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Abstract 

Nonparametric density estimation requires the specification of smoothing parameters. The 

demands of statistical objectivity make it highly desirable to base the choice on properties of the 

data set. In this paper we introduce some biased cross-validation criteria for selection of smooth­

ing parameters for kernel and histogram density estimators, closely related to one investigated in 

Scott and Factor (1981). These criteria are obtained by estimating L2"'norms of derivatives of the 

unknown density and provide slightly biased estimates of the average squared-L 2 error or mean 

integrated squared error. These criteria are roughly the analog of Wahba's (1981) generalized 

cross-validation procedure for orthogonal series density estimators. We present the relationship of 

the biased cross-validation procedure to the least squares cross-validation 'procedure, which pro­

vides unbiased estimates of the mean integrated squared error. Both methods are shown to be 

based on U-statistics. We compare the two methods by theoretical calculation of the noise in the 

cross-validation functions and corresponding cross-validated smoothing parameters, by Monte 

Carlo simulation, and by example. Surprisingly large gains in asymptotic efficiency are observed 

when biased cross-validation is compared to unbiased cross-validation if the underlying density is 

sufficiently smooth. The theoretical results explain some of the small sample behavior of cross­

validation functions: we show that cross-validation algorithms can be unreliable for samples sizes 

which are "too small." In order to aid the practitioner in the use of these appealing automatic 

cross-validation algorithms and to help facilitate evaluation of future algorithms, we must address 

some ofttimes controversial issues in density estimation: squared loss, the integrate squared error 

and mean integrated squared error criteria, adaptive density estimates, sample size requirements, 

and assumptions about the underlying density's smoothness. We conclude that the two cross­

validation procedures behave quite differently so that one might well use both in practice. 

KEY WORDS: Smoothing parameter; Kernel density estimation; Histogram. 



3 

1. INTRODUCTION 

1.1 Background 

Much theoretical progress has been made recently with the important problem of data-based 

methods for choosing smoothing parameters in nonparametric curve estimation procedures since 

the early work of Kronmal and Tarter (1968), Woodroofe (1970), and Stone (1974). In density 

estimation pa:tic~lar attention has been paid to the least-squares cross-validation algorithm 

described independently by Rudemo (1982) and Bowman (1984). The sequence of smoothing 

parameters produced by this procedure not only leads to consistent density estimates but is 

asymptotically optimal in a certain sense, as shown by Hall (1983) and Stone (1984). Recently 

Hall and Marron (1985) have characterized the limiting distribution of this sequence. This theory 

indicates that these cross-validation ( CV) sequences converge at perhaps surprisingly slow rates. 

As was the case with the original kernel theory of Rosenblatt and Parzen, the new theory is 

asymptotic in nature, so that considerable effort will be required to fully understand the practical 

aspects of these methods and their performance with real data. For samples of size under 100 

with Gaussian kernel estimates, two simulation studies have been completed. First, Scott and 

Factor (1981) showed that the average behavior of some earlier CV algorithms was good for 

Gaussian data in the sense that the cross-validation smoothing parameters were centered around 

the value predicted by minimizing mean integrated squared error (l1f!SE). Second, Bowman 

(1985) presented a study using 6 sampling densities and 8 cross-validation algorithms. We are 

unaware of studies involving much larger samples. 

The goal of cross-validation is to automatically provide nearly optimally calibrated non­

parametric estimates, mimicking the choices of experts and perhaps surpassing them. Consistency 

of cross-validation algorithms is important but we are more concerned with understanding small­

sample reliability, which we define as the smallest sample size for there is a 90% chance of being 

within 10-15% of the optimal smoothing parameter. This is a useful rule of thumb because even 

for extremely large samples, density estimates with smoothing parameters outside this narrow 

range are either distorted or visually noisy. Highly reliable cross-validation algorithms would pro-
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vide scientific reproducibility of density estimates between laboratories, an important but elusive 

goal. Our objectives are similar to those of researchers trying to retain the reproducibility of mul­

tiple linear regression while introducing transformations and robust methods via artificial intelli­

gence (Gale and Pregibon 1983). Carroll and Ruppert (1985) have expressed caution about using 

robust methods "blindly." We will show that similar caution is appropriate for cross-validation of 

density estimators. 

There is a rich literature on data-based smoothing algorithms for nonparametric methods. 

A survey of smoothing methods for density estimation may be found in Scott {1986). A more gen­

eral survey was given by Titterington (1985). In our discussion we shall focus on density estima­

tion, although the situation for nonparametric regression is parallel (Rice 1984; Hardie and Marron 

1985). With regression, one must pay attention to the interactions among choices of the regres­

sion curve, the signal-to-noise ratio, and the distribution of the noise, whereas we only need con-

sider the density curve here. 

A few notations are used extensively throughout the paper. \Ve shall denote the squared Lz 

norm of a function TjJ by 

00 

R ( 1/J) = 11/J j J = f 1/J( x )2 dx , (1.1) 
--00 

where R reminds us that (1.1) is one possible measure of the roughness of 1/J. The square of the 

p-th derivative of TjJ will be denoted by TjJ(Pl(x)2. Integrals without limits are assumed to be over 

the entire real line. 

At this point it is helpful to indicate the organization of the paper. It would be natural at a 

first reading to proceed to Sections 5 and 6 after reading Sections 1.2 and only glancing at 

theoretical results in Sections 2-4. Sections 7-9 contain examples and discussion. Proofs of results 

are indicated in Section 10 and are similar to those in Hall and Marron (1985). Expanded proofs 

are available in Scott and Terrell (1986). 

1.2 Example 
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We begin by plotting two cross-validation functions for an equally spaced histogram with 

bin width h. Given a random sample of size n, let v 11 (k) be the bin count in the k-th bin 

[kh ,(k+l)h ), where without loss of generality we may assume the mesh includes zero. In Section 

3.1, we show that the least-squares cross-validation function is 

2 1 00 

eo(h) = - - - 2- :E v11 (k)2 

nh n h k=--oo 
(1.2) 

and, in Section ~-2, propose a biased cross-validation function 

5 1 00 

e1(h) = -h + --2- I; [v,.(k+l) - v 11 (k)]2. 
6n 12n h k=--oo 

(1.3) 

The (automatic) cross-validation smoothing parameter minimizes the sample cross-validation 

function. In Figure 1, we plot e0 and e1 for a relatively large sample of 10,000 standard normal 

points (actually N(5,1 )), for which the asymptotic L 2 theory (Scott 1979) predicts h =.162 minim-

izes the mean integrated squared error. The difference between these plots is striking. To be 

sure, most of the "vertical" noise in these plots is due to a bin edge effect. This phenomena was 

observed even with much smaller samples by Rudemo (1982). But the difference in noise levels 

has deeper implications. We claim these pictures reveal a great deal about theoretical and practi­

cal behavior of these cross-validation techniques for reasonable sample sizes and suggest 

differences in the "horizontal" noise of smoothing parameters obtained by minimizing the two 

cross-validation functions. Roughly speaking, in Figure lb we are seeing the between-sample 

"vertical" variation because of the relatively small correlation between heights of adjacent or par­

tially overlapping bins. An effort to understand these plots was the motivation for this paper. 

2. ASYMPTOTIC MEAN INTEGRATED SQUARED ERROR THEORY 

Consider a kernel density estimate of an unknown univariate density f based on a random 

sample x1, • • · ,x,, with corresponding empirical cdf F,.: 

• 1 " 
f(y) = J K11(x,y)dF,.(x) = -I;K,(x;,Y), 

n i=l 

indexed by a smoothing parameter h . Our goodness-of-fit criterion between f and j will be the 

usual integrated squared error (/SE): 
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00 

ISE= J [i(y}-f (y)]2dy. (2.1) 
-00 

Let MISE == E(ISE), the mean integrated squared error. 

