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Abstract

In this paper, we derive multiple antenna transmission
strategies in the presence of limited channel informa-
tion at the transmitter and the receiver. In particular,
we look at the cases of complete channel information,
channel phase information and channel amplitude infor-
mation at the transmitter. We highlight that transmis-
sion along the eigenvector of the channel corresponding
to the mazimum eigenvalue minimizes error probability,
when complete channel information is available at the
transmitter. In the case where only the channel phase
information is available at the transmitter, we derive
the beamformer which minimizes the error probability.
We also show that, in the presence of channel ampli-
tude information at the transmitter without any phase
information, selection diversity at the transmitter is the
best beamforming strategy. We evaluate the penalty in
SNR incurred by the transmission schemes in the case
of limited channel information compared to the case of
complete channel information at the transmitter.

1 Introduction

There is an increasing demand for higher data rates on
wireless communication links to support various kinds of
evolving applications. Telatar [1] has shown that mul-
tiple transmit and receive antennas can result in huge
gains in capacity for wireless channels. It was shown
that the capacity grows at least linearly with the num-
ber of transmit antennas, as long as the number of re-
ceive antennas equals or exceeds the number of trans-
mit antennas. The concept of space time codes has been
developed to exploit the benefits predicted in the above
work [2, 3]. Space time trellis codes and space time block
codes are examples of different kinds of space time codes
[2,4,5].

In the analysis of space time codes, it is usually as-
sumed that the channel conditions, statistics and the re-
alization included, are known perfectly to the receiver.
On the other hand, the knowledge at the transmitter
is limited to the channel statistics so that the actual

realization is unknown. This situation occurs in prac-
tice when the channels used for the forward link and the
reverse link are different, and no special resources are al-
located in the system for relaying the channel conditions
to the transmitter.

It has also been observed that significant performance
gains, at lower complexity, can be achieved if the channel
information is available at the transmitter also. Telatar
[1] analyzed the capacity of a multiple transmitter sys-
tem with perfectly known channel at both transmitter
and receiver. The capacity achieving scheme in this case
is spatial water filling in the direction of the eigenvectors
of the channel, in proportion to the eigenvalues, along
with 4.i.d. Gaussian codes. Narula et al. [6,7] have
considered the problem of multiple transmitter and a
single receiver system with imperfect feedback of chan-
nel information at the transmitter. It was shown that,
under certain conditions, beamforming in the direction
dictated by the feedback vector, is optimal in the sense
of maximizing mutual information. Power control algo-
rithms to minimize probability of outage or maximize
mutual information, based on quantized channel energy
feedback, were designed in [8,9]. Heath et al. [10] looked
at partial channel feedback comprising of the relative
channel phase in the case of two transmit and one re-
ceive antenna.

In this work, we design transmission schemes with
multiple transmit and receive antennas in the presence
of channel information at the transmitter and the re-
ceiver, to minimize the codeword error probability in
the system. Our goal is to design practical transmission
schemes which utilize limited channel feedback, while as-
suring maximum diversity available in the system. We
assume that there is no power control in the system
which is justified under short-term power constraints.
In such cases, power saved from one frame cannot be
used in a subsequent frame. Our contributions are as
follows. We first review the generalized beamforming
scheme given in [11]. Using this as our reference, we de-
sign linear processing techniques at the transmitter in
the presence of limited channel information. We derive
the beamforming vector which minimizes the pairwise



error probability, when partial channel information in
the form of channel phases is available at the transmit-
ter. Finally, we show that in the absence of channel
phase information, selection diversity at the transmitter
is the optimal beamformer. Hence, additional channel
amplitude information, in the absence of phase infor-
mation, does not improve the performance further. We
also investigate the loss in SNR incurred by beamform-
ing schemes with partial channel information compared
to generalized beamforming.

The paper is organized as follows. In Section 2, we
formulate the problem and introduce the notation. In
Section 3, we discuss the case of partial channel infor-
mation at the transmitter in the form of channel phase
information and derive the corresponding optimal beam-
forming scheme. In Section 4, we show that the selection
diversity performs the best in minimizing error proba-
bility among the linear processing techniques in the ab-
sence of channel phase information at the transmitter.
We provide some simulation results in Section 5 and
present our conclusions in Section 6.

2 Problem Setting

Consider a system with m transmit antennas and n re-
ceive antennas. Let H, an n X m matrix, denote the
channel matrix between the transmit and receive an-
tenna arrays. It is assumed that the channel fade statis-
tics are quasi-static, i.e., the channel realization stays
fixed for duration of a frame denoted by . Let hy denote
the kth row of H. Further, let h; ;, the ¢, jth element
of H, denote the channel coefficient from the jth trans-
mit antenna to the ¢th receive antenna for ¢ = 1,2,..,n,
7 =1,2,..,m. It is usually assumed that amplitude of
h;; is Rayleigh distributed with variance 1 while the
phase of h; ; is uniformly distributed between 0 and 27
for all 4 and j. We do not make use of channel statistics
in our analysis. Let X denote the m X [ code matrix
transmitted from transmit array while Y denotes the
n X | matrix received at the receive array when X is
transmitted. Let 1, an n X [ matrix, denote the addi-
tive noise at the receiver which is assumed to be circular
symmetric complex Gaussian with zero mean and vari-
ance Ny per complex dimension. With this notation, we
can write the received vector Y as

Y=HX+n (1)

Suppose C' = {c}} and E = {e}, for j = 1,2,.m,
t = 1,2,.. are any two codeword matrices. Further,
assume that the channel realization H is known to the
receiver and the receiver performs a maximum likelihood
detection. Then the pairwise error probability between

the codewords C' and E conditioned on H is given by [2]

2)

Prob(C — E|H) = Q (7d(C’E|H))
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where d*(C, E|H) = Y0, Yoy | 07, haj(ch — ef)?
and Q(.) is the standard Gaussian tail function.

