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Abstract 

Branching Processes with Biological Applications 

by 

Xiaowei Wu 

Branching processes play an important role in models of genetics, molecular biology, 

microbiology, ecology and evolutionary theory. This thesis explores three aspects of 

branching processes with biological applications. The first part of the thesis focuses on 

fluctuation analysis, with the main purpose to estimate mutation rates in microbial 

populations. We propose a novel estimator of mutation rates, and apply it to a 

number of Luria-Delbriick type fluctuation experiments in Saccharomyces cerevisiae. 

Second, we study the extinction of Markov branching processes, and derived theorems 

for the path to extinction in the critical case, as an extension to Jagers' theory. The 

third part of the thesis introduces infinite-allele Markov branching processes. As an 

important non-trivial example, the limiting frequency spectrum for the birth-death 

process has been derived. Potential application of modeling the proliferation and 

mutation of human Alu sequences is also discussed. 
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Chapter 1 

Introduction 

The theory of branching processes started in the middle of the nineteenth century 

with social scientists analyzing the reasons for extinction of family lines. With time, 

it has been found that numerous biological processes involving reproduction can be 

modeled, or at least approximated, by branching processes. Branching processes play 

an important role in models of genetics, molecular biology, microbiology, ecology and 

evolutionary theory. 

This thesis summarizes three topics related to branching processes with biological 

applications. The first topic, developed jointly with Drs. Sharon E. Plon and Erin 

D. Strome of Baylor College of Medicine, is fluctuation analysis with the main pur-

pose to estimate mutation rates in microbial populations. The basis of fluctuation 

experiments are spontaneous mutations, i.e., mutations occurring spontaneously, not 

induced by mutagenic agents. This provides a chance to model the biological process 

1 
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as an asexual two-type branching process. In this work, we present a novel estima-

tor of mutation rates, which allows for unequal population sizes Nt of the parallel 

cultures. Simulation results show a good accuracy and robustness of this estimator 

compared with the commonly used median estimator and the maximum likelihood 

estimator. The proposed estimator is applied to 20 yeast datasets collected during 

three separate days of study of chromosome loss and recombination in wild-type Sac-

charomyces cerevisiae strains. In addition, we propose an alternative approach to 

fluctuation analysis, based on two-type Markov branching processes. 

The second topic concerns the approximation of frequency of rare variants in 

Wright-Fisher model using a subcritical or critical branching process, and result-

ing investigation of transient processes leading to extinction in Markov branching 

processes. For the former problem, we follow Nagylaki's approach [8], which approx-

imates frequencies of rare alleles as a subcritical or critical branching process. For 

the latter, we summarize the known facts concerning the time to extinction, path to 

extinction and path on the verge of extinction in subcritical Markov branching pro-

cesses [16, 17, 31, 33], and extend these results to the critical case with finite variance. 

These results are relevant for the dynamics of extinction of disease-causing variants 

of genes in human populations. 

The third topic focuses on the infinite-allele Markov branching process. We assume 

that in a Markov branching process, individuals can mutate to novel identifiable types, 

which we call alleles. Mutation of a new-born individual to a novel allelic type is 
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independent of all other members of the population. The distribution of the number 

of offspring is assumed to be the same for all alleles, as well as the distribution 

of the life-time. Based on this setting, we derived the frequency spectrum for the 

infinite-allele birth-death process, following Pakes' approach [32], We then discussed 

the limitation and possible extension of this model in modeling the proliferation and 

mutation of human Alu sequences. 

1.1 Background concerning Branching Processes 

We first introduce the probability generating function (pgf) as an important tool in 

the analysis of branching process. In probability theory, the pgf of a discrete random 

variable is a power series representation (the generating function) of the probability 

mass function (pmf) of the random variable. If X is a discrete random variable taking 

values on some subset of the non-negative integers, with pmf {pk :— P{X = k), k — 

0,1, • • • }, then its pgf is defined as: 

oo 

k=0 

Easy to see that / (1~) = 1, E[X] = / ' ( 1 _ ) and pk = . 

For the notation and definitions of branching processes, we will follow Athreya 

and Ney [3]. 

Definition 1.1.1. Galton-Watson branching process 

A Galton-Watson branching process is a Markov chain Zn, n — 0,1, • • • , with state 



space {0} U and, transition probability 

p*\ i f i > 1 ,j > 0 
P(i,j) = P(Zn+1=j\Zn = i)= I 

[ Soj, i f i = o,j > 0 

where 5ij is the Kronecker delta and {pll,k = 0,1, - • •} is the i-fold convolution of 

probability mass function {pk, k = 0,1, • • • }. 

In other words, this Markov chain is determined completely by the pmf {pk,k — 

0,1, • • • }, which is the offspring distribution, and 0 is the absorption state of the 

Markov chain. 

For the Galton-Watson branching process Zn, write its pgf as fn(s). Suppose the 

offspring pgf is f(s). The relation between successive generations leads to an iterative 

rule of fn(s): 

/ n + i ( s ) = /(/„(*)). 

Assuming Z0 = 1, in terms of pgf, that is f0(s) = s, this iterative rule then gives a 

solution to the distribution of Zn. 

Definition 1.1.2. Markov branching process 

A stochastic process {Z(t,u>);t > 0} on a probability space P) is called a 

one dimensional continuous time Markov branching process if: 

(i) its state space is the set of non-negative integers; 

(ii) it is a stationary Markov chain with respect to the a-fields Tt — <r{Z(s, w); s < 

t}; 
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(Hi) the transition probabilities Pij(t) satisfy 

oo r oo "11 

j=0 lj=0 

for all i > 0 and |s| < 1. 

It is sometimes more convenient to use an intuitive description for branching 

processes. Consider the scheme of evolution and reproduction of a population of 

some particles. Each particle, independently of the others, lives in a life time and 

generates a random number of new offspring. If the life times are fixed, say to one 

time unit, and the splits happen only at the death of each particle, then the process 

is called a Galton-Watson branching process. If the life times are i.i.d. exponential, 

and independent of the offspring distribution, then the process is called a Markov 

branching process. 

A natural generalization of the continuous time Markov branching process is to 

allow life times to be i.i.d. random variables with arbitrary distribution G(t). If the 

life times are independent of the offspring distribution, then this process is called an 

age-dependent (Bellman-Harris) process. In contrast to Galton-Watson and contin-

uous time Markov branching processes, this process is not Markovian. For details 

about age-dependent processes, see [3, 15]. 

If we further assume that individuals give birth to their offspring not necessarily 

exactly at their death, but at randomly chosen instants during their lives, and the off-

spring distribution depends on the life time the general Crump-Mode-Jagers process. 

For details about general branching processes, see [15, 36]. 
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Depending on the mean m of the offspring distribution, branching processes be-

have differently. If m > 1, the process is called supercritical, m = 1 and m < 1 

correspond to critical and subcritical processes. In these two cases, the process will 

eventually die out. More details about the extinction probability and limit laws can 

be found in Athreya and Ney [3]. 

1.2 Outline of the Dissertation 

The dissertation is organized as follows: Chapter 2 explores the methodology and 

application of mutation rate estimation in cell population; Chapter 3 summarizes and 

extends the results concerning extinction of subcritical/critical Markov branching 

processes; Chapter 4 introduces the infinite-allele Markov branching process, and 

provides derivation for the limiting frequency spectrum for the birth-death process. 

Research described in Chapter 2 was published in Genetics [38] and Mutation 

Research [41]. Material of Chapter 3 is accepted by Statistics & Probability Letters. 

Material of Chapter 4 is being prepared for submission. 



Chapter 2 

Modeling Clonal Growth and 

Mutation in Cell Population 

This chapter studies the model of reproduction and mutation in cell population. 

Section 2.1 explores the methodology of fluctuation analysis in depth, and proposes 

a novel mutation rate estimator, which allows for large spread of the parallel culture 

population sizes. This section also includes a study of chromosome loss and recombi-

nation in Saccharomyces cerevisiae diploid yeast strains which vary in their genetic 

stability. In Section 2.2, we introduce an alternative model based on two-type Markov 

branching processes to describe dynamics of cell population. Based on this model, 

we present methods for the estimation of mutation probability. 

7 
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2.1 Fluctuation Analysis 

Fluctuation experiments were first introduced in 1943 by Salvador Luria and Max 

Delbriick to show that mutations in bacteria arise spontaneously [25]. The principle of 

fluctuation experiments considered in this section is as follows: A number of parallel 

(replicate) cultures, grown from independent cells from the same strain, are separately 

tested for a mutation phenotype, i.e., resistance to a lethal agent, by plating on a 

medium containing the agent; the total number of spontaneously arising mutants 

and viable cells per culture are determined and these data are used for statistical 

analysis. The distribution of the number of mutants per independently grown culture 

has been called the Luria-Delbriick (LD) distribution. In the past half a century, at 

least four major approaches have been used to study this distribution. These include 

asymptotics, computational methods, probability generating functions and moments 

[43]-

The pattern of the LD distribution is determined by the mutation rate, i.e., the 

frequency with which mutations appear in the population. Therefore, mutation rates 

can be estimated based on empirical counts of mutants and population sizes of par-

allel cultures. The widely used estimators of mutation rates are: the PQ estimator 

[25], the median estimator [23], the Lea-Coulson estimator [23], and the maximum 

likelihood estimator [18, 44], as well as Bayesian estimators [2]. However, most of 

these estimators, such as P0, mean and median, do not (and can not) consider varia-

tions in population sizes of the parallel cultures but assume the same population size 
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for each parallel culture. This assumption improves computational accessibility but 

may cause bias in estimation. On the other hand, the maximum likelihood estima-

tor can handle the population size variations but the optimization algorithm itself 

is computationally intensive, particularly as the number of mutants becomes large. 

In the present paper, we propose a new estimator, the modified median estimator 

that accounts for variations of the parallel culture population sizes Nt. We com-

pare the modified estimator to other mutation rate estimators through simulations, 

and formulate recommendations concerning the number of parallel cultures needed 

to achieve accurate estimates. Further, we apply our estimator to data derived from 

experiments using both S. cerevisiae diploid yeast strains and Escherichia coli. By 

analyzing the estimation variability of the two different data sets, we identify that 

the assumption of the independence of mutation rate on population size in the LD 

model may be inaccurate under certain conditions of relatively high mutation rate 

and small population size. 

2.1.1 The Luria-Delbriick Distribution 

The Luria-Delbriick distribution provides a mathematical tool to describe the 

expected number of mutants in a clonally growing population of cells. Mutant cells 

are the result of a mutational event in the original population which here we define 

as a stable change in the genetic material which confers a change in phenotype (e.g. 

drug resistance) that can be measured. Traditional methods for computing the LD 
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distribution require several necessary conditions: (1) Clonal growth is modeled as a 

continuous process over time; (2) Cell death is ignored. Therefore, when a cell divides, 

it is replaced by two cells capable of further proliferation. (3) The process starts at 

time £ = 0 with one wild-type cell. Mutations then occur at a rate /J per time unit 

(generation) per single cell (or alternatively, at a rate proportional to the population 

size, in the entire cell population). (4) Backward mutation is ignored. (5) Wild-type 

and mutant cells have the same growth rate. 

When these assumptions are satisfied, the probability mass function of the LD 

distribution can be characterized in a number of ways [26, 35]. In this paper we 

follow the formulation of [44], which is based on the recursive algorithm derived by 

Ma et al. [26]: 

Po 
k 

K j=i 3 + 1 

where 

m = j ^ N t - N o ) * ^ , (2.2) 

Nt 

Here, pi is the probability of getting i mutants in the population of size Nt at time t, 

m is the expected number of mutations by time t, /J is the mutation rate per unit time, 

Pi is the growth rate of cells, N0 is the number of wild-type cells used as seeds. Note 

that the expected cumulative number of mutations m is different from the number 
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k of mutants present at time t. m is usually smaller than k since each division of a 

mutant cell increments A; by 1, by Assumption (3) above, whereas m is incremented 

only by mutation events. 

The main objective of estimation is to determine the composite parameter fip — j^, 

called mutation rate per cell division. Estimating m is an alternative used in some 

literatures [23, 44, 35], since m is directly connected with through Equation (2.2). 

However, the use of m is not satisfactory in general since, even when the mutation rate 

/i is constant, m can vary from experiment to experiment because of the variability 

of the population size Nt. For this reason, we decided to estimate /i in this paper. 

2.1.2 Estimation of Mutation Rate 

Estimation of mutation rates is the main purpose of fluctuation analysis. Point 

and interval estimators of mutation rates allow quantification of the information re-

garding the genome stability of the target strain. We introduce three estimators in this 

section: the median estimator, the maximum likelihood estimator and the modified 

median estimator. The P0 estimator will not be discussed due to its known drawbacks 

[44], Because of the long-tail property of the LD distribution, the mean estimator 

(method of moments) tends to have a high variance and asymmetric confidence inter-

val, particularly with a limited sample and hence is considered less applicable either. 

(1) The Median Estimator 

A general way to find the median estimator is by equating the median of the 
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distribution to the empirical median number of mutants based on all cultures in the 

batch, 

where ko is median number of mutants based on all cultures of the batch. 

Numerical calculation of the median estimator relies on the cumulative distri-

bution function of the LD distribution, which involves iterative computation of the 

probabilities (see Equation (2.1)). Therefore a large value of ko (usually for k0 > 5000) 

will lead to computational problems. 

The Lea-Coulson estimator is a good approximation in the case of large k0 [23]. 

It satisfies the empirical relation (Equation (37) of [23]), 

where m is the expected number of mutations as defined above. 

In their paper, Lea and Coulson also concluded in a semi-empirical manner, that 

the pivotal quantity 

has an approximate N(0,1) distribution. Therefore, they use this quantity to obtain 

the median estimator, and its confidence interval (CI). 

(2) The Maximum Likelihood Estimator 

The first explicit and practical algorithm for computing the maximum likelihood 

estimator (MLE) of m was published by Jones et al. [18]. To evaluate the relia-

bility of the MLE, Stewart then provided a systematic method for constructing CIs 

jl-.P{K<k0\Nuji) = \ 

^ - log(m) - 1.24, 

( 11.6 
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[37]. Inspired by their work, Zheng perfected the MLE derivation and proposed a 

computationally feasible method for calculation [44], 

The MLE of m is given by: 

m = argmax L(m\k\, ...,kn, Ntl, ...,Ntn), 
m 

where L(m\ku ..., kn, Ntl,..., Ntn) = l oS P{k\m,4>). 

From the asymptotic distribution of the maximum likelihood estimator, Zheng 

further developed a Wald-type 100(1 — a)% interval estimation of mutation rate as 

m_ za/2 

Nt Nty/riffi)' 

where I(m) is the Fisher information defined by: 

• a i o g P ^ l m , ^ ) I{m) = E, K dm 

Like the median estimator, the MLE also has computational problems when ko is 

large. 

In general, the MLE is elegant, and easy to compute, but its CI depends on 

the asymptotic distribution, which is usually not realizable under experimental con-

ditions, therefore it has an obvious disadvantage when the sample size (number of 

parallel cultures) is not large enough. Furthermore, the MLE uses all the information 

in the data to find the mode of the likelihood function, and it may not be robust with 

respect to outliers. 

(3) The Modified Median Estimator 
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The median estimator is robust by its nature. However, it only uses partial in-

formation carried by the data, i.e., the number of mutants in the median culture of 

the batch, and discards the information provided by the other cultures. Moreover, 

depending on the experimental design, there may exist a serious spread of Nt in the 

batch of parallel cultures. Because the number of mutants depends on population 

size, the culture with the median number of mutants does not necessarily reflect the 

median mutation rate in such circumstances. This motivates us to find a generalized 

version of the median estimator. 

The modified median estimator is defined as follows: first, using the individual k 

and Nt, we estimate mutation rates for each parallel culture, based on the method 

of median (treating the single mutant colony count as the median of the size 1 sam-

ple); then we choose the median of those estimated rates as our modified median 

estimator. This estimator also allows detecting estimation variability and therefore 

can be used for exploratory and diagnostic analysis as well as for computing final 

estimated mutations rates (see further on, particularly Section 2.1.4 and Discussion). 

Mathematically the estimator is expressed as follows 

fi = median(jli), 

where /tj : P(Ki < ki\Nu, fa) = | is the estimate of the i-th culture. Detailed 

derivations of the modified median estimator are given in the Appendix A. 

The widely used median estimator is a special case of the modified median es-

timator under the condition of equal population size of all the parallel cultures in 
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the experiment. We may also generalize other estimators, such as the means-method 

estimator, and so forth, by applying them to the first step of the modified median 

estimator. 

2.1.3 Simulation Study 

The quality of a point estimator is generally judged by its MSE, and CI for the es-

timated parameter. Based on Monte Carlo simulations, we evaluate the performance 

of three estimators: the median estimator, the modified median estimator and the 

maximum likelihood estimator, using the MSE criterion. To evaluate their CIs, we 

use coverage rate, i.e., the probability that the CI will contain the true value of the 

parameter. 

The simulation procedure of the LD distribution is based on [44]. Using the sim-

ulated data, we then evaluate the performance of the three estimators. In agreement 

with the experimental process, we simulate 15 parallel cultures for every predeter-

mined The procedure for computing the mean squared error (MSE) is as follows: 

(i) For predetermined pi — 10 - 5 , simulate n pairs of ( k , N t ) , n from 1 to 15, 

where Nt follows lognormal distribution with mean TO = 106 and standard deviation 

s — 5 x 105, and k follows LD(N t , fJ.) distribution. Here the values of m and s are 

chosen to match typical values in our experimental data described in Section 2.1.4. 