We shall focus our attention on the fixed bandwidth symmetric kernel estimator 

f (y) = _!_ ~ K(~). nh /;;;;
1 

h (2.2) 

Denote by µ1, the "moments" of the kernel K: µ1, . ft" K(t)dt. If we suppose µ 0=1, 

µ1= · · · =µ,,_ 1=0, and O< Iµ,. I <oo for some even p, then the mean integrated squared error 

may be written as 

MISE(h) = AMISE(h) + O(n-1 +h 2"+1
), 

where the dominant term is the asymptotic MISE (AMISE) given by 

(2.3) 

(2.4) 

where R(K) is defined in (1.1). Expression (2.3) holds if we assume that R(K)<oo, /(P) is abso­

lutely continuous and R(/(P+l))<oo (generalization of Scott 1985). The AMISE is minimized 

when h '=O(n-1/(2p+l)), for example with p=2, by 

h • = {R(K)/[nµlR(f")]} 1/s. (2.5) 

We will be comparing several smoothing parameters and we adopt the following easily recalled 

notation: for a particular sample, hMISE minimizes MISE, h • minimizes AMISE, h1sE minimizes 

- -
ISE, and hucv and hscv minimize the unbiased and biased cross-validation functions. Notice 

that the last three smoothing parameters depend upon the particular set of data. 

In this paper we focus on nonnegative symmetric kernel estimators and the case p =2. For 

our cross-validation results, conditions on the kernel and density will be slightly stronger than 

those given above. Here we list several sets of conditions, first for the density / and then for the 

kernel: 

(Cl): / 111 absolutely continuous; Ji• integrable; R(Ji•(J)112 ) and R(/(Ji•)112) finite 

(C2a): K'2"_0 symmetric on [-1,1]; K' Holder continuous; µ2 >0 

(C2b): K" absolutely continuous on (-00,00); K"' continuous on (-1,1); R(K"')<oo. 

Throughout this paper we use the Gaussian kernel and the triweight kernel, which is defined by 
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K( t) = :~ (1-t2? 11-1,11( t) . (2.6) 

The triweight kernel is the simplest kernel satisfying conditions ( 02a ,b ). 

3. CROSS-VALIDATION ALGORITHMS AND THEORY 

3.1 Least-Squares (Unbiased) Cross-Validation 

Ideally, for each sample, we would like to construct a density estimate to mm1m1ze the 
~ 

integrated squared error (2.1). Least-squares cross-validation attempts to address JSE rather than 

MISE. \Ve shall introduce the least-squares cross-validation criterion for the generalized kernel 

estimator, which includes most commonly used estimators such as the histogram. Replacing j by 

the generalized estimator g in (2.1) and expanding yields 

. 
!SE= R(g)- 2f g(y)f(y)dy + R(f). (3.1) 

Here, 

1 " g(y) = -EKnk(Y,X1:), 
n l:=1 

(3.2) 

where the kernel depends on the sample size n and may also depend on either y or x1:. The idea 

of Rudemo (1982) and Bowman (1984) is to find data-based expressions that, on average, agree 

with the first two terms in (3.1), and to omit the third term R(f), which amounts to a simple 

fixed shift of the entire function. Consider the cross-validation estimator 

(3.3) 

where 

(3.4) 

Notice that the divisor has been changed from n to n-1, but this change is not incorporated into 

the kernel. Now the expectations of UCV and /SE in (3.1), which is the MISE, match exactly 

term by term since 

(3.5) 

Hence, in the fixed bandwidth case (2.2), exactly unbiased estimates of the shifted MJSE for non-

random h are provided by 
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A 2 • A 

UOV(h) = R(f)- -Ef-i(xi)-
n,=1 

(3.6) 

We refer to (3.6) as an unbiased cross-validation ( UOV) criterion because its expectation is 

E[ UOV(h )] = MISE(h) - R(f). (3.7) 

Other theoretical expressions such as (2.4) are only asymptotically correct; that is, they are 

biased for finite samples. 

It is straightforward to see that (1.2) follows from· (3.3), except for replacing n ±1 by n. 

Hall (1983) and Stone (1984) have shown that the unbiased procedure not only provides a con-

sistent sequence of smoothing parameters but is asymptotically optimal in a certain sense. An 

additional remarkable feature of this procedure is its self-adapting property. To illustrate this, 

consider the estimator (2.2), with a symmetric finite-support kernel. Proper analysis of its MISE 

in (2.3) required knowledge of the "moments" of the kernel, defined below expression (2.2). Such 

specification is not apparent in (3.6), which in this case becomes, 

UOV(h) = R(K) + '°''°' [J-1-K( x-xi )K( x-x; )dx - 2 K( xi-x; )1 (3.8) 
nh L;,// n 2h2 h h n(n-l)h -h- · 

An instructive exercise is to show that for p even, the expectation of (3.8) equals equation (2.4) 

minus the constant R (f ). Thus the UOV criterion automatically "knows" the correct order of 

the kernel. (In fact, Stone (1984) has shown that the method even knows how many derivatives / 

has for the histogram and nonnegative kernel estimators.) Notice that for large sample sizes, the 

UOV essentially provides estimates of R (!(Pl). 

In view of Figure 1, the "vertical" variability of UOV(h) is of interest. Assume now that 

the kernels are symmetric and have finite support on [-1,1]. If we define 

"t(c) = J K(w)K(w+c)dw - 2K(c) 

and let 

c;; = (x;-x;)/h, 

then (3.8) becomes (replacing n-1 by n) 

pf T<' 2 
UOV(h) = ~ + - 2-}:}:,(c;;)-

nh n h "< · I 1 

The following theorem provides the mean and variance of function (3.11) for fixed h. 

(3.9) 

(3.10) 

(3.11) 
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Theorem 3.1. For the unbiased cross-validation kernel criterion (3.11) 

E[ UGV(h )] = AMISE(h) - R(f) + O(n-1
) 

Var[UGV(h)] = i.[R(!3f2)-R(f)~ + 0(1/n2h+h~/n). 
n 

The variance of the histogram criterion (1.2) is also given by (3.13). 

(3.12) 

(3.13) 

We prove this in Section 9.1. The rate O(n-1) of the leading term in (3.13) was noted by Rudemo 

(1982). The firs\ term in (3.13) is nonnegative by Jensen's inequality. 

Remark: For the example in Figure 1, (Var)112=.00222 for h=h ·=.162. This noise, indicated 

by the longer vertical line in the bottom right corner of Figure lb, is much greater than the 

observed noise. We shall return to this point in Section 3.3. 

3.2 Biased Cross-Validation 

The asymptotic expansion for the mean integrated squared error as given in (2.4) contains 

only one unknown quantity, R(f(Pl). One natural estimator is R(i(Pl), where j is a kernel esti­

mator. Scott, Tapia, and Thompson (1977) used this estimator in a fixed point algorithm for 

choosing h in the case p =2. However, the following lemma (proved in Section 9.2) shows that 

this estimator is deficient asymptotically and indicates how an improved estimator can be con­

structed. 

Lemma S.2: Suppose that derivatives of order p +2 of the density f and kernel K exist and are 

continuous, and that K(i)(±l)=O for o:::;i:::;p-1. Then 

E[R(f(rl)] = R(f(P)) + R(K(P)) + O(h2). 
nh2p+I (3.14) 

Notice that for smoothing parameters of the optimal order h; = er n -l/(2r+l), the kernel esti­

mate provides a positively biased estimate of R (f (P>), but by an asymptotically constant amount. 

Silverman (1978) based his visual "test graph" method for choosing h on another characterization 

of this asymptotic bias in the L00 norm. An improved estimate of R(!(P)) is 

R(f(P)) = R(f (r)) - R(K(P)). 
nh2p+I (3.15) 
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Special Case p =2: For the important case of the nonnegative kernel method when p =2, let 

¢,(c) = J K"(w)K"(w+c)dw. (3.16) 

Then, recalling the definition of ci; in (3.10), 

1 R(K") 2 
R(J) = h" + ~h" EE¢(ci;). 

n n i<i 

Using this together with the correction (3.15) in the AMISE expression (2.4) defines a biased 

cross-validation function: 

_ R(K) lli 
BCV(h) = h + - 2 EE¢(ci;) · 

n 2n h i<i 
(3.17) 

Notice that the two R(K")/nh6 terms cancel. Observe the similarities between (3.11) and (3.17); 

both are U-statistics but with different kernels. In section 9.2 we prove 

Theorem 3.2: For a nonnegative kernel estimator satisfying conditions ( 01) and ( O2b ), the esti­

mator BCV(h) is asymptotically normal with mean and variance 

E[BCV(h)] = AMISE(h) + O{n-1) 

Var[BCV(h)] = µiR(</>)R(f)/(8n 2h) + O(h/n2). 

For the histogram cross-validation estimator given by (1.3), 

(3.18) 

(3.19) 

(3.20) 

For h = O(n-11°), Var= O(n-915) in (3.19). It follows from {3.18) and (2.3) that the bias in 

BCV(h) is O(n-1). Thus the squared bias is O(n-2
), which is of lower order than the variance by 

the factor h. Hence variance dominates "vertical" mean squared error. Note that the results of 

Theorem 3.1 and Theorem 3.2 are not to comparable orders, since Var = O(n-1) in (3.13). This 

discrepancy is resolved in the next section. From (3.20) we may compute ( Var )112=.0000381 at 

h ·=.162, which closely approximates the observed variation in Figure la, as indicated by the 

small vertical line in the bottom right corner. 

It follows from this theorem that a consistent sequence of smoothing parameters can be 

found. 

Corollary 3.2: Let hscv minimize (3.17) over (0,bh•) for any b >l. Then 
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(3.21) 

3.3 Unbiased Cross-Validation Revisited 

3.3.1 Augmented Unbiased Cross-Validation Criterion 

The reason that the variation computed in Theorem 3.1 is not comparable to that or 

Theorem 3.2 is that Theorem 3.1 measures the vertical variation or the UGV curve about the 

level MISE-R (I) rather than the MISE level, which is converging to 0. The vertical variation or 

the entire curve has no effect on the location or the minimum we are interested in. Bowman's 

(1984) method or derivation gave the following augmented UGV(h) formula, which Hall (1983) 

argued is the correct form for theoretical analysis: 

• 2 " • 2 .,. 
AUGV(h) = R(f)- -'Ef-;(x;) + -'Ef(x;)- R(f) 

n i=l n i=t 
(3.22) 

With this change, the variance is of the same order as that in Theorem 3.2: 

Theorem 3.3: For nonnegative kernel eBtimatorB BatiBfying condition8 ( Cl) and ( 02a ), 

Var[AUGV(h)] = 2R(1)R(f)/(n 2h) + O(h/n2). (3.23) 

For the hiBtogram, the variance o/(1.2) augmented a8 in (3.22) iB 

(3.24) 

Corollary 3.3: Let hBcv minimize (S.22} or equivalently {S.11} over (ah• ,bh ') for arbitrarily 

small a and large b. Then 

plim (hucv/h ') = l. 
n--+oo 

From (3.24) we compute ( Var )112=.0003394 at h • =.162, indicated by the smaller vertical 

line in the bottom right corner of Figure lb. This closely approximates the observed variation. 

However, this standard deviation is 8.9 times larger than for the biased criterion in Figure la. 

Conditions ( 01) are much stronger than those required by Hall and Marron (1985) due to our 

different approach. 
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3.3.2 Asymptotic Relative "Vertical" Variability 

It is now a simple matter to compare Theorems 3.2 and 3.3 for kernel estimates. The rela­

tive variability may be defined by the square root of the ratio of the variances (3.23) and (3.19): 

. - 4 [R(1) ]1/2 
ratio - µi R(<fJ) , (3.25) 

which only depends on the kernel. This ratio exceeds 10 for most practical kernels satisfying con-

ditions ( 02b ); see the first part of Table I. The ratio can be arbitrarily close to zero for kernels 

with rough second derivatives. Such kernels should be avoided for BCV. 

The extent to which the "vertical" noise is converted to "horizontal" noise is examined 

theoretically in Section 4 and empirically in Section 6. In terms of ratios, we will show that about 

half of the "vertical" noise is translated into "horizontal" noise. 

4. VARIABILITY AND ASYMPTOTIC NORMALITY OF CV SMOOTHING PARAMETERS 

4.1 Unbiased Cross-Validation 

Hall and Marron (1985) investigate the variability of hucv about the idealized target h1sE 

and show that hucv-h1sE is asymptotically normal (AN). Because (as we will see in Sections 6 

and 7) hucv and h1sE are often negatively correlated, we now compute the variation of hucv, or 

equivalently, of hucv-h·. We examine the first derivative of UGV(h) given in (3.11), since the 

extra terms in the augmented criterion (3.22) do not involve h. Let '"Y+( c) and ry_( c) define '"Y( c) 

given in (3.9) on the intervals [0,2] and [-2,0], respectively: 

1-c 

'"Y+(c)= J K(w)K(w+c)dw-2K(c) o:::;c:::;2 
-1 

and ")'_(c) as in {4.1) with limits -1-c and 1. Consider the derivative of '"Y+(ci;): 

1-cij 
d -C·· 2c·· 

7h"f+(ci;) = T J K(w)K'(w+ci;)dw + -fK'(ci;) 0~ci;:::;2, 
-1 

( 4.1) 

where the other term involving the derivative of the upper endpoint in the integral vanishes since 

K'(l)=O. If we define 

p(c) = cfK(w)K'(w+c)dw-2cK1(c) -2:::;c:::;2 (4.2) 
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and zero elsewhere, then hucv satisfies 

d
dh UOV(h) I _ = 0 

l&=l&ucv 

or, equivalently, 

'E'Eh{c;;) + p(c;;)] I _ = -nR(K)/2. 
i<j l&=l&ucv 

(4.3) 

Hall and Marron (1985) have shown that the left-hand side (which is a degenerate martingale) is 

AN. In Section '9_5 we compute the moments and find 

Lemma 4.1: Under conditions (01) and {02a), 

~J~h{c,;) + p(c;;)] = AN{-n 2h6µ?R(f")/2, n 2hR(p)R(f)/2} (4.4) . 

Now plim (hucv/ h ·)= 1 so that we may replace hucv by h • in the variance. Hence (4.3) 
,. .... ex, 

becomes 

-n 2h8cvµ?R(f")/2 = AN {-nR(K)/2, n2h • R(p)R (f)/2} . (4.5) 

Dividing we have 

h8cv = AN {R(K) / [nµJR(f")], 2h • R(p)R(!) / [n 2µtR(f")~} . (4.6) 

But the mean is simply (h •)6 by (2.5). Hence 

(4.7) 

Since the variance -+O as n-+oo, we may apply the delta method (Serfling 1980, p. 118) with 

g ( x )=x l/o, which reduces the variance by the factor 25. Multiplying through by h •, we have 

Theorem 4.1: For a nonnegative kernel estimator satisfying conditions {01) and {02a), 

huov = AN{h• ,2R(p)R(f)/[25n2h•
1
µtR(f")~}. (4.8) 

Now set h • = c2n-1!0 ; then the standard deviation is given by 

21;2c -7/2 
u(h -h·)= 2 [R(p)R(f)]112 n--3/l0_ 

ucv 5µ!R (!") (4.9) 

The relative error of hucv is O(n-1/ 10). 

4.2 Biased Cross-Validation 
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In a similar fashion we may investigate the limiting distribution of h80v-h - . Define 

1/{c) = cfK"(w)K"'(w+c)dw -2:Sc:'.52 {4.10) 

and zero elsewhere. Then taking the derivative of {3.17), we find 

:E:E[</>{ci;)+1/J{ci;)] I _ = -2nR(K)/ µi. 
i<; h=liscv 

{4.11) 

In Section 9.6 we compute the first two asymptotic moments (AM) of {4.11) and obtain 

Lemma 4.2:· Under conditions (01) and {G2a,b), 

i<j 
{ 4.12) 

Again plim (hscv / h -) = 1, so that we may use h - in the variance. In a direct fashion we find 
11-+00 

Theorem 4.2: Under the conditions of Lemma .4-2 

(h h -) - 21/2 c:;,1 /2 [ ( )R ( )]1/2 -3/10 
u sov- - 20R(f") R 1/J I n . 

We remark that we believe it can be shown that hsov is AN in (4.14}. 

4.3 Asymptotic Relative "Horizontal" Variability 

( 4.13) 

{4.14) 

{ 4.15) 

Comparing the standard deviations in (4.9) and (4.15), we see that the asymptotic relative 

"horizontal" efficiency defined as the ratio of these standard deviations (not variances) is 

. 4 R(p) [ l 
1/2 

ratio = /ti R('lf;) (4.16) 

Compare this to the ratio for the "vertical" noise given in expression (3.25). For the triweight 

kernel this ratio is 4.98; see Table I. The usefulness of these results in practice is discussed in the 

remainder of the paper. 