If H is known perfectly at the transmitter, then the
transmitter designs codewords to minimize the right
hand side of (2) for every realization of H. In this case,
we have the following result.

Result 1 [11]: For a given channel realization H, the
codeword matriz X which minimizes error probability is
given by X = Wyx, where Wy is the eigenvector of H
corresponding to the largest eigenvalue and x is a vector
containing the information to be transmitted.

The above scheme is referred to as generalized beam-
forming in the sequel. Note that the spatial water-filling
scheme, which is the mutual information maximizing
scheme given in [1], is different from this scheme. Spa-
tial water-filling possibly distributes total power among
all the eigenvectors. On the other hand, the relevant
channel information required by the transmitter to min-
imize the error probability is captured in the dominant
eigenvector of the channel.

Generalized beamforming requires a substantial
amount of channel information at the transmitter, in
the form of the dominant eigenvector. We now look at
beamforming schemes, which require significantly lesser
channel information at the transmitter than the gener-
alized beamforming, with an aim to understand which
form of feedback is most useful.

3 Beamforming with Channel
Phase Information

We will now consider the situation in which the trans-
mitter has access to partial channel information only, in
particular the channel phase information, while the re-
ceiver has complete channel information. Following the
case of generalized beamforming, we seek an m-column
vector a such that: (a) X = ax and (b) |a;| = ﬁ for
i =1,2,..m, so that only channel phase information will
be used in forming the vector. Let a; = e/% for each i.
The signal at the receiver array is now given by

Y =Hax+n (3)

Assuming maximal ratio combining at the receiver, the
pair-wise error probability for any two codewords C' =
ac and E = ae, conditioned on H is now given by

di(C, E|H))

JINe (4)

Prob(C — E|H) =Q (



where d; (C, E|H) is given by

(Z |h,-a|2> llc—ell3 (5)
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|l.||2 is the Iz norm defined on C™*!. Hence, if the
codewords c and e are designed suitably to maximize the
Euclidean distance, error probability will be minimized
by choosing a which maximizes

r= <zn: i |h,-,k|2> (6)
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Note that we have to solve for only m — 1 unknowns for
a since we can arbitrarily set our reference as ¢,, = 0.
We then have the following result.

Result 2. The probability of error with phase feed-
back is minimized by choosing o such that

hase { j x e?®* hirht, | e 9 % = T 7
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k=1,2,..,m—1

which gives m — 1 equations to solve for m — 1 un-
knowns. Consider the special case of m = 2. In this
case, the transmitter needs to know a single phase, ¢,
irrespective of the number of receive antennas, given by

¢2 = phase (Z hi,lhi‘g) (8)

=1

We finally note that the scheme presented in [10] for
two transmit and one receive antenna is a special case of
the solution given in (8). We refer to this beamforming
scheme as equal gain combining since it is analogous to
the well known equal gain diversity combining technique
at the receiver.

We now compare equal gain combining with gener-
alized beamforming, over a Rayleigh fading channel, in
the case of m transmit antennas and a single receive
antenna. With a single receive antenna, the general-
ized beamforming is nothing but beamforming along the
channel vector, i.e., apy = h, where h is the normalized
channel vector. The SNR enhancement factor over a

system without any diversity, for a given realization of
the channel, is then given by ??,

m

Torn = |hil® 9)

=1
so that the average gain in SNR, averaged over the chan-
nel realizations, is given by

En [Tos,n]

= ZEhi [
i=1

= m.

Iy = (10)
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In the case of equal gain combining, the SNR en-
hancement factor for a given realization of H is given

by,
1 (& ’
r = 2(50)
= (D lP+d] D0 Ihillhyl
=1 i=1 j=1,i#j
Hence, the average gain in SNR, Ex[Cege,n], is given by
-1
Fegc =1+ —(m 4 )7T (12)

where we have used the result E[|h;|]] = /7/4, V i.
Hence, the loss in performance of equal gain combin-
ing, as compared to generalized beamforming over a
Rayleigh fading channel is given by
4m

——————|dB
4+ (m— 1)7r)
We see that, for m = 2, we have a loss of 0.49dB only.

As the number of transmit antennas increases, the loss
is bounded and reaches 1.049dB asymptotically.

Fegc,loss =10 IOg ( (]‘3)

4 Beamforming with Channel
Amplitude Information

We now consider the case where the knowledge of the
channel at the transmitter is limited to channel ampli-
tudes without any phase information. Again, we seek an
m-column vector a of non-negative real numbers such
that: (a) X = az and (b) ||a]|3 = 1. Following the anal-
ysis in section 3, we wish to maximize dy(C, E|H) given
by

d3(C,E|H) 2 (14)
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Hence, if the codewords ¢ and e are chosen to maxi-
mize the Euