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Abstract

The simulation of complex systems is important in many fields of science and
in real-world applications. Such systems are composed of many interacting
subsystems. There might exist different software packages for simulating the
individual subsystems and co-simulation refers to the simultaneous execution
of multiple interacting subsystem simulators. Simulation or co-simulation, if
not designed properly, can return misleading numerical solutions (unstable
numerical solutions for what is in fact a stable system or vice versa). To
understand the cause of these numerical artifacts, we first propose a simple
mathematical model for co-simulation, and then construct stability charts.
These charts shed light on transitions between stable and unstable behaviour
in co-simulation. Our goal is to understand the stability properties of the
simulated and co-simulated representation of the continuous system. We will
achieve this goal by expressing the trace and determinant of the discretized
system in terms of the trace and determinant of the continuous system to
establish stability criteria.
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1. Introduction

Many place the origin of the theory of stability in the first theoretical
study of unstable structural systems by Leonhard Euler [1], who analyzed
the behaviour of a slender column under compressive loading. Others point
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out that the interest for these concepts existed well before that time, even
during the Medieval and Renaissance periods [2], with early studies being
traced back to ancient Greece. Now, more than two centuries after Euler,
there is a vast literature dedicated to structural stability. Several methods
exist for obtaining the stability criteria; see, for instance, [3], [4], and [5].
Soon after Euler, Lagrange was probably the first to formalize the framework
for stability analysis in his study of the stability of planetary orbits (1776).
More recently, in the late 19th century, Lyapunov set the solid mathematical
foundations on which today’s stability theory rely on. Today, we also talk
about numerical stability, a property associated with numerical algorithms.

From a computational modelling perspective, answering “Is the system
stable?” is challenging due to a variety of issues. Among these are the inter-
action between multiple scales, fields, and processes. More open questions
emanate from concerns regarding numerical stability in that the method em-
ployed may itself introduce instability or even mask the true system stability.
The goal of this article is to propose techniques that will allow analysts to
chose algorithmic frameworks adequate for the specific problem to be solved.

Metrics of system performance have classically been obtained through
dynamic simulation of the system as a whole. In such monolithic simulations
the numerical schemes rely on solving for the coupled variables simultane-
ously. Such solutions can be computationally inefficient and also prone to
ill-conditioning. As modern engineering systems are becoming increasingly
complex, it is now more common to solve large systems by decomposition
and using specific solvers for the different partitions (while continuously up-
dating in each the information from the other) and iterating until numer-
ical convergence is reached. The decomposition can be motivated mathe-
matically (equations of different types, elliptic, parabolic, etc.) or by the
presence of subsystems described by different areas of physics (a coupled
flow-structure problem, or thermo–mechanical problem for example). One
problem plaguing this area of research is that different communities tend
to use different terminology for concepts that are very much related: stag-
gered methods (schemes), decomposition, operator split, co-simulation, etc.
In the context of this paper, simulation refers to a numerical solution (dis-
cretization) of a continuous system. Gu and Asada [6] describe the concept
of co-simulation as simultaneous execution of multiple interacting subsystem
simulators. Co-simulation techniques are widely adopted to interface differ-
ent modelling and simulation domains and tools. The Functional Mock-up
Interface (FMI) is a tool independent standard to support both model ex-
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change and co-simulation of dynamic models using a combination of xml-files
and compiled C-code (www.fmi-standard.org). In general the xml-file is used
in combination with an executable binary and the solver is already embed-
ded in the binary. Regardless of the motivating factor for decomposing the
system (mathematical or physical), we need to be careful when performing
the analysis of a coupled/partitioned system. Even if high fidelity subsystem
models are available, integrating the subsystem simulators to predict overall
system behavior is still a challenging task. Problems include numerical insta-
bilities, spurious solutions, etc. It is possible that the main system is stable
while the simulation shows instability or it may identify an unstable system
as stable. For such systems, we can no longer discuss the unconditional sta-
bility of the time integration, we rather need to enforce the condition that
the simulation of the system preserves the stability properties of the system
under study. In other words, we need time integrators and staggered schemes
for which the range of parameters of physical interest place the system that is
integrated exclusively in the areas where the stability, or lack thereof, of the
continuous and discretized systems coincide.