(ii) Compute point estimates using the median, maximum likelihood and modified 

median method. 
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(iii) Repeat 1000 times and calculate the MSE for the three methods. 

Figure 2.1 Part A shows the MSE (in log scale) of the three estimators based 

on 1000 simulations when the number of parallel cultures varies from 1 to 15. We 

see from this figure that the modified median estimator performs better than the 

median estimator, and that the maximum likelihood estimator shows the lowest MSE 

among the three. Through another 1000 simulations, the coverage rates of the 95% 

CI of the three estimators when the number of parallel cultures varies from 1 to 15 

are shown in Figure 2.1 Part B. Clearly, an adequate estimator should provide a 

95% CI with coverage rate close to 95%, and coverage rate larger or smaller than 95% 

introduces additional type II or type I errors. The modified median estimator and the 

maximum likelihood estimator have coverage rates stabilizing at 95% as the number 

of parallel cultures increases. However, the coverage rates of the median estimator 

are always close to 1 under different number of parallel cultures. This shows that the 

95% CI calculated from the method of median is wider than that expected and thus 

is questionable. 

We also investigated the robustness of the point estimators to outliers in the 

number of mutants. To evaluate the robustness of estimators, we design outliers in 

data simulated in step (i) by assuming the normal data are from LD distribution 

with n = 10~5 and the outliers are selected from the tails (below the 2.5 and above 

the 97.5 percentile). Figure 2.2 shows that when the number of cultures (out of 15) 

containing outliers increases from 1 to 7, the MSE (based on 1000 simulations, in log 
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Figure 2.1: (A) Mean squared error (MSE) in log scale versus number of parallel cultures; 
(B) Coverage rate calculated based on 95% confidence interval versus number of parallel 
cultures. Parameter setting: /3i = 0.5, A'0 = 1 ,N t ~ lognormal with mean m = 106, 
standard deviation s = 5 x 105,/x = 10~5, number of simulations = 1000. Solid line: 
median estimator, dotted line: maximum likelihood estimator, dashed line: modified median 
estimator. 
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scale) of the three estimators also increases. Moreover, in such "noisy" environments, 

the maximum likelihood method gives biased estimates of the mutation rate whereas 

the median and modified median estimators are robust to the outliers. The modified 

median estimator has the best performance. This result suggests the superiority 

of the modified median estimator in real experimental conditions where outliers are 

unavoidable. 

10 
10 

o> -11 -9 10 
HI w 5 

- 12 
10 

2 3 4 5 
Number of outliers in 15 parallel cultures 

Figure 2.2: MSE in log scale versus number of outliers in 15 cultures. Parameter setting 
is the same as in Figure 2.1. Outliers (A;-values) were randomly chosen from below the 
2.5% percentile and from above the 97.5% percentile of the true LD distribution. Solid 
line: median estimator, dotted line: maximum likelihood estimator, dashed line: modified 
median estimator. 

Simulation study also provides an empirical way to determine the appropriate 

number of parallel cultures for fluctuation experiments. Figure 2.3 shows the relative 

MSE, ratio of the square root of the MSE to the mean of the estimates, in our 
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simulation study. Under the setting of m — 4 x 106, s = 2 x 106,/x = 10~5 (shown in 

solid line), the relative MSE decreases with slower rates when the number of parallel 

cultures increases. Therefore, we can choose the optimal number of parallel cultures 

as a compromise between estimation accuracy and experimental expenses. Other 

settings of the parameters lead to similar relative MSE pattern, as shown in dashed 

and dotted lines. From Figure 2.3, the reasonable number of parallel cultures is 

between 10 and 20, and we chose 15 in our following fluctuation experiments. 

Figure 2.3: Relative MSE versus number of parallel cultures. Nt ~ lognormal with mean 
m, standard deviation s. Number of simulations = 1000. Solid line: m = 4 x 106, s — 
2 x 106,ju = 10"5, dashed line: m = 4 x 106,s = 2 x lO6,^ = 2 x 10"5, dotted line: 
m = 8 x 106, s = 4 x 106, n = 10"5. 

0.35 
m=4x-|06, S=2x10® M=10"5 

m=4><106, s=2x10%=2x1Cf5 

• m=8*106, s=4x106, M=10"5 

0.1 
5 7 9 11 13 15 17 19 21 23 25 

Number of parallel cultures 

Repeated experiments or simulations provide the empirical distribution of the 

mutation rate estimates. The uncertainty in the estimates, here we use CI, is affected 
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by many factors. To answer the question "how much uncertainty in the estimates is to 

be expected merely on the basis of the stochastic variability inherent in the sampling 

process", Stewart provided some suggestions based on simulations to check the bias 

and standard deviation of the Lea-Coulson estimator and the maximum likelihood 

estimator [37]. However, these suggestions cannot be applied directly to the modified 

median estimator because its distribution is of no explicit form. We performed a 

simulation study to check the CI of the modified median estimator in relation to the 

settings of Nt and /.i. 

Our simulation study deals with the case of 15 parallel cultures. The uncertainty in 

the estimates is indicated by confidence intervals with ends being the 0.025 and 0.975 

percentile of the estimates in 1000 simulations. We show the result of these percentiles 

in Figure 2.4 under a typical setting of Nt with mean m = 106, coefficient of variation 

(i.e., the ratio of standard deviation over mean) p = 0.4, and mutation rate changing 

from 10~6 to 1.5 x 10~5. This percentile range can be summarized by two regression 

lines, as shown by the upper and lower solid lines in Figure 2.4. Table 2.1 lists the 

empirical regression coefficients under other settings of Nt (means: 106,2 x 106,4x 106, 

and 8 x 106, coefficients of variation: 0,0.2,0.4,0.6,0.8, and 1). We see that the 

variability of the estimates is a function of the mean and standard deviation of Nt, 

as well as of the mutation rate. To provide an example of application of this table, 

let us consider that in 15 parallel cultures Nt has mean 106 and standard deviation 

4 x 105 (the corresponding coefficient of variation is 0.4), and suppose the estimate 
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Figure 2.4: The 0.025 and 0.975 percentile of the estimates based on simulations. Nt ~ 
lognormal with mean m = 106, coefficient of variation p = 0.2. Number of simulations 
= 1000. Dashed line: lower and upper percentiles with mutation rate estimates are from 
1.02 x 10"6fo5.08 x 10~6. Solid line: regression lines. 
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of the mutation rate is ft, then with 95% probability ft should fall into the interval 

-3.008 x 10~7+0.5821 x fi to 0.609 x 10 -6+2.0677 x /}. In this way Table 2.1 provides a 

simple empirical rule to compute the confidence intervals of the estimates in repeated 

experiments. Monotonicity of the percentiles as the mean/standard deviation of Nt 

changes can be seen from the pattern of the slope coefficients. Let us note that the 

intercept coefficients play a less important role since they are usually 10 times smaller 

than the product of the slope coefficient and fx. 

Another application of Table 2.1 is to investigate whether the dilution procedure in 

measuring Nt can lead to unexpected large variability in the estimates. In fluctuation 

experiments, Nt is always very large and can only be approximately measured through 

serial dilutions. Suppose the true Nt has mean m and standard deviation s, denote 

the coefficient of variation by p = After r dilutions, each with dilution rate 

Pi,i — 1, • • • ,r, this coefficient of variation can be shown using conditional expectation 

as 

In our yeast assay, r = 4 and — 0.1 for i = 1, • • • , 4, m is of scale 106 and usually 

we observe p about 0.5, so we can see that the dilution procedure only increases the 

coefficient of variation of Nt by no more than 1.1%. Using Table 2.1, we see the 

change of the CI in the estimates is negligible. This eliminates a possible reason of 

the excess variability in the estimates described below (see Section 2.1.5). 

1 + Pr + PrPr-l + ' ' ' + PrPr-1 ' ' ' P2 
PrPr-1 •••Pl-m 
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Table 2.1: Practical computation of 95% confidence intervals: Regression coefficients 
for the 0.025 and 0.975 percentile of the estimates based on 1000 simulations. (A) 0.025 
percentile; (B) 0.975 percentile. Rows represent different coefficient of variation of Nt 
settings ranging from 0 to 1, columns represent different mean settings of Nt ranging from 
106 to 8 x 106. 

A m = 1 0 6 m = 2 X 1 0 6 m = 4 x 1 0 6 TO = 8 X 1 0 6 A 
Intercept slope Intercept slope Intercept slope Intercept slope 

p = 0 . 0 - 3 . 6 8 2 x 1 0 " 7 0 . 7 6 2 4 - 2 . 5 4 6 X 1 0 ~ 7 0 . 7 7 8 4 - 1 . 9 6 4 X 1 0 ~ 7 0 . 8 0 3 4 - 1 . 8 3 9 X 1 0 ~ 7 0 . 8 2 2 9 

p = 0 . 2 - 1 . 6 2 0 X 1 0 ~ 7 0 . 6 4 4 7 - 1 . 6 5 6 X 1 0 ~ 7 0 . 6 6 6 8 - 1 . 5 7 0 X 1 0 " 7 0 . 6 9 0 6 - 1 . 4 3 2 X 1 0 - 7 0 . 7 0 6 0 

p = 0 . 4 - 3 . 0 0 8 X 1 0 " 7 0 . 5 8 2 1 - 2 . 6 8 1 X 1 0 ~ 7 0 . 6 1 7 6 - 1 . 6 7 2 X 1 0 ~ 7 0 . 6 2 9 0 - 2 . 2 0 1 X 1 0 " 7 0 . 6 6 5 8 

p = 0 . 6 - 3 . 2 6 4 X 1 0 ~ 7 0 . 5 4 9 8 - 3 . 0 2 6 X 1 0 ~ 7 0 . 5 8 9 7 - 2 . 9 1 2 X 1 0 " 7 0 . 6 2 4 0 - 2 . 3 4 2 X 1 0 " 7 0 . 6 4 4 2 

p = 0 . 8 - 3 . 4 4 2 X 1 0 " 7 0 . 5 2 4 8 - 4 . 2 2 8 X l O " 7 0 . 5 7 4 7 - 3 . 2 4 8 X 1 0 ~ 7 0 . 6 0 6 7 - 2 . 7 5 1 X 1 0 ~ 7 0 . 6 3 9 5 

p = 1 . 0 - 3 . 2 3 0 X 1 0 - 7 0 . 5 1 1 5 - 4 . 1 2 0 X l O " 7 0 . 5 7 0 5 - 2 . 7 6 1 X l O " 7 0 . 5 8 9 9 - 3 . 5 0 4 X 1 0 ~ 7 0 . 6 3 7 4 

B m = 1 0 6 m = 2 X 1 0 6 m = 4 X 1 0 6 m = 8 x 1 0 6 B 

Intercept slope Intercept slope Intercept slope Intercept slope 

p = 0 . 0 0 . 6 0 8 X 1 0 ~ 6 1 . 4 2 1 0 0 . 6 1 9 X 1 0 ~ 6 1 . 3 7 4 2 0 . 4 1 6 X 1 0 " 6 1 . 3 5 0 8 0 . 3 9 2 X 1 0 ~ 6 1 . 3 1 2 1 

p = 0 . 2 0 . 7 0 1 X 1 0 ~ 6 1 . 6 2 3 0 0 . 4 4 5 X l O " 6 1 . 5 9 6 2 0 . 4 9 5 X l O " 6 1 . 5 6 2 7 0 . 2 1 6 X 1 0 ^ 6 1 . 5 5 4 0 

p = 0 . 4 0 . 6 0 9 X 1 0 " 6 2 . 0 6 7 7 0 . 5 5 0 X 1 0 " 6 2 . 0 1 0 4 0 . 5 4 9 X 1 0 ~ 6 1 . 9 6 0 2 0 . 3 1 8 X 1 0 " 6 1 . 9 3 1 1 

p = 0 . 6 0 . 8 9 3 X 1 0 ~ 6 2 . 4 6 3 8 0 . 6 0 5 X 1 0 ^ 6 2 . 4 1 4 2 0 . 4 5 8 X 1 0 " 6 2 . 3 4 4 0 0 . 5 3 1 X 1 0 ~ 6 2 . 3 2 3 6 

p = 0 . 8 0 . 8 1 2 X 1 0 ~ 6 2 . 9 1 2 4 1 . 2 8 6 X 1 0 ~ 6 2 . 7 2 8 1 1 . 2 1 1 X 1 0 ~ 6 2 . 6 1 2 1 1 . 4 0 8 X lO" 6 2 . 5 5 9 8 

p = 1 . 0 2 . 1 0 1 X 1 0 " 6 3 . 1 8 5 8 1 . 1 8 8 X 1 0 - ~ 6 3 . 0 9 9 6 2 . 3 8 4 X 1 0 ~ 6 2 . 8 8 7 8 1 . 5 5 8 X 1 0 ~ 6 2 . 8 2 5 9 
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2.1.4 Estimation of Mutation Rates in Yeast Strains 

Our experiments include two parts, one for budding yeast, Saccharomyces cere-

visiae, and the other for Escherichia coli. The yeast experiments were carried out in 

the following manner [38], which is a modification of the method described by Klein 

[22] to measure chromosome V instability in a large number of different strain back-

grounds. Wild-type S. cerevisiae strains were struck-out on YPD, rich non-selective 

media, so that colonies arose from single cells and allowed to grow for 3 days at 30°C. 

The colonies represent the parallel cultures in the fluctuation experiment. Twenty-

four separate colonies per strain were then chosen and dispersed in 200/ii of water 

each in 96 well plates. Culture size was estimated by measuring absorbance using 

the Tecan Spectroflour Plus at 620rem and the 15 out of 24 colonies with the closest 

optical densities were carried forward in the experiment. Tenfold serial dilutions up 

to 10~4 in water were made. In one set of experiments (noted as day 3 in Figure 

2.5, Part A) the 15 colonies were randomly selected without clustering by optical 

density. 100pi of the 10 - 1 dilution was then plated onto a SC-Arg plus canavanine at 

60pg/ml (to determine the number of mutant colonies) and 100/ii of either 10~4 or 

10~5 dilution was plated onto a YPD plate (to determine the number of viable cells) 

and spread with glass beads. Plates were grown for 3 days at 30°C and then colonies 

were counted using the aCOLyte SuperCount Colony Counter. The total number of 

viable cells Nt and the mutant cells k were used for fluctuation analysis. 

The fluctuation experiment is designed to avoid jackpots due to having mutant 
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cells in the starting culture. Each colony (the parallel culture in question) is started 

from a single cell. If that cell is mutant then k = Nt. Even if one assumes that the 

colony starts from 2-3 cells, one of which is mutant, this would result in extremely 

large fc's which were not seen on any regular basis. 

For the E. coli experiments, we use the same data and experimental procedures 

as described in Hastings et al. [14]. In this experimental protocol, 25 parallel cultures 

were assayed. Each parallel culture was initiated by a single colony which was then 

inoculated into liquid media and grown further. Mutant cells were identified at the 

end of the experiment by their ability to grow in the presence of valine. 

Because of its robustness and computational accessibility (compared to the max-

imum likelihood method) and favorable coverage and accuracy (compared to the 

method of median), the modified median estimator was chosen to analyze the ex-

perimental data obtained from a set of S. cerevisiae (budding yeast) strains. In the 

experiments involving these strains, the "mutation event" is defined as the instability 

(chromosome loss or mitotic recombination) of Chromosome V during cell division, as 

measured by conversion of a sensitive strain to a strain resistant to the drug canava-

nine. Statistical inference for Chromosome V instability rates (ficv) of the wild-type 

strains, including estimation and hypothesis testing, is based on 15 parallel cultures 

in every experiment. We use box plot for graphical depiction of the estimates of yucv 

derived by the modified median method in the yeast fluctuation experiments. Figure 

2.5, Part A shows the result of this method for the chromosome V instability assay 



26 

in a wild-type S. cerevisiae strain. In this figure, each box summarizes the distribu-

tion of the ncv estimates based on data from the 15 parallel cultures assayed in one 

experiment. The middle line in the box represents the modified median estimator 

of the corresponding strain. As noticed in the beginning of this section, we initially 

performed a total of 15 repeated experiments, each on 15 parallel cultures, on two 

separate days using the same wild-type strain. We then followed up with additional 

5 repeats carried out over a year later, by a different investigator. The corresponding 

licv estimates are shown by the 20 boxes in Figure 2.5, Part A. In comparison, the 

/lev derived using the standard median estimator for each experiment is depicted 

by an asterisk. The differences in the estimates of /lev between the modified and 

standard median estimators for each experiment reflect the effect of unequal Nt of 

the parallel cultures. In other words, the modified median estimator is taking into 

account variability in Nt to predict the mutation rate. 

