(§ig. 2).

1.3. Summary of results and paper organizationVe analyze covariance trees
belonging to two broad classes: those witbsitive correlation progressioand
those withnegative correlation progressioin trees with positive correlation pro-
gression, leaves closer together are more correlated daaed father apart. The
opposite is true for trees with negative correlation pregien. While most spatial
data sets are better modeled by trees with positive cowmelg@rogression, there
exist several phenomena in finance, computer networks, andenthat exhibit
anti-persistent behavior, which is better modeled by awigdenegative correlation
progression (Li and Mills [11], Kuchment and Gelfan [9], J#e® and Los [8]).

For covariance trees with positive correlation progressi@ prove that uni-
formly spaced leaves are optimal and that clustered leags\pdovides the worst
possible MSE among all samples of fixed size. The optimalieoican, however,
change with the correlation structure of the tree. In factcfovariance trees with
negative correlation progression we prove that uniforngigced leaf nodes give
theworstpossible MSE!

In order to prove optimality results for covariance treesnwestigate the closely
related independent innovations trees. In these treeseatpaode cannot equal the
sum of its children. As a result they cannot be used as supelgitmon models in
the scenario described in Section 1.1. Independent inlooatrees are however
of interest in their own right. For independent innovatitrees we describe an effi-
cient algorithm to determine an optimal leaf set of sizealledwater-filling. Note
that the general problem of determining whiegtrandom variables from a given
set provide the best linear estimate of another randomblarihat is not in the
same set is an NP-hard problem. In contrast, the watergfilligorithm solves one
problem of this type in polynomial-time.

The paper is organized as follows. Section 2 describesusmaultiscale sto-
chastic processes used in the paper. In Section 3 we detugibeater-filling tech-
nique to obtain optimal solutions for independent innaaditrees. We then prove
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Fic 3. Notation for multiscale stochastic processes.

optimal and worst case solutions for covariance trees itiGe4. Through numer-
ical experiments in Section 5 we demonstrate that optimatisas for multiscale
processes can vary depending on their topology and coarlstructure. We de-
scribe related work on optimal sampling in Section 6. We samue the paper
and discuss future work in Section 7. The proofs can be foarttie Appendix.
The pseudo-code and analysis of the computational contplefihe water-filling

algorithm are available online (Ribeiro et al. [14]).

2. Multiscale stochastic processes.Trees occur naturally in many applica-
tions as an efficient data structure with a simple depends&ingeture. Of particular
interest are trees which arise from representing and ainglygtochastic processes
and time series on different time scales. In this section eseidbe various trees
and related background material relevant to this paper.

2.1. Terminology and notation. A tree is a special graph, i.e., a set of nodes
together with a list of pairs of nodes which can be picturedigected edges point-
ing from one node to another with the following special prbps (see Fig. 3):
(1) There is a unique node called tlw®t to which no edge points to. (2) There is
exactly one edge pointing to any node, with the exceptiomefbot. The starting
node of the edge is called tiparentof the ending node. The ending node is called
achild of its parent. (3) The tree iIlonnectedmeaning that it is possible to reach
any node from the root by following edges.

These simple rules imply that there are no cycles in the tnggarticular, there
is exactly one way to reach a node from the root. Consequemntigue addresses
can be assigned to the nodes which also reflect the level ad@inahe tree. The
topmost node is the root whose address we denote by @. Givarbdérary node
~, its child nodes are said to be one level lower in the tree amd@dressed byk
(k=1,2,...,P,), whereP, > 0. The address of each node is thus a concatena-
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tion of the form &k, ... k;, or k1ks ... k; for short, whergj is the node’sscale
or depth in the tree. The largest scale of any node in the srealled thedepthof
the tree.

Nodes with no child nodes are termie@vesor leaf nodesAs usual, we denote
the number of elements of a set of leaf nodeby |L|. We define the operatdr
such thatyk 7= . Thus, the operato} takes us one level higher in the tree to
the parent of the current node. Nodes that can be reached~froyrepeated
operations are calleghcestorof ~. We termry adescendantf all of its ancestors.

The set of nodes and edges formed~bgnd all its descendants is termed the
tree ofy. Clearly, it satisfies all rules of a tree. LBt, denote the subset df that
belong to the tree of. Let \V, be the total number of leaves of the treeyof

To every nodey we associate a single (univariate) random variahleFor the
sake of brevity we often refer 13, as simply “the nodé&’,” rather than “the random
variable associated with nodé’

2.2. Covariance trees. Covariance trees are multiscale stochastic processes
defined on the basis of the covariance between the leaf nodie$ ve purely a
function of theirproximity. Examples of covariance trees are the Wavelet-domain
Independent Gaussian model (WIG) and the Multifractal Wedodel (MWM)
proposed for network traffic (Ma and Ji [12], Riedi et al. [L13}recise definitions
follow.

Definition 1 Theproximity of two leaf nodes is the scale of their lowest common
ancestor.

Note that the larger the proximity of a pair of leaf nodes, ¢laser the nodes are
to each other in the tree.

Definition 2 A covariance treés a multiscale stochastic process with two prop-
erties. (1) The covariance of any two leaf nodes dependsantheir proximity.

In other words, if the leaves’ and~ have proximityk thencov(V,, V) =: cg.

(2) All leaf nodes are at the same scdleand the root is equally correlated with
all leaves.

In this paper we consider covariance trees of two classess twith positive
correlation progression and trees with negative coraigbrogression.

Definition 3 A covariance tree has aositive correlation progressioifi ¢, >
cx_1 > 0fork = 1,...,D — 1. A covariance tree has aegative correlation
progressionf ¢, < ¢ fork=1,...,D —1.

Intuitively in trees with positive correlation progressiteaf nodes “closer” to each
other in the tree are more strongly correlated than leaf sitfdether apart.”
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Our results take on a special form for covariance trees tieahlso symmetric
trees.

Definition 4 A symmetric treés a multiscale stochastic process in whieh, the
number of child nodes df,, is purely a function of the scale of

2.3. Independent innovations treeslndependent innovations trees are partic-
ular multiscale stochastic processes defined as follows.

Definition 5 Anindependent innovations tréea multiscale stochastic process in
which each nodé&’,, excluding the root, is defined through

6) V, = 0, Vi1 + W,

Here, o, is a scalar andiV, is a random variable independent bf; as well as
of W, for all 4/ # ~. The root, Vg, is independent o/, for all ~. In addition
0y # 0, var(W,) > 0 Vy andvar(Vg) > 0.

Note that the above definition guarantees thatWar > 0 Vv as well as thdinear
independendeof any set of tree nodes.

The fact that each node is the sum of a scaled version of ismpand an inde-
pendent random variable makes these trees amenable tsian@ou et al. [3],
Willsky [20]). We prove optimality results for independeinihovations trees in
Section 3. Our results take on a special form for scale-iaatitrees defined be-
low.

Definition 6 A scale-invariant treés an independent innovations tree which is
symmetric and where., and the distribution ofi¥, are purely functions of the
scale ofy.

While independent innovations trees are not covarian@s tiregeneral, it is easy
to see that scale-invariant trees are indeed covarianeg\righ positive correlation
progression.

3. Optimal leaf sets for independent innovations trees. In this section we
determine the optimal leaf sets of independent innovattogess to estimate the
root. We first describe the concept of water-filling which a&eet use to prove opti-
mality results. We also outline an efficient numerical mettmobtain the optimal
solutions.

A set of random variables is linearly independent if nonehefmt can be written as a linear
combination of finitely many other random variables in the se
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3.1. Water-filling. While obtaining optimal sets of leaves to estimate the root
we maximize a sum of concave functions under certain cdnsiraNe now de-
velop the tools to solve this problem.

Definition 7 A real function«) defined on the set of integef9,1,...,M} is
discrete-concavé

(7 Y+1) —yY) >yPe+2)—yYr+1), forx=0,1,...,M —2.

The optimization problem we are faced with can be cast asvigll Given in-
tegersP > 2, M, > 0(k=1,...,P)andn < Z,’;l Mj, consider the discrete
space

P
An(Ml,...,Mp) = {X = [a:k]kpzl : Z:L’k =N;Tk € {0,1,...,Mk},Vk} .

k=1
(8)
Given non-decreasing, discrete-concave functigné: = 1, ..., P) with domains
{0,..., M} we are interested in
P
9) h(n) := max{zwk(xk) : XEAn(Ml,...,Mp)}.
k=1

In the context of optimal estimation on a tréewill play the role of the number of
children that a parent nodé, has, )M, the total number of leaf node descendants
of the k-th child V., and+, the reciprocal of the optimal LMMSE of estimating
V, given z;, leaf nodes in the tree df,,. The quantityh(n) corresponds to the
reciprocal of the optimal LMMSE of estimating nodlg givenn leaf nodes in its
tree.

The following iterative procedure solves the optimizatipmoblem (9). Form

vectorsG™ = [¢\™1P_ n =0,...,3, M, as follows:

Step (i): Sey”) = 0, Vk.

Step (ii): Set

(10) glgnﬂ) _ { g,%:; +1, k=m
9r > k #m

where

(11) m € arg max {1/% (g,gn) + 1) — g <g,(€")) : g,g") < Mk}

The procedure described in Steps (i) and (i) is termeder-filling because it
resembles the solution to the problem of filling buckets witiiter to maximize
the sum of the heights of the water levels. These bucketsaarew at the bottom
and monotonically widen towards the top. Initially all bet& are empty (compare
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Step (i)). At each step we are allowed to pour one unit of wiaterany one bucket
with the goal of maximizing the sum of water levels. Intuiliy at any step we
must pour the water into that bucket which will give the maximincrease in
water level among all the buckets not yet full (compare Siigp Variants of this

water-filling procedure appear as solutions to differefbrimation theoretic and
communication problems (Cover and Thomas [4]).

Lemma 8 The functiom:(n) is non-decreasing and discrete-concave. In addition,

(12) hm) = > (9")
k

whereg,(f‘) is defined through water-filling.

When all functionsg);, in Lemma 8 are identical, the maximum@f:1 U (k)
is achieved by choosing thg.'s to be “near-equal”. The following Corollary states
this rigorously.

Corollary 9 If ¢, = forall k = 1,2,..., Pwith non-decreasing and discrete-
concave, then

@9 100 = (P=ne 2 [5]) v ([5]) + (o= [3]) v (5] 1)
The maximizing values of thg, are apparent from (13). In particular, i is a
multiple of P then this reduces to

(14) mny:P¢(%).

Corollary 9 is key to proving our results for scale-invatitnees.

3.2. Optimal leaf sets through recursive water-fillingOur goal is to determine
a choice ofr leaf nodes that gives the smallest possible LMMSE of the Retall
that the LMMSE ofV/, given L, is defined as

(15) EWVy|Ly) := m&nE(VV —alLy)?,

where, in an abuse of notation L., denotes a linear combination of the elements
of L. with coefficientsa.. Crucial to our proofs is the fact that (Chou et al. [3] and

Willsky [20]),
1 P—1 N1

(16) EWAIL,) " vaVy) 2= E(V [T,
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Denote the set consisting of all subsets of leaves of thefreef sizen by A (n).
Motivated by (16) we introduce

(17) piy(n) = X )S(V L)
and define
(18) L (n):={L € A (n): EV,|L)" = py(n)}.

Restated, our goal is to determine one elemenigif).
To allow a recursive approach through scale we generaliZg dtd (18) by
defining

(19) Py (n) = Ty )S(V L)~
and
(20) Loy(n):={L€Ay(n): EV,|L)" =y (n)}.

Ofcoursel,(n) = L, (n). Forthe recursion, we are mostly interestedin, . (n),
i.e., the optimal estimation of a parent node from a sampleaifnodes of one of
its children. The following will be useful notation

P
21 X*=Iz}],7, == ar x
(21) [Trlkly gXeA (NA/L o) Z#’yvk k)

Using (16) we can decompose the problem of determiding L. (n) into
smaller problems of determining elementsf. . () for all k as stated in the
next theorem.