Wang et al [7] introduced a gluing algorithm that couples “in a plug-and-
play manner” different component models in the simulation of multibody
systems. Their algorithm assumes that partitioning is not controlled by the
user and focuses exclusively on how to make the partitions communicate
(i.e., exchange interface information) during simulations. More recently, an
iterative scheme for the coupling of the subsystem at predefined time points
is introduced in [8].

In the literature specific to the finite element community, the term stag-
gered scheme is often encountered. Traditional finite element staggered time
stepping schemes are computationally efficient when the iterations converge
to the monolithic solution but often times these methods are only condition-
ally stable. Alternatives that keep the unconditional stability of monolithic
schemes were proposed in the literature for various types of coupled problems.
Armero and Simo [9] propose for instance a fractional step method based on
a two phase operator split for the solution of nonlinear thermomechanical
problems and use the same approach for thermoplasticity [10]. Growth in bi-
ological tissue is modelled as a coupled problem by Garikipati and co-workers
[11] and also solved by means of a staggered scheme based on operator split-
ting techniques. In such fractional step methods, the splitting errors are often
hard to control and sometimes make the methods inefficient (in particular in
the case of strongly coupled fields). Vijalapura and Govindjee [12] propose
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an adaptive hybrid approach to control the errors and improve the numeri-
cal performance. A coupling for heterogeneous time integrators in a domain
decomposition framework whose interface is not affecting global stability is
proposed in [13].

In this paper we use the Runge-Kutta method to simulate (i.e., numeri-
cally integrate) a simple two-dimensional linear system and its co-simulated
counterparts. Our goal is to contrast the stability properties of the continu-
ous and simulated/co-simulated (discrete) systems. We will achieve this goal
by expressing the trace and determinant of the discretized system in terms
of those of the continuous system to establish stability criteria. Accuracy of
co-simulation schemes will not be discussed in this paper.

The paper is organized as follows: in section 2 we discuss simulation and
co-simulation, give examples co-simulation strategies, and introduce the main
concepts by means of specific examples of algorithmic expressions using as
test case the Runge-Kutta integrator. In section 3 we introduce the frame-
work for the comparison between the stability of continuous and discrete
systems. Sections 4 and 5 demonstrate the stability properties of the sim-
ulated and co-simulated systems through a case study focused on the most
basic system for which we can discuss co-simulation: a linear two-dimensional
system. Section 6 completes our paper with a discussion of the findings.

2. Simulation and Co-simulation

To understand the concept of co-simulation, consider the fluid-structure
interaction of a wing in airflow (Fig. 1a). The system is described by the
continuous evolution equation

D (z (t)) = f(z (t)), (1)

where z (t) is the state vector and D is a differential operator. The full state
vector can be partitioned into one composed of the states of the wing and
airflow (Fig. 1b). The equation governing the system can be rewritten as

D
(

x (t)
y (t)

)
=

(
f1 (x (t) ,y (t))
f2 (x (t) ,y (t))

)
, (2)

where x (t) and y (t) are the state vectors of the the wing and airflow, re-
spectively. The system can then be co-simulated by separately computing
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the deformation of the wing and the velocity/pressure fields of the airflow
and then coupling them (Fig. 1c) in an appropriate manner [14].

u = x

v = y

         (a) Wing in airflow (b) Partitioning (c) Co-simulation
     

Figure 1: Fluid structure interaction

In the context of this paper, simulation of a system refers to the approx-
imation of the solution by numerical integration of the equations, i.e., the
approximation of the state vector at discrete time steps. Co-simulation
refers to partitioning a coupled system into subsystems that are separately
simulated (numerically integrated) with a suitable exchange of states at pre-
defined time instances to account for the coupling. We now explain these
various concepts. First, let us consider Eq. (1) where D is now replaced with
a simple differential operator, i.e.,

d

dt
z (t) = f(z (t)), (3)

subject to the initial condition z (t0) = z0. Without loss of generality we

discuss the case of a system with two partitions, z (t) =

(
x (t)
y (t)

)
. Eq.

(3) can now be expressed as d
dt
z (t) = d

dt

(
x (t)
y (t)

)
=

(
f1 (x (t) ,y (t))
f2 (x (t) ,y (t))

)
or

equivalently

ẋ (t)=f1 (x (t) ,y (t)) , (4)

ẏ (t)=f2 (x (t) ,y (t)) . (5)

When the first subsystem (Eq. (4)) is simulated separately, y (t) is no longer
a state variable, but rather an explicitly time-dependent term, an input. This
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input is not fully known (since it also depends on x (t)!), so some form of
prediction for y (t) is needed. Let us denote this prediction by v(t). Similarly,
if the second subsystem (Eq. (5)) is simulated separately, a prediction u(t)
is needed for its input x (t). The system can be written as

ẋ (t)=f1 (x (t) ,v (t)) , (6)

ẏ (t)=f2 (u (t) ,y (t)) . (7)

The form u (t) and v (t) take, e.g., the input-output relationship of the sub-
systems, along with the iterative scheme (if any) determine the strategy or
type of the co-simulation [15].

2.1. Simulation

Once again, simulation refers to the numerical approximation (by numer-
ical integration) of the state z (t) of the system. Consider the initial value
problem (this really is eq. (6))

ż (t) = g(z (t) ,w (t)), (8)

z(0) = z0. (9)

A widely used numerical integration method is the 4th order Runge-Kutta
method with step size h. A straightforward extension of the basic Runge-
Kutta integration for systems with input (i.e., the system (8-9)) approximates
the state vector at tn+1 = (n+ 1)h as

zn+1 := z (tn+1) = zn +
1

6
h(k1 + 2k2 + 2k3 + k4),

where k1 = g(zn,w(tn)), k2 = g(zn + 1
2
hk1,w(tn + h

2
)), k3 = g(zn + 1

2
hk2,w(tn + h

2
)),

k4 = g(zn + hk3,w(tn+1)). The Runge-Kutta approximation for system (8)
can therefore be represented as the discrete map

zn+1 = RKg,h(zn,wn,wn+ 1
2
,wn+1), (10)

z0 = z(0), (11)

where wn+ 1
2

= w(tn + h
2
).
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2.2. Co-simulation

The co-simulation of system (4)-(5) is now formally written as

xn+1 = RKf1,h(xnvn,vn+ 1
2
,vn+1); yn+1 = RKf2,h(yn,un,un+ 1

2
,un+1).

Note that any numerical integration method seeks to find the states at specific
time instances, in this case (e.g., when using equal time steps), the states
are evaluated just at time instants t = ih for i ∈ N. Therefore, there is no
calculated value for x(tn + h

2
) and y(tn + h

2
) nor are the states at t = tn+1

available before the calculation of xn+1 and yn+1. Since these states are
needed (as inputs for another partition of the system), they are estimated
based on different strategies. Each strategy, (along with the partitioning
choice and the techniques for exchange of information between partitions)
leads to a specific type of co-simulation. Here, attention is focused on three
such types illustrated in Fig. 2, namely cross, zigzag and strong co-simulation.

 

 

Simulator 1

Simulator 2

Simulator 1

Simulator 2

 

Time Step  

(a) Cross Co-simulation

 

 

Simulator 1

Simulator 2

Simulator 1

Simulator 2

 

Time Step  

(b) Zigzag Co-simulation

 

 

Simulator 1

Simulator 2

Simulator 1

Simulator 2

 

Time Step  

IterationIteration

(c) Strong Co-simulation

Figure 2: Three types of co-simulation
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2.2.1. Cross coupling

With this strategy, the coupled partitions are simulated in parallel (Fig. 2a).
The prediction is simple: we consider the inputs piecewise constant, i.e.,

vn = vn+ 1
2

= vn+1 = yn, (12)

un = un+ 1
2

= un+1 = xn, (13)

and thus xn+1 = RKf1(xn,yn,yn,yn), and yn+1 = RKf2(yn,xn,xn,xn).

