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Abstract 

Measurements of the nuclear spin-lattice relaxation time Ti 

have been made in doped calcium fluoride over the temperature range 

extending from 300°K down to about 2°K. The doping element was the 

rare earth neodymium. Data were obtained by a pulsed nuclear res¬ 

onance method for two orientations of the crystal with respect to 

the magnetic field. 

The experimental results were analyzed by means of a general 

expression for T^ valid for intermediate cases as well as for the 

diffusion limited and rapid diffusion limits. Dependence of the 

barrier radius on the temperature and the relaxation time of the 

paramagnetic impurity is taken into account in this expression. 

There is reasonable agreement between the experimental measurements 

and the theoretical expression over the entire temperature range. 
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I. Introduction 

Bloembergen ^ proposed a mechanism to explain the nuclear spin- 

lattice relaxation time in insulating crystals doped with paramagnetic 

impurities. In his theory, nuclear spin magnetization diffuses from 

nucleus to nucleus as a result of dipole-dipole coupling. In the 

vicinity of a paramagnetic impurity, Zeeman energy can be transferred 

to the lattice via the impurity through dipolar interaction between 

nuclear and impurity spins. He derived a diffusion equation for the 

magnetization which, when solved numerically, gave qualitative agree¬ 

ment with measured relaxation times. Later investigators foun(i 

analytic solutions to the diffusion equation and obtained relaxation 

times T]_ for limiting cases. Rorschach ^ derived a general expression 

for from the diffusion equation. In his paper the effective static 

moment of the impurity is calculated in order to make a better esti¬ 

mate of the barrier radius, the distance from the impurity within 

which spin diffusion is quenched due to Larmor frequency shifting. 

Tj is a function of the temperature, the impurity spin-lattice relax¬ 

ation time, the impurity concentration, and the magnetic field. 

This thesis describes the results of a pulsed nuclear resonance 

experiment on a single crystal of calcium fluoride dilutely doped 

with the rare earth neodymium. Fluorine nuclei have spin l/2 so 

there is no quadrupole moment, and in CaF2 they occupy sites of cubic 

symmetry. EFR work ^ has indicated that the neodymium goes primarily 

into interstitial sites of tetragonal electric field symmetry as 

Nd^/ ions; the axis of axial symmetry is a (100) direction. The 

crystal field splits the ^9/2 ground state into five Kramers doublets, 
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with the first excited doublet lying about 60 cnT^ above the lowest 

doublet. 

was measured from .2' degrees Kelvin to 300 degrees for two 

orientations of the sample with respect to the magnetic field. From 

T-^ the impurity spin-lattice relaxation timecan be calculated. 

Comparison of these calculated values with EFR measurements of p 
at low temperatures and theoretical predictions at higher tempera¬ 

tures serves as a check On the expression for T-j_. At the higher 

temperatures p is too short to be measured directly by EFR. There 

would also be a signal to noise problem for low impurity concentra¬ 

tions. This method can thus provide experimental values of p in 
cases where it cannot be measured directly. 

II. Nuclear Relaxation in Insulating Crystals 

A. Spin Diffusion 

Dipolar interactions between identical nuclei give rise to 

nuclear spin diffusion, a process in which mutual spin flips occur. 

In this way, Zeeman energy is transported to the vicinity of para¬ 

magnetic impurities where it can be given up to the lattice. The 

dipole-dipole interaction perturbation can be put in the form 

fyr* r“7T (A t 8+ C *'D) + 4.c. 

Az r,9 (/- 3 ; 
B r I*I% (1^3 Gtx ) 

C - ~ f- (I* ) ■*** <5>,a cda 
>1 



-3- 

D - 

fe.c. 

2- T” ^ T* 1 -3 £\ ^ X, lx G,x 

hermitian conjugate 

spin of nucleus i 

• * -* % 

Lattice vibrations, if taken into account in terms C and D, would 

provide a direct mechanism for relaxation of nuclei by the lattice. 

However, it has been shown that this effect is negligible in comparison 

with the relaxing effect of paramagnetic impurities.^- Term B is re¬ 

sponsible for the simultaneous spin flips of two interacting nuclei. 