5. IMPLEMENTATION WITH GAUSSIAN KERNEL AND 

A VE RAGED SHIFTED HISTOGRAM ESTIMATORS 
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5.1 Two Introductory Examples 

The development thus far requires kernels with finite support. However, it extends to ker­

nels with exponentially decreasing tails as is the case with the Gaussian kernel. In this case, 

which was considered by Rudemo (1982) and Bowman (1984), equations (3.11) and (3.17) may be 

expressed in closed form with ( again replacing n ±1 by n) R (K)=.5 / Frr, ./rr,( c )= 

.5 exp(-c 2/4)-v'2 cxp(-c 2/2), and 32./rrt/>(c )= (c 4-12c 2+12)exp(-c2/4). We plot (3.11) and (3.17) 
. 

in Figures 2a and 2b for samples of size 25 and 400 from N(0,1), using data generated by IMSL 

routine GGNPM with seeds 1821291829 and 1943248741, respectively. For plotting purposes, we 

have augmented UCV(h) as in equation (3.22). The dotted line is the (exact) MISE (Fryer 1976). 

For fixed n the BCV function converges to 0 as h-+oo. The BCV function barely exhibits 

a local minimum with n = 25 (sometimes it has none; see Section 6), but exhibits a clear local 

minimum when n = 400. Heuristically, the BCV indicates the quality of h8 cv by the amount of 

rise to the right of the minimum. As n increases, BCV provides reasonable estimates of AfISE 

for relatively larger values of h > hMISE, where the MISE is increasingly dominated by bias. 

The UCV function does relatively well in the high bias region and less well in the high vari­

ance region, h < hMISE, as predicted by Theorem 3.3. There is no high frequency component evi­

dent in individual plots as was the case in Figure la for the histogram since we are using a con­

tinuous kernel. With n = 400 we have selected a case where the UCV function has a minimum 

well to the left of hMISE; see Section 6.1. (The minima in Figure 2b are 0.142, 0.330, and 0.389). 

Rudemo in a draft of his 1982 paper observed this (occasional) behavior for smaller samples and 

speculated it was consistent with features in the data. In Figure 2c we plot the two CV estimates 

along with the true density (the hMISE estimate is quite similar to the BCV estimate). The den­

sity estimate reveals the illusory multimodal feature that attracted the UCV function. The UCV 

function also eventually converges to 0 ( the augmented version to approximately R (I)); the curve 

in Figure 2b increases monotonically to -.579. 

For n=400, evaluating (3.11) and (3.17) for each h took more than 1.1 CPU minutes on a 

VAX 11/750. Figure 2b required several hours of CPU. Clearly an alternative implementation is 
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required for even moderate sample sizes. 

5.2 Averaged Shifted Histogram Implementation 

In order to carry out an extensive Monte Carlo study, it is necessary to find a more compu­

tationally feasible method than the very slow Gaussian kernel implementation given above. Much 

faster evaluations of (3.11) and (3.17) are possible with finite support kernels. Furthermore, a ker­

nel procedure using binned data accelerates CV algorithms even more; for example, Silverman's 

(1982) Fast Fourier Transform algorithm. Another procedure that takes advantage of binned 

data is the averaged shifted histogram (ASH) (Scott 1985). An ASH is the (weighted) average of 

m histograms, each with bin width h but with bin mesh origins at integer, multiples of 8 = h / m, 

and is given by: 

·• 1 m-1 
f m(Y) = h E wm(i)v6(k+i) for y in I,. , 

n i=l-m 
(5.3) 

where wm(i) are the weights and v6{k) is the bin count for the k-th bin I,.== [ko,(k+l)o). The 

weights corresponding to the triweight kernel (2.6) are 

wm(i) = cm[l-(i/m}2] 3 for Iii <m, 
where Cm is a normalizing constant so that Ewm(i)= m given by 

(5.4) 

The UCV formula (3.3) for J m is easily evaluated. The term R (f) is computed directly. 

The term E (i m) jx;) in (3.3) and (3.4) is simply equal to 
i 

00 Wm(O) E v6(k)s,. - -h-, 
k=-oo 

(5.5) 

where s,. == J m (ko) is the value of J m in I,.. In practice the sum in (5.5) involves perhaps a few 

hundred terms. For m > 10 (i.e. 8 sufficiently small) the behavior of the kernel and ASH estima­

tors is virtually identical; in particular, similar values of the smoothing parameter h give nearly 

identical results. 

For BCV, the asymptotic theory for the ASH involves both R (!') and R (!"), which is 

unfortunate. However, the frequency polygon (linear interpolator) of the ASH (FP-ASH) requires 
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only R (!"). We cannot use binned data with UCV on FP-ASH since we would need to know 

U-i(x.-) - i.e. need to know all the xi exactly and not just sk (or equivalently, the bin ~ounts) as in 

ASH case. Again we emphasize that for m > 10, the ordinary kernel, ASH, and FP-ASH are 

essentially the same for the same h. 

The asymptotic MISE expression for the FP-ASH is (Scott 1985) 

~ · . AMISE = 2
R"' + ')',. + .!._h 4 [ui + er; + 49 l R (!") 

3nh 4 2m 2 720m4 

where mR.,, = ~wm(i)2
, m')'tD = Ewm(i)wm(i-1), and m3cr; = Ei2wm(i). Our estimate of 

R (111 ) turns out to be: 

3 EUH1-2s,.+i1:-1)2
- m 6 2w~_1 + 4( wo-w1)2+ 2 E ( wi+1-2wi+wi_1)

2 1 3 [ m~ l 
6 k nh • i=l 

(5.6) 

where we denote wm(i) by wi and ik is defined below equation (5.5). These may be computed in 

closed form using MACSYMA (the triweight kernel formulae are available from us). 

6. MONTE CARLO STUDY 

6.1 Small-to-Large Sample Behavior with Gaussian Data 

In this section we study the results of simulations based on samples from a standard normal 

distribution for sample sizes n= 25, 100, 400, 1600, 6400, and 25600 with repetitions of 250, 200, 

150, 100, 100, and 100, respectively. ASH and FP-ASH estimators with a triweight kernel were 

used as described above. The S's chosen were .15, .10, .05, .025, .02, and .01, respectively. For 

each sample, ISE's corresponding to 4 different bandwidths h (or equivalently m since h = mS) 

were computed numerically: hMISE, hisE, hBcv, and hucv• The value hisE, which minimizes the 

!SE for a particular sample, was found by searching over integer values m. 

In Figure 3 we plot frequency polygons of the cross-validated smoothing parameters. The 

vertical lines indicate the set of h's examined (multiples of 6). In Table II we present some sum­

mary statistics. We note immediately that in 103/250 samples with n=25, the BCV function 

had no local minima (compare Figure 2a). The average of hucv when n=25 is reasonable, but 

only a relatively few individual samples are close to hMISE· (Of course, perhaps h1sE isn't close. 
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We check this below.) We have not found any samples where the BCV failed to have a local 

minimum for n >40. (For other densities this threshold is higher.) On the other hand, the vari­

ance of the biased CV estimates drops dramatically beyond this threshold so that the "worst" 

case for n ?:,1600 is quite close to hMTSE (a reasonable target as we discuss in Section 7). The 

unbiased CV procedure continues to be attracted to spurious (rough) estimates even with 

n=25600. Its convergence to normality is also apparently slower. The asymptotic theory 

predicts a ratio of "vertical" standard errors of the CV curves of 11.65 (which was observed in 

the simulations) and a ratio of "horizontal" standard errors of CV smoothing parameters of 4.98; 

see Table I. In Table II we see that the finite sample ratio is reasonably close to 4.98 for 

moderate sample sizes and that expressions (4.15) and (4.9), which yield a(hBcv)= .250n-s/io and 

a(hucv) = l.243n-s/io, are remarkably accurate. 

A more detailed study of the individual results for n =400 and n =25600 is worthwhile. In 

Figure 4 we plot the various smoothing parameters for n=25600 (n=400 is similar). Surpris­

ingly, there is a negative correlation of -.38 between hrsE and hucvi see Section 7. The hBcv 

cluster more tightly around hMTSE (the correlation with hrsE is -.16). For the 150 repetitions with 

n=400, 41 had hucv < .85 ( .85 was the smallest observed hBcv value). In 23 of 150 samples the 

UCV curve had 2 minima, always one less and one greater than .85. Seven of these had a more 

reasonable local minimum near h •. Sixteen ( all ~ .85) were local minima compared to a reason­

able hucv near h •. When n=25600, only 2 of 100 UCV curves had a second (local) minimum, 

but in both cases the global minimizer was more reasonable. None of the BCV curves had any 

other local minima over the range searched. 

In Figure 5 the numerically computed ISE's of the samples with n=400 are displayed. Fig­

ure 5a indicates h • is only occasionally grossly inefficient relative to hisE. In Figure 5b we see 

that the BCV almost dominates the UCV estimates with respect to ISE ! Figure 5c is presented 

for completeness. 

Using the Hall and Marron (1985) formulae for the triweight kernel and Gaussian data, we 

obtain a(h1sE)= l.304n-3/l0 and a(hucv-h1sE)= 2.081n-s/rn. Since a(hucv)= l.243n-3/ 10, it fol-
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- -
lows that there is indeed a negative correlation between hucv and h1sE· With the data above, we 

computed the sample version of <1(hucv-hisE) as .3464 and .0S18 for n =400 and n =25600, 

respectively, which agree closely with the theoretical predictions of .3448 and .0990. Thus while 

the variability of hucv and h1sE is similar, the negative correlation suggests they are often on 

opposite sides of hMISE· We have seen how hBcv, which is very close to hMISE for large samples, 

generally corresponds to estimates with integrated squared errors smaller than using hucv-

6 .2 Other Densities 

Similar simulations were performed for three other densities: Cauchy, Lognormal (exponen­

tial of standard Gaussian random variable), and a mixture given by 

• 1 
f(x) = .75</>(x;0,1) + .25cp(x;2,9 ) 

where ef>( x ;µ ,o-2) is the normal density with mean µ and variance o-2. In Figure 6 we plot histo­

grams of the CV estimates for 100 repetitions with n=1600. The Cauchy simulations 

(25~n ~25600) were similar to the Gaussian results in Section 6.1 except that 17% of the BCV 

estimates failed to exist for n =100 and the ratios of "horizontal" standard errors increased to 

only 3.0; see Table III. 

The lognormal and mixture results are interesting. Notice the BCV estimates are shifted to 

the right from the UCV estimates. BCV failures were observed at n =400. The UCV continued 

to perform as usual: average behavior close to hMISE with high variability. The BCV (when it 

existed) was definitely biased upward for moderate sample sizes, although the bias vanishes by 

n =25600. We understand this phenomenon as follows: for small samples the estimates which are 

optimal with respect to !SE appear relatively rough or noisy. This is not a defect of £ 2 error but 

of the use of a nonadaptive estimator. 

We examine a particular example. Figure 7 is a plot of ASH estimates of a mixture sample 

with n =400 with 8=.015. For this sample, hMISE = .615, hisE = .510, hucv = .480, and 

hBcV = .870 (with ISE greater by 55%). £ 1 and £ 00 errors are minimized for h=.525 and .540, 

respectively. The UCV estimator is best in the narrow peak while the BCV is better in the larger 
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peak. If we insist on a fixed bandwidth estimator, Figure 7a might be preferable (consistent with 

earlier recommendations of Fryer (1976) to slightly exceed h •). On the other hand for small sam­

ples, occasionally large hBcv's obscure the bimodal feature. 

7. EXAMPLES WITH REAL DATA 

Good and Gaskins {1980) present a large particle physics data set (the LRL data), which is 

interesting because it is pre binned with 8=10 Me V. The authors found thirteen bumps in a 

penalized likelihood estimate. The optimal bin width using either histogram criteria (1.2) or (1.3) 

gives h=lOMeV as optimal. We also examined these data with a triweight ASH estimator. In 

this case m=2 for UCV and m=4 for BCV using the ASH and FP-ASH, respectively. The 

square roots of these estimates are shown in Figure 8. Although the 13 bumps found by Good 

and Gaskins are apparent in Figure Sc, it is interesting to speculate why certain small bumps are 

included and others excluded. It is appropriate to recall that an optimally smoothed density has a 

slightly noisy second derivative, as shown in equation (3.15) when p =2. 

The 15000 steel surface data points are reanalyzed in Scott (1987). The UCV curve is con­

stant over a surprisingly wide interval, a behavior that has not been previously observed. 

We have implemented a bivariate product kernel BCV algorithm. Details and an example 

with a data set (thought to have a bimodal density) of 320 males with heart disease are available 

from us. The bimodal feature was not revealed by a BCV estimate, in the same manner observed 

in the univariate mixture example in Section 6.2. 

8. DISCUSSION 

8.1 Achieving Optimal ISE in Cross-Validation 

One issue that recurs is whether we should prefer a smoothing parameter that minimizes 

MISE or whether we should minimize the !SE for the data at hand. In theory, we should address 

!SE. The !SE for individual samples may be decreased primarily in two ways. The first is to use 

a variable bandwidth estimator, although adaptive cross-validation is more delicate due to an 

increase in number of smoothing parameters. The second is to compensate for variation in the 
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lower order sample moments. While no choice of smoothing parameter can compensate for a shift 

in mean, it is possible to reduce ISE due to fluctuations in the sample variance. If u<<1', then 

choose h > h • and vice versa; which unfortunately requires knowledge of the unknown density. 

Thus we do not expect much, if any, improvement for CV methods attempting to minimize ISE 

compared to those seeking the bandwidth minimizing MISE. 

It is easy to demonstrate this observation by simulation with standard Gaussian data. In 

Figure 9 we plot h1se vs u for the 100 repetitions with n =25600 used in Section 6. The correla­

tion between h1sE and u is -.688. Shifting these samples to have zero sample mean did not 

change these correlations much. Thus we see that any benefits to be gained from minimizing ISE 

rather than MISE are swamped by the much larger asymptotic error of the algorithms which pur­

sue the former goal. 

8.2 Partial Explanation for Improvement of BCV over UCV 

The nature of the improvement is most easily seen with the histogram, for which, 

AMISE(h) = :h + 
1
\ h2R(f'), (8.1) 

and h • = O{n-113). Following {1.2) and {1.3), consider a third estimate of {8.1): 

e2(h) = 23
h + -\-E[v,.(k+l)-v,.(k-1)]2

• 
24n 48n h 

(8.2) 

Now e2{h) is based on a central difference approximation to R (!'), which is numerically superior 

to the forward difference approximation leading to e 1(h ). It may be shown that the "vertical" 

variances of e0, ei, and e2 are 2R(f)/n2h+O(h2/n), R(f)/12n2h, and R(/)/192n2h, respec­

tively. Again the squared bias is of lower order O(n-2). This is a remarkable decrease in the 

variances. But for finite samples, the use of higher order derivative approximations will incur 

large bias and hence the gains are not realized except for extremely large samples. This is similar 

to the choice of p in equation (2.4). Theory suggests choosing p as large as possible, whereas in 

practice p =2 or 3 is a wiser choice. The higher order terms cannot in general be neglected. But 

for moderate samples e 1{h) does represent a substantial improvement over eo(h ), whereas e2(h) 

may not. 
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8.3 Early UCV and BCV Algorithms 

Kronmal and Tarter (1968) introduced the first unbiased CV algorithm for a Fourier series 

density estimator. The algorithm provided unbiased estimates of the change in MISE as addi­

tional Fourier coefficients were introduced. Wahba (1981) had the first working BCV algorithm, 

which she called generalized CV. In her Fourier series estimator, the smoothing parameter is not 

the number of terms in the series but a shape parameter in a tapering window applied to the 

Fourier coefficients f v· By substituting unbiased sample estimators for f v and I/ v I 2, she 

derived a biased cross-validation criterion, with the (small) bias due to truncation of the series in 

v. Wahba's and Kullback-Liebler methods were tested by Scott and Factor (1981). Our biased 

CV algorithm is essentially the analog of Wahba's procedure. However, we suspect Wahba's pro­

cedures is less biased than our BCV approach. 

8.4 Conclusions 

We have att.empted to evaluate the small-sample properties and reliability of two cross­

validation algorithms. No currently available algorithm is highly reliable for very small samples. 