2.2.2. Zigzag coupling

In this approach, the partitions are simulated in sequence (Fig. 2b). In
other words, first the value of state vector x at the (n+ 1)th time step, xn+1,
is determined by means of xn and yn. Then xn+1, xn and yn are utilized to
calculate yn+1. Since xn+1 is calculated first, vn+ 1

2
and vn+1 are chosen the

same way as in the cross coupling procedure (Eq. (12)). On the other hand,
because yn+1 is calculated after xn+1, the value of xn+1 is available when
determining yn+1 and so un+1 = xn+1. In addition, the value at the midpoint
is estimated as the average of un and un+1, i.e., un+ 1

2
= (un + un+1)/2 =

(xn + xn+1)/2. Accordingly, the state vectors are approximated as

xn+1 = RKf1,h(xn,yn,yn,yn),

yn+1 = RKf2,h(yn,xn,
xn +RKf ,h(xn,yn,yn,yn)

2
,RKf ,h(xn,yn,yn,yn)).

2.2.3. Strong coupling

This co-simulation strategy relies on an iterative sequence to continuously
improve on the estimates of the inputs from the two partitions:

xl+1
n+1 = RKf1,h(xn,yn,y

l
n+ 1

2
,yl

n+1),

yl+1
n+1 = RKf2,h(yn,xn,x

l
n+ 1

2
,xl

n+1), (14)

with initial values specified as y0
n+1 = yn, x0

n+1 = xn. The intermediate

values of the inputs are estimated as the averages xl
n+ 1

2

=
xn+xl

n+1

2
and

yl
n+ 1

2

=
yn+yl

n+1

2
. The converged values of the states (provided the itera-

tion is convergent, see section 5.3) are then taken for xn+1 and yn+1, i.e.,
xn+1 = lim

l→∞
xl
n+1 and yn+1 = lim

l→∞
yl
n+1.
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3. Stability Properties of Continuous and Discrete
Two-Dimensional Linear Systems

Our goal is to better understand the operational stability of the co-
simulation strategies described in Section 2. The ”minimal” system for which
co-simulation is meaningful is the simple two-dimensional linear system

ż = Az. (15)

In sections 4 and 5 we shall characterize and compare the stability properties
of the continuous system (15) and of its discrete counterparts arising from
simulation and from co-simulations with cross, zigzag, and strong coupling.

First we summarize the known stability results for the two-dimensional
system (15). Its z = 0 solution is asymptotically stable if and only if

Γ = Tr(A) < 0, (16)

∆ = Det(A) > 0. (17)

The zero solution is marginally stable if (Γ,∆) belongs to the stability bound-
ary

{(Γ,∆)|Γ = 0,∆ > 0 or Γ < 0,∆ = 0} .

The region defined by Γ ≤ 0, ∆ ≥ 0 is the stability region of the continuous
system (15) (Figure 3a).

tr(A)

det(A)

(a) Continuous system (15)

tr(D)

det(D)

(b) Discrete system (18)

Figure 3: Stability regions of the continuous and discrete systems
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The z = 0 solution of the two-dimensional discrete map

zn+1 = Dzn, (18)

is asymptotically stable if and only if ([16], p. 153)

|Tr(D)| − 1 < Det(D) < 1. (19)

The zero solution is marginally stable if either of these equalities hold

γ1 : Det(D) = 1, (20)

γ2 : Det(D) = Tr(D)− 1, (21)

γ3 : Det(D) = −Tr(D)− 1. (22)

The stability region for the discrete system (18) is shown in Figure 3b.
To compare the stability properties of the continuous system, its simu-

lation and co-simulation, we will express the trace and determinant of the
discretized system in terms the trace and determinant of the continuous sys-
tem to establish stability criteria.