From first order time-dependent perturbation theory, we calculate a 

transition probability 

VM * f (8 + 8r) | mt = -i 

^ - £> 

Ej_ and Ef are the initial and final energies. 

, where is the Larraor frequency 

of nucleus i. 

Fluctuating local fields cause a spread in Larmor frequencies. 
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Integrating over the frequency distribution, 

w'tj =■ it **** Ki a * 3 <***&c)) A ra- 
depends on the distribution function and is of the order of 1. 

T2 is the spin-spin relaxation time. 

B. Relaxation by Paramagnetic Impurities 

Nuclei are relaxed by the paramagnetic impurities through a 

dipolar interaction between the impurity spin S and the nuclear 

spin I, 

15 r [ *   r» J 

Mj ^ x j jtf s - ~ ^ * r 

g is the experimentally determined g tensor. The expanded form of 

tfrr contains terms similar to those in . I^Sj, will be the dom¬ 

inant nuclear relaxing term since this requires much less energy 

( than does 3?S3*, ( tJs therefore the latter term will 

be neglected. In Appendix A the coefficient of I^SZ is obtained for 

arbitrary orientation of the magnetic field H. For the orientations 

involved in the analysis later in this thesis, H will be either par¬ 

allel or perpendicular to the impurity symmetry axis fc1. If H j, z1, 

the term of interest is 

e'PI% /Ac. = KT% +A.C. 

If H II z', gA is replaced by g(J . 

The above interaction Hamiltonian relaxes nuclei by inducing 

transitions from the spin -l/2 level to the spin l/2 level. An 

approximate transition probability can be derived from a serai- 

/ 



-5- 

classical treatment for time-dependent perturbations. Sz is time- 

dependent because of spin flipping due to coupling with the lattice. 

For the case Hi z1, the transition probability is 

*<-iXtulf) . 

J^W) is the spectral density of Sz. A neodymium impurity ion has 

an effective spin of 1/2 (lowest Kramers doublet). Using this spin, 

it is shown in Appendix B that choosing an exponential correlation 

function for Sz leads to 

J(U3 ) = XV i Cl - ** ) —~r~l—“a. 
/ T 

x " A -kT 
For temperatures of concern in this thesis 

Insertion into the expression for the transition probability yields 

the result 

when averaged over all angles. 

z° s= c 

C. Diffusion Equation 

At nucleus i, let VdLt-.^ = Si . Including both mutual i ^ 

spin flips and impurity-induced transitions, we can write an expres¬ 

sion for the total probability for the transition m L~ -$> ry7c=~^ j 

Vi ^ » Pj Qi J~ SLQt 
J * £ ; 
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where is the probability that ra^ s l/2 and is the probability 

that m^r -l/2. Similarly, 

Wt l = I Wlj Qy P, + ^ P 
J7?C * 

The magnetization density in the neighborhood of nucleus i is 

proportional to P^-Q^Sn^. An expression for the rate of change of 

n^ follows from the relation 

is * v/c f -\J,i 
= L W.j (P - P) - S', 

since P^^. 1. Therefore 

d - d ?K 

~dCi ’ oir 

Z )_ Vtj ( - *K + 2 j “ 2 i’t 
J * ( 

Or, 

J ^ 

off L w-o a f, i * t 

~ ©.t e^tAtl* br* * ^ 

For the magnetization density yy) t = ) 

- c W.J 
Jt( 

m \? ) - yri ifi " 

1 St ) 

This equation can be approximated by one involving the magne¬ 

tization at only one position by expanding the magnetization density 
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in a Taylor's series centered at r^. 

) - ** '*-1 + f*‘j(rir% +"'1 
J ■f » •» 

We truncate after second order. First order terns and cross terras 

cancel on summing due to lattice symmetry. Also because of symmetry, 

the coefficients of the partial derivatives are equal, and we have 

finally, dropping the subscript i, 

^ ~ D V2 ) - C v ^ ) 
oi t 

D ~ ^4 ) Xi 

p 
c ~(y $91) ^) 7 f 

This is the diffusion equation for the magnetization derived by 

Bloembergen.^ 

D. Solution for the Spin-Lattice Relaxation Time 

Rorschach's' solution of this diffusion equation for the 

relaxation time of the total magnetization M is 

n±) 
x ?/, <J > 

= 

U •t 

T, = Vir N D*) 

T, 

n*> 
1 

s ■= — 
* *t>‘ 

* _ 
=■ C/D 

/\f ~ irripu n {<j c 6/tcetf- 

T ,e ) -trad!9* J.yi.6 ) is the modified Bessel function, b is the barrier radius 



the maximum distance from the impurity at which spin diffusion is 

quenched. Quenching occurs because the dipolar field Hp of the para¬ 

magnetic impurity shifts the Larmor frequencies of adjacent nuclei. 