In this situation BCV always oversmoothes while UCV has very large variance. However, for 

"large" samples cross-validation is highly reliable with respect to MISE. Reliability with 

"medium" samples is often achieved with densities that are not too rough. From Tables TI and 

III we see that our definition of a highly reliable CV algorithm is satisfied by the BCV estimates 

for sample sizes beyond 500-1000 except for the lognonnal density, which requires several 

thousand points. The goal of finding h15E with CV algorithms remains largely unsolved, as 

pointed out in Section 6.1. It is not at all clear that using h1sE is to be preferred to hMISE, given 

the rather peculiar manner by which the integrated squared error is further reduced. 

We also find that CV performance depends strongly on sample size and the underlying den­

sity. Specifically, the conditional probability that the CV smoothing parameter is "acceptable" 

given n increases rather rapidly from 10% to 90%; however, the location of this transition region 

may begin with surprisingly large sample sizes. Further work characterizing this transition would 

be interesting. With finite samples we are limited in our ability to adequately estimate all 
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densities; clearly, though, we are in a stronger position than if we made a parametric choice. 

While biased CV has potentially greater reliability than unbiased CV, it comes at the cost 

of additional assumptions on f. However, the very general optimal consistency of unbiased CV 

comes at a surprisingly high cost in sample size requirements if f is smooth. Asymptotically, 

about ( 4.98) 1013 or about 211 times more points are required so that cr(hucv) equals cr(hBcV) for 

the triweight kernel. Thus we have a tension between "customized" and "generic" CV. It would 

be interesting to investigate how much unbiased CV can be improved perhaps, for example, by 

leaving more than one point out. 

Perhaps most useful is to observe the divergence in behavior of UCV and BCV algorithms. 

Agreement or disagreement of the 2 CV parameters provides possible auxiliary information about 

any unusual features in the underlying density. Biased CV is essentially using the data to esti­

mate the bias. This is (and should be) a difficult task because the relative contribution of the bias 

and variance towards the MISE is in a ratio of 1:4 near optimal smoothing. Unbiased CV pro­

vides superior bias estimates but at the cost of increased variance. Given the importance of vari­

ance at h=hMISE, it is important to control "vertical" variance more than current UCV algo­

rithms do. 

We observe that the BCV procedure may be used to obtain approximate confidence inter­

vals for both hucv and hBcv, assuming the latter is asymptotically normal. BCV provides con­

sistent estimates of R (!") as well as R (f ), which may be used in (4.9) and ( 4.15). In fact, 

Theorem 3.2 follows from the fact that R(f") = AN {R(f"),2R(¢)R(f)/(n2h0
)}. Some idea of 

the reliability of the CV smoothing parameter can be drawn from these estimates. In addition, 

BCV will provide useful estimates of the MISE via expression (3.17). 

For sufficiently large data sets and reasonable densities, reliability is achievable. We wish to 

emphasize that excellent density estimates are still possible with smaller samples, but cannot be 

reliably calibrated by present methodology. We believe superior unbiased and biased CV kernel 

estimators can be found, since neither development attempted to optimize reliability. A referee 

(and others) have suggested investigating a linear combination of UCV and BCV. We prefer 



24 

having these two relative different estimators to work with, partly because of different density 

requirements. Perhaps the more computationally intensive bootstrap methods can be used to 

improve reliability for small samples. 

Finally we remark that there are many other nonparametric applications where cross­

validation is desirable, such as nonparametric regression, discrimination, hazard analysis and spec­

tral analysis. It would be interesting to see how biased and unbiased cross-validation algorithms 

compare in these settings. 

9. PROOFS OF RESULTS 

g .1 Proofs of Theorems 3.1 and 3.3 

We assume that conditions ( Cl) and ( 02a) are satisfied. Occasionally in the proofs we 

tacitly assume the existence of higher order derivatives in / when we wish to investigate expli­

citly error terms; however these derivatives are not required. 

g.1.1 Expectation of the UCV Function 

Although this result was proven in Section 3.1, we give a different proof here to indicate the 

care required when computing expectations of the U-statistics. Recall the definitions of 1 + and "Y­

in equation (4.1). Since K is symmetric, it follows that 1 is as well. Now 

E,(c;;) = j f(x)[ j "f+(x;y)f(y)dy+"j2\_(x;y)f(y)dy]dx 
-oo :z-211 :z 

= h{ f (x) [! "Y+( c )[J (x-hc) + f (x+hc )]de] dx 

=2hj1 +(c)[E ((-lk))~ (ch)2kR(f(kl)+o(he)]dc. 
0 k=O 2 · 

(9.1) 

For k even, it is not hard to show that 

2 1 1 

£ Ck"f+( c )de= ~ £ K( w )£(s-w )k K(s )dsdw -µk, (9.2) 

which equals -1/2, 0, 3µi, and 15µ 2µ 4 for k=0,2,4,6, respectively. The result follows since 
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g .1.2 Variance of the UCV Function 

Computing E,(c,-,-)2 parallels (9.1) with "Y+(c)2 replacing "Y+(c), and E,(ci;)2= 

hR('-r)R(f)+ O(h3
). Hence Var1(ci;)= hR("f)R(J)- h2R(!)2 + O(h3

). For simplicity of nota,­

tion, let "Yi;=1(ci;). Now Oov("f;;,"YA:1)=0; here (and from now on) we assume distinct letters 

represent unequal subscripts. Let 

li=f fi'(x)f(x)2dx; l 2 =R(f)R(f");. l 3 =R(J312)-R(J)2 • 

Taylor series approximations in the 3-D integral lead to Oov("Y;;,"Y;A:)= Oov('-r;;,"Ya)= h2[ 3 -

1 
Var[4<4"Yi;] = 2 n(n-1) Var "f,·; + n(n-l)(n-2)0ov("Y.;·,7;A:), . , (9.3) 

we complete our proof of Theorem 3.1 and explicitly give the remainder term in (3.13): 

(9.4) 

g,1.3 Variance of Augmented UCV Criterion 

Comparing (3.11) and (3.22), we see that 

4 II 8 
Var AUCV(h )= Var UOV(h )+-2 Var E f (x;)+-3-Cov(EE"Y;;,Ef(x;)). (9.5) 

n ,·=1 n h ,'<i ; 

Since EJ(xi)" = J f(x)k+ 1dx, we have that the second term equals 413/n. In (9.5), 

Cov("fi;,!(x1:))=0. Considering the n(n-1) terms for which k=i or k=j, Ehi;/(x .. )] = 

-hR(/3/2)+ h6µJli/4+ O(h 7
); hence Cov("Y.-1,f(x;))= -hl3 + µJh 6[I1-I2]/4, proving Theorem 

3.3. 

9.2 Proof of Lemma 3.2 

j(Pl(x) = _1 _ ~ K(Pl( x-x.- ) . 
nhP+I i~l h 

ER(i(P))= R(K(Pl) + n-l J[JK(Pl(w)f(x-hw)dw]
2

dx 
nh 2P+I nh 2P 

after squaring and a change of variables. The bracketed term may be approximated by 
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E *(-h)if(i)(x)JwiK(Pl(w)dw + o(h"+2). 
is::o I· 

Now J wiK(Pl(w)dw=O if i<p or if i+p is odd, and it equals (-l)"p! for i=p and 

(-l)"(p+2)!µ 2/2 for i=p+2. Hence the sum collapses to h" f(P)(x) + O(h"+2). Integrating the 

square completes the proof. We remark that since µ1,: =0 for 0<k<p, the error is actually 

O(h") if /(21>) exists. 

. . 
9.3 Proof of Theorem 3.2 

The analysis of the moments of the biased cross-validation function is similar to that in Sec­

tion 9.1, although much easier since BGV(h) involves fewer terms and because more "moments" 

of (9.6) below vanish. We assume conditions (01) and (02a,b) are satisfied. We remark that 

condition ( 02b) is necessary for Theorem 4.2 but stronger th;n necessary by one order of deriva­

tive for Theorem 3.2. From (3.16) define 

1-e 

4'+( c) = J K"( w )K"( w+c )dw 0:$ c $2 (9.6) 
-1 

and q,_(c) for -2$c $0. Again q, is symmetric. Now 

2 1 ~w 

Jck4'+(c)dc=fK"(w)J ckK"(w+c)dcdw. (9.7) 
0 -1 0 

For k=0, observe JJ-wK"(w+c)dc= -K'(w) and -f!1 K'(w)K"(w)dw=0. For k~2, 

J J-w ck K"( w+c )de= k(k-l)f J-w ck-2K( w+c )de. Noting (form even) 

1 , 1 1 

fK(s)fwmK(w)dw=l..fK(s)dsfwmK(w)dw= µm, 
-1 -1 2 -1 -1 2 

and integrating by parts, we see that (9.7) equals 0, 0, 12, 360µ2 for k=0, 2, 4, 6, respectively. 

The analysis proceeds exactly as in Section 9.1 with 4'+ replacing 'Y+· Let ¢;; == ef>(c;,-). From 

(9.1), it follows that E¢i;= h6R(f")- h7µ 2R(f'")+o(h7
), from which (3.18) follows directly. 

Following Section 9.1.2, Var '1'i; = hR(q,)R (I)+ O(h 3). In this case Gov(ef,;,-,4';.,) = 0 (h 10). Fol­

lowing equation (9.3), 

Var[I;I;¢(c;;)] = n2hR(q,)R(f)/2 + O(n 2h3 + n 3h 10
), 

i<j 

which, together with (3.17), proves equation (3.19). 
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The asymptotic normality follows from Theorem 2.1 of Hall (1984) for AN of degenerate 

U-statistics. Let µ(t)=EK"((t-X)jh), where h=cn-115
• Decompose hq,{ci;) into 

t-x· t-x· t-x· t-z· 
f[K"(,;-)-µ(t)l[K"(,;2-)-µ(t)]dt + J µ(t)[K"(-f-)+K"(,;2-)]dt - J µ(t) 2dt . 

Only the last two integrals contribute to the mean, which is easily checked to be heR(f")+ o(h 6). 

The variance comes from the first integral, which we denote by H.(z,,z;). It may be verified that 

the random variable E[H,.(X, Y) IX]==O, so that H,. is a.degenerate Martingale. Using the nota­

tion of Hall's (1984) equation (2.1), calculations similar to the above give EH;=h 3R(tj,)R(/), 

EH,.4= h5R(tj,2)R(I), and EG,. = O(h 7
); therefore, the conditions for Hall's Theorem 2.1 hold and 

BCV(h) is AN. 

U.4 Proof of Corollaries 3.2 and 3.3 

From (2.3) and Theorem 3.2 we have that 

plim [BCV(ch -)/MISE(ch-)] = 1 
II --+00 

p/im [AMISE(ch -)/MISE(ch *)] = 1 
...... oo (9.8) 

AMISE(ch -)/AMISE(h *) = c
5
+4 

5c 

so that MISE( ch-)> MISE(h *) for c ~1 and large n. Suppose c = h.Bcv / h - does not converge 

to one. Then Prob {BCV(h.Bcv) < BCV(h -)} --+ 1 as n-+oo, which contradicts the consistency 

results in (9.8). The proof of Corollary 3.3 was first given by Hall {1983). 

9 .5 Proof of Lemma 4.1 

AB before, define P+(c) from (4.2) when 0:'.5c:'.52. Then it may be shown that 

2 

{ c" P+(c )de= ! , O, -15µt -105µ 21,4 for k=0,2,4,6, respectively. Let Pi; = p(ci;). Omitting 

details, Epi; = hR(f)- 5µih 5R(f")/4+ o(h 6
), from which the expectation in {4.4) may be com­

puted. Then 

Varp;; =hR(p)R(f)-h2R(f)2+ O(h 3
) 



28 

Gov(,.-;,P.-;)= hR((,p)112)R(f)+ h2R(f )2 + O(h 3
). 

Now the variance of the left hand side of (4.4) may be expressed as 

n(n-l)[Var,.-;+ Var Pi; ]/2 + n(n-l)(n-2)[ Gov(,i;,ii.d + Gov(Pi;,Pik )]+ 

n (n-l)Gov( ii;,Pi;) + 2n ( n-1)( n-2)Gov(1 i; ,Pik). 

Evaluating (9.9), we find 

Var EEhi;+Pi;] = .!.n2h [R(,)+R(p)+2R((,p)112) ]R(f) 
i<j 2 

d 
where the bracketed term may be written as R(,+p). But Tc1 +(e)= P+(e)/e. Hence 

2 2 2 

f 1+( e )P+( c )de = f c 1+( ch+' ( c )de = _.!,_ f 1+( c )"-de 
0 0 2 0 

since 1+(2)=0. Since I is symmetric, R(,+p)=R(p), completing the argument. 

9,6 Proof of Lemma 4.2 

2 

f ck t/1+( c )de = 0, 0, -60, -2520µ 2 for k =0,2,4,6, respectively. 
0 

Et/]( C;;) =-5h6R (!") + O(h 7) 

Var t/J( ci;) = hR ( t/J)R (I)+ 0 (h 3
) 

Gov ( 1/J;;,t/J.-1:) = 0 ( h 10
); Gov(</>;; ,1Pik) = 0 ( h 10

) 

Gov(</>.-;,t/Ji;) = hR((</>t/J)112)R(f) + O(h 3
) 

and R(</>+1/J)=R(t/J) as above. The lemma follows directly. 
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Legends for Tables and Figures 

Table I. For several kernels, asymptotic ratios of "vertical" and "horizontal" standard devia­
tion of unbiased and biased cross-validation estimates of smoothing parameters as 
given in expressions (3.25) and ( 4.16). 

Table II. Summary of a Monte Carlo experiment using a triweight kernel averaged shifted histo­
gram estimator with standard Gaussian data. The sample means and variances of the 
cross-validation smoothing parameters are given, together with the theoretical stan­
dard deviations given in Theorems 4.1 and 4.2. The theoretical predictions of the 
standard deviations of hBcv and hucv are denoted by aBcV and aucv, while sample 
ve~ioI?-5 are indicated by a circumflex. 

Table ill. Summary of partial results of a Monte Carlo experiment for three sampling densities. 
Other details are the same as in Table II. 

Figure 1. Biased ( a) and unbiased (b) cross-validation curves for a histogram estimator of 10,000 
N(5,1) points. The vertical lines in the bottom right hand corner of the figures indi­
cate theoretical standard deviations computed from Theorems 3.1, 3.2, and 3.3 as dis­
cussed in the text. The optimal MISE smoothing parameter is indicated by a star. 

Figure 2. Examples of biased and unbiased cross-validation curves (log10 scale) for a Gaussian 
kernel estimator of 25 N(0,l) points in (a) and 400 points in ( b ). The exact mean 
integrated squared error is shown by the dotted line. The corresponding cross­
validation density estimates are shown in ( c ), along with the true density ( dotted 
line); see text. 

Figure 3. Histograms of biased and unbiased cross-validation smoothing parameters for N(0,1) 
samples of several sizes using an ASH triweight kernel estimator. The BCV parame­
ter histogram is in the positive direction while the UOV histogram is in the negative 
direction. The location of hMISE is indicated by a star on the horizontal axis. These 
figures are discussed more fully in Section 6.1. 

Figure 4. Scatter plots of the various smoothing parameters are shown for the same Monte Carlo 
data as in Figure 3 with sample size n =25600. 

Figure 5. Using the same samples with n =400 as in Figure 3, scatter plots of the log10(ISE) 
corresponding to the various smoothing parameters are shov.n. The diagonal line is 
y=z. 

Figure 6. Similar to Figure 3, except with n=1600 from Cauchy, Lognormal, and Mixture Den­
sities. 

Figure 7. Biased and unbiased cross-validation density estimates of 400 points from a Mixture 
distribution. 

Figure 8. On a square root scale, triweight ASH estimates of the LRL data, with m= 1, 2, and 
4. The bumps found by Good and Gaskins with a penalized-likelihood density estima­
tor are indicated by horizontal lines above the bump. 