4. Stability Property of the Simulated System

We are now in the position to study the stability of the simulated linear
system (15). The coefficient matrix of the continuous system is

A =

(
ac bc
cc dc

)
.

The trace and determinant of A are given by Γc = ac+dc and ∆c = acdc−bccc.
The state vector is approximated by the 4th-order Runge-Kutta method
as zn+1 = RKAz(zn, tn, tn+ 1

2
, tn+1) = zn + 1

6
h(k1 + 2k2 + 2k3 + k4), with

the coefficients k1 = Azn, k2 = A(zn + 1
2
hk1), k3 = A(zn + 1

2
hk2), and

k4 = A(zn + hk3). The coefficient matrix of the discrete system (18) is then

identified as D =
∑4

k=0
(Ah)k

k!
= 1

24
(A4h4 + 4A3h3 + 12A2h2 + 24Ah + 24I).

Notice that D is a function of Ah. Consequently we introduce the scaled
variables a = ach, b = bch, c = cch, d = dch, as well as the scaled trace and
determinant Γ = Γch, ∆ = ∆ch

2. The case b = c = 0 corresponds to a trivial
(uncoupled) system that is not of interest here. Without loss of generality,
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we assume c 6= 0. Utilizing the relations d = Γ− a and b = a(Γ−a)−∆
c

we can
express the trace and determinant of D as

Tr(D) =

[
Γ4

24
− Γ2∆

6
+

∆2

12
+

(Γ3 − 3Γ∆)

6
+

(Γ2 − 2∆)

2
+ Γ + 2

]
,

Det(D) =
1

576

[
∆4 + 4Γ∆3 + 4

(
3Γ2 − 2∆

)
∆2 + 24Γ

(
Γ2 −∆

)
∆

+24Γ4 + 96Γ3 + 288Γ2 + 576Γ + 576
]
.

The three stability boundaries (Eqs (20)-(22)) are then given by the implicit
analytical expressions in terms of ∆ and Γ

γ1 : ∆4 + 4(Γ− 2)∆3 + 12Γ(Γ− 2)∆2 + 24Γ3∆ + 24Γ = 0, (23)

γ2 : ∆
[
∆3 + 4(Γ− 2)∆2 + 12(Γ2 − 2Γ− 4)∆ + 24

]
= 0, (24)

γ3 : ∆4 + 4(Γ− 2)∆3 + 12
(
Γ2 − 2Γ + 4

)
∆2 + 24

(
Γ3 − 4Γ2 − 12Γ− 24

)
∆

(25)

+ 48Γ(Γ3 + 4Γ2 + 12Γ + 24) + 2304 = 0,

The stability boundaries are shown in Fig. 4a and the stability region (sat-
isfying Eq. (19)) is shaded.

æ

æ Γ3

Γ3
Γ1

Γ2

Γ2
-6 -5 -4 -3 -2 -1 1

G

-4

-2

2

4

6

8

10

D

(a)

US

SU

SS

UU UU

UU

-6 -5 -4 -3 -2 -1 1
G

-4

-2

2

4

6

8

10

D

(b)

Figure 4: Stability chart (a) and types of stability regions: continuous vs.
discrete respresentation (b) for the Runge-Kutta simulation

The curve corresponding to γ1 (Eq. (23)) is the heart-shaped curve. The
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stability boundary γ2 consists of the two lines: ∆ = 0 and ∆ = pΓ+q, where

p =
1

3

(
−4− 10

(
2

9
√

29− 43

)1/3

+ 22/3
(

9
√

29− 43
)1/3

)
≈ −2.78529,

(26)

q =
2

3

(
4− 26

(
2

173− 27
√

29

)1/3

− 22/3
(

173− 27
√

29
)1/3

)
≈ −7.75786,

(27)

are the solutions of

24 + 12p+ 4p2 + p3 = 0, (28)

576− 48q − 8q2 + q3 = 0. (29)

The second line intersects with the ∆ axis at ∆ = − q
p
. Only the two pairs

(Γ = 0.4389,∆ = 6.1753) and (Γ = −4.4389,∆ = 7.7729) satisfy Eq. (25)
for γ3. This can be seen by finding the extrema of the left hand side of (25).
Elementary, but lengthy calculations (not reproduced here) show that there
are three minima, one positive and two zeroes that also belong to γ3.