2.1.5 Variability of Estimates and Dependence of Mutation 

Rates on Cell Population Size 

In the previous section we studied the estimation of ficv in yeast fluctuation ex-

periments. To examine reproducibility, each experiment was replicated a number of 

times on the same day and/or different days. Theoretically, under the same experi-

mental conditions and using the same LD model, the estimates based on independent 

repeats of the experiment involving the same strain should show limited variability. 
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Figure 2.5: Box plot of mutation rate estimates. Each box represents summary statistics 
of 15 mutation rate estimates (using the modified median estimator where we treat the 
mutant colony count per culture as the median of the size 1 sample) in the parallel cultures 
of each strain. Within each box, the middle line represents the modified median estimator; 
the asterisk represents the median estimator. (A) Box plot of mutation rate estimates 
in yeast wild-type strains in 20 replicate experiments on 3 separate days, ordered by the 
point estimates. Day 3 experiments were done separated in time from Days 1 and 2 by an 
independent investigator. In Day 3 experiments the 15 cultures (colonies) were not first 
clustered by size at the beginning of the experiment (see Section 2.1.4). (B) Box plot of 
mutation rate estimates in simulated data, ordered by the point estimates in Panel (A). 
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However, it is observed that the variability of the estimates in replicate experiments 

exceeds the simulated one due to unknown effects. This effect is visualized in Figure 

2.5, which compares the estimates of 20 replicate experiments carried out on three 

separate days (Figure 2.5, part A) with their simulated counterparts (Figure 2.5, Part 

B). In both parts of Figure 2.5, the left panel depicts 10 replicate experiments on Day 

1, the center panel depicts 5 replicate experiments on Day 2, whereas the right panel 

depicts 5 additional experiments performed by a different investigator on "Day 3" 

over a year after Days 1 and 2. As already remarked, the design of our estimator 

allows visualizing the within-replicate variability in a direct way, by plotting esti-

mates of mutation rates based on individual replicates. Comparison of the Day 1,2 

and 3 data demonstrates a remarkable reproducibility of the magnitude of estimated 

mutation rates and also of the among-replicate variability. 

The simulated data were generated using the same population sizes as in our 

repeated wild-type experiments, and assuming a common ficv for the Day 1 and Day 

2 plots (based on combined estimates of all 20 Day 1 and Day 2 experiments), and 

another ncv for the Day 3 plot (based on combined estimates of 5 Day 3 experiments). 

Obviously, point estimators of the 15 replicates (shown as the middle line in each box) 

in Figure 2.5, Part A show higher variability than those in Figure 2.5, Part B. We 

note that the absolute difference in these estimates in the 20 experiments shown in 

Figure 2.5, Part A varies less then fourfold (from a minimum of 7.21 x 10~6 to a 

maximum of 2.79 x 10~5). Similarly, in most other cases of replicate experiments 
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reported by Strome et al. (ref. [38], not shown), the variation of estimates among 

different day replicates is also less than fourfold. However, the corresponding pcv 

difference based on simulations in Figure 2.5, Part B is only about twofold (from 

a minimum of 9.38 x 10~6 to a maximum of 2.24 x 10~5). For many experimental 

systems where biologists are comparing strains whose mutation rate may vary by 

several units in the logarithmic scale, this excess variability is often overlooked, but 

needs to be strictly investigated from a statistical point of view since it may restrict 

model applicability. 

Confidence intervals are also helpful in judging the variability of the estimates. 

Reproducibility of experiments, or low variability in the estimates, leads to a high 

overlap rate among CIs. To realize this, notice that, for two independent experiments 

concerning the same Hcv, if we use 95% CI, then with probability 0.952 both intervals 

should contain the true parameter, and hence overlap. Accordingly, the variability 

difference between the estimates coming from experimental data and those coming 

from simulated data can be seen more clearly through the comparison of the overlap-

ping of CIs. Figure 2.6, part A shows the CIs of the modified median estimators of 

the 20 experiments with the wild-type strain. Figure 2.6, Part B shows the CIs using 

the same simulated data as in Figure 2.5, part B. The comparison suggests that the 

estimates of pcv based on the experimental data have larger variability than those 

based on the simulated data. 

This excess variability of the estimates reflects either fluctuations in the underly-
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Figure 2.6: Confidence intervals of mutation rate estimation. (A) Confidence intervals of 
mutation rate estimation in yeast wild-type strains in 20 replicate experiments on 3 separate 
days, ordered by the point estimates. (B) Confidence intervals of mutation rate estimates 
in simulated data, ordered by the point estimates in Panel (A). 
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ing /lev of the repeated experiments on the same yeast strain, or variability of the 

estimates due to deviations from the LD distribution. In order to answer "what is 

the basis for this variation", we need to analyze the variability problem in detail. 

Suppose in the total 15 experiments performed on Day 1 and Day 2 (Day 3 exper-

iments select colonies differently with Day 1 and Day 2 experiments, to avoid this 

confounding, we only consider Day 1 and Day 2 experiments), the underlying ficv 

is fii, /i2, • • • , Mi 5 respectively, and the corresponding estimates are /ty, i = 1, • • • ,15 

representing the experiment number and j = 1, • • • ,15 representing the culture num-

ber in each experiment. To check whether there exist fluctuations in the underlying 

Hcv, we need to test the null hypothesis H0 : HI — /i2 = • • • = Mi 5 versus the alter-

native Hi : there is at least one different from others. This is accomplished by an 

approach similar to analysis-of-variance (ANOVA). First we define the test statistic 

(F-statistic in ANOVA) to be the ratio of the "among-experiment-variance" to the 

"within-experiment-variance", where the "among-experiment-variance" is the sam-

ple variance of the modified median estimates, and the "within-experiment-variance" 

is the average of the sample variances of within each experiment. Second, we find 

the distribution of this statistic under null hypothesis HQ. Due to lack of explicit 

form, this is accomplished by permutation, i.e., we randomly permute among the 

experiments and calculate the value of the test statistic after permutation. Using 

this approach, we obtain a highly significant p-value equal to 0.0001 based on the 

experimental data. As a supplementary control, we determine that the p-value based 
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on simulated data with no "among-experiment-variance" is equal to 0.7732. This 

provides us sufficient evidence that there exist fluctuations in the underlying /lev in 

our experimental data. 

To identify possible reasons for variability of the estimates, we consider our ex-

pectation of constant mutation rate. Figure 2.7, Part A shows the scatter plot of pev 

estimates versus population sizes of the 300 cultures (20 replicate experiments of 15 

parallel cultures each) for the wild-type S. cerevisiae strain (same data as in Figure 

2.5, Part A and Figure 2.6, Part A). Under our experimental conditions, a significant 

inverse relationship can be found within certain population size range (Nt < 8 x 106 

cells/culture). This clearly contradicts the starting assumption of constant mutation 

rate. For comparison, the analogous scatter plot using simulated data (from the same 

simulations as those in Figure 2.5, Part B and Figure 2.6, Part B) is shown in 2.7, 

Part B. This scatter plot shows uniformity of the mutation rate estimates, as ex-

pected under the constant mutation rate used in the simulation. Similar scatter plots 

as 2.7, Part A can be observed if we assume an inverse relationship between Nt and 

[i when simulating data. This suggests that there may exist an inverse relationship 

between the population size Nt and the mutation rate /i under certain experimental 

conditions. 
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Figure 2.7: Scatter plot of mutation rate estimates versus population sizes. (A) Budding 
yeast data in wild-type background on 3 separate days, (B) Simulated data using constant 
mutation rate assumption. 
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2.1.6 Discussion 

We report in this chapter the derivation of a modified median estimator of muta-

tion rates, and its application to a number of Luria-Delbriick type fluctuation exper-

iments in S. cerevisiae. Through simulation, we see that this estimator is accurate, 

reliable and robust. In addition, this estimator provides flexibility as it provides an 

estimate of the mutation rate from each individual parallel culture in a fluctuation 

analysis experiment, which helps in experiments where Nt varies and in detecting 

variation of mutation rates and exploring the causes of variation. Using S. cerevisiae 

data, we found excessive variation compared to that seen in the simulated data. This 

finding demonstrates that the half-century old fluctuation experiment deserves a new 

look. 

We first validated the modified median estimator by comparing it to the usually 

used median estimator and to the maximum likelihood estimator, using an array of 

simulations. We also demonstrated that mutation rate estimates for strains known to 

differ in mutation rate, e.g. wild-type versus rad9 deficient were comparable to other 

published data [38]. 

As a conclusion, although the modified median estimator may be less accurate 

than the maximum likelihood estimator under ideal conditions, such as when all data 

are independently generated from one and the same LD distribution, it seems more 

robust to outliers in the data. Therefore, it appears to be superior under experimen-

tal conditions. The estimator exhibits good coverage properties in simulated data. 
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Application of the modified median estimator thus leads to increased accuracy and 

robustness of mutation rate estimation in fluctuation experiments. Also, as docu-

mented in Figure 2.3, the relative MSE of the mutation rate estimates using the 

modified median method falls below 20% if 15 cultures are used for analysis (solid 

line). This result provides a practical indication on "how many cultures should be 

used" for researchers planning to perform fluctuation analysis experiments to esti-

mate mutation rates. Generally, the number of cultures needed to reduce the relative 

MSE below certain level depends on the population size and the underlying mutation 

rate for the experiment in question. 

We applied the modified median estimator to estimate mutation rates in replicate 

experiments for a large number of yeast strains derived in a mutagenesis screen as 

described in Strome et al. [38]. The baseline computations on the starting wild-type 

yeast strain disclosed unexpected effects compared to the simulated data as described 

here. We detected excess variability of estimates in certain experimental conditions, 

which was not considered in other models. First, the twenty replicate experiments 

using the same wild-type yeast strain show a fourfold range of among-experiment 

variability of mutation rates. The variability exceeds the level consistent with the 

confidence intervals computed using not only our method but also the method of 

maximum likelihood. Although not important when comparing strains that differ in 

their mutation rates by several units in the logarithmic scale, this effect may be par-

ticularly important when designing experiments to compare strains whose mutation 
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rates may only differ slightly. 

We decided to try to identify the causes of higher than expected variability of 

estimates. There may be several reasons for the variability of the estimates. First, 

it may be impossible to control the experimental conditions of replicate experiments 

to be exactly the same, especially when experiments are performed on different days. 

However, we saw similar variability among replicate experiments performed on the 

same day as for experiments done on several different days, by different investigators. 

Second, the LD model may not be flexible enough to explain the data. The growth and 

mutation process of a cell population may involve cell death and variation of mutation 

rates. As described below, the mutation rate (either per unit time or per cell division) 

may depend on the population size Nt at each time point. As a consequence of this or 

similar effects, final experimental data might not follow the simple LD distribution, 

but a complex distribution determined by the mutually dependent parameters (Nt, fi) • 

From a mathematical viewpoint, to generalize the LD model, this means considering 

a population size-dependent process instead of a Markov branching process [3, 21]. 

In summary, the modified median estimator has been designed for two features, 

which are important for mutation rate analysis, i.e., robustness to outliers and control 

of variability of estimates. Particularly the latter feature is important as it may pro-

vide a lower limit for detection of differences when comparing mutation rate between 

different strains in large series of data (more than 100 strains, as in Strome et al. 

[38]). 
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As documented in Results, exploratory analysis using the budding yeast data 

shows an interesting inverse relationship between the population size Nt and the 

estimated mutation rate under certain experimental conditions. To verify whether 

this relationship holds more generally in clonal growth and mutation process, we 

also investigated data derived from measuring mutation rate of a series of strains of 

Escherichia coli using parallel liquid cultures (for details, see [14]). Figure 2.8 shows 

the box plot and scatter plot for this bacterial dataset and simulated data analogous 

to those for yeast and simulated data (Figure 2.5 and Figure 2.7). We see that in the 

bacterial case, although the mutation rate estimates in experimental data still have 

larger variability than those in simulated data (comparing Figure 2.8, Part A with 

C), the dependence on Nt is not present (Figure 2.8, Part B) which is similar to what 

we expect and observe in simulated data (Figure 2.8, Part D). This indicates that the 

dependence on Nt is not a unique explanation of excess variability. 

Another factor may be the biological process being measured itself. As an example 

for the yeast experiments described here, other investigators have reported that once 

diploid yeast cells lose one copy of Chromosome V, they grow slower and then rapidly 

reduplicate the mutant chromosome [39, 42]. Thus, growth rate of mutant cells may 

vary during the growth of the culture which is not considered in the model. Another 

example of these phenomena is the work of Boesen et al. [4]. They demonstrate 

in an assay of mutation rate in a mouse lymphoma cell line that the mutation rate 

varies over a tenfold range during the growth of the culture only when they allow 
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Figure 2.8: Box plot of mutation rate estimates and scatter plot of mutation rate estimates 
versus population sizes. (A) Bacterial data, box plot, (B) Bacterial data, scatter plot; (C) 
Simulated data using constant mutation rate assumption, box plot, (D) Simulated data, 
scatter plot. 
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growth conditions to become limiting over this growths period. The Luria-Delbriick 

model may be extended by allowing different growth rates of wild-type and mutant 

cells, as seen in [44], For more general cases where cell growth rate (for both mutant 

and wild-type cells) and mutation rate may be affected by several factors, a deep 

exploration to the modeling methodology is needed. 

However, returning to the colony size-dependence issue, it is noted that bacterial 

laboratory populations used in fluctuation experiments are generally larger and the 

process being monitored in this experiment has a lower mutation rate than in the 

chromosome instability assay in yeast. Usually, a S. cerevisiae colony (the parallel 

culture used in this assay) contains 106-107 cells and the mutation rates in this assay 

(chromosome loss and/or recombination) are on the order of 10~5, whereas the bacte-

rial cultures contain 109-1010 cells and the typical mutation rates are on the order of 

10 - 8 . In Figure 2.7, Part A, the inverse relationship holds only for small (< 8 x 106) 

values of Nt, but it tends to disappear for high values of Nt, which may be the reason 

it did not manifest itself in bacterial data (the right-hand side tail of the scatter plot 

in Figure 2.7, Part A seems consistent with Figure 2.8, Part B). 

To minimize this variability, it might be possible to use assays with higher values 

of Nt. This will result in higher fc-counts (on the order of 103-104), particularly for 

high mutation rates, such as the chromosome instability rates investigated in [38] and 

in the current paper. Unfortunately, because of the long right-hand tail of the LD 

distribution, this may lead to computational problems. In such situations, it may 
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prove practical to use the approximate expression of Lea and Coulson [23]. 

This analysis has implications for other experimental systems when Nt may be 

limited. We note that Kimmel and Axelrod reviewed several data sets used for fluc-

tuation analysis in mammalian cells, mostly in a mutation to resistance context [20]. 

In these experiments, Nt varies within the 105-107 range, similar to the yeast experi-

ments of Strome et al. [38], and therefore it will be important to determine whether 

there is a dependence of the mutation rate on population size in these experimen-

tal systems as well. Future studies will focus on relaxing the model assumptions to 

reduce the variability in mutation rate estimates. 

2.2 Modeling by Two-Type Markov branching pro-

cesses 

An alternative way to model clonal growth and mutation in cell population is by 

two-type Markov branching processes (MBP). We assume that in a cell population, 

the life spans of cells are i.i.d. exponential random variables. Every cell (in general 

context of MBP, it is also called individual or particle) produces a number of offspring 

at its death. The number of offspring is a non-negative discrete random variable. 

There are two types of cell in the population: wild-type and mutant. Depending on 

its parental type, a new-born cell can mutate into the other type with a probability. 
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2.2.1 Preliminaries of Markov branching processes 

Suppose the cell population can be modeled by a continuous-time MBP Zt. The 

process Zt has offspring distribution with pgf / ( s ) = Y^kLoPksk- Suppose the life 

length of each cell follows exponential distribution with parameter a. Denote the pgf 

of the process Zt by F(s, t) — E\ [sZt~\. Here subscript 1 means that the process starts 

from a single cell. Then F(s, t) satisfies the forward Kolmogorov equation 

dF(s,t) dF(s,t) 
~ a ^ = 

where <p(s) = a(f(s) — s), and the backward Kolmogorov equation 

= (2.3) 

with boundary condition F(s, 0) = s; see [3] for details. 

Denote the mean of the offspring distribution by m. Taking derivatives on both 

sides of Equation (2.3) with respect to s, as s | 1, we obtain such an ordinary 

differential equation (ODE) for Ei[Zt\: 

d ^ = a{m-l)El[Zt}. 

Solving this equation, we see that 

E1[Zt]=ex\ (2.4) 

where A = a(m — 1) is the Malthusian parameter. Equation 2.4 describes the expo-

nential growth of continuous-time MBP. This equation will be of use further on in 

the next section. 
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2.2.2 Estimation of Mutation Probability 

We model the clonal growth by a supercritical MBP, starting from one wild-type 

ancestral cell. As usual, we denote the offspring pgf by f(s) and the parameter of 

the exponential life span by a. This process is completely described by the backward 

Kolmogorov equation (2.3). 

We further assume that: (i) every wild-type cell can mutate with probability fi; (ii) 

mutation is non-reversible; and (iii) mutant cells have the same offspring distribution 

and life span as wild-type cells. Denote the offspring pgf initiated by a wild-type 

cell by /(°)(s), and the offspring pgf initiated by a mutant cell by Similarly, 

denote the pgf of the process initiated by a wild-type cell by F0(s,t), the pgf of the 

process initiated by a mutant cell by Fi(s, t), and write F(s, t) — (F0(s, t), Fi(s, t)). 

The backward Kolmogorov equations of this two-type MBP have the form: 

°2g& = a\fM{F{8,t))-F0(a,t)] 
, (2.5) 

with boundary conditions Fo(s,0) = Sq, F i ( s , 0 ) = s i . 