Theorem 10 For an independent innovations tree, let there be given @&t |
set L) belonging toL, . (x}) for all k. Then{JL”, L® e L. (n). Moreover,
Lyp(n) = Lygyk(n) = Ly k(n). Also u, 41(n) is a positive, non-decreasing,
and discrete-concave function of Vk, .

Theorem 10 gives us a two step procedure to obtain the best sdeaves in
the tree ofy to estimatel’,. We first obtain the best set of; leaves in the tree of
vk to estimaté/,;, for all children ofy£ of v. We then take the union of these sets
of leaves to obtain the required optimal set.

By continuing to sub-divide the problem of obtaining optineaf nodes into
smaller sub-problems we arrive at the following recursehhique to construct
L € L, (n). Starting aty we move downward determining how many of théeaf
nodes ofL € L, (n) lie in the trees of the different descendantsy aintil we reach
the bottom. Assume for the moment that we are given the fongfi., ;. (n) for
all ~.
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Scale-Recursive Water-filling schemey — ~k

Step (a): Splitn leaf nodes between the treesydf, k = 1,2,..., P,.

First determine how to split theleaf nodes between the treesy@ by maximizing
Zf;l iy k(1) OverX € Ap(Nyy, ..., Nyp)) (see (21)). The split is given by
X* which is easily obtained using the water-filling procedwediscrete-concave
functions (defined in (10)) singe, .. (n) is discrete-concave for all. Determine
L®) e £, (x3) sinceL = J;2, L®) € £.,(n).

Step (b): Split z;; nodes between the trees of child nodes of

It turns out thatZL® € L. 4 (x}) if and only if L) € L., (). Thus repeat
Step (@) withy = vk andn = 7} to constructZ(¥). Stop when we have reached
the bottom of the tree.

We outline an efficient implementation of the scale-remarsivater-filling al-

gorithm. This implementation first computése L. (n) for n = 1 and then in-
ductively obtains the same for larger valuesrofGiven L € L, (n) we obtain
L € £,(n+1) as follows. Note from Step (a) above that we determine howlib s
then leaves aty. We are now required to split + 1 leaves aty. We easily obtain
this from the earlier split of leaves using (10). The water-filling technique main-
tains the split of. leaf nodes at while adding just one leaf node to the tree of one
of the child nodes (sayk’) of v. We thus have to perform Step (b) only for= &'.
In this way the new leaf node “percolates” down the tree umélfind its loca-
tion at the bottom of the tree. The pseudo-code for detengihi € £, (n) given
var(W,) for all v as well as the proof that the recursive water-filling algoritcan
be computed in polynomial-time are available online (Ribeit al. [14]).

3.3. Uniform leaf nodes are optimal for scale-invariant tree3.he symmetry
in scale-invariant trees forces the optimal solution teetakparticular form irre-
spective of the variances of the innovatiois,. We use the following notion of
uniform splitto prove that in a scale-invariant tree a more or less equehspof
sample leaf nodes across the tree gives the best lineara¢stohthe root.

Definition 11 Given a scale-invariant tree, a vector of leaf nodesasuniform
split of sizen at nodev if |[L,| = n and|L.] is eitherLP%j or LP%J + 1 for all
values ofk. It follows that#{k : |Lx| = LP%J +1}=n— PA,LP%j.

Definition 12 Given a scale-invariant tree, a vector of leaf nodes is chlieuni-
form leaf samplef it has a uniform split at all tree nodes.
The next theorem gives the optimal leaf node set for scatariemt trees.

Theorem 13 Given a scale-invariant tree, the uniform leaf sample of sigives
the best LMMSE estimate of the tree-root among all possibtéces ofn leaf
nodes.
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Proof. For a scale-invariant treg,, ;.(n) is identical for allk given any location
~. Corollary 9 and Theorem 10 then prove the theorem. O

4. Covariance trees. In this section we prove optimal and worst case solu-
tions for covariance trees. For the optimal solutions weilage our results for
independent innovations trees and for the worst case splutive employ eigen-
analysis. We begin by formulating the problem.

4.1. Problem formulation. Let us compute the LMMSE of estimating the root
Vg given a set of leaf nodes of size n. Recall that for a covariance tree the
correlation between any leaf node and the root node is ickdntVe denote this
correlation byp. Denote an x j matrix with all elements equal tbby 1, ;. Itis
well known (Stark and Woods [17]) that the optimal lineaiiraste of V5 given L
(assuming zero-mean random variables) is givepanzlL, where@, is the
covariance matrix of. and that the resulting LMMSE is

E(VglL) = var(Vg) — cov(L, V)T Q7 'cov(L, Vg)
(22) = var(Vp) — p*11xn Q) 'Ly

Clearly obtaining the best and worst-case choiced. fisgrequivalent to maximizing
and minimizing the sum of the elements @El. The exact value op does not
affect the solution. We assume that no element @fan be expressed as a linear
combination of the other elements biwhich implies thai), is invertible.

4.2. Optimal solutions. We use our results of Section 3 for independent inno-
vations trees to determine the optimal solutions for cavané trees. Note from
(22) that the estimation error for a covariance tree is atfanconly of the co-
variancebetween leaf node&xploiting this fact, we first construct an independent
innovations tree whose leaf nodes have the same correkdtiocture as that of the
covariance tree and then prove that both trees must havarie gptimal solution.
Previous results then provide the optimal solution for tidependent innovations
tree which is also optimal for the covariance tree.

Definition 14 A matched innovations tres a given covariance tree with positive
correlation progression is an independent innovations tréth the following prop-
erties. It has (1) the same topology (2) and the same coioglatructure between
leaf nodes as the covariance tree, and (3) the root is eqaaligelated with all leaf
nodes (though the exact value of the correlation betweemoibteand a leaf node
may differ from that of the covariance tree).

All covariance trees with positive correlation progresstmve corresponding
matched innovations trees. We construct a matched inmmgtree for a given
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covariance tree as follows. Consider an independent itiomgatree with the same
topology as the covariance tree. $et= 1 for all +,

(23) var(Vg) = co
and '
(24) var(wiy =¢; —¢; 1, j=1,2,...,D,

wherec; is the covariance of leaf nodes of the covariance tree witxiprity

4 and vatW ) is the common variance of all innovations of the independent
innovations tree at scale Call ¢; the covariance of leaf nodes with proximityn

the independent innovations tree. From (6) we have

J
(25) d; = var(Vg) + Zvar(WUf)) L j=1,....D.
k=1

Thus,c;. = ¢; for all j and hence this independent innovations tree is the required
matched innovations tree.

The next lemma relates the optimal solutions of a covaritreesand its matched
innovations tree.

Lemma 15 A covariance tree with positive correlation progressioras matched
innovations tree have the same optimal leaf sets.

Proof: Note that (22) applies to any tree whose root is equally taterd with all

its leaves. This includes both the covariance tree and itshad innovations tree.

From (22) we see that the choice bthat maximizes the sum of eIements@Il

is optimal. SinceQ; ' is identical for both the covariance tree and its matched

innovations tree for any choice @f, they must have the same optimal solutian.
For a symmetric covariance tree that has positive coraglgtrogression, the

optimal solution takes on a specific form irrespective ofdbual covariance be-

tween leaf nodes.

Theorem 16 Given a symmetric covariance tree that has positive cotiehepro-
gression, the uniform leaf sample of sizgives the best LMMSE of the tree-root
among all possible choices afleaf nodes.

Proof: Form a matched innovations tree using the procedure odtfimeviously.
This tree is by construction a scale-invariant tree. Thelteken follows from
Theorem 13 and Lemma 15. O

While the uniform leaf sample is the optimal solution for arsyetric covari-
ance tree with positive correlation progression, it is gsipgly the worst case
solution for certain trees with a different correlationusture, which we prove
next.
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4.3. Worst case solutions. Theworst case solutiors any choice of. € Ag(n)
that maximizest (Vg|L). We now highlight the fact that the best and worst case
solutions can change dramatically depending on the ctioelatructure of the
tree. Of particular relevance to our discussion is the setflwdtered leaf nodes
defined as follows.

Definition 17 The set consisting of all leaf nodes of the treé’pfs called the set
of clustered leavesf ~.

We provide the worst case solutions for covariance treeshitclwevery node
(with the exception of the leaves) has the same number af obifies. The follow-
ing theorem summarizes our results.

Theorem 18 Consider a covariance tree of depthin which every node (exclud-
ing the leaves) has the same number of child nadeBhen for leaf sets of size
oP,p=0,1,...,D, the worst case solution when the tree has positive coiclat
progression is given by the sets of clustered leaveg, @fhere is any node at
scale D — p. The worst case solution is given by the sets of uniform ledes
when the tree has negative correlation progression.

Theorem 18 gives us the intuition that “more correlated? leades give worse
estimates of the root. In the case of covariance trees wihtiyp® correlation pro-
gression, clustered leaf nodes are strongly correlatechwbmpared to uniform
leaf nodes. The opposite is true in the negative correlatiogression case. Essen-
tially if leaf nodes are highly correlated then they contaiore redundant informa-
tion which leads to poor estimation of the root.

While we have proved the optimal solution for covariancedraith positive
correlation progression. we have not yet proved the samthéme with negative
correlation progression. Based on the intuition just gaiwe make the following
conjecture.

Conjecture 19 Consider a covariance tree of depth in which every node (ex-
cluding the leaves) has the same number of child ned&sen for leaf sets of size
oP,p=0,1,...,D, the optimal solution when the tree has negative corretatio
progression is given by the sets of clustered leaveg, @fhere is any node at
scaleD — p.

Using numerical techniques we support this conjectureemixt section.
5. Numerical results. In this section, using the scale-recursive water-filling

algorithm we evaluate the optimal leaf sets for independerdvations trees that
are not scale-invariant. In addition we provide numericgigrt for Conjecture 19.
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5.1. Independent innovations trees: scale-recursive watkmgil \We consider
trees with depthD = 3 and in which all nodes have at most two child nodes.
The results demonstrate that the optimal leaf sets are sidunaf the correlation
structure and topology of the multiscale trees.

In Fig. 4(a) we plot the optimal leaf node sets of differersesi for a scale-
invariant tree. As expected the uniform leaf nodes sets @irmal.

We consider a symmetric tree in Fig. 4(b), that is a tree irctviaill nodes have
the same number of children (excepting leaf nodes). All patars are constant
within each scale except for the variance of the innovatidnsat scalel. The
variance of the innovation on the right side is five timesdartihan the variance
of the innovation on the left. Observe that leaves on thedethe tree are now
preferable to those on the right and hence dominate the apsets. Comparing
this result to Fig. 4(a) we see that the optimal sets are dkgreion the correlation
structure of the tree.

In Fig. 4(c) we consider the same tree as in Fig. 4(a) with eabhodes missing.
These two leaves do not belong to the optimal leaf sets ofisizel ton = 5 in
Fig. 4(a) but are elements of the optimal set#do 6. As a result the optimal sets
of sizel to 5 in Fig. 4(c) are identical to those in Fig. 4(a) whereas that:f= 6
differs. This result suggests that the optimal sets deperttietree topology.

Our results have important implications for applicatioesdwuse situations arise
where we must model physical processes using trees witbrelift correlation
structures and topologies. For example, if the process tmbasured is non-
stationary over space then the multiscale tree may be umtsdaas in Fig. 4(b). In
some applications it may not be possible to sample at cddeations due to phys-
ical constraints. We would thus have to exclude certain iheales in our analysis
as in Fig. 4(c).

The above experiments with tree-degdih= 3 are “toy-examples” to illustrate
key concepts. In practice, the water-filling algorithm calve much larger real-
world problems with ease. For example, on a Pentium IV ma&chinning Matlab,
the water-filling algorithm take82 seconds to obtain the optimal leaf set of size
100 to estimate the root of a binary tree with degth that is a tree with2048
leaves.

5.2. Covariance trees: Best and worst case$his section provides numerical
support for Conjecture 19 that states that the clusterddchlmde sets are optimal
for covariance trees with negative correlation progressie employ the WIG
tree, a covariance tree in which each nodehas2 child nodes (Ma and Ji [12]).
We provide numerical support for our claim using a WIG modedepthD = 6
possessing a fractional Gaussian noise?lis@rrelation structure corresponding to

2Fractional Gaussian noise is the increments process of f@amdelbrot and Ness [13]).
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unbalanced
\\variance ofJ

innovations

1 1
2 2
3 3
optimal 4

optimal 4
leaf sets 5 leaf sets g
6 6

(leaf set size) (leaf set size)

(a) Scale-invariant tree (b) Tree with unbalanced variance

1

2
optimal 3
leaf sets 4

5
6
(leaf set size)

(c) Tree with missing leaves

Fic 4. Optimal leaf node sets for three different independentvations trees: (a) scale-
invariant tree, (b) symmetric tree with unbalanced vamaatinnovations at scalg, and
(c) tree with missing leaves at the finest scale. Observéthteainiform leaf node sets are
optimal in (a) as expected. In (b), however, the nodes onafié&lf of the tree are more
preferable to those on the right. In (c) the solution is simib (a) for optimal sets of size
n = 5 or lower but changes for = 6 due to the missing nodes.

H = 0.8 andH = 0.3. To be precise, we choose the WIG model parameters such
that the variance of nodes at scgls proportional t® =% (see Ma and Ji [12] for
further details). Note thali > 0.5 corresponds to positive correlation progression
while H < 0.5 corresponds to negative correlation progression.

Fig. 5 compares the LMMSE of the estimated root node (nozedlby the vari-
ance of the root) of the uniform and clustered sampling padteSince an exhaus-
tive search of all possible patterns is very computatigneXipensive (for example
there are ovei0'® ways of choosing2 leaf nodes from among4) we instead
compute the LMMSE forl0* randomly selected patterns. Observe that the clus-
tered pattern gives the smallest LMMSE for the tree with tiegaorrelation pro-
gression in Fig. 5(a) supporting our Conjecture 19 whileuhiform pattern gives
the smallest LMMSE for the positively correlation progliessone in Fig. 5(b) as
stated in Theorem 16. As proved in Theorem 18, the clusterddiaiform patterns
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give the worst LMMSE for the positive and negative correlatprogression cases
respectively.

L 1

LOENG —clustered
1 - - -uniform
w 08 A W 0.8 N ° 10000 other selections
> 06 206 .~ i
o ]
£ N o
go04 \ 804
: Ve |
0.2 —clustered 0.2 S
- =-uniform \i
o 10000 other selections Tl
0 ‘ 0

0 1 0 1

N
o
=
o

number of leaf nodes number of leaf nodes

(@) (b)

Fic 5. Comparison of probing schemes for a WIG model with (a) negatbrrelation
progression and (b) positive correlation progression.eDlesthat the clustered nodes are
optimal in (a) while the uniform is optimal in (b). The unifarand the clustered leaf sets

give the worst performance in (a) and (b) respectively, ageeted from our theoretical
results.

6. Related work. Earlier work has studied the problem of designing optimal
samples of size to linearly estimate the sum total of a process. For a onerime
sional process which is wide-sense stationary with pasdivd convex correlation,
within a class of unbiased estimators of the sum of the pdipulat was shown that
systematic sampling of the process (uniform patterns vaitflom starting points)
is optimal (Hajek [6]).

For a two dimensional process on ap x nsy grid with positive and convex
correlation it was shown that an optimal sampling scheme doglie in the class
of schemes that ensure equal inclusion probability &1 72) for every point on
the grid (Bellhouse [2]). In Bellhouse [2], an “optimal sohe” refers to a sam-
pling scheme that achieves a particular lower bound on ther gariance. The
requirement of equal inclusion probability guarantees rviased estimator. The
optimal schemesvithin certain sub-classes of this larger “equal inclusion proba-
bility” class were obtained using systematic sampling. &@cent analysis refines
these results to show that optimal designs do exist in thal@gelusion probability
class for certain values af, n1, andns and are obtained by Latin square sampling
(Lawry and Bellhouse [10], Salehi [16]).

Our results differ from the above works in that we provideiropt solutions for
the entire class of linear estimators and study a differenbrandom processes.

Other work on sampling fractional Brownian motion to estiends Hurst pa-
rameter demonstrated that geometric sampling is supasiemiform sampling
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(Vidacs and Virtamo [18]).

Recent work compared different probing schemes for trafficreation through
numerical simulations (He and Hou [7]). It was shown thatlzegte which used
uniformly spaced probes outperformed other schemes tlealt clsstered probes.
These results are similar to our findings for independentvation trees and co-
variance trees with positive correlation progression.

7. Conclusions. This paper has addressed the problem of obtaining optimal
leaf sets to estimate the root node of two types of multisselehastic processes:
independent innovations trees and covariance trees. Qlindim are particularly
useful for applications which require the estimation of¢hen total of a correlated
population from a finite sample.

We have proved for an independent innovations tree that pkienal solution
can be obtained using an efficient water-filling algorithnur @esults show that
the optimal solutions can vary drastically depending ondbeelation structure
of the tree. For covariance trees with positive correlapoogression as well as
scale-invariant trees we obtained that uniformly spaced medes are optimal.
However, uniform leaf nodes give the worst estimates foradance trees with
negative correlation progression. Numerical experimesngsport our conjecture
that clustered nodes provide the optimal solution for cawere trees with negative
correlation progression.