The trace – determinant parameter plane can be decomposed into four
fundamental domains according to the behavior of the continuous system
vs. that of the simulated system. These domains are shown in Fig. 4b and
are denoted by UU (unstable system - unstable simulation), US (unstable
system - stable simulation), SU (stable system - unstable simulation), SS
(stable system - stable simulation). We found the areas of the stability
regions SS and US to be ASS = 32.5732, AUS = 2.00072. Clearly the areas
in the original Γc,∆c variables scale with h−3. Note that AUS

ASS−AUS
= 0.057

indicating that 5.7% of the cases identified in the simulation to correspond to
stable systems are misleading since in fact the original (continuum) system
is unstable.

We note that while in the SS and UU regions the accuracy of the simula-
tion results is controlled by the size of the time step (studying the accuracy
of solutions is beyond the scope of this work), in the SU and US regions the
numerical results and the exact solutions are qualitatively different. In other
words this means that in the SU and US cases, simulation introduces a large
enough artificial damping (positive or negative) to alter the qualitative nature
of the solution. To illustrate via time series representations the misleading na-
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ture of the numerical solutions, we show particular instances of such results in
Fig. 5. The SU case corresponds to a = 10, b = 3000, c = −2767, d = −110
and the US case to a = 10, b = 3000, c = −2000, d = 290.

0.02 0.04 0.06 0.08 0.10
t

-1.0

-0.5

0.5

1.0

1.5

z1

(a) Stable exact solution

0.02 0.04 0.06 0.08 0.10
t

-200

-100

100

200

z1

(b) Unstable simulation

0.02 0.04 0.06 0.08 0.10
t

-4 ´ 106

-2 ´ 106

2 ´ 106

4 ´ 106

z1

(c) Unstable exact solution

0.02 0.04 0.06 0.08 0.10
t

-0.5

0.5

1.0

z1

(d) Stable simulation

Figure 5: Qualitative differences between continuous systems (left) and their
discrete representations (right) for instances in the SU region (top) and US
region (bottom)

5. Stability Properties of Co-simulation Strategies

In this section we analyse the stability regions of different co-simulation
strategies.
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5.1. Cross-Coupling

The discrete system describing the co-simulation of the linear system (15)
by cross-coupling is given by

zn+1 = Dzn, (30)

D =

(
1 + a+ a2

2
+ a3

6
+ a4

24
b
(
1 + 1

2
a+ 1

6
a2 + 1

24
a3
)

c
(
1 + 1

2
d+ 1

6
d2 + 1

24
d3
)

1 + d+ d2

2
+ d3

6
+ d4

24

)
. (31)

The trace and determinant are

Tr(D) =
Γ4

24
+

(1− a)Γ3

6
+

(a2 − 2a+ 2) Γ2

4
− (a2 + 2a− 2) Γ

2
+

(a412a2 + 24)

12
,

Det(D) =
1

576

[
24Γ4 +

(
12a(−8 + ∆) + 4a2∆ + a3∆ + 24(4 + ∆)

)
Γ3

+
(
4a2(36− 5∆)− 8a3∆− 3a4∆ + 96(3 + ∆)− 24a(12 + ∆)

)
Γ2

+
(
16a3(∆− 6) + 4a4∆ + 3a5∆ + 288(2 + ∆) + (24a2 − 48a)(12 + ∆)

)
Γ

−8a4(∆− 6)− a6∆ + 576(1 + ∆) + 48a2(12 + ∆)
]
.

Let f(a) = (24 + 12a+ 4a2 + a3). The stability boundary γ2 is given by
Det(D) = Tr(D)− 1 (Eq. (24)), i.e.,

f(a)
(
Γ3 + (4− 3a) Γ2 +

(
12− 8a+ 3a2

)
Γ + 24− 12a+ 4a2 − a3

)
∆ = 0.

(32)
If 24 + 12a+ 4a2 + a3 6= 0, the boundary γ2 consists of the two lines

∆ = 0, (33)

Γ = a+ p. (34)

Let g(a,Γ) = −Γ3 + (−4 + 3a) Γ2 + (−12 + 8a− 3a2) Γ−24 + 12a−4a2 +a3.
The stability boundary γ1 is given by

f(a)g(a,Γ)∆ = 24Γ4 + 96(1− a)Γ3 + 144
(
2− 2a+ a2

)
Γ2 (35)

+ 96
(
6− 6a+ 3a2 − a3

)
Γ + 48a2

(
12 + a2

)
,

describing a hyperbola. Since the denominator is the same as the left hand
side of (32), the asymptotes are the lines given by (33) and (34). When
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a = 0, expression (35) reduces to the line ∆ = −Γ. The stability boundary
γ3 is a rational function with denominator equal to f(a)g(a,Γ). This curve
does not influence the region of asymptotic stability.
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Figure 6: Stability charts for cross coupling

The stability regions are shown in Figs. 6a-6c for a = −0.05, 0, 0.05, re-
spectively. The stability region of the continuous system is always in the
upper left quadrant of the trace-determinant plane. Note however that for
negative a the discrete system has regions of stability below the Γ axis. These
correspond to cases where the continuous system is unstable and misleading
results (US) returned by the discretization algorithm (Figs. 7a-7b). Note
that in some cases (e.g., a = −3) the entire stability region of the dicretized
system is in the unstable domain of the continuous system.

Figure 8 shows the area of the SS stability region as a function of a over
the range of a where the area is non-zero and finite. For a ∈ (−∞,−3.1605)∪
(0.548155,∞), ASS = 0, and for a ∈ (−3.1605, 0), ASS =∞.

15



-6 -5 -4 -3 -2 -1
G

-20

-10

10

20

30

40

D

(a) a = −1.25

-6 -5 -4 -3 -2 -1
G

-20

-10

10

20

30

40

D

(b) a = −3

Figure 7: Stability charts for cross coupling: cases exhibiting inconsistent
(US) results
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Figure 8: Area of SS for cross-coupling as a function of a.

5.2. Zigzag Coupling

Discretization of the linear system (15) for co-simulation with zigzag cou-
pling results in the discrete system

zn+1 = Dzn, D =

(
d11 d12

d21 d22

)
, (36)
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where

d11 = 1 + a+
a2

2
+
a3

6
+
a4

24
,

d12 = b

(
1 +

1

2
a+

1

6
a2 +

1

24
a3

)
,

d21 = c

(
(12 + 4d+ d2) (24a+ 12a2 + 4a3 + a4 + 24d)

576
+ 1

)
,

d22 =
(24 + 12a+ 4a2 + a3) bc (12 + 4d+ d2) + 24 (24 + 24d+ 12d2 + 4d3 + d4)

576
.

The trace and determinant are too cumbersome to display. The stability
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Figure 9: Stability charts for zigzag coupling

regions (satisfying (19)) are shown in Figs. 9a-9c for a = −0.5, 0, 0.5, re-
spectively. Similarly to cross-coupling, γ2 describes the same two lines. The
stability region for a = 0.5 is as usual in the upper left quadrant of the trace-
determinant plane (e.g., it is fully in the SS area). However, similar to the
simulated system, the zigzag coupling can also lead to stability areas below
the Γ axis, i.e., US areas for a = 2 and a = −3 shown in Figs. 10a-10b. The
areas of the SS and US regions are represented in Figure 11.