Now suppose the offspring distribution is of simple binary-fission type (Yule pro-

cess). Suppose the mutation is non-reversible and occurs with probability fi, so that 

f(0){s) = ( l - / j , ) 2 s l + 2fj,(l-{j,)s0s1+n2s2
1, / ( 1 ) ( s ) = s\, and F\(s, t) is only a function 

of s j and t. Accordingly, (2.5) becomes: 

= a [ ( l - m)2F0
2(S , t) + 2/x(l - / i )F 0 ( s , t)Fx{sut) + fi2F?(8l,t) - F0(s, t)] 
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The analytic solution to (2.6) may be found in Kimmel and Axelrod [21]. It requires 

some preliminary knowledge of Riccatti-type equations. In our context, the purpose 

is to estimate parameter p using observed data, i.e., the number of wild-type and 

mutant cells at time t in repeated experiments. For this purpose, the explicit pgf 

solution is difficult to apply in the maximum likelihood sense. Therefore, we turn 

to the method of moments, which needs only the moment information instead of the 

whole pgf, so that derivation of the explicit pgf is not necessary here. 

Taking derivatives on both sides of the first equation in (2.6) with respect to s0 

and Si, we obtain ODEs for the expected numbers of wild-type and mutant cells at 

time t in a population when initiated by a wild-type cell. The solution turns out to 

This result is easy to interpret. For Markov branching processes, it can be seen by 

Equation (2.4) that the mean process behaves as an exponential function of time. If 

the initial population size is 1, then at time t, the expected population size E[Zt] — ext. 

For the binary-fission case, suppose the two-type MBP is initiated by a wild-type 

cell, it is easy to see that the expected total population size at time t is eat, since 

m = 2. Under the above assumptions (i), (ii) and (iii), the non-mutant process has 

m — 2(1 — p), so the expected non-mutant population size at time t is This 

explains M0(t) and Mx(t) in (2.7). 

Based on this result, the parameter // can be estimated by the method of moments 

be: 

(2.7) 
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if data from repeated experiments are available. Note, the meaning of repeated 

experiments here is equivalent to parallel cultures in fluctuation experiments, see 

Section 2.1.1. Suppose we perform n repeated experiments, and count wild-type and 

mutant cells at the same time for all the experiments. Denote the numbers of wild-

type and mutant cells at time t in experiment i by ni^ (i) and m^\t), and define the 

average counts: 

1 n 

n —' i=i 

m i { t ) = l-jrm?{t). 
i=1 

By the method of moments, the mutation probability can be estimated as: 

In m0(t) 
(2.8) 

ln(m0(i) + mi(£))_ 

A slight extension is to allow cell death. Suppose the offspring distribution is 

birth-death with death probability q, i.e., / ( 0 ) («) = (1 - <7)(1 - v ) 2 s l + 2(1 ~ <7)M(1 ~ 

fi)s0si + (1 - q)n2s\ + q, /(1)(«) = (1 ~ <l)s\ + q• Then (2.5) becomes: 

dF„ 
dt o[( 1 - ?)(1 - h)2Fq + 2(1 - qM 1 - / i ) ^ + (1 - q)fi2F2 + q - F„] 

<% = a[{l-q)F? + q-F1] 

Similarly, we obtain the expected numbers of wild-type and mutant cells at time t 

when initiated by a wild-type cell: 

M0(t) = eo(i-2^-2g+2w)t 

M1(t) — ea(-1~2q')t - eo(l-2M-2<?+2qn)t 
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Therefore, 

ln(mo(t) + mi(t)) — lnmo(t) 
M ~ \n(m0{t) + mi(t)) + at 

Clearly, in this case, the composite parameter at must be known to estimate p or q. 

In a more general case, wild-type and mutant cells may have different life spans 

do, ax and different death rates q0, qx. We also allow backward mutations. Denote the 

backward mutation rate by v, then (2.5) becomes: 

= o0[(l - g0)(l - M)2^2 + 2(1 - <ZoMl - rfFoF! + (1 - q0)p2F? + <Zo - F0] 

f L = a i [ ( i - g i ) ( ! - ^ + 2(1 - qi)v{\ - v)F0F! + (1 - qiyF* + Ql- Fx] 

Again, the expected numbers of wild-type and mutant cells at time t when initiated 

by a wild-type cell can be obtained by solving such an ODE array: 

- a0 [(1 - 2 f i - 2q0 + 2q 0 f i )M 0 ( t ) + 2(1 - q0)fiNQ} 

^ = ao [(i _ - 2q0 + 2q0n)M1{t) + 2(1 -
< 

« = oi [(1 - 2i/ - 2qx + 2qxv)N0{t) + 2(1 - qi)uM0] 

M = ai [(1 - 2// - 29 l + 2qiv)Nx{t) + 2(1 - 9l)i/Afi] 

where N0 and Ar
1 represent the expected numbers of wild-type and mutant cells when 

initiated by a mutant cell. 

2.2.3 Simulation Study and Discussion 

We perform a simulation study to illustrate the model of Yule process. The 

simulation of MBP requires a self-recurrent technique to realize cell reproduction 

procedure. This programming is done in Matlab. Started from an ancestral cell 



46 

(generation 0), we record the birth and death time for every cell in later generations, 

as well as its allelic type and genealogy information, up to some time limit. In the 

simulation study, we set the life time of every cell as an exponential random variable 

with parameter 1, and set the mutation probability fx = 0.05. Finally we count the 

number of wild-type and mutant cells and use the average among repeated simulations 

to obtain mo(t) and rrii(t). The simulation is repeated for 100 times, and the counting 

procedure is done every 0.03 time unit. Due to computational limitation, we only 

simulate a population with 14 generations. 

Figure 2.9 illustrates the trajectories of average population size for both wild-type 

and mutant cells over time, based on 100 simulations. We see that the empirical 

averages match the expected curves obtained through Equation (2.7), which shows 

that our simulation is indeed based on MBP. We then use Equation (2.8) to estimate 

the mutation probability /j, at every time point and plot the result in Figure 2.10. 

We see from Figure 2.10 that the estimates do follow the true mutation probability, 

except for the initial stage when the population size is very small. 

Similarly as in Kimmel and Axelrod [21], we list in Table 2.2 some characteristics 

related to the estimation of mutation rate for different models. Derivations concerning 

the two-type MBP model is easy to obtain from Section 2.2.2. The other derivations 

can be found in Kimmel and Axelrod [20]. 

We note that there are some limitations for the estimation of mutation probability 

using the two-type MBP model. First, in order to apply the method of moments, 
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Figure 2.9: Average counts over time for wild-type and mutant cells. (A) number of 
wild-type cells mo(t); (B) number of mutant cells m\(t). 
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Figure 2.10: Estimates of mutation probability at every time point. 
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Table 2.2: Comparison of different models in describing cell population dynamics. 

Model Fluctuation Analysis MBP (Yule) MBP (Birth-Death) 

Expected number of fill viable cells e f t ' eot e a ( l - 2 ? ) t 

Expected number of wild-type cells (1 £a(l-2/ i ) t ea(l-2/x-2g+2g(i)t 

Expected number of mutant cells e at _ e a( l -2 / j ) t e a ( l - 2 9 ) t _ ea(l-2/j-2g+2ij | j)t 

data from repeated experiments must be obtained at the same time t. This con-

dition seems to be always satisfied for parallel cultures in fluctuation experiments. 

However, when we repeat the same experiment for multiple times, as done in Section 

2.1.4, these data collected from different days cannot be integrated for the purpose 

of mutation probability estimation. For this reason, it is not appropriate to apply 

this model to the yeast experimental data. Second, as a moment-based estimation 

method, it encounters the same robustness problem as the mean estimator in fluc-

tuation analysis has. Therefore, in real experiments where noise always plays a role, 

the estimation may be biased and not reliable. Third, it is not easy to provide confi-

dence intervals in the estimation of mutation probability based on the two-type MBP 

model. Alternatively, we may be able to use variance (second moment) information 

from the method of moments. 



Chapter 3 

Extinction of Markov Branching 

Processes 

Extinction problems in branching processes have been studied for a long time since 

the theory of branching processes started in the middle of the nineteenth century. 

Besides the well-known facts about the extinction probability and its asymptotics, 

a well-developed topic is the time T to extinction, in a range of situations (see, e.g. 

[17, 31, 33]). However, the time to extinction alone is not enough to characterize 

the full picture of a branching process on its path towards extinction. There are still 

some other problems concerning extinction that need to be explored. Recently, Jagers 

et al. studied population size partway (or u-way) to extinction, namely ZuT, under 

a suitable normalization, for subcritical general branching processes [17], To depict 

the last stage of extinction in more detail, in their another paper, the same authors 

49 
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obtained results on the "path on the verge of extinction", i.e., ZT_U, for subcritical 

Markov branching processes [16]. 

This chapter summarizes the three topics of extinction in subcritical MBP, i.e., 

time to extinction, path to extinction and path verging on extinction, and provides 

systematic proofs. Moreover, results concerning these topics are extended to the 

critical case with finite variance. Monte Carlo simulations are performed to illustrate 

the theoretical results for both subcritical and critical cases. 

This study is motivated by the approximation of genetic drift using branching 

processes. 

3.1 Motivation: Modeling Genetic Drift 

Random genetic drift refers to the fluctuations in allele frequency, occurring par-

ticularly in small populations as a result of random sampling among gametes [10, 13]. 

Other systematic evolutionary forces, such as selection, mutation and migration, cause 

nonrandom changes in allele frequency. There are different approaches to model ge-

netic drift. In particular, we are interested in Nagylaki's approximation of genetic 

drift for rare alleles. 

3.1.1 Background Concerning Genetic Drift 

Genetic drift was first introduced by Sewall Wright, one of the founders in the field 

of population genetics. It is known that genetic drift is one of several evolutionary 
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forces which lead to changes in allele frequencies over time, for example, certain alleles 

becoming fixed and others being lost. The role of genetic drift in the evolutionary 

scheme has raised a vigorous debate among population geneticists. 

The Wright-Fisher model describes the process of genetic drift in a finite popula-

tion [9, 40]. The model assumes that gametes are chosen randomly each generation 

from an effectively infinite gamete pool reflecting the parental allele frequencies, and 

the sampling is binomial (for two-allele case) without considering the effect of muta-

tion or selection. Suppose that we have a population of N diploid individuals. For a 

single locus, there are two alleles A2. In this finite population in which drift alone 

is acting, if initially there are i copies of the Ai allele, then the probability that this 

population ends up with j copies of the Ax allele after one generation is given by 

Nagylaki [29] described and discussed the multinomial-sampling model for selec-

tion, mutation and random genetic drift at a single multiallelic locus in a panmictic 

(i.e., random-mating), monoecious (i.e., unisexual, hermaphroditic), diploid popula-

tion with discrete, non-overlapping generations. He presented four different approxi-

mations for large populations. For frequent alleles (i.e., allelic frequencies are of order 

one as population size N —»• oo), the standard diffusion approximation holds if all 

the evolutionary forces are comparable [7]; the Gaussian approximation applies if the 

P 11j 

3.1.2 Nagylaki's Theory 
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deterministic forces, though still weak, dominate random drift [28]. For rare alleles 

(i.e., allelic frequencies tend to zero in probability as N oo), if the allelic numbers 

are small (of order one as N —> oo), the multiallelic Wright-Fisher model reaches a 

limit of a branching process with immigration; if they are moderate (tends to infinity 

with positive probability), the diffusion approximation of [8] holds. 

We briefly introduce the basic model and the approximation for rare alleles using 

branching processes. The model follows [28], where a Markov chain was derived for 

the allelic frequencies from that of the genotypic frequencies. The life cycle starts 

with N monoecious adults. We focus on a single locus with r alleles and denote the 

frequency of the unordered genotype AiAj,I < J, just before reproduction by PL3. 

The frequency of Ai at this stage is 

j:j>i j:j<i 

After panmictic reproduction, the adults produce an infinite number of gametes, 

which then form zygotes according to the Hardy-Weinberg law with unordered geno-

typic frequencies (2 — 5l3)plp3) where 5,3 represents the Kronecker delta. 

Selection plays a role in the growth of zygotes. Denote the viability of AiAj by 

Wij, then after selection the genotypic frequencies are 

p * = (2 - 5ij)wjjPiPj 
13 Efc<;(2 - 8ki)v>kiPkPi' 

and the population size remains infinite. 

Mutation comes in next. Denote the probability of Ai mutates to A3 by u y , and 
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k<l 

$ij U'ij. 

suppose uu — 0, we obtain the genotypic frequencies after mutation 

= 2 ~~ ^ + RkjRli)Pkl> 

where 

Rij = 

The life cycle is completed by random sampling, which reduces the population from 

infinity back to N adults with unordered genotypic frequencies P'y By multinomial 

sampling assumption, we obtain the transition probabilities of the Markov chain of 

genotypic frequencies, in terms of pgf: 

( i - I>) 

E IK'V 
N 

= £ n 
\ i < j 

i j Sij (3-1) 

Equation (3.1) reveals that the vector of gene frequencies p(n), where n = 0 , 1 , 2 , - -

is time in generations, is Markovian. Suppose Ax, • • • ,Ar-i are mutants and Ar is 

the wild-type allele. Let yi — 2 Npit i — 1, • • • ,r — 1 be the observed mutant numbers. 

Nagylaki [29] has shown that: For rare alleles, if the allelic numbers are of order 1, 

as N —> oo, and assuming independence among alleles, then 

E 
i—I 

i=i 
exp 

r —1 

Y^iUri + U!iryi)(Si ~ 1) 
i=1 

(3.2) 

where ^ = 2Nu%] represent the expected numbers of mutations in the population. 

Detailed proof is given in Appendix A in [29]. Therefore we see that (i) the allelic 

number Yi(n) forms a branching process, (ii) K,(n) has a Poisson offspring distribution 

with mean wir, and (iii) Y^ri) is augmented by a Poisson influx of mutants at the 

rflt/G f~tri' 



Therefore genetic drift for rare alleles can be approximated by a branching process 

with immigration if the allelic numbers are small. It should be noted that in Equation 

(3.2), wir represents the mean of the Poisson offspring distribution, which determines 

the type of branching process, critical or super/subcritical, whereas /zri describes the 

particle immigration in the branching process. Current analysis concerns the version 

of branching process without immigration (i.e., \irL = 0). This corresponds to a single 

or multiple mutant alleles introduced at time t — 0. The version with immigration 

will be considered in the future. 

To uncover the relation of the type of branching process to the type of selection 

in the Nagylaki model, we need to develop more general theoretical approach for 

different cases of monoecious/dioecious population with discrete overlapping and fur-

ther continuous generations. Our ultimate goal is to use the theoretical result as a 

guidance to study the dynamics of extinction of disease-causing variants of genes in 

human populations. 

Motivated by the approximation of genetic drift using branching processes, we 

concentrate on a study of the extinction problems in MBP. 

3.2 Facts about Markov Branching Processes 

In this section, we consider known facts about MBP. We briefly introduce the 

main results about the 7r(s) function, the survival probability function Q(t) and the 

conditional limit distribution of the process Zt, as was done in [16]. Interestingly, 
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each result can be extended to the critical case with finite variance. 

A MBP Zt (unless specifically stated, we assume that it starts from a single 

particle) is completely determined by its offspring distribution and expected life span, 

given that the offspring are independent, identically distributed. Suppose the life 

length of each particle follows exponential distribution with rate parameter a, and 

the pgf of the offspring distribution is given by f(s) = YlT=o PkSk• Denote the pgf 

of the process Zt by F(s,t) — Ei [sZt]. F(s,t) satisfies the forward Kolmogorov 

equation 

dF(s,t) ,dF(s,t) 
~DR = < l > ( s ) ~ a — 

where 4>(s) = a(f(s) — s), and the backward Kolmogorov equation 

= (3.3) 

with boundary condition F(s, 0) = s; see [3] for details. Let m and a'2 denote the 

mean and variance of the offspring distribution and write r = a( 1 — m). It is easy to 

check by Equation (3.3) that 

Ex [Zt] = e~rt. (3.4) 

3.2.1 The Tr(s) Function 

For both the subcritical and critical cases, we define a specific function 

dv 
As) = f 

Jo <t>W 
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for 0 < s < 1. It turns out that the 7r(s) function plays an important role in the 

extinction of MBP. 

Lemma 3.2.1. In the subcritical case, 

7r(s) ~ — l n ( l - s), as s | 1. (3.5) 

Furthermore, 

7r(s) = —r_1[ln(l — s) + In6] + o(l), as s t 1, (3.6) 

where 1 < b < oo is a constant, if and only if the x log x-condition holds: 
oo 

^(fclnfc)p f c < oo. (3.7) 
fc=2 

In the critical case, if a2 < oo; then 

2 2 
7r( s) \ 2*1—' a s s T L (3-8) aer2(l — s) ao^ms 

Proof. In the subcritical case, 

hm = l i m ^ f a = — 1 lim = I = -
«U ln(l — s) afi ln(l - s) a «ti f{s) - s a( 1 - m) 

It follows that limsTi = 1, hence 7r(s) ~ — l n ( l — s), as s t 1. 

Furthermore, In k)pk < oo, which is equivalent to f* 

oo, see [3] page 26, and the integrand is a continuous function when 0 < s < 1. There-

fore, the x log x-condition is equivalent to limsTi [—r_1ln(l — s) — 7 r ( s ) ] = constant. 