At the distance b this shift becomes so great that mutual spin flips 

cannot occur, b can be estimated by setting the change in H over a 
r 

lattice spacing A equal to the local nuclear dipolar field S5 ® 

which determines the nuclear line width: 

tOz)** —3 * r A <>• • 

y ^ ii g , where is equal to the magnetic moment of the impurity 
P ""^"3 

effective in quenching diffusion. We obtain for the barrier radius 

b - CL 
% 

As sketched in Appendix D, an approximate expression for M^ is' 

M 

if Hi z'. T2 is the mean lifetime of a nucleus against spin diffusion. 

Combining results, the final expression for the spin-lattice 

relaxation time is 

r_ 
i -f 

T, = A ( -f~r „ ^ 
‘ \ I -t / 

_ J- 
<t- 

5 - 

* " TlfT -i 
A~N 0 

&. ~ P 

When S«l , the expression for goes over into the rapid 
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diffusion equation 

T, = /A (X + tart ' 
SJTV

3 \5/^ 
*7;" ; 

since Ij/^ (^* ) . 

When $»l, the diffusion limited equation obtains: 

T, - A( 
P _ 

\ +/>*»£ 
since Sy(S) . 

Ill. Experimental Procedure 

A. Sample 

The calcium fluoride sample under observation was a single 

crystal obtained from Harshaw Chemical Company. It was cut in the 

shape of a right circular cylinder with the cylindrical axis along 

a (100) direction. The nominal neodymium doping concentration was 

0.005 weight-^. 

B. Pulsed Resonance Apparatus 

A receiver coil to sense nuclear signals was wound around the 

sample, and after x-ray alignment the unit was mounted inside a 

lucite sample holder. The sample holder also served as a form for 

the transmitter coil, oriented perpendicular to the receiver coil. 

This assembly was attached to the end of two thin walled stainless 

steel tubes which extended into a helium dewar. With a copper wire 

inner conductor separated from the wall of the tube by spacers, each 

stainless steel tube served as a coaxial cable. 

Pulsed nuclear resonance apparatus capable of supplying high 

amplitude alternating field pulses as short as 3 microseconds was 

used to measure T^. Specifically, an rf oscillator, a gated amplifier, 
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and a pulse sequence generator were the source of driving pulses for 

a kilowatt amplifier. The output of the power amplifier was coupled 

to the transmitter coil enclosing the sample. A 1.5 KGauss magnetic 

field orthogonal to both coils set the Larmor frequency at 6 mega¬ 

cycles per second. Nuclear induction signals were amplified and de¬ 

tected by a receiver designed to recover from complete saturation in 

about 5 microseconds. Since a short time had to be allowed for the 

receiver to recover from saturation, the transient signals were ob¬ 

served, on an oscilloscope, at a fixed time after a pulse by delayed 

gating. Figure 1 is a block diagram of the apparatus. 

Pairs of gating pulses could be produced with variable separa¬ 

tion between the pairs and between the pulses making up a pair. 

Figure 2 outlines the circuitry by which this was accomplished. 

These gating pulses lift the grid in the first stage of the gated 

amplifier from its cutoff-biased condition so that an output rf 

pulse can be obtained with a continuous rf oscillator input. There 

is negligible leakage between pulses. The pulse width was adjusted 

for 90 degree rotation of the magnetic moment of the nuclei (about 

3l/2 microseconds). 

Further details on the apparatus can be found in the thesis 

by Waldrop.^ 

C. Relaxation Time Measurement 

The measurement technique is based on the equation for the ex- 

Q 
pectation value of the nuclear magnetic moment.7 

where H is the total magnetic field at the nuclear site. Neglecting 
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A 

FIGURE I 

PULSED NMR APPARATUS 
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FIGURE 2 

PULSE SEQUENCE GENERATOR 

161: TEKTRONIX TYPE 161 PULSE GENERATOR 

162: TEKTRONIX TYPE 162 WAVEFORM GENERATOR 
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interactions, which lead to relaxation, this equation holds for the 

total magnetization M. It implies that M maintains a fixed angle 

with respect to the static magnetic field H while rotating about H 

at the Larmor frequency CJj - V // . 

If a magnetic field 2 coe (Ujt'alternating at the Larmor freq¬ 

uency is added perpendicular to the static field, M still rotates 

about the stetip field at the Larmor frequency, but the angle of in¬ 

clination & changes such that tjj £ pulse width. We 

take Hjjz. A pulse of alternating field satisfying the relation 

? - will rotate the magnetization vector from the equilibrium 

z-direction into the xy-plane. A receiver coil whose axis is in the 

xy-plane will then produce an induced voltage proportional to the 

z-component of magnetization prior to the 90 degree pulse. 

Measurement cannot be made immediately after the pulse because 

some time must be allowed for recovery of the receiver from satura¬ 

tion due to the large amplitude of the transmitter pulse. While 

waiting for recovery, the signal voltage across the receiver coil 

is decaying as a result of the rapid transverse relaxation of the 

nuclei. However, if the shape of the decay curve is independent of 

the initial magnitude of the magnetization, measurements at a fixed 

time after the pulse will be proportional to the initial magnitude. 

The procedure in determining the spin-lattice relaxation time 

Tj, a measure of the rate of change of Mz toward equilibrium, is to 

use two 90 degree pulses separated by a variable time t. Immediately 

after the first pulse, Mz~0. The purpose of the second pulse 

is to measure Mz at the time t. The equilibrium value of Mz 



can be determined by a measurement after a pulse separated from the 

previous pulse by a time long compared to T-^. 

T-^ can be determined graphically from the measurements in the 

following way. The theory presented earlier predicts that if the 

magnetization deviates from the equilibrium value, it returns toward 

equilibrium according to the relation 

A 
'd'-t 

Solving, 

— i~r • 

- //fe £ j - e ) > 

(l~ • 

Therefore, plotting l-Mg/M,-, versus t on semi-log paper should produce 

a straight line whose slope is -1/2.30T^. 

D. Temperature Control and Measurement 

A metal helium dewar was used because it had a narrow tail for 

insertion between the magnet pole pieces and because it provided es¬ 

sential electrical shielding. Heat transfer from the tail of the 

dewar to liquid air in the nitrogen jacket gave a slow enough tem¬ 

perature drop for measurements in the 300-80 °K range. Temperatures 

from 80 to 4.2 degrees were obtained by controlled transfer of 

helium from a liquid helium storage dewar. Temperatures below 4.2 

were obtained in a pumped liquid helium bath. 

A copper-constantan thermocouple in good thermal contact with 

the sample holder was calibrated during each run at 4.2 degrees so 
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that between 4.2 and 80 degrees the temperature could be measured to. 

within 0.5 degrees.'*'® The reference junction was at boiling nitrogen 

temperature for measurements in this range and at the ice point for 

the measurements above 80 degrees. Helium vapor pressure measurements 

with a mercury manometer permitted temperature determination below 

4.2 degrees. The scale used was T^^g.■*”*■ 

17. Experimental Results and Analysis 

Nuclear spin-lattice relaxation times T-^ were measured between 

2°K and 300°K for two orientations of the sample with respect to 

the magnetic field: H II (100) and H ll (110). These data are plotted 

in Figures 3 and 4> the error bar represents the estimated experi¬ 

mental error. The two curves are qualitatively similar, but there 

is a little difference in magnitude of T^ below 4 degrees and a 

significant difference between 50 and 200 degrees. The behavior 

in the latter range is not understood. Waldrop ? obtained similar 

curves for other rare earths in CaF2 at higher doping concentrations. 

Only the data for H 1) (100) has been analyzed using the theory 

presented earlier. In this case, since the impurity axes lie with 

equal probability along any (100) direction, 2/3 of the axes are 

perpendicular to H and l/3 are parallel to H. For the former, the 

g value to use is g^ ; for the latter, g|(. If other orientations 

were involved, some of the theoretical development would have to 

be elaborated. As all angles have been averaged over, the different 

ion axis directions will be taken into account only by replacing g ^ 

by 2/3 g+1/3 g„. 

Analysis requires a knowledge of the temperature dependence of 



FIGURE 3 

NUCLEAR RELAXATION TIME Tx AS A FUNCTION OF 

TEMPERATURE; H l| (100). 
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NUCLEAR RELAXATION TIME T, 



FIGURE k 

NUCLEAR RELAXATION TIME Tx AS A FUNCTION OF 

TEMPERATURE; HU (110). 
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jO , the impurity spin-lattice relaxation time. Measurements of p 
L 

have been reported in the literature ° for neodymium in calcium fluor¬ 

ide in the temperature range 2°K to 7°K. The doping concentration 

there was 0.28 weight-^, compared with 0.005 weight-^ in this work. 

Only the g^ resonance relaxation time was measured as a function of 

temperature, but at 2 degrees the g^ relaxation time was also meas¬ 

ured and was found to be twice that of the g^ resonance. Investi- 

o/ 
gation of another rare earth, cerium (Ce-5'), in CaF2 reveals a con¬ 

centration dependence of p . This concentration effect appears to 

be negligible below 0.2 weight-^. Theoretical work in agreement with 

low temperature experimental results for rare earth relaxation times 

12 13 
predicts that p decreases rapidly as the temperature increases. * v 

Since p is not accurately known, the best procedure of analysis 

is to calculate p from the measured T^ and note whether this gives 

values compatible with the data from the literature and with theoret¬ 

ical expectations. Iteration is necessary since cannot be solved 

for directly. The expression for T^_ is 

-r _ A / /° Z-%d") 

S-- f. Tfrv? ° BO T~/> 

*a. 

A computer program was written to iterate for p. In this program 

was evaluated either from asymptotic expres¬ 

sions or by interpolation between tabulated values, depending on 

the value of $ . 
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We first require estimates of the diffusion constant D and of 

T^. Considering only nearest neighbor coupling, Bloembergen obtains 

for a simple cubic lattice 

/ 
„ = L Vc, = ^ roT^ 

2 
Khutsishvili estimates 

D = L 
Using 

3j = 

9„ 

_ - 5“ 
Tj ^ J X 10 ye c- 

-S 
a - 2.7 3. S’* i 0 ~ c ** 

we calculate 
3 -k y 0= V.srxij J ■ ajr = 4-ix io s J —T- 

Since an estimate for A is even more uncertain 

than for B or Tj. A more accurate value can be obtained by setting 

= 0 at 16°K, where the T-^ curve exhibits a minimum. In the 

diffusion limited case, this gives L)/°-) at the minimum, or 

/>-a. 5-xic' J*. In the other extreme, rapid diffusion, due to the 
! »4.0/ S' z y- —x 2 ^7° » y/fi 

3/8’ power dependence of ( f* njr'7/ J and 

the relatively high temperature 16°K at the minimum, iJ/> » > still 

gives a fair approximation of /° at the minimum. This value and 

the measured at 16 degrees was used to calculate A. 

' Curve a, Figure 5, results from iterations for p at several 

temperatures between 2 and 300 degrees. Curve b is the measured 

data for the g resonance. / values were also recorded (Figure 6) 
i 

during the calculation, and these show that the diffusion limited 

equation holds at temperatures near the minimum so that the re¬ 

lation Up c / is adequate at the minimum, p -calculated is seen to 



FIGURE 5 

IMPURITY RELAXATION TIME AS A FUNCTION OF 

TEMPERATURE: 

Curve a: calculated from T-^. 

Curve b: r measured by EPR. 

/° calculated from T^ after 

adjusting parameters. 

Curve c: 
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TCK) 



FIGURE 6 

BESSEL FUNCTION ARGUMENT $ AS A FUNCTION OF 

TEMPERATURE. 
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FIGURE 6 

BESSEL FUNCTION ARGUMENT S 
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continue to decrease with increasing temperature as theory predicts. 

It is seen from Figure 5 that the calculated values are lower 

than the measured values by a factor of 10 at 7°K and a factor of 

100 at 2°K. This discrepancy might be due to incorrect estimates 

of the parameters B and T-?, resulting in part from the uncertainty 

in D and An attempt was made to obtain better agreement between 

calculated and measured relaxation times. Varying the parameters by 

orders of magnitude (and recalculating A) showed that better low 

temperature agreement was possible and also provided initial esti¬ 

mates for an iteration method for the parameters. The iteration 

method was only partially successful, apparently because the T]_ 

data could not be fitted simultaneously at 4, 7, and 16 °K using 

the EPR p measurements. However, an improvement is evident from 

curve c, Figure 5. The final calculation of the iteration forced 

a fit at 7°K; final values of the parameters are g = 2.3 x >6**' $ ^ 

V. Conclusions 

Measurements of the F-^ nuclear spin-lattice relaxation time 

in CaF2:Nd reveal a dependence of T^ on the orientation of the crystal 

with respect to the magnetic field. This was expected because the 

diffusion constant D depends on the orientation, as do the g factor 

and relaxation time of the impurity. Using Rorschach's ^ theoretical 

expression for’T^, values of the impurity spin-lattice relaxation 

time were computed from the T]_ data. When compared with EPR measure¬ 

ments and theoretical predictions, the resulting curve is seen to 
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exhibit the correct qualitative behavior over the entire temper¬ 

ature range, 2°K to 300°K. 

In view of approximations made in the development of the nuclear 

relaxation theory and in the analysis, the agreement between experi¬ 

mental results and the theoretical formula is probably as good as 

could be expected. The transition probabilities were calculated 

from simple models using first order perturbation theory; all angles 

were averaged over; and the barrier radius was only estimated. 

Possibly, spin diffusion does not cease at the barrier radius that 

was calculated for another reason: near the impurity second order 

effects may be important. There is one more possible reason for 

lack of close agreement between theory and experiment. The doping 

concentration was low enough that impurities other than neodymium 

probably have a significant effect. 

There are some refinements of the theory which might be profit¬ 

able. The assumption of a barrier radius within which spin diffuion 

does not occur and outside of which spin energy diffuses freely is 

not a very good approximation, and attempts should be made to cir¬ 

cumvent this approximation. The averaging over angles which was 

necessary in order that the magnetization density be a function of 

r only could be avoided by numerical methods. Consideration of nuclear 

relaxing mechanisms neglected so far might be helpful. For instance, 

the neglected dipolar term could be significant in some temper¬ 

ature range. 

Since in Rorschach's formula, Tj_ is dependent on the magnetic 

field strength H and the impurity concentration N, experiments in 

which T]_ is measured in crystals differing in N, and experiments in 
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which H is varied, would further indicate how well the nuclear 

relaxation time behavior is understood. An investigation of pro¬ 

ton relaxation in a single crystal, a hydrate containing Nd3/ im¬ 

purities, in which both H and the temperature were varied, has 

been carried out at temperatures below 4.2°K.^ Analysis employing 

the rapid diffusion and diffusion limited formulas gave order of 

magnitude, agreement with the experimental results. 
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VI. Appendices 

A. Coefficient of Dipolar Term S*j/ 

The dipolar interaction between a nuclear spin and an impurity 

spin is 

Hr* ~ ~r » [■*** ' M, - 3 • r) ( Ms • r )J 

? = r = Mi 7 •* *1.5 + <<,* 

Labeling as z' the impurity axis of axial symmetry, the g tensor in 

the primed coordinate frame is 

In another frame obtained by rotation through an angle rj about the 

x' -axis 

(10 0 \ 
O c*9 q q I 

0 -stiff ) . 

Since there is axial symmetry, this is a general rotation because 

x' can be any direction perpendicular to z'., The magnetic moment 

vector is then 

fax Sx ' \ 
9bs<j+atls. 

*s + 9* f.« / 

(9,,-Sx) 

3a1 ii'0***? * 9|, c^7 

9tt + 9„ 
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Our interest is in the dipolar term SZI^, so we retain only 

terms containing Ix and 1^; thus }jj.^ takes the form 

yrs ~ —jfs 7 

x^a^9-$V+J, f,)] 

Substituting polar coordinates for the direction cosines, 

©< ( a />wi (0 c&Q. <ft y ^ a. r so*** & -S9V** 0 ^ e^j ? C0<9 & 

and simplifying, 

. . <jT ti /3 r • . * a _ > ^ 

//jS -  • 3 -f (^»3 '»*'>» ®>OW(P 

t yoAf © ®)3 C J I ^ ■f /?.C, 

B. Spectral Density of S„ 

The spectral density J(uJ) of Sz is related to the correlation 

function <?»)* st«-) , where the bar denotes an 

ensemble average: 

*oo -Jou X /•* 

Tew ) = ) G- Cc) eT~'~ ' dx 
/_ oO 

Assuming the paramagnetic impurities to be in thermal equilibrium 

with the lattice, G(0) and G(®©) can be calculated using the Boltz¬ 

mann distribution. If HXz', 

-4fc. 

,-EM/kr 
p«-- r, e' F'v’,/*r 

M 

EM 

<?(«>)= XT P/M R,. M' -(H PMM) 
MM’ 

M M V
<M ' 

xs*ldt 
a/fT 

0 
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We choose an exponential correlation function consistent with the 

above conditions, 

Gcc ) -*+ * f *4 C 1' "ta* Aa*) e 
lrls*t «. 

In Appendix C it is shown that 'Cc is equal to the impurity ion re¬ 

laxation time yo . Substituting into the formula for the spectral 

density and carrying out the integration, 

yJliAj ) ^ 3 TJ "if. i £(Uf ) -f- ^ £ i ~ h, X) / -f- 1 w
s 

C 

C. Equality of the Correlation Time and the Impurity Relaxation 
Time 

For smallT the correlation function can be calculated. Let¬ 

ting P^/2 be the probability of spin l/2, and letting be the 

probability per second for the spin transition -l/2 H*l/2, 

Gtr) « $3 CP) CT; 

(0 
p^][(Wf *)(&) f . 

y© can be expressed in terms of Wf and , and these two 

transition probabilities are related to each other. First, 

' P-Ji Wf Kfr (A) 
and the observed impurity magnetization is proportional to 

ty = <\ ' P-K ~ 
2
 % • 

i#l - , 1A 
i-t ~ di-t 

- -r*l ( Wf+\Jt) +(Uf Wi) after algebraic 

manipulation. 
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Introducing the equilibrium magnetization 

Therefore, by definition of the relaxation time, 

p - ,, 1—r, (?J 
• W t +• Vv£ ° 

At equilibrium, P1/2 and P_-jy2 are related by the Boltzmann 

distribution. We then obtain from equation (2) 

* %)» . -a* 
W* XT, " e 

y - ^ M 
ikT 

) 

T 2Xtr 
-K 

9 

Applying equations (3) and (4) to the expression (1) for Oft") 

and simplifying, 

Git) = ~ ifjo ^x , 

Returning to the assumed correlation function of Appendix B, we can 

expand the exponential for small •£*, 

_ _ J'YL- 

<anA ax x) © Tc 

- f -i; (I )( i - ^ ) 

This is exactly the same as the calculated expression with p 
replaced by T^, the correlation time. 



-2'9- 

D. Effective Impurity Magnetic Moment 

To estimate the static moment of the paramagnetic impurity 

effective in quenching spin diffusion, we begin with the definitions 

of the correlation function Mhr)and the spectral density^AfO) . 

  

CO 

to) eJtUxc^u/ . 

By Fourier inversion 
/co 
, -AtOV 
/<(X ) e dx 

Thus the ensemble average of the square of the magnetic moment is 

oj 

resolved into spectral components, 
oo 

= Arco) 

Frequencies effective in quenching diffusion have a period ^ , 

T2 is the mean lifetime of a nucleus against spin diffusion. We 

can now find .44 : 

M 
2 —L 
S ~ X7T 

n 
^■Li/0) ^ 

From Appendix A, if Hj. z', 

- 3, 5 

y*i) 

-(01S ^ + 

The approximation is very good for temperatures greater than 2°K. 

Carrying out the integration, 
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