5.3. Strong Coupling

We first establish the conditions for convergence of the iterative sequence
(14). By defining

rl =

(
xln+1

yln+1

)
,
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Figure 10: Stability charts for zigzag coupling: cases exhibiting inconsistent
(US) results

-8 -6 -4 -2 2 4
a

10

20

30

40

ASS

(a) Area of the SS region

-8 -6 -4 -2 2 4
a

0.5

1.0

1.5

2.0

AUS

(b) Area of the US region

Figure 11: Areas of stability regions of zigzag coupling

we recast Eq. (14) as the affine map

rl+1 = Mrl + Nr0, r0 =

(
xn
yn

)
,

M =

(
0 b

(
1
2

+ 1
6
a+ 1

24
a2
)

c
(

1
2

+ 1
6
d+ 1

24
d2
)

0

)
,

N =

(
1 + a+ 1

2
a2 + 1

6
a3 + 1

24
a4 b

(
1
2

+ 1
3
a+ 1

8
a2 + 1

24
a3
)

c
(

1
2

+ 1
3
d+ 1

8
d2 + 1

24
d3
)

1 + d+ 1
2
d2 + 1

6
d3 + 1

24
d4

)

18



Solving the recurrence relationship we obtain:(
xl+1
n+1

yl+1
n+1

)
=
[
N
(
I + M + M2 + ...+ Ml

)
+ Ml+1

]( xn
yn

)
. (37)

The sequence of iterations described by Eq. (37) is convergent if matrix M
is stable (has its eigenvalues inside the unit circle). In this case(

xn+1

yn+1

)
= lim

l→∞
rl =

(
I + M + M2 + ...

)
Nr0=(I−M)−1 N︸ ︷︷ ︸

D

(
xn
yn

)
.

This discrete map is stable if D is stable. Therefore, to compute the stability
region of the strong coupling algorithm we require that both M and D are
stable. To enforce these conditions we calculate the trace and determinant of
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Figure 12: Stability charts for strong coupling

M, Tr(M) = 0, and Det(M) = −bc
(

1
2

+ 1
6
a+ 1

24
a2
) (

1
2

+ 1
6
d+ 1

24
d2
)
, as well

as the trace and determinant of D (too cumbersome to display) and then we
utilize the stability criteria given by Eq. (19). The resulting stability charts
are shown in Figs. 12a-12c for a = −0.5, 0, 0.5, respectively. The area of the
stability region is effectively zero for a ∈ (−∞,−2.79) ∪ (1.75,∞). Unlike
the simulation and the cross and zigzag co-simulations, in this case no US
regions are observed. Fig. 13 shows the area of the SS stability region as a
function of a.
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Figure 13: Area of the SS region for strong coupling

5.4. Comparison between methods
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Figure 14: Stability charts for strong coupling

The stability regions between the four methods are compared in Figs.
14a-14c for a = −0.3, 0, 0.3. The simulation results (blue, horizontal) do
not depend on a and, as discussed before, they exhibit inconsistent results in
the form of stable simulation for unstable systems (US). The cross coupling
co-simulation (black) also exhibits inconsistent behaviour (US) for a = −0.3
(and in fact for any negative a) and has the smallest SS region of all the
methods discussed here. The zig-zag (purple, 3π/4 angle) and strong (green,
π/4 angle) co-simulation results are qualitatively similar: they do not exhibit
inconsistent US results and the areas of convergence are approximately the
same (and smaller than the area of the simulated results for all a values).
Based on these observations we conclude that the zig-zag and strong coupling
have the best stability behaviour of all the methods examined here (larger
SS areas with no US inconsistencies). Figure 15 shows the area of the SS
stability region as a function of a for the four methods.
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Figure 15: Area of the SS region for all methods

6. Discussion

Co-simulation, while a very useful computational tool, needs to be per-
formed carefully. Computations of the stability boundaries for various co-
simulaton strategies show that even for a simple linear system there are re-
gions of the parameter space where the stability of the co-simulated system is
different from that of the continuous system. To characterize these regions,
their areas and scaling properties (with the stepsize) have been computed.
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