(1—m)(l—s) f(s)-s ds < 
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Denote this limit by I n 1 < b < oo. Then, 7r(s) = —r-1[ln(l — s) + In6] + o(l), 

as s t 1. 

In the critical case, we need to apply the l'Hopital's rule twice. 

v n w \ i- fo a(f(v)-v) r 1 / l a ( f ( v ) ~ h m ( l - « ) * ( * ) = hm 1 / ( 1 _ 8 ) = hm ^ _ ^ 

= hm T ' 2 , ( 1 ; — lim• 2 - 2 
» n a ( / ' ( s ) - l ) «u a/"(s) aa 2 ' 

It follows that limaT1
 aff2(1~s)7r(s) = 1 hence vr(s) ~ aa2(]_s), as s | 1. The second 

aymptotic equivalence is straightforward. • 

Lemma 3.2.1 tells us of the different asymptotic behavior of 7r(s) function as s | 1 

in the subcritical and critical cases. To visualize this conclusion, we plot the 7r(s) 

function and its asymptotic equivalent for both cases in Figure 3.1, assuming that 

the offspring distribution is binary fission or Poisson. 

3.2.2 The Survival Probability Function 

Proposition 3.2.2. Suppose Zt is a Markov branching process and define the survival 

probability Q(t) — P\(Zt > 0). In the subcritical case, if (3.7) holds, we have 

Q(t) ~ &~1e~rt, as t -> oo. (3.9) 

In the critical case, if a2 < oo, we have 

2 
Q(t) ast-^oo. (3.10) 

aazt 
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Figure 3.1: 7r(s) function and its asymptotically equivalent functions. (A) binary fission, 
subcritical, m = 0.5; (B) binary fission, critical; (C) Poisson, subcritical, m = 0.5; (D) 
Poisson, critical. 
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Proof. By Equation(3.3), J j S o ^ ~ 1- solving this differential equation 

and using the boundary condition F(s, 0) — s, we obtain 

7r(F(s,t)) = ir(s) + t. (3.11) 

Therefore 

7t(F(0, t)) — t. (3.12) 

In the subcritical case, as t —> oo, Equation (3.12) and (3.6) lead to — r -1[lnQ(£)-f 

ln6] + o(l) = t, which means lim^oo r_ 1[ lnQ(i) + In6] + t — 0, hence Q(t) ~ b~le~rt 

as t —> oo. 

In the critical case, if a2 < oo, as t —> oo, (3.8) and (3.12) lead to limsfi a a — 

1, hence Q(t) ~ -^i as t —> oo. • 

This result is well known and has been proved for Markov, age-dependent and 

general Crump-Mode-Jagers branching processes (see [36] Chapter II.2, Theorem 1 

and Theorem 3, [3] Chapter IV.7, Theorem 1 and Chapter IV.6, Theorem 1, [15] 

Theorem 6.7.2 and Theorem 6.6.11). 

We use simulations to illustrate the result. The programming is done in Matlab, 

using the same self-recurrent technique as in Section 2.2.3. We first simulate a MBP 

Zt starting from a single particle, and record its status, extinct or not, at different 

time points. After repeating 20 times, the frequency of non-extinction status at dif-

ferent time points in all the simulations is calculated as an estimate of the survival 

probability function of this process, i.e., Q(t) = * of ""^^rtioM*118*'0™'• To obtain a 
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more accurate estimate, we assume the initial population size x larger than 1. Under 

this setting, Q(t) = 1 - ( * °f " T o t ^ t " ' 0 " 8 ) ^ Simulation results for both 

cases of subcritical and critical with binary fission and Poisson offspring distribu-

tion are shown in Figure 3.2. Q(t) is shown in solid lines, with its 2.5% and 97.5% 

percentiles represented by the dotted lines. The dashed lines represent the asymptot-

ically equivalent functions. In this simulation study, we set x = 20 for the subcritical 

case, and x = 10 for the critical case. 

Simulation of the critical case may encounter computational obstacles because of 

the late occurrence of extinction. This problem is solved by setting an upper bound 

for the generation count of the simulated process. In a simulated process, if extinction 

has not been reached before this generation bound, say 100, then we terminate this 

simulation and treat the corresponding time to extinction as "lost to follow-up". This 

will not affect the result of the simulation of survival probability, but it will play a 

role when simulating T, ZuT and ZT-u, as we will see in the simulations of the critical 

case in Section 3.4. 

Another comment concerning the simulations in the subcritical case is the calcu-

lation of b. Haccou et al. [12] give an example of calculating b in MBP with binary 

fission offspring. Nevertheless we provide derivations here using the previously defined 

7r(s) function, for both binary fission and Poisson cases. 
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Figure 3.2: Survival probability Q(t) of simulated MBP, based on 20 simulations and its 
asymptotically equivalent function. Q(t) is shown in solid lines, with its 2.5% and 97.5% 
percentiles represented by the dotted lines. The dashed lines represent the asymptotically 
equivalent functions. (A) binary fission, subcritical, m = 0.5, a: = 20; (B) binary fission, 
critical, x = 10; (C) Poisson, subcritical, m = 0.5, a; = 20; (D) Poisson, critical, x = 10. 
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b~ = lim e Q(t) £—•00 

= lim e [1 — F(0, t)} t—> oo 

= lim e [1 — 7r (t)]. 
t—»oo 

Therefore, b can be obtained in terms of function 7r(s), if its inverse can be found. 

For the binary fission case, f(s) = po + (1 — po)s2, m = 2(1 — p0), r — a(l — to) 

a(2p0 - 1), so 

7r(s) 
- f Jo 

dv 

a[f(v) ~ 
dv i r 

a Jo Po-
i r 
a Jo [Po - (1 ~Po)v][l - v\ 

l-Po 

v + (1 - p0)v2 

dv 

a(l 

= - r - 1 ln 
- 2p0) I 

1 
PO - (1 - p0)v 1 - V 

Po(l - s) 

dv 

Po - (1 -p0)s' 

Therefore the inverse of n(s) can be obtained, 

= 
Po(e~rt - 1) 

(1 ~Po)e~rt -Po 

Henc = 

For the Poisson case, f(s) = ex(-s x\ m — r — a(l — to) = a( 1 — A), so 

tt(S) = 
r s dv 

Jo a [ f i v ) -
dv 

,\{v-i) _ v' a Jo 
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The inverse of -jr(s) cannot be easily solved. However, when A « 0, the denominator 

of the integrand can be approximated by (1 — v) 1 — A + y (1 — v) 

( l - A + f ) - 1) 

f e - - ( l - A + f ) * 

Hence b « 1 , for A « 0. 

3.2.3 Conditional Limit Laws 

Proposition 3.2.3. Suppose Zt is a Markov branching process. 

In the subcritical case, if (3.7) holds, then 

, therefore 

P\{Zt = k\Zt > 0) —> k > 1, as t —• oo, (3.13) 

where the constant sequence bk satisfies Ylk^i ^k — 1-

Consequently, 

Ei[Zt\Zt > 0] b as t ^ oo, 

where b = ^ZfcLi kbk • 

In the critical case, if a2 < oo, then 

A | f > z Zt >0 
_ 2 

e ^ as t —> oo. 

Consequently, 

Ex h 
t Zt> o 

aa 
as t —> oo. 

(3.14) 

(3.15) 

(3.16) 
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Proof. By (3.11) and (3.12), ir(F(0,t + ir(s))) = t + TT(S) = TT(F(s,t)). Since TT(S) is 

a monotone function, we conclude that 

F(s,t) = F(0,t + 7R(S)) - 1 - Q{t + TT(S)). (3.17) 

Consider the pgf of the process Zt, E\[sZt], 

E ^ } = E^lZt > 0}P{Z t > 0) + P(Zt = 0) 

=> F(s, t) = Ex [sZt |Zt > 0)Q(t) + 1 - Q(t) 

In the subcritical case, if (3.7) holds, then by (3.9), Q(t) ~ b~1e~rt as t —> oo. If 

we apply this relation to (3.18), it follows that 

lim Ei[sZt\Zt > 0] = l - h m g ( * + 7 r ( s ) ) 
t—> OO J — 

= 1 - lim 

t-> oo 
f Q(t + ir(s)) b-le~ri

 e-r-[t+vr(3)] 

\ b-1e-rlt+7r^ ' Q(t) ' e-rt 

1 — hm — , . .. • hm _ . . • hm — 
t-»oo 6 _ 1 e ~ r l t + 7 r ( s ) ] t—oo Q(t) t-»oo e~rt 

I _ e
_r,r(s). 

Therefore, 

dk 

lim Px(Z t = fc|Zt > 0) - l i m — — > 0 ] s = 0 t^oo t—>oo A;!asft 

^ {,'is >»]}„„ 
1 J s = 0 

=: bk,k> 1. 
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Relation (3.14) can be easily achieved by (3.4), (3.9) and Ei[Zt\Zt > 0] = 

In the critical case, if a2 < oo, by (3.10), Q(t) <~ as t —> oo. Consider 

function Q ( t£$ a ) ) , it is easy to see that Q ( g g s ) ) ~ as t -> oo. By (3.18), that 

is equivalent to 1 — Ei[sz'\Zt > 0] ~ t+l(s) a s ^ ^ c o n s t ruc t the moment 

generating function (mgf) of let s — where 0 < v < oo so that 0 < s < 1, 

we have 1 — E\ e ~ ^ t v \ Z t > 0 / * as t —> oo. Therefore 
t+n I e acr'2t J 

lim Ei t—> oo 
2 Z , 

> "IZt > 0 = 1 — lim t—too 

= 1 -

t 

t + 7r ^e j 

1 
2 v 

7T e Of t 
1 + limt 

— As t —> oo,e ^ | 1, and by (3.8), ir(s) 

•t-» oo t 

—I;— as s T 1, therefore 
aa^ In s 17 

2U , „R 2V n(e ^t)acr2[lne ^r] 
lim = 1 t—>00 2 

• /I 1 f a(T-z 1 im-1"2^ 
1™ 1 t-»00 t 2 

Accordingly, Ei 

lim t—>00 

e - ^ ^ l Z t > 0 

7 r ( e _ ^ t ) 1 

1 as i —> 00. By uniqueness and i+i/V 1+1/ 

continuity of mgf, f̂ converges in distribution to a standard exponential random 

variable, hence P\ > z\Zt > 0) —> as t —> oo. Relation(3.16) is a direct 

consequence of (3.15), but it can also be easily obtained using (3.10), Ei[Zt] — 1 and 

E1[Zt\Zt>0] EI[ZT] 
p[zt>oy • 

Expressions (3.13) and (3.15) are known as the Yaglom's Theorem and exponential 

limit law, respectively. Although these limit theorems have been proved for Markov, 
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age-dependent and general Crump-Mode-Jagers branching processes (see [36] Chap-

ter II.4 Theorem 1 and Chapter II.5 Theorem 1, [3] Chapter IV.10 Theorem 1 and 

Chapter IV.9 Theorem (Goldstein), [15] Theorem 6.7.3 and Theorem 6.6.11) branch-

ing processes (see [3] page 159 and 163), it seems instructive to see the proof using 

Lemma 3.2.1 and Proposition 3.2.2. 

3.3 Extinction of Subcritical Markov Branching 

Processes 

Based mainly on Jagers' work [16, 17], this section summarizes the three topics 

on extinction: time to extinction, path to extinction and path verging on extinction, 

for subcritical MBP. 

3.3.1 Time to Extinction 

The time to extinction problem has been studied in [17], [31] and [33]. These 

papers considered the different cases of Galton-Watson, Markov and general branching 

processes. In this section, we summarize the result for both subcritical and critical 

cases in MBP and extend it to age-dependent or general branching processes. 

We consider a continuous time branching process Zt which is subcritical or crit-

ical and therefore eventually dies out with probability one. Let x denote the initial 

population size of Zt, and T denote the time to extinction of this process. Intuitively, 
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T should perform as an increasing function of x. Classical extreme value theory 

determines the trend and randomness of this relation: 

Proposition 3.3.1. Suppose Zt is a subcritical Markov branching process, with initial 

population size x and time to extinction T. If (3.7) holds, then 

rT — In x — In c rj as x —+ oo, (3.19) 

where 0 < c < 1, rj is distributed as standard Gumbel and —> denotes convergence in 

distribution. 

The basic idea of proving using extreme value theory is to consider random vari-

able T as the maximum of independent, identically distributed random variables 

Ti, T2,..., Tx, which are the times to extinction given that the process starts from sin-

gle particle i,i = 1,..., x. By classical extreme value theory, distribution of random 

variable T is directly determined by the tail behavior of the distribution function 

(d.f.) of Ti,i = 1, ...,x, denoted as G(t). 

Proof. If (3.7) holds, by Proposition 3.2.2, Q(t) ~ b~le-rt, as t-> oo. Therefore, 

r 1 — G(t + r~ly) Q(t + r~xy) 
hm = hm ——r 
t-oo 1 -G{t) t—*oo Q(t) 

= hm Q{t + r^y) b~1e~rt 

t " 00 6 - l e - K t + r - 1 ! / ) Q{t) 

= V y G R . 

Theorem 1.6.2 of [24] tells us that G(t) belongs to the Type-I (Gumbel) domain 

of attraction. By Corollary 1.6.3 of [24], the normalizing constants ax, bx can be 
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determined by ax — r and bx = 1 — 1/x) — —r_1(ln& — In a;), which gives 

(3.19). • 

We illustrate the distribution of the time to extinction by simulations. For a 

prespecified initial population size x, firstly we generate a MBP and obtain its time 

to extinction T. After repeating this procedure 500 times, we plot the empirical 

cumulative distribution function (cdf) for the simulated T"s and compare it to the 

theoretical cdf based on Proposition 3.3.1. Figure 3.3 shows the simulation results. 

Figure 3.3: Empirical cdf of the time to extinction T in subcritical (m = 0.5) MBP with 
initial population size x = 100, based on 500 simulations. (A) binary fission; (B) Poisson. 

Figure 3.4 shows the dynamic relation between x and T in our simulations. Instead 

of checking the distribution of T as in Figure 3.3, we make a loose verification on 

its first moment. We see that, as x changes, the trajectory of the simulated mean 

time to extinction follows the theoretical result E[T] — r _ 1 ( lnx + lnc + 7), where 

7 « 0.577 represents the Euler constant, which is the expected value of standard 

Gumbel distribution. 



69 

10 

c 

20 40 

12 

10 

8 

£ e 6 a ° 

60 80 100 B 20 40 

-mean(T) 
r~l(\nx 4- lnc + 7) 

60 80 100 

Figure 3.4: Scatter plot of x versus sample mean of T in subcritical (m = 0.5) MBP, 
based on 500 simulations. (A) binary fission; (B) Poisson. 

Given the known facts on survival probability under some appropriate conditions, 

the above proof also applies to the age-dependent branching process and furthermore, 

the general Crump-Mode-Jagers branching process. Recently, Jagers et al. [17] pro-

posed a different proof for the subcritical case of the general branching process, from 

the viewpoint of E[T], To demonstrate this rule in a direct way, here we provide an-

other proof for the age-dependent process using fundamental probability principles. 

Connection and difference between the subcritical and critical cases can be easily seen 

from the proof. This proof can also be extended to the general branching process, 

given appropriate conditions for achieving relations (3.9) and (3.10) (see [15] Theorem 

6.7.2 and Theorem 6.6.11). 

We start from a well known fact. 

Lemma 3.3.2. Suppose f(x) is a function defined on positive integer numbers. If 

f{x) = o(l), then limx_ 1 + = 1. 
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Proof. 

lim 
rr—»oo 

1 + lim 
x—»oo 

1 + M 

= exp lim / (x) • In • 
\ X—*OO 

= 1. 

1 + 
/M 

• 

Theorem 3.3.3. For an age-dependent branching process, Proposition 3.3.1 also 

holds. 

Proof Let T* = rT - Inx - Inc. We consider the cdf of T*, PX(T* < t) = PX[T < 

r~l{t + In a; + In c)]. Let r = r~x(t + In a: + lnc). Then PX(T* < t) = PX{T < 

T) — [Pi(T < r)]x = [1 — P\(ZT > 0)]-. In age-dependent branching processes, 

given suitable conditions, P\{ZT > 0) ~ ce - r T as r —• oo (see [3] page 163). So, 

P\(ZT > 0) — ce~rr = o(ce~rT). Apply r = r~l(t + lnx + lnc), and notice that for 

fixed t, x oo implies r —• oo. We obtain P\(ZT > 0) — ̂  — o (^^r)- Note, here 

we consider P\(ZT > 0) as a function of x since r is a function of x, given t. So, 

[1 - PX{ZT > 0)] - [l - £ll] = o ( ^ ) . For simplicity, write 1 - PX{ZT > 0) as fix). 
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Then 

M -

= o 
,-t 

a; 
l _ e l i 

x e V^ 

T i 3 1 ? ! 
i-e— 

j e~* 
1 = O = o(l/x) for fixed t. 