Figure 9. For the samples in Figure 4, scatter plots of h1sE and the sample standard deviation 
for each sample. 
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Table I. Asymptotic Ratio of "Vertical" Standard Deviations of UCV and BCV Esti-

mators 

K(t)=am(l-t2r R(1)1/2 µ?R ( <J,)1/2 I 4 ratio R(p)1/2 µJR( ,/J)1/2 /4 ratio 
Ean(3.25) Ean(4.16) 

m =2 (biweight) 1.0033 .0827 12.13 1.2352 - -
m=3 (triweight) 1.0737 .0921 11.65 1.2047 .2420 4.98 
m=4 1.1337 .1013 11.20 1.2195 .2550 4.78 
m=5 1.1859 .1092 10.86 1.2458 .2685 4.64 
N(O 1)-("m=oo") .6376 .0715 8.92 .6178 .1558 3.96 

Table II. Monte Carlo Results or Triweight Kernel ASH Estimates of N(0,1) Data 

n hMISE hBcv hucv 0-BCV uucv ratio <7BCV uucv 

25 1.775 - 1.907 - .6700 - .0951 .4732 
100 1.309 1.499 1.262 .1691 .4170 2.47 .0627 .3122 
400 .976 1.041 .935 .0792 .2422 3.06 .0414 .2060 

1600 .732 .753 .683 .0372 .1862 5.00 .0273 .1359 
6400 .552 .561 .535 .0246 .1054 4.27 .0180 .0896 

25600 .416 .419 .416 .0128 .0549 4.28 .0119 .0591 

Table III. Partial Monte Carlo Results for Other Densities 

density n hMISE hBcv hucv /;BCV 8-ucv ratio UBCV uucv 

Cauchy 400 1.012 1.230 1.056 .1292 .2538 1.96 .0300 .1492 
1600 .740 .815 .751 .0547 .1448 2.65 .0198 .0984 
6400 .549 .580 .551 .0263 .0862 3.28 .0130 .0649 

25600 .411 .418 .415 .0144 .0371 2.57 .0086 .0428 
Lognorrnal 400 .324 .540 .326 .1052 .0776 0.74 .0050 .0248 

1600 .218 .302 .212 .0331 .0402 1.21 .0033 .0163 
6400 .151 .184 .150 .0137 .0209 1.52 .0022 .0108 

25600 .107 .121 .107 .0048 .0127 2.63 .0014 .0071 
Mixture 400 .612 - .618 - .1512 - .0167 .0830 

1600 .443 .504 .434 .0374 .0749 2.00 .0110 .0548 
6400 .327 .345 .320 .0155 .0425 2.75 .0073 .0361 

25600 .245 .252 .242 .0068 .0294 4.34 .0048 .0238 



E~urc.. 1 

(Q.) 
(.Ip) 

0.012 -0.268 

0.010 -0. 270 

. 

J 
0.008 -0.272 

~ 0.006 -o. 274 
('I) 

,~ 
0.004 -0.276 

0.002 -0.278 

0.0 * -0.280 i... * 
0.01 0.05 0.1 0.5 1 0.01 0.05 0.1 0.5 1 

h h 



F,~)'.,..rc.. 2 

(a.) 
(b) (r_) 

-o. 5 0.5 

-o .. q- ~ I -1.0 l n-400 
· n-25 

MISE ."/ I 

:::r,>:V(b)" 
0.4 

\t-. ~ ;;. I -1.5 L ,1 I 0.3 

('I\ 
-1.0 

-l.2l "\ \ ,... I -2.0 I.. I ' -~ .'l / BCVlh\ I 0.2 
.r -1.4 \.\ 

-1.6 I- \'\..VJ.--.... I -2.5 L \ ··."\.. II I 0.1 
\, 

-1. 8 f- ·.... r" BCV(h) ...,_.,.. 

-2. 0 -3. 0 0.0 

0.01 o. 05 0.5 1 5 o.o°l 0.05 0.5 1 5 -3 -2 -1 0 1 2 3 

h h 



I 
I I-' I-' ' I-' 

00 VI 0 VI 0 VI I-' 0 I-' .., 
0 

0 

? .., 
Cl 
I 
I-' 

Cl "' ? 0 '"c.: I 

~ 
.., ... 0 
VI -

? 
"' 

? 
CX) 

~ VI 
0 

I .., I I T'\ I-' I I-' ~· 
00 VI 0 VI 0 VI 0 .., I-' 0 ,. . 

0 

~ 0 0 ,. 
? .... 0 w 

VI 
Cl 0 

Cl I .., I I-' 

"' 
0 .... .... 0 

0 0 
0 0 I" .., 

'ti' I;!; 
...,J 

0 

.... .... 
VI 

? 
VI .., 
0 0 

"' 
? .., 
--.I VI 

I I .., .... .... .., .., .... I I 
00 0 0 0 0 0 0 

0 
.... .., 0 ... 

0 0 
0 

0 i..> 
.... Cl 

I 0 .., :.. Cl 

0 VI I 

"' 
... .., 0 0 0 

0 O'I 
0 

0 33 0 ,,..., .., CX) " ..., 
.... 

? C> ... .... 
l,J 

? 
VI .... 

... 
0 I-' 

"' "' 



f,~v.rc. 4 

I:'--,. 
r<) 

(~ (b) 

150 reps n•25600 150 reps n•25600 
0.6 0.6 

0.5 0.5 

0.4 0.4 

h UCV' 0.3 h bcv 0.3 

* * 
0.2 0.2 

0.1 0.1 

0.0 0.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

h_ise h_ise 



Ft~v..rc.. s 

@-) 05) (c..) 

asy opt ise ise of ucv ise of ucv 

-1.51 /I -1.5[ .. /I -1.5 

-2.J 

n-400 * n•400 * 
-2 .o I- ./ I -2. 0 . , . 

* ... 
* 

* -* 
-2.5~ :/ 

-2. 5 -2.5 

-3.0 -3.0 -J.O * 
** * 

-3. 5 I- V I -3.5 -3.5 
* 

-4. 0 I- / I -4. 0 I- / I -4 .0 

-4 . 5 '----J..---'-----'----'-----'---.JJ -4 . 5 ..__ _ __._ __ _._ _ ___.'-----'---_._ _ _., -4 . 5 ..__ _ __._ __ .._ _ __._ __ __._ __ .__ _ __.. 

<::i -4.5 -4.0 -3.5 -).0 -2.5 -2.0 -1.5 -4.5 -4.0 -3.5 -3.0 -2.5 -'..LO -1.5 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 

"' optimal ise ise of bcv optimal ise 



...- . r\.jWL <o 

<o.J (.b) (c.) 

20 15 l:t 
Cauchy data 

15 r Lognonnal data /2 l 10 ~ Mixture 

J 
n-1600 n-1600 n-1600 

10 

51 II I \ I 5 

_:t NVW~~ltlllllW° I 
01 "LJ-llllll/ I 0 

-5 

I \ II I -5 

~:t ., f 

I 
-10 

Q-- -15 -10 
r 0.0 o. 2 0.4 0.6 0.8 1.0 1. 2 o.o 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.) 0.4 0.5 0.6 0.7 

h h h 



f1':J"''c. 7 

~) (b) 

0.35 0.35 
,. 

I 
... , , 
'11' 

I I 

0. 30 I-

A 
I I 0.30 

'> 

o.25 L 
h_bcv-.87 I I I h_ucv-.48 

~ 
. . f\,. . . 

0.25 : •. 

I ,, 
0.20 ~ I I 0.20 

• I I 
I 
o I I !: . , . , · .. .,• \: 

0.15 0.15 

0.10 0.10 

0.05 I 0.05 

o.o 0.0 

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 



0 ? ? ? ? ? ? 
0 0 0 0 0 0 

0 .... l,J ... .. VI "' 0 

VI 
0 
0 

.... 
0 e 0 
0 

.... 
VI 
0 
0 

l,J 
!3 0 

0 I 
0 .... 

l,J 
VI 
0 
0 

~ 
0 0 0 0 0 0 (:_A • 

? 0 0 0 0 0 0 s 
0 .... l,J ... .. VI "' ii 

0 

u, 

\:,Q 0 
0 

.... 
0 
0 
0 

.... 
u, 
0 
0 

e..l ; 0 
0 
0 l,J 

l,J 
u, 
0 
0 

0 ? 0 0 ? 0 
0 0 0 0 0 0 0 
0 .... l,J ... .. u, "' 0 

VI 
0 
0 

.... 
0 

~ 0 
0 

'-' 

.... 
u, 
0 
0 

e..l 
!3 0 

0 I 
0 .. 
e..l 
u, 
0 
0 



tl~We.. q 

0.6 r 
n•25600 

0.5 I- * "** * ** * * * * * * * 
* - * * * * ** * * * ** * ** * * 1fr - ** * * 

h_ise 0,4 r ** ** *** * *** * 

1 
** ** ** ** * ** ** * * * ** *** * * * * * * * * * t'·. 0.3 f- * 

* 

0.2 

0.985 0.990 0.995 1.000 1.005 1.010 1.015 

sample standa.l'.d deviatioo 