This paper raises several interesting questions for fuggearch. The general
problem of determining whiclk random variables from a given set provide the
best linear estimate of another random variable that ismibis same set is an NP-
hard problem. We, however, devised a fast polynomial-tilgerghm to solve one
problem of this type, namely determining the optimal ledffee an independent
innovations tree. Clearly, the structure of independenbvwations trees was an
important factor that enabled a fast algorithm. The quastioses as to whether
there are similar problems that have polynomial-time $ofst

We have proved optimal results for covariance trees by iagube problem to
one for independent innovations trees. Such techniquesdoicing one optimiza-
tion problem to another problem that has an efficient salutan be very powerful.
If a problem can be reduced to one of determining optimaldetd for independent
innovations trees in polynomial-time, then its solutionaiso polynomial-time.
Which other problems are malleable to this reduction is @naquestion.

Appendix. Proof of Lemma 8We first prove the following statement.
Claim (1): If there existsX* = [z}] € A,(My,..., Mp) that has the following
property:

(26) Vi(x]) — iy —1) > (e + 1) —y(a]),
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Vi # j such thatey > 0 andx} < M, then

M~

(27) h(n) = D tr(x).

k=1

We then prove that such aki* always exists and can be constructed using the
water-filling technique.

Consider an;f( € A, (M,..., Mp). Using the following steps, we transform
the vectorX two elements at a time to obtaii*.
Step 1: (Initialization) Sek = X.
Step 2: If X # X*, then since the elements of bakhand X* sum up ton, there
must exist a paif, j such thate; # 27 andz; # z7. Without loss of generality
assume that; < zj andz; > z7. This assumption implies that; > 0 and
z; < M;. Now form vectorY” such thaty, = z; + 1, y; = z; — 1, andy;, = xy,
for k£ # 4, j. From (26) and the concavity @f; andv; we have

Vi(yi) — bi(xi) Vi(w; + 1) — i) > i(x)) — iz} — 1)

V(@] + 1) = ¥;(@}) = ¢j(x;) — ¥(x; — 1)
Vi(zi) — ¥(y;)-

(28)

AVANAVANTI

As a consequence

29) D (Wrlyr) — Yr(wr)) = ilys) — Pala) + 5 (y;) — ¢5(x5) > 0.

k

Step 3: IfY # X* then setX = Y and repeat Step 2, otherwise stop.
After performing the above steps at mdsi. M}, times,Y = X* and (29) gives

(30) D kp) = velyr) =) ve(@).
B B B

This proves Claim (1).
Indeed for anyX # X * satisfying (26) we must havg,, vx (7x) = 32, ¢k (2}).
We now prove the following claim by induction.

Claim (2):G™ € A, (M, ..., Mp) andG"™ satisfies (26).

(Initial Condition) The claim is trivial fom = 0.

(Induction Step) Clearly from (10) and (11)

k k

and0 < g,(f‘“) < My. ThusG"+Y e A, (My,..., Mp). We now prove that
G(+1) satisfies property (26). We need to consider paijsas in (26) for which
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eitheri = m or j = m because all other cases directly follow from the fact that
G™ satisfies (26).
Case (i)j = m, wherem is defined as in (11). Assuming thef, ™" < M,,, for

all i # m such thay" ™" > 0 we have

Ui (0) = (o 1) = e () e (0 1)

> (950 +1) = v (93)

> Y (950 +2) — v (o) +1)
G (950 +1) = v (950).

Case (ii)i = m. Considerj # m such thafg§"+1) < M;. We have from (11) that
G (95) =t (95 =1) = o (95 + 1) = b (o)

2> (9](”) + 1) — ¥ (g-n )
(33) = (o 1)~ (41Y).

Thus Claim (2) is proved.

It only remains to prove the next claim.
Claim (3): h(n), or equivalently ", zbk(g,i")), is non-decreasing and discrete-
concave.

Sincey, is non-decreasing for all, from (10) we have tha} wk(g,g,”)) is a
non-decreasing function of. We have from (11)

P+ D) =hm) = > (velol"™) = va(o™))

k

(34) = max {unlg” + D) - v}

kg™ <M,

(32)

From the concavity ofi;, and the fact thag("Jrl (") we have that

(35) (o) + 1) = wnlef”) = (gl + 1) — (e,

for all k. Thus from (34) and (35)i(n) is discrete-concave. O

Proof of Corollary 9:Setz} = | % | for1 < k < P—n+P | %| andz} = 14| %]

for all otherk. ThenX* = [z}] € A, (Mi,...,Mp) and X* satisfies (26) from

which the result follows. O
The following two lemmas are required to prove Theorem 10.
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Lemma 20 Given independent random variabldsWV, F', defineZ and E through
Z :=(A+W andE := nZ + F where(, n are constants. We then have the result
var(A)  cov(Z,E)? _ (*+var(W)/var(A)

(36) cov(A,E)?  varZ) ¢? 21

Proof: Without loss of generality assume all random variables kave mean. We
have

(37) cov(E, Z) =E(nZ* + FZ) = nvan(Z),
(38) cov(A, E) = E((n(CA + W) + F)A)¢nvar(A),
and

(39) var(Z) = E(C2A% + W2 + 2CAW) = ¢var(A) + var(W).
Thus from (37), (38) and (39)

(40) cov(Z,E)*  var(d)  np*va(Z)  (*+var(W)/var(A) -
var(Z)  cov(A,E)2  (2p2var(A) 2 -
OJ
Lemma 21 Given a positive function;, i € Z and constantx > 0 such that
1
(41) Ty =
1—az;

is positive, discrete-concave, and non-decreasing, we taat
1
B 1-— ﬁzi
is also positive, discrete-concave, and non-decreasinglfg? such that) < § <
.

Proof: Definer; := z; — z;_1. Sincez; is positive andr; is positive and non-
decreasingqz; < 1 andz; must increase with, that isx; > 0. This combined
with the fact that8z; < «az; < 1 guarantees thaf; must be positive and non-
decreasing.
It only remains to prove the concavity &f. From (41)
a(zit1 — 2i)

43 = AT T
(43) Ti4t1 — T4 (l—azi“)(l—azi) AR41T5+17%

We are given that; is discrete-concave, that is

0 > (rig2 —7ig1) — (Tig1 —74)

1—az;
(44) = aririy [/wrz (7) — ﬁi+1} -
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Sincer; > 0 Vi, we must have

(45) |:"1i+2 <ﬂ> - Iii+1:| < 0.

1—aziyo

Similar to (44) we have that

(46) (0iv2 — div1) — (0iy1 — 05) = Bdidiy1 |:/fz+2 (%) — Hz‘+1] :

Sinced; > 0 Vi, for the concavity ob; it suffices to show that

1 -0z

47 2T,
( ) /%z+21 — 5Zi+2

— Hz‘+1] <0.

Now

(48) l—az  1-fx _  (a=P)(zi2— =)

1—azios 1-0z42 (1 —oazig2)(l - Bzit2)
Then (45) and (48) combined with the fact that> 0, Vi proves (47). O
Proof of Theorem 10We split the theorem into three claims.

Claim (1): L* := U, L¥) (z}) € L (n).

From (16), (17), and (19) we obtain

> 0.

P - 1 it
o7

49 k(@)
(49) weanE Zuw

Clearly L* € A (n). We then have from (16) and (17) that

P
P, —1 -1 - . -1
o) + oy = EOAIL) = 2 AL

(50) = Z/L%vk(ﬁ) = xeA, fo Nop.) Zﬂvvk k).
Thus from (49) and (50) we have

P, -1
51 V,|L*
(51) py(n) = (VL") = ean P Zuwg )

which proves Claim (1).
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Claim (2):1f L € L,,(n) thenL € L, x(n) and vice versa.
Denote an arbitrary leaf node of the treegf as E. ThenV,, V;, and E are
related through

(52) V'yk = Q’ykvﬂ/ + W’yk:a
and
(53) E=nVy+F

wheren ando,; are scalars and’,;, I' andV, are independent random variables.
We note that by definition vaV’,) > 0 Vv (see Definition 5). From Lemma 20 we
have

varmw. 1/2
cov(Vy, B)  (var(Voe)\ V2 [ &+ W
cov(Vy, E) var(V,) nyk
var(Vy;,) \ /2
(54) = g’y,k Z < vai(isz))> .

From (54) we see thdt, ;. is not a function off.
Denote the covariance betwedh and leaf node vectok = [/;] € A,;(n) as
0,1 = [cov(V;,4;)]T. Then (54) gives

(55) Oqyk,L = §4,kO,L-
From (22) we have
(56) E(VLIL) = var(V;) — ¢(v, L)

wherep(v, L) = 67 ,Q,'©, 1. Note thatp(v, L) > 0 since@' is positive
semi-definite. Using (55) we similarly get

L
(57) E(Vop|L) = var(Vy) — 90(72 ).
e,

From (56) and (57) we see thé&tV,|L) and£(V,.|L) are both minimized over
L € Ay,(n) by the same leaf vector that maximizegy, L). This proves Claim
2).

Claim (3): ;14,1 (n) is @ positive, non-decreasing, and discrete-concaveifunct
of n, Vk, .
We start at a node at one scale from the bottom of the tree and then move up the
tree.
Initial Condition: Note thatV,;, is a leaf node. From (6) and (56) we obtain

(oykvar(v;))?

(58) EWAIVae) =vartVa) = = o)

<varnV,).
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For our choice ofy, k(1) corresponds t&(V,|V,)~! and p., x(0) corre-
sponds tol/var(V,). Thus from (58),., ,x(n) is positive, non-decreasing, and
discrete-concave (trivially sincetakes only two values here).

Induction Step:Given thaty., . (n) is a positive, non-decreasing, and discrete-
concave function of. for k = 1,..., P,, we prove the same whenis replaced
by v 7. Without loss of generality choogesuch thaty 1)k = ~. From (17), (19),
(56), (57) and Claim (2), we have fdr e £ (n)

(n) = . ! and
. var(V;) 1 - gl
(59) pyt k() = S .
’ var(Vy) 1 — —e(.L)

ng,kVar(VwT)

From (51), the assumption that, .. (n) Vk is a positive, non-decreasing, and
discrete-concave function of, and Lemma 8 we have that,(n) is a non-
decreasing and discrete-concave functiomoNote that by definition (see (17))
i~ (n) is positive. This combined with (6), (59), (54) and Lemma thn prove
that .1 (n) is also positive, non-decreasing, and discrete-concave. O

We now prove a lemma to be used to prove Theorem 18. As a fistvate
compute the leaf arrangementswhich maximize and minimize the sum of all
elements ofQ;, = [¢;;(L)]. We restrict our analysis to a covariance tree with
depth D and in which each node (excluding leaf nodes) hashild nodes. We
introduce some notation. Define

(60) I (p) := {L : L € Ag(o®) and L is a uniform leaf node set} and

(61) T (p):={L: Lis a clustered leaf set of a node at scale D — p}

forp =0,1,...,D. We number nodes at scale in an arbitrary order frony =
0,1,...,0™ — 1 and refer to a node by the pdimn, q).

Lemma 22 Assume a positive correlation progression. Thet),; ¢; ;(L) is min-
imized overL € Ag(c?) by everyL e I'™)(p) and maximized by everfy ¢
') (p). For a negative correlation progressiod,, ; ¢; (L) is maximized by every
L € T™)(p) and minimized by every € T(°)(p).

Proof: Setp to be an arbitrary element ifi, ..., D — 1}. The cases gf = 0 and
p = D are trivial. Letd,, = #{q¢; j(L) € Qr : ¢ (L) = ¢} be the number of
elements of);, equal toc,,. Definea,, := > " ¥, m > 0 and setu_; = 0.
Then

—_

Z Cm(am - am—l) +cpUp

D—
m=0

D
ZQi,j = Zcmﬂm
,J

m=0
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D-1 D—2

= CrnQm — § Cm+1am + ¢pUp
m=0 m=-—1
D—2

= (Em — €my1)@m + cp-1ap-_1 — cpa_1 + cpip
m=0
D2

(62) = (Cm — Cm+1)am + constant,

m=0

where we used the fact thal, 1 = ap — ¥p is a constant independent of the
choice ofL, sincedp = oP andap = o?P.