-t e - \ . e t/x ( e 
= 0 [ - ) s m c e I T T Z T f = ° U 

By Lemma 3.3.2, we have lim^ m 1. So, lim^oo [1 — P\(ZT > 0)f 

e e \ This implies lim^^oo (T* < t) — e e \ hence rT — In x —lnc —> rj as x —• oo, 

where rj is distributed as standard Gumbel. • 

3.3.2 Path to Extinction 

Process ZuT, 0 < u < 1 is called the "ii-way" path to extinction for branching 

process Zt. As an example, Figure 3.5 shows population size, Zt and ZuT, of a 

subcritical MBP with binary fission offspring distribution. 

For subcritical MBP, Jagers et al. [16] derived the distribution of ZuT and the 

limit distribution of xu~1ZuT when the initial population size approaches infinity. The 

latter result was also proposed in their earlier paper [17], but for general branching 

processes, under additional assumptions. This section summarizes their work. 

For subcritical MBP Zt, let the cdf of the time T to extinction be 

G(t) = P1(T<t) = Pi(Zt = 0) = F(0,t). 
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100 

A 

Figure 3.5: Path of subcritical (to = 0.5) binary fission MBP with initial population size 
x = 100, based on 50 simulations. (A) ZT; (B) ZuT-

Let g{t) = G'{t). The backward Kolmogorov equation (3.3) yields g(t) = 4>{F(0,t)). 

For the pgf F(s, t), define F'(s, t) = t). 

Theorem 3.3.4. Let x € Z+, 0 < u < 1. 

J poo 

1 F a ;-1(sG((l -u)t),ut)F'(sG({l -u)t),ut)g({l - u)t)dt. (3.20) 
o 
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Proof. By the law of total probability, 

ROD 
Ex[sZuT] = / Ex[sZuT,T £ dt] 

Jo 
poo 

= / Ex[sz<",T edt] 
Jo 

roo 
= / 

Jo y 
poo 

- / Y , sVp*(zut = y)Px(T e dt\zut = y) J o y 
/•oo 

= / V svPx{Zut = y)Py{T' + ute dt), define T = (1 - u)T 
J o v roo J 

= I T . > " P , ( Z a = y ) w ^ t a " ( ( l - u ) t ) i t 

roc Q 
= / s—Fx(st, ut)g((l - u)t)dt, define st = sG((l - u)t) 

Jo ° s t 
poo 

= sx / Fx-\sG((l-u)t),ut)F'(sG((l-u)t),ut)g{(l-u)t)dt. 
Jo 

• 

The following theorem is then obtained by using Lemma 3.2.1, Proposition 3.2.2, 

Equation (3.17) and Theorem 3.3.4. 

Theorem 3.3.5. Suppose Zt is a subcritical Markov branching process, with initial 

population size x and time to extinction T. If (3.7) holds, then 

{X^ZUT, 0<u<l}f^d {bue'u\ 0 < u < 1} asx-> oo, 

where rj is distributed as standard Gumbel, and denotes convergence in finite di-

mensional distribution. 

Detailed proof of this theorem can be found in [16] and [17], hence is skipped here. 
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To illustrate one-dimensional convergence in Theorem 3.3.5, for prespecified u, we 

plot the empirical cdf of the simulated process Xu~1ZuT in Figure 3.6, and compare 

it to the theoretical cdf according to Theorem 3.3.5. To show finite-dimensional 

convergence, Figure 3.7 plots the simulated trajectories of xU~LZUT as a comparison 

to the simulated trajectories of bue~ur). In order to observe the dynamic relation 

between xu~1ZuT and x, we further plot the mean and variance process in Figure 3.8 

as x changes. 

Figure 3.6: Empirical cdf of the path to extinction in subcritical (m = 0.5) MBP with 
initial population size x = 100, based on 500 simulations. (A) binary fission, u = 0.5; (B) 
Poisson, u = 0.5. 

3.3.3 Path Verging on Extinction 

Jagers et al. [16] derived the limit distribution for process ZT-u in subcritical MBP 

when the initial population size approaches infinity, which follows a time reversed 

branching process. Furthermore, they proposed a theorem about the asymptotic 
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Figure 3.7: Comparison between xu~lZuT and bue~uv in subcritical (m = 0.5) MBP with 
initial population size x = 100, based on 50 simulations. (A) Xu~1ZUT, binary fission; (B) 
xU~LZUT, Poisson; (C) bue~ur>, binary fission; (D) bue~uri, Poisson. 
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Figure 3.8: Mean and variance of Xu~1ZuT for different x in subcritical (M = 0.5) MBP, 
based on 500 simulations. (A) mean process, binary fission; (B) variance process, binary 
fission; (C) mean process, Poisson; (D) variance process, Poisson. 
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behavior of this limit under appropriate normalization (multiply by e~ru) as u —• oo. 

Theorem 3.3.6. Suppose Zt is a subcritical Markov branching process, with initial 

population size x and time to extinction T. If (3.7) holds, then ZT-u converges in 

distribution, u > 0, as x —> oo. Furthermore, suppose Yu denote the limit of ZT-u as 

x —> oo, then e~ruYu be"71 as u —> oo, where rj is distributed as standard Gumbel. 

In other words, denote the distribution function of the process e~ruZT_u by FXiU, then 

l im^oo [lim^oo FXiU(z)] = 1 - e~z!h. 

Prom an intuitive perspective, the second conclusion, e~ruYu - i beas u oo, is 

another representation of Proposition 3.3.1. The reason is that process ZT_U makes 

sense only when 0 < u < T, therefore as u ^ T, intuitively, Yu —> x. Noting that 

condition u —> oo is a composition of u —> T and x —> oo, these two results are 

equivalent through a logarithm transformation. 

Detailed proof can be found in [16]. It is worth noting that a direct proof is also 

possible, without introducing Yu as a time reversed branching process. Reader with 

interest may refer to the proof of Theorem 3.4.6. 

Simulation results for e~ r uZT_ u in the subcritical case are shown in Figure 3.9. 
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Figure 3.9: Empirical cdf of e~ r uZr-u in subcritical (rn = 0.5) MBP with initial popula-
tion size x = 100, based on 500 simulations. (A) binary fission, u = 0.5 and 5; (B) Poisson, 
u = 0.5 and 5. 

3.4 Extinction of Critical Markov Branching Pro-

cesses 

All the results in the previous section can be extended to the critical case with 

finite variance. In this section, we use similar techniques to find out the extinction 

pattern of critical MBP, which turns out to be analogous to that of subcritical MBP. 

Simulations are also performed to illustrate the theoretical results. However, it should 

be noted that, the simulation of critical MBP usually encounters computational prob-

lems since it is "harder" for the process to reach its extinction. 
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3.4.1 Time to Extinction 

Proposition 3.4.1. Suppose Zt is a critical Markov branching process, with initial 

population size x and time to extinction T. If a2 < oo, then 

2 
- i f as x -> oo, (3.21) 

2x 

where £ is distributed as standard Frechet with shape parameter 1. 

Proof. If a2 < oo, by Proposition 3.2.2, Q(t) ~ as t —> oo. Therefore, 

lim 1 " = 
t-oo i - G(t) t-oo g(i) 

= l i m ^ M . ^ - . y - 1 

= y" 1 ,Vy>0 . 

By Theorem 1.6.2 of [24], G(t) belongs to the Type-II (Frechet) domain of attraction. 

By Corollary 1.6.3 of [24], the normalizing constants ax,bx can be determined by 

ax = G-Hi-i/x) = ^ a n d
 bx = 0, which gives (3.21). • 

Figure 3.10 illustrates the simulation results. Due to computational constraints, 

we only set x — 10 in the critical case. We also plot the relation between x and T 

in the simulations. In the critical case, the first moment of T does not exist, so we 

use its median instead. Again we obtain a satisfying match on median(T) = 2, 

where In 2 comes from the median of standard Frechet distribution. Note that the 

simulated trajectory has a bias due to restricting x to small values, as we mentioned 

before. An alternative way to check the relation between x and T in the critical case 
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is to show the simulated trajectory of the mean of 1/T, which theoretically follows 

standard exponential distribution. Although this method may not be as robust as 

the previous one, it works when the censoring times are large enough. 

Figure 3.10: Empirical cdf of the time to extinction T in critical MBP with initial 
population size x = 10, based on 500 simulations. (A) binary fission; (B) Poisson. There 
are 89 simulations lost to follow up. 

Similarly to the subcritical case, we have such a theorem for the age-dependent 

process, as an extension to Proposition 3.4.1. 

Theorem 3.4.2. For an age-dependent branching process, Proposition 3-4-1 also 

holds. Here a should be substituted by l//x, where p is the mean of offspring life 

length distribution. 

Proof. Let T* = f^T. The cdf of T* is PX{T* < t) = Px (T < ^ t ) . Let r = ^-t. 

Then PX{T* < t) = [1 - Pi(ZT > 0)]x. By the known fact that Pj(ZT > 0) ~ ^ 

as t —* oo (see [3] page 159), we obtain Pi(ZT > 0) - ^ = o ( ^ ) . Using the 

transformation r = ^ f t , for fixed t, x —> oo implies r —• oo. Therefore, P\{ZT > 
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Figure 3.11: Scatter plot of x versus sample median of T in critical MBP, based on 500 
simulations. (A) binary fission; (B) Poisson. 

0) — ~ = o ( ^ ) . Again, for simplicity, write 1 — P\{ZT > 0) as f(x). Then 

1 1 - 1 
tx 

= o 
tx 

= 0 tx m - [i - a 

/(*) - [i - tx 
s m c e [ i - i r 

fW - 1 = o ( ^ \ = o( 1/x) for fixed t. 

^ . tx 

tx 

By Lemma 3.3.2, we have lim:c = 1. So, lim^oo [1 - Px{Zr > 0)f = e-1 '1 . 

This implies lim^oo Px (r* < t) = e"1 / ( , hence j ^ T S £ 

distributed as Frechet with shape parameter 1. 

as x —• oo, where £ is 
• 

3.4.2 Path to Extinction 

Comparing to the subcritical case, it seems more difficult to predict the path in 

the critical case because the extinction occurs in a slowgoing way. Figure 3.12 shows 
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an example of population size, ZT and ZUT. of a critical MBP with binary fission 

offspring distribution. It is worth noting that in the simulation of the critical MBP, 

extinctions may occur very late. Therefore the computing resources for storing the 

whole simulated process may be exhausted before the extinction has been reached, 

especially when we set a large initial population size. In such a situation, we only can 

treat the time to extinction in the simulation as "lost to follow-up" if the extinction 

occurs later than a certain generation bound. The trajectories lost to follow-up are 

not shown for the processes ZUT in Figure 3.12. 

60 
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Figure 3.12: Path of critical binary fission MBP with initial population size x = 10, based 
on 50 simulations. (A) Zt\ (B) Zur- There are 3 simulations lost to follow up. 

Let us now consider the process ZuT/T. 

Theorem 3.4.3. The mgf of ZUT/T is given by 

r oo 

Ex[evZ«T/T] = x / ev/tFx~1{ev/tG(( 1 - u)t), ut)F'{eu/tG{{\ - u)t),ut)g{{ 1 - u)t)dt, 
Jo 

(3.22) 
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where v < 0, x E Z+,0 <u< 1. 

Proof. By the law of total probability 

poo 
Ex[Sz«T't] = / Ex[SZut/t,T E dt] 

Jo poo 
= / £ x [ s Z u t / t ,T € dt] 

Jo roo 
= / J2sy/tp*(z"t = y>TedQ 

J o v 
poo 

= / Z) = e = f) 
- 7 0 y 

poo 
= / X] sV/tpx{Zut = y)Py{T> + Ute dt), define T' = (1 - u)T Jo y 

roo J 
= / Y,sV,tp*(z« = y h n — ^ ( ( i - ^ m 7o y d{ 1 - u)i 

/•oo o 
= / s 1 A — i ^ f a t , - d e f i n e st = S1AG((1 - u)t) 

Jo 
POO 

= X s1/tFx-1(s1/tG((l-u)t),ut)F'(s1/tG((l-u)t),ut)g{(l-u)t)dt. 
Jo 

Replacing s by then gives the mgf. • 

Consequently, we obtain such a theorem: 

Theorem 3.4.4. For critical MBP ZT with a2 < oo, if Z0 — x and ZT hits zero at 

time T, then ZuT/T converges in distribution as x —> oo, for each 0 < u < 1, to a 

random variable with mqf t-51- ^ . As u I 0, the limit vj i-u l-u i-a|£u(i-u)v * ' 

distribution approaches exponential with parameter 

This result is parallel to the subcritical-case version (Theorem 3.3.4), in which 

ZUT is normalized by and the process Xu~1ZuT has trajectories with a weak limit 
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bue~uv, where rj is a standard Gumbel random variable (rv). The second conclusion, 

the limit distribution approaches exponential with parameter as u j. 0, can be 

considered an alternative representation of Proposition 3.4.1. Intuitively, ZuT —> x 

almost surely as u j 0. Therefore we expect ZUT/T to perform similarly as x/T, 

2 

which converges in distribution as x —• oo, to that is, an exponential rv with 

parameter Of course this intuition is true only when the two limits in x and u 

are exchangeable. 

Proof. First, by (3.8) and (3.10), as t o o 

7r(eI//tG((l - u)t)) ao2[l - e^Gdl - u)t)} 
2 

ao* - 1 + t ' acr2(l—u)t 

t 
aa2 ,, , 1 V+T-1—v 

Second, as t —> oo 

Q{ut + Tx{ev,tG{(l-u)t))) 
aa2[ut + n(el'/tG((l — u)t))} 

1 

t u + .,, 1
 a 

<XOA{ 1—u) 

By (3.17), for t —> oo, we obtain the first term in (3.22) 

F x " V / 4 G ( ( 1 -u)t),ut) = [I - Q{ut + Tr{ev/tG{(l - uW))}*-1 

x-l 

aa2 J. 
2 1 U + -SS1VJ—C 

2 
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By l'Hopital's rule, (3.8) and (3.10) also indicate that as t —> oo 

7r'(e1//tG((l - u)t)) 
aa2[l — ev!tG{{l — u)t)]2 

2 

OCT4 I z 

" t ~T aa2(l-u)t 
t2 

2 • 
-v + acr2(l— u) 

aa2[ut + nie^Gdl - u)t))}2 

1 

off2 ̂ 2 
2 j 

2 ' 

Therefore, the second term 

F'(eu/tG(( 1 - u)t), ui) = -Q'{ut + ir(eu/tG((l - u)t)))n'{ev/tG{{ 1 - w)t)) 

1 t2 

ao-2 42 
2 t' U H -H r— , 1 

2 " + ( 1 - U ) 

aa* 
2 -V + aa2( l—u) 

( i ^ - f H 2 ' 

The third term g{{ 1 - u)t) = - Q ' ( ( l - u)t) - a<T2(1^„)2t2. 

With i = we obtain 

xe i / / tF x - 1 (e i / / tG((l - ut)F'(e" / tG((l - «)£), ut)g(( 1 - u)t) 

exp 
Z U + -S^lpA IT 2 ^ 1 U 

acr 

( l ^ I - ^ ) 2 2 ( 1 - ^ 2 X 
as x —> oo. 
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If dominated convergence applies, then identity (3.22) can be simplified as 

1 f Jo (l - 2f±«(l - U)U)2 Jo 

1 l 

exp 

u 

z I u + 
2 " ' 1-u 
l 

1-U 1 - ^ ( 1 -u)v 1-u \ - - u)l/ 

;d,Z 

(3.23) 
2 "7" " 2 

We see that the right hand side of (3.23) is a linear combination of two exponential 

mgf's, one with parameter the other with parameter • By conti-

nuity of the mgf, this proves the convergence of ZuT/T. The proof of the limiting 

exponential distribution as u J, 0 is straightforward. 

The proof of dominated convergence follows the same way as in [16]. That is, 

0 < xFx-l{ev/tG{{l-u)t),ut)Ft{evltG{{l-u)t),ut)g{{l-u)t) 

1 
< cix exp(—(x - 1)(1 - F(el,/tG{{ 1 - u)t), ut)))F'{l, ut) 

< c2xexp(—c3x(l - F{eu/tG{{ 1 - u)t) ,ut)))£q[ui]^ 

t2 

< c4 exp{-c 3xQ(ut + 7r(e^G((l - u)t)))) 

x 1 1 
< c4 exp(—c5—) —— 

t zl x 

1 1 

C4e 
1 1 

Z"1 X 

where the c.L are suitable positive constants. • 

We use simulation to illustrate this result. Figure 3.13 plots the empirical cdf 

of the simulated ZuT/T process at fixed it's to check, as x increases, whether the 

distribution of ZuT/T approaches the limiting distribution by Theorem 3.4.4. Note 

that the trajectories lost to follow up will bias the empirical cdf, so large initial 
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population size x is not practical. In the simulation, we set x to be three different 

values 2, 5 and 10, and set the generation bound to be 500 to reduce the effect of 

losing tracking. We see that for a given u, as x increases, the empirical cdf is getting 

close to its theoretical limit. In particular, as shown in Figure 3.13 panel (A), when 

u = 0, the theoretical limit becomes an exponential distribution with parameter 

1 

0.8 

S 0.6 fc, 
0.4 

0.2 

0 v 
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 

A y = ZfL,u = 0 B y = ^ , u = Q.2 

Empirical CDF Empirical CDF 

Figure 3.13: Empirical cdf of ZuT/T in critical binary fission MBP, based on 100 simu-
lations. (A) u = 0; (B) u = 0.2; (C) u = 0.5; (D) u = 0.8. There are 2,2,4 out of the 100 
simulations lost to follow-up when the initial population size x = 2, 5,10, correspondingly. 



3.4.3 Path Verging on Extinction 

Let us now consider the limiting behavior of the process ZT-u-, for u > 0. 

Theorem 3.4.5. The pgf of ZT^U is given by 

p oo 
Ex[sZt~o] - PX{T < u) = sg(u)x / Fx-\sG(u),t-u)F'(sG{u),t-u)dt, (3.24) 

J u 

where PX(T < u) J, 0, as x oo. 

This result holds for both subcritical and critical MBP. The proof follows the same 

pattern as in the proof of Theorem 3.3.4. 

Theorem 3.4.6. For critical MBP Zt with finite variance, ZT-u converges in distri-

bution as x —> oo, for u > 0, to a rv Yu with E[sYu] — sg(u)ir'(sG(u)). As u ^ oo, 

Yu/u converges in distribution to a gamma rv with shape parameter 2 and scale pa-

rameter ao2/2. 

We note that the first conclusion in Theorem 2, i.e., the pgf of Yu has already 

been proved by Jagers et al. (see Proposition 3, Equation (33) in [16]). However, it is 

instructive to see that a direct proof is also possible, for both subcritical and critical 

cases, without introducing Yu as a time reversed branching process. This proof also 

leads directly to the derivation of the limit of Yu/u. 

Proof By (3.17) and (3.10), as t -> oo 

Fx~1(sG(u),t - u)F'(sG(u),t — u) 

= - [1 -Q{t-u + irisGiu)))}*-1 • Q'(t - u + 7r(sG(u)))7r'(sG(u)) 

2 I*"1 

1 -
aa2(t -U + TT(SG(U))) 

2tT'{SG(U)) 
ao2[t - u + ^(sG(u))]2 



Since \/u > 0,0 < sG(u) < 1, with t = we obtain 
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Fx~1(sG(u),t — u)F'(sG(u),t — u) 

2 zx + aa2(—u + ir(sG{u))) 

X— 1 27t'(SG(U)) 
aa2 ^ _ „ + 7r(sG(u))] 2 ' 

as x —>• oo. 

Given dominated convergence, Lemma 3 then follows 

r oo i 

E x [ s z ^ \ - sS(«)7r'(sG(u)) / e ^ - d z 
Jo 2 

= sg{uW(sG(u)). 

This yields the desired convergence in distribution to Yu. The proof of domi-

nated convergence is quite similar to that of Theorem 2 and is thereby skipped here. 

Replacing s by e«, as u —• oo, by (3.8) and (3.10), we obtain 

Ex[e^\ = e ^ ) 7 r ' ( e S G ( u ) ) 

2 2 ^ e» • 

~ eu 

a<72 [1 

2 
aa2u + -4 -1 L u aozuJ 

[ i - ^ f 

Starting line two, the argument is specific for the critical process. This completes 

the proof. • 

Figure 3.14 plots the empirical cdf of the simulated ZT-U/U process at different u's 

to check, as u increases, whether the distribution of Zr-U/U approaches the limiting 
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Gamma distribution by Theorem 3.4.6. Due to computational limitation, we set 

x = 10. We see that the empirical cdf does follow its theoretical limit as u increases. 

1 

0.8 

3'0-6 

0.4 

0.2 

°0 1 2 3 4 5 6 

Figure 3.14: Empirical cdf of in critical binary fission MBP, based on 100 simu-
lations. There are 6 out of the 100 simulations lost to follow-up when the initial population 
size x = 10. 

3.5 Discussion 

In Section 3.1.2, we briefly introduce the motivation of this work: Nagylaki's 

theory of genetic drift approximation using branching processes. In particular, we 

are interested in the case that (i) no mutation exists, i.e., /iri — 0 in Equation (3.2); 

and (ii) selection coefficients wir = 1 for i = 1, • • • , r — 1. Under these settings, the 

Empincal CDF 
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allelic number Yi(n) is a critical branching process with Poisson offspring distribution. 

It is then of special interest to see how the critical process of rare alleles dies out in 

the end. 

The rest of this chapter is devoted to the study of the extinction of subcriti-

cal/critical Markov branching processes started from a large number of individuals. 

The theoretical result of the time and path to extinction in MBP may be applied 

to experimental genetic data to study the dynamics of extinction of disease-causing 

variants of genes in human populations. As a conclusion to our current-stage work, 

we summarize the results about the extinction of subcritical/critical MBP in Table 

3.1. Concerning this direction, there are some extensions to MBP with immigra-

tion, multi-type MBP or continuous-state MBP which we would like to explore in the 

future. 
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Chapter 4 

The Infinite-Allele Markov 

Branching Process 

In this chapter, we consider a process which grows according to branching rule, 

however individuals can mutate into novel allelic forms. More precisely, we assume 

that the mutation is independent of the previous history of the process, and the 

offspring distribution is independent of allelic type, i.e., the selection is neutral for 

all alleles. Under these settings, the process can be described as an "infinite-many-

alleles" model. That is, whenever a mutation happens, it yields a new allele, which 

differs from all the existing ones. Because there is no fixed labeling of allelic types, 

analysis of such models is usually complicated. However, Pakes obtained some results 

for the Galton-Watson branching process [11] and the Markov branching process [32]. 

We are mainly interested in the result concerning the frequency spectrum because 

93 
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the allele frequency information is usually available in many genetic processes. 

4.1 Pakes' Theory 

We briefly introduce Pakes' theory on infinite-allele MBP in this section. Suppose 

the MBP has exponential life span with parameter a, and the mean of its offspring 

distribution is m, regardless of allelic types. We assume further that the process 

starts from i individuals carrying the same allele, and a new-born individual is able 

to mutate into a novel allelic type with probability fx. Let Qtij) be the number of 

alleles which are represented by j individuals at time t. Our objective is to find 

<Mj) == E[at(j)i 

from which the frequency spectrum is easy to achieve by normalization. 

Let Tx,T2, - • • be the successive split times, Nt be the number of split times till 

time t and Un be the number of offspring produced at split time Tn. Consider that 

at time t, the alleles which are represented by j individuals are from two sources: 

the initial allele or the mutant alleles. Correspondingly, we define two indicator 

functions: Io,j{t) = 1 if there are j individuals carrying the initial allele alive at time 

t] and In,k,j(t) = 1, for n, fc > 1 if the fcth individual born at time Tn (Tn < t) mutates 

to a novel allelic type and further produces j individuals carrying this allele t units 

later. Then 
Nt Un 

<XtU) = IoA*) + Z ) J2 ^ A t ~ Tn). 
n=1 fc=1 
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It is easy to see that E[I0j(t)] — qij(t), and since for each n, In>k,j{t) is independent 

of Un and Tn, E[In>kJ\Un,Tn] = pqij(t). Therefore 

cf)i<t(j) = E[at{j)} = qij{t) + mpEi 
' Nt 

Y^qij(t-Tn 
n=1 

In Lemma 3.1.1 of [32], Pakes has shown that 

Ei 
' Nt 

J > ( t - T n ) 
n=1 

rt 
= iaeXt [ e~Xua{u)du, 

Jo 

where A = a(m — 1) and a(t) is a bounded continuous function. So 

<Mj) = Qij(t) + iampeXi [ e'Xxq1:i(x)dx. (4.1) 
Jo 

Since 0 < qij{t) < 1, we see that it is possible to determine, asymptotically, the 

expected frequency spectrum for an infinite-allele MBP. Let 

/»oo 

Gj(X) — / e-xt
gij(t)dt,j> 0, (4.2) 

Jo 

the limiting frequency spectrum can be obtained as 

° ^ = X G j > l (43) 
n j ) E j ^ G j i A) 1 — AG0(A) — 

It should be noted that in such case the supercritical condition w.r.t parental allele is 

necessary, i.e., M > 1, where M = m( 1 — /i) is the mean number of offspring carrying 

the parental allele, so that A = a(m — 1) > a(M — 1) > 0. 

In general, the transition probability qij can rarely be determined explicitly be-

cause the Kolmogorov equations are usually hard to solve. Hence the limiting fre-

quency spectrum ip(j) is difficult to obtain. However, there are two important cases 

where the explicit form of qij or its pgf can be obtained, namely the Yule process and 

the birth-death process. 
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4.2 Frequency Spectrum of The Infinite-Allele Birth-

Death Process 

4.2.1 Derivation of The Limiting Frequency Spectrum 

For the birth-death process, (one form of) the offspring pgf w.r.t the parental 

allele can be written as 

f(s) = (a + (3fi + (3(1 - fi)s)2, 

where a, (3, /J. stand for the death, birth and mutation probabilities for every individ-

ual, and a + (3 = 1. Write A = a + (3fi, B — (3(1 - /j,), with A + B = l. Then 

f(s) = (A + Bs)2. 

By backward Kolmogorov equation, the process pgf F(s,t) satisfies 

BF 

— = a[(A + BF)2-F] 

= a[B2F2-(1-2AB)F + A2] 

= a[B2F2-(A2 + B2)F + A2} 

= a(A2 + B2) 

1 (A2 + B2F2) - F 
A2 + B2 

Therefore, this process is equivalent to a birth-death process with a = a(A2 + B2) 

and offspring pgf f(s) = a2\B2 (A2 + B2s2). Using the known results for the pgf of 

the birth-death process, we see that 

A2(l - s ) - (A2 - B2s)e~ct 

F(s,t) = 
B2(l - s) - (A2 - B2s)e~cV 
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where c = B2a - A2a = (B - A) a > 0. 

To obtain an explicit form for Gj(A), there may be two approaches. The first 

approach starts from finding the pgf of Gj(A), which then leads to its coefficients. 

The second approach attempts to find qij(t) directly, and apply (4.2). 

(1) Denote the pgf of Gj(A) by j(s)] then 

7 ( s ) := 

Let v = e ct 

i r1 A2(i-v) r _ A2 - B2V ' 
cj0 B2 — A2v [ ~ A2(l-v)S f Jo ^ B2 - A2v J j>o L J 

From the term that does not contain s, we can easily read Go (A) as 

Since 

where F(-, •;•;•) is the (Gauss's) hypergeometric function. It follows that 



98 

Similarly, Gj(A) can be read from the coefficients: 

Gj( A) 
C Jo 

1 A2( 1 - v) 
B2 -

£ 2 ( 1 -v) 
B2 - ,42t; 

yl2 - £2 i ; 
B2 -

j'-i A U o 

Jo (I-

( B - A ) 2 f 1 v - c ( l - v Y ' 1 

cB4 Jo (1 - §v)j+1 

(B-A)2T(l + ±)r(j) 

dv 

- CB4 ru + i + ^ F { J + h l + -c>J + 1 + - c 4 ) > ^ h 

(2) From the explicit form of F(s,t), we can directly read q\j{t). 

A2(l-e-ct) (B2e-Ct - A2)s F(s,t) = + B2 - A2e~ct + B2(e~ct-l)s B2 - A2e~ct + B2{e~ct - l)s 
yl2(l-e-ct) 1 B2e~ct-A2 s 

+ B2(l—e~~ct) 
B2-A2e~ct 1 B2 — A2e~ct 1 _ a2(i-e-ct) B 2 - A 2 e i _ - >- -B2—A2e~~ct d2 712—^ 

U^ - {B_A)e-ct ,W2 - (B—A)e~ct anQ P ~ Bi-Ate-cf 

F(s,t) = wl 
V + W2 

sp 
l - s ( l - p ) n - s ( l - p ) ' 

and wi + W2 = 1 • 

It is easy to see that this is a linear combination of two geometric pgf's with the 

same parameter p, one is supported on the set {0,1, • • • }, the other is supported on 

the set {1, 2, • • • }. Therefore, q\j(t) can be read as: 

- A2{1 - e~ct) 

qij(t) = Wxpil - p)J + w2p( 1 - p)3"1 

(B — A)2[B2(1 — e~ct)p~1e~ct 

(B2 - A2e~cty+1 ,j> 1. 
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Hence, 

yoo 

G0(A) = I e~xtqw(t)dt 
0 ° A2{1 — 

I (B2-A2e~<*) 
/I2 ['v-c-'il-v)^ 

= ^ L 
_ A2 r ( J ) r ( 2 ) / A A . ^ 

c J 3 2 r ( 2 + *) c c ' B 2 , 
/•oo 

Gj(A) = / e~xt
qij(t)dt 

Jo 
2/-\ „-ct\17-1 / Jo 

(B - A) 2 [£ 2 ( l - e"*}!'-1 

o (B2 - A2e~cty+1 

(B - A)2 rl v$(l-vy~l 

cB^ X (1 _ il^)^1 

C£4 r ( j + i + ^) V c 

We see that the two approaches give the same expression for Gj(A). Hence the 

limiting frequency spectrum is 
A (B-A)2 r(l+A)r(J) / A . A. A2\ 

l - A G o ( A ) i AA2£(|)r(2) , A A-A2x ' 

In the birth-death process, M — IB = 2(1 — a) ( l — p). By the supercritical condition 

M > 1, it is clear that the following constraint is required for the parameters: 

( l - a ) ( l - / i ) > i 

f o r 0 < a < | , 0 < / ^ < | . Figure 4.1 shows the domain of parameters a and /i. 

Figure 4.2 shows an example of the limiting frequency spectrum for a — I, a — 

0.25, n = 0.01, based on Equation (4.5). In order to see the frequency spectrum vary-

ing with different parameter settings, we plot in Figure 4.3 panel (A) the ip(l) surface 
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0.2 0.3 
Death probability a 

Figure 4.1: Domain of parameters a and /Li in the infinite-allele birth-death process. 
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for a and p in interval [0,0.5], and in Figure 4.3 panel (B) the corresponding contour 

plot. We see that increasing a ox p causes an increase of ip(l). In particular, the 

increase of p has a more significant effect, because in the splitting of each individual, 

increasing p will produce more alleles. This then tends to increase the number of 

alleles in the single copy ( j = 1) class. 

j 

Figure 4.2: Limiting frequency spectrum of an infinite-allele birth-death process, a = 
1 , a = 0.25, p = 0.01. 

Remark 4.2.1. Yule process is a special case of the birth-death process with a — 

0, (3 — 1, A = p, and B = 1 — p. For another birth-death process, where the offspring 

distribution is specified as f(s) = a + (3p + (3{l — p)s2, i.e., the linear term is removed, 

we replace c with B — A. There may be some other processes with explicit pgf's for 
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Figure 4.3: Surface of ^>(1) at different a and p. (A) 3D plot; (B) contour plot. 

which we can derive frequency spectra. For example, in the Yule case, if the split of 

each individual produces k offspring (k > 2), i.e., f(s) = sk, then the process pgf is 

given by F(s, t) = -— e "ts rj-rr. Another example is when f(s) = 1 — y/l — s, 
h _M_e-o(fc-l)t I 

which gives the process pgf F(s, t) — 1 — 1 — e 2 + e 2 ( \ / l — s) 

4.2.2 Tail Property and Numerical Solution 

In his paper, Pakes [32] also obtained property for the tail of the frequency spec-

trum. Let <f>(j) = anijiGjiX), it has been shown that under the conditions: M > 1 

and for some e > 0 < 

lim f + W ) = 
j-> 00 m — 1 
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where u — and = E(WV), W stands for the limit of the normalized process, 

i.e., W. Figure 4.4 illustrates this property for the birth-death process, 

for a — 1, a = 0.25, n = 0.01. 

Figure 4.4: Tail behavior of the limiting frequency spectrum. 

The limiting frequency spectrum is theoretically useful, however in practice, the 

frequency spectrum can only be observed in finite time. Therefore in many cases, 

we need to find J* e~Xxqij(x)dx instead of /0°° e~Xxq\j(x)dx. Usually this can only 

be accomplished numerically. Let us use the birth-death process as an example. 

Applying the same technique, we see that 

Jo W ' cB> J,-<. ( j _ 
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So we need to numerically compute this "incomplete" hypergeometric function. Fig-

ure 4.5 illustrates the difference between this numerical solution ip(j) at different t's 

and its asymptotic form ip(j) based on Equation (4.5) for a = l , a = 0.25, /x = 0.01. 

Panel (A) shows the frequencies for the first 10 classes 1 < j < 10. The spectra 

tails (21 < j < 30) are shown in Panel (B) on a different scale. We see that when 

t = 17 (corresponding approximately to 17 generations since a — 1), the numerically 

obtained spectrum is almost identical to the limiting frequency spectrum, but when 

t = 10, there exist some differences between the limiting frequency spectrum and 

the numerically obtained spectrum. This provides us some intuitions to answer the 

question: in order to safely use the limiting frequency spectrum, how long should the 

process history be? 

0.5 

0.4 
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Figure 4.5: Frequency spectrum at time t and limiting frequency spectrum. 
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4.2.3 Simulation Study of The Frequency Spectrum 

To illustrate the results of the frequency spectrum empirically, we perform a sim-

ulation study. The programming is done in Matlab, using the same self-recurrent 

technique as in Section 2.2.3 and Section 3.2.2. The only difference is that in this 

simulation, the number of alleles is not fixed. Each new allele will be labeled at its ap-

pearance, and this information needs to be stored for frequency spectrum calculation 

in the end. We first generate a Markov birth-death branching process starting from 

1 individual, and set the life span parameter a = 1, the death probability a — 0.1. 

Every new-born individual has probability // = 0.4 to mutate into a novel type. 