We now show thatl, € T'*)(p) maximizesa,,, Vm while L € T'©)(p) mini-
mizesa,,, Vm. First we prove the results fat € T'*)(p). Note thatL has one
element in the tree of every node at scale
Case (i)m > p. Since every element af has proximity at mosp — 1 with all
other elements;,,, = oP which is the maximum value it can take.

Case (ii)ym < p (assuming > 0). Consider an arbitrary ordering of nodes at scale
m + 1. We refer to the;™" node in this ordering as “thg" node at scalen + 1”.
Let the number of elements df belonging to the sub-tree of thg" node at

scalem +1beg,,q =0,...,0™"! — 1. We have
o1 gtitm o1 ,
(63) am = Z gq(o? —gq) = 1 Z (9¢ —"/2)
q=0 q=0

since every element af in the tree of the;'" node at scalen + 1 must have
proximity at mostm with all nodesnotin the same tree but must have proximity
at leastm + 1 with all nodeswithin the same tree.

The choice ofg,’s is constrained to lie on the hyperplad€, g, = oP. Ob-
viously the quadratic form of (63) is maximized by the pointthis hyperplane
closest to the pointo?/2,...,07/2) which is (P~ ... oP~™~1). This is
clearly achieved by, € T()(p).

Now we prove the results fdt € I'(¢)(p).

Case (i)m < D — p. We haves,,, = 0, the smallest value it can take.

Case (i)D — p < m < D. Consider leaf nodé; € L which without any loss of
generality belongs to the tree of first node at seale 1. Leta,, (¢;) be the number
of elements ofl to which /¢; has proximity less than or equal t0. Now since/;
has proximity less than or equali#toonly with those elements di not in the same
tree, we must have,, (¢;) > o? — oP~™1, SinceL € I'(°) (p) achieves this lower
bound fora,, (¢;), Vi anda,, = 3°; am(4;), L € T(©) minimizesa,, inturn. O

We now study to what extent the above results transfer to ¢heabmatrix of
interestQ; !. We start with a useful lemma.
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Lemma 23 Denote the eigenvalues of; by A\;,7 = 1,...,0P. Assume that no
leaf node of the tree can be expressed as a linear combinafiother leaf nodes,
implying thatA; > 0,Vj. SetDy, = [d; jlorxor = Qzl. Then there exist positive
numbersf; with f; + ... 4 f, = 1 such that

(64) Z qi,j = O‘pij)\j, and
3,7=1 j=1

(65) Z dm’ = O‘pij/)\j.
3,7=1 j=1

Furthermore, for both special cases,c T'*)(p) and L € I'(®) (p), we may choose
the weightsf; such that only one is non-zero.

Proof: Since the matrixQ, is real and symmetric there exists an orthonormal
eigenvector matriX/ = [u; ;] that diagonalizes), that isQ;, = U=ZUT where=

is diagonal with eigenvalues;, j = 1,...,0". Definew; := >, u; ;. Then
D gii = lixorQrlersa = (LixorU)E(L1xorU)T
'7j
(66) = [wi...wer]Efwy ... wer]T =D Nu?.
J

Further, sincd/” = U~! we have
(67) D wh = (LixorU) (U  1opx1) = LixorILorx1 = o7
J

Settingf; = w?/o” establishes (64). Using the decomposition
(68) Q' =whH'lelutt =vETluT

similarly gives (65).

Consider the cas& € I'™)(p). SinceL = [¢;] consists of a symmetrical set
of leaf nodes (the set of proximities between any elenieanhd the rest does not
depend on) the sum of the covariances of a leaf ndgevith its fellow leaf nodes
does not depend anand we can set

oP P
(69) A — Z ¢;(L) =cp + Z o™ e,
j=1 m=1

With the sum of the elements of any row @f, being identical, the vectat,»
is an eigenvector of);, with eigenvalue\() equal to (69).
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Recall that we can always choose a basis of orthogonal eagiarg that in-
cludes1,» 1 as the first basis vector. It is well known that the rows of the ¢
responding basis transformation mattixwill then be exactly these normalized
eigenvectors. Since they are orthogonal (o, 1, the sum of their coordinates;

(j = 2,...,0P) must be zero. Thus, alf; but f; vanish. (The last claim follows
also from the observation that the sum of coordinates of tirenalized1,»«1
equalsw; = 0?0~ P/2 = ¢P/2; due to (67)w; = 0 for all other;.)

Consider the casé € I'™)(p). The reasoning is similar to the above, and we
can define

oP p
(70) D= "gij(L)=cp+ D> 0"cp-m.
7=1 m=1
O
Proof of Theorem 18Due to the special form of the covariance vecior(L, Vg)=
plyy .+ We observe from (22) that minimizing the LMMSEVg|L) over L €
Ag(n) is equivalent to maximizing _, ; d; ;(L) the sum of the elements af; .
Note that the weighty; as well as the eigenvalueg of Lemma 23 depend
on the arrangement of the leaf nodesTo avoid confusion, we denote by the
eigenvalues of);, for an arbitrary fixed set of leaf nodds and byA() and\(©)
the only relevant eigenvalues &f ¢ ') (p) andL € I'(®)(p) according to (69)
and (70).
Assume a positive correlation progression, andlldie an arbitrary set of?
leaf nodes. Lemma 22 and Lemma 23 then imply that

(71) A< NN <A@
J

SinceQ), is positive definite, we must havg > 0. We may then interpret the mid-
dle expression as an expectation of the positive “randornalia’ )\ with discrete
law given by f;. By Jensen’s inequality,

1 1
(72) Z(l/)‘j)fj > ST =IOk

J

Thus,)”; ; d;j is minimized byL e ') (p); that is, clustering of nodes gives the
worst LMMSE.

A similar argument holds for the negative correlation pesgion case which
proves the Theorem. O
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