We simulate the process for 20 times, record the number of alleles represented by j 

individuals, j — 1,2, • • •, and finally obtain the simulated frequency spectrum. 

Figure 4.6 shows a side-by-side bar plot of the simulated and numerically obtained 

(t = 4) frequency spectrum. Based on Equation (4.1), the expected number of alleles 

in each class, and the observed number of alleles in each class in our simulation, we 

then perform a x2 goodness-of-fit test. This test gives a x2 statistic of 3.0903, which 

leads to a p-value of 0.6861. This shows that the theoretic result of the frequency 

spectrum of infinite-allele birth-death process is consistent with the simulated data. 

Note that since the expected spectrum has infinite many classes, we need to truncate 

the number of classes according to the observed spectrum. 
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Figure 4.6: Comparison of the simulated and numerically obtained (t = 4) frequency 
spectrum. 
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4.2.4 Comparison to The Discrete Time Linear-Fractional 

Process 

In previous sections, we are concerned only about the continuous time MBP model. 

The reason is that results for the continuous time MBP are analogous to those for 

the discrete time Galton-Watson branching process, and in many cases the MBP 

results are more complete and the continuous time MBP is more suitable to model 

genetic processes. However, it will be more instructive to compare the continuous 

time infinite-allele MBP to the discrete time infinite-allele MBP. We introduce briefly 

the discrete linear-fractional process. For more details about the Galton-Watson 

branching process model, readers are referred to the thesis work by Mathaes [27]. 

Using similar technique as in Section 4.1, Pakes has shown that in the Galton-

Watson branching process, the number of alleles which are represented by j individ-

uals at generation n is: 

r=0 

Suppose that 
o o 

G j = Y ™ n - r q [ r
j

> , j > 0. 
r = 0 

The limiting frequency spectrum 

— — — — j > 1 
1 Gj Y1T= 0 m ~ r - G0 - Go' ~ 

The discrete linear-fractional process is the only non-trivial example in Galton-

Watson branching process for which the n-th iterative generating function can be 
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computed explicitly. For the single-type linear-fractional process, the offspring pgf 

f(s) = 1 — + y ^ . Changing s to /i + (1 — p)s gives (one form of) the offspring 

pgf w.r.t the parental allele: 

1— p 1 — p[p + (1 — p)s] 1 — p 1 — ps ' 

where b = ^ ^ and p = S^zMi. (1 -pfi)2 r 1 -pn 

It is known that the n-th iterative generating function for the non-mutant linear 

fractional process is (for details, please see [3]) 

m — sq J l—( 
I m " - s o 

where So = ^ — ^ ^ is one of the two roots of equation f(s) — s (the other root 

is 1 and for supercritical case, So < 1). Therefore, 

® = w ^ - Y f ^ - r . J \mn — s0 J \mn — s0 J 

where rh = / ' (1) = ^ s0 = \ (l -

Finally, the limiting frequency spectrum has the form: 

m = - i - ^ — 

1 n _ r (r) 
1—m_1 ~~ Z^r=0 m 9l0 

Eoo (rrtr —l)̂ "1 

(1 ~ Sp) t (4.7) 
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Remark 4.2.2. We note that in the discrete linear-fractional case, M = jy^i- By 

the supercritical condition M >1, it is clear that the following constraint is required 

for the parameters: 

6(1 - M) > (1 - p ) 2 . 

To illustrate the similarity between the limiting frequency spectrum (4.5) of the 

continuous time birth-death case and the limiting frequency spectrum (4.7) of the 

discrete time linear-fractional case, we plot a side by side bar plot in Figure 4.7, 

where for the linear-fractional case b = 0.66, p — 0.3,/i = 0.01, and for the birth-

death case a — 0.05,/i = 0.016, a = 1. We see that under these parameter settings, 

the two spectra differ mainly in the first three classes. 

4.3 Estimation of Mutation/Death Probability 

Given the limiting frequency spectrum, the parameters of the infinite-allele Markov 

branching process can be estimated using the method of moments. The idea is to 

equate the empirical mean frequency spectrum to the theoretical expected limiting 

frequency spectrum, and solve for the process parameters. For the birth-death model, 

we see that no explicit solutions exist, but numerical search is always applicable. As 

an example, we assume that a = 1, set the parameter true values a = 0.38, \i — 10~4, 

and obtain the limiting frequency spectrum based on Equation (4.5). Using this spec-

trum as our data, we then search in the two dimensional parameter space for the best 
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j 

Figure 4.7: Comparison of the limiting frequency spectrum from continuous time birth-
death process and the limiting frequency spectrum from discrete time linear-fractional pro-
cess. 
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estimates of a and /j, which minimizes the distance (square of norm) between the 

data spectrum and the candidate spectrum. That is, 

{a, ft} — argmin \ \ip(j) — ip(j', a,/j,)\\2. 

Figure 4.8 shows the distance surface, where the searching is on a fine grid of [0,0.49] x 

[10-5, 2 x 10"4]. It is clear that the algorithm find the minimum of the distance surface, 

which is exactly the true value of the parameters. 

Figure 4.8: Distance surface between the true frequency spectrum and the fitted limiting 
frequency spectrum. 



112 

4.4 Discussion and Application 

In practice, if the allele frequency spectrum of a genetic process is available, we 

can use the method introduced in the previous section to estimate the mutation and 

death probability in the evolution of the process. Based on the estimated parameters, 

we may check the goodness-of-fit of the infinite-allele birth-death process to the real 

frequency spectrum by a x2 test. 

The x2 statistic is a sum of differences between observed and expected outcome 

frequencies, each squared and divided by the expectation: 

where Oj represents the observed frequency for the j-th class, and E3 represents the 

expected frequency for the j-th class based on the infinite-allele birth-death model. 

Under the null hypothesis, i.e., the data come from the model, this test statistic 

follows a x2 distribution with degree of freedom n — 1, where n is the total number 

of classes in the observed data. 

The x2 goodness-of-fit test can be used to test if the observed spectrum came from 

the infinite-allele MBP model under neutral selection, however we should note that 

there may be some restrictions of applying this test, such as sufficient sample size. 

We also note that in our problem, the expected limiting frequency spectrum based 

on the estimated parameters has infinite many classes, therefore is not comparable 

to the observed spectrum which is of finite-length. A practical way to apply the x2 

goodness-of-fit test is to use the counts of alleles in finite time numerically obtained 
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by Equation (4.6), and truncate the number of classes according to the observed 

frequency spectrum. As an example, we try to model the evolution of Alu sequence 

using the infinite-allele MBP model. 

An Alu sequence is a short stretch (about 300 base pairs long) of DNA originally 

characterized by the action of the Alu restriction endonuclease. They are the most 

abundant (about eleven percent) mobile elements in the human genome, and are still 

growing in copy numbers [34]. It is known that Alu insertions have been implicated in 

several inherited human diseases, including various forms of cancer. Therefore there 

is a need for modeling the amplification, mutation and selection of Alu sequences. 

Alu sequences amplify by retrotransposition, also known as "copy and paste" 

mechanism. Although the exact mechanisms for their retrotransposition are still not 

fully understood, researchers generally agree that Alu elements are non-autonomous 

and have to borrow the tools for retrotransposition from the LI elements. The LI 

endonuclease causes a nick at the TTAAAA consensus site, after which Alu anneals 

directly to the site of integration [19]. A second nick on the other strand completes 

the insertion. These two staggered nicks introduce an identifiable characteristic of 

Alu elements. The newly inserted Alu element is surrounded by an identical set of 

direct repeats, which are also called target site duplications (TSDs). These direct 

repeats can range anywhere from 10 to 15 base pairs and are considered the prevalent 

feature of retrotranspositional insertion [6]. This process of integration, also known 

as target-primed reverse transcription (TPRT) [30], is responsible for the successful 
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amplification of Alu elements. 

Based on certain diagnostic mutations, Alu elements are divided into different 

subfamilies. The three major families for Alu sequences are J, S and Y. The letters 

were chosen in alphabetical order to convey the different ages of each family. Alu 

sequences in the J family are the oldest, while Alu sequences in the Y family are 

the youngest family. Within each family, further distinctions are made based upon 

additional diagnostic mutations. For example, subfamily Ya5, indicates that Alu 

sequences from this subfamily differ from the consensus sequence of family Y by five 

diagnostic mutations. 

We obtained a set of Alu sequence data from Dr. Jerzy Jurka, with nine different 

Alu subfamilies extracted from the March 2006 assembly of the USCS Human Genome 

database. These Alu subfamilies include: AluYal, AluYa4, AluYa5, AluYa8, AluYb8, 

AluYcl, AluYd2, AluYe2, and AluYe5. For each subfamily, a consensus or reference 

Alu sequence was used to screen the entire human genome for matching sequences. 

A match occurred when stretches of nucleotides that include the main diagnostics 

mutations agreed with the Alu subfamily consensus sequences. After preprocessing, 

such as deleting poly-A tails and middle-A stretch, the average length of Alu sequences 

is about 260 base pairs. The number of Alu classes with the same copies is then 

counted, see Table (4.1). 



Ta
bl

e 
4.

1:
 

Sp
ec

tru
m

 o
f 

th
e 

A
lu

 D
at

a.
 

A
lu

 
1 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

Pe
rc

en
ta

ge
 

Y
al

 
37

61
 (

99
.1

%
) 

25
 (

0.
7%

) 
2 

(0
.1

%
) 

4 
(0

.1
%

) 
1 

1 
10

0%
 

Y
a4

 
42

6 
(9

7%
) 

6 
(1

.4
%

) 
2 

(0
.5

%
) 

2 
(0

.5
%

) 
1 

(0
.2

%
) 

99
.5

%
 

Y
a5

 
17

13
 (9

1.
2%

) 
77

 (
4.

1%
) 

16
 (0

.9
%

) 
16

 (0
.9

%
) 

11
 (0

.6
%

) 
10

 (0
.5

%
) 

5 
(0

.3
%

) 
4 

(0
.2

%
) 

2 
(0

.1
%

) 
5 

(0
.3

%
) 

99
.9

%
 

Y
a8

 
28

 (8
7.

5%
) 

3 
(9

.4
%

) 
96

.9
%

 

Y
b8

 
14

80
 (

91
.4

%
) 

72
 (

4.
5%

) 
11

 (0
.7

%
) 

15
 (0

.9
%

) 
10

 (0
.6

%
) 

11
 (0

.7
%

) 
4 

(0
.3

%
) 

4 
(0

.3
%

) 
2 

(0
.1

%
) 

99
.4

%
 

Y
cl

 
31

62
 (

98
.1

%
) 

42
 (

1.
3%

) 
9 

(0
.3

%
) 

4 
(0

.1
%

) 
1 

1 
1 

0 
1 

99
.9

%
 

Y
d2

 
40

1 
(9

9.
7%

) 
1 

(0
.3

%
) 

10
0%

 

Y
e2

 
11

30
 (

99
.6

%
) 

3 
(0

.3
%

) 
1 

(0
.1

%
) 

10
0%

 

Y
e5

 
85

3 
(9

7.
6%

) 
10

 (1
.1

%
) 

7 
(0

.8
%

) 
2 

(0
.2

%
) 

1 
(0

.1
%

) 
99

.9
%

 

A
ll 

12
95

2 
(9

6.
7%

) 
24

0 
(1

.8
%

) 
48

 (
0.

4%
) 

43
 (

0.
3%

) 
25

 (
0.

2%
) 

23
 (0

.2
%

) 
10

 (0
.1

%
) 

8 
(0

.1
%

) 
6 

5 
99

.8
%

 



116 

These counts can be used as the empirical frequency spectrum for analysis. We see 

that in Table (4.1), the frequencies of the first class in all Alu subfamilies are very high 

(> 90%). However, we notice that in an infinite-allele birth-death process, the highest 

frequency of the first class is below 86%, as seen in Figure 4.3. Therefore, it seems 

not very appropriate to use the infinite-allele MBP model with neutral selectionto fit 

this Alu sequence dataset. One possible reason of the departure from the theoretical 

frequency spectrum may due to the non-neutral selection of the Alu evolution process. 

However, we also notice that the theory of infinite-allele MBP has a limitation, which 

may cause the lack of fit. 

From Figure 4.3, we see that the first class reaches its highest frequency when 

death probability q k O and mutation probability M ~ which corresponds to the 

case that the non-mutant process is near-critical. It is natural to make a conjecture 

that the first class frequency keeps increasing when the mean of the non-mutant 

process decreases. However, in current literature concerning the theory of infinite-

allele MBP, the supercritical condition is required for the non-mutant process, i.e., 

M > 1. Therefore, an extension of the current supercritical case to subcritical case 

for the non-mutant process will be interesting and important. This question is left 

open for our future study. 



Appendix A 

Derivation of the modified median 

estimator 

Suppose a fluctuation experiment has n parallel cultures, each starting from a 

single wild-type cell, and by the plating time t, the ith culture has size Nu,i — 1,..., n. 

Random variable Ki, i = 1,..., n represents the number of mutants in the ith culture 

at time t. Given Nu and the underlying mutation rate Ki has the Luria-Delbriick 

distribution defined in our Equation (1) in the paper. 

Let ki be the observed number of mutant cells in the ith culture. Our purpose 

is to estimate the mutation rate based on ki and Nti,i — 1, ...,n. Let denote the 

median estimator of fi based purely on the ith culture, that is, fi-i is a function of ki 

and Nti only. Mathematically, we have 

f i i - P ( K i < k i \ N t i , f i i ) = ^. (A.l) 

117 
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The modified median estimator is defined as the median of jli, i = 1,..., n: 

ji = median(fj,i). (A.2) 

To find the confidence intervals for the estimates, we need to derive the cumulative 

distribution function (cdf) of (i under hypothesis /J, = /J0, 

FnAx) = < Ntl, Ntn] [I = Mo), 

where the dependence on Nt\, • • •, Ntn will be dropped for notational convenience. To 

find the cdf of (i, first we compute the cdf of jli under hypothesis p — /x0, 

Fg(x) = P{fu<x\Nti,li = fi0). 

From (A.l) it follows that jli is a function of random variable Ki. Since K, is integer-

valued, jli takes values from a discrete denumerable set with elements xk such that 

{jii = xk} {Ki = k). 

Because of strict monotonicity of P(Ki < kt \Ar
fJ, p.) with respect to discrete ki and 

continuous /i, condition (A.l) implies that xk is strongly increasing in k. Therefore 

P(jii < xk\Nti,p = po) = P{Ki < k\Nti,ji = po). Therefore, F$(x) can be defined 

using the LD distribution for all x — xk and then extended to all x £ as a 

piecewise constant, right continuous function. 

Now that we know the distribution of jii,i = 1,..., n, the distribution of their 

median, which is the median of independent, though not identical distributed random 
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variables, can be obtained. Denote the set [n] = {1,2,..., n}. Also, denote by J a 

subset of [n], and by \ J\ the number of elements in J. We have 

FH oW = P(fi<x\n = Ho) 

z n - x ^ = n > = 0̂) 
jc[n\,\j\>\%\i£j ieHU 

£ I P f f t o n a - ^ W ) (A.3) 

JC{n],\J\>\%\i€J i£[n]U 

The principle on which this expression is based, is that the median of a sample is 

less than or equal to x, if and only if at least half of the elements of the sample 

are less than or equal to x. Accordingly, the summation of probabilities in formula 

(A.3) is extended over all subsamples J C [n] satisfying \ J\ > where [a] 

is the ceiling of a. Replacement of the ceiling function by the floor function does 

not lead to substantial changes in the numerical computations. Expression (A.3) is a 

straightforward extension of the result on the distribution of the middle order statistic 

(the median) in the independent identically distributed case (Theorem 5.4.4 in ref. 

[18]). 

Treating F ^ x ) as the distribution under the null hypothesis /i = wc use the 

method of hypothesis test inversion (Theorem 9.2.2 in [5]), to define a confidence 

interval [a, 6], at significance level a , by conditions 

Fa(p) = a/2 and 1 - Fb(Jjt) = a/2. (A.4) 

Using expression (A.3), we solve for a, b such that conditions (A.4) are satisfied. It is 

always possible since for a given x <E R + , Fw (x) is a continuous function of /i0, with 
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values covering the (0,1) range. Interval [a, b] is the (1 

the mutation rate jj,. 

a)-confidence interval for 



Appendix B 

Hypergeometric functions 

The generalized hypergeometric function, also known as the Barnes extended hy-

pergeometric function, is defined as 

p / l u \ _ V^ {ai)k(a2)k • • • (aP)k zk 

where (a)/. is the rising factorial 

(a)fc = r ( ^ . + . f c ) = a ( a + l ) - - - (o + fc-l). 
T(a) 

As a special case of the generalized hypergeometric function, the Gauss hyperge-

ometric function F(a, b; c; z) corresponds to p = 2, q = 1. The following is cited from 

[1], Define 

m h ^ r?( . \ ^(a)k(b)k zk r(c) ^ r { a + n)T(b + n)zk 

This series has the circle of convergence \z\ = 1. The convergence property is: 
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- Divergence when 1Z(c — a — b) < —1. 

- Absolute convergence when lZ(c — a — b) > 0. 

- Conditional convergence when — 1 < 1Z(c — a — b) < 0; the point z = 1 is 

excluded. 

F(a, b; c; z) can be written in the following integral representation: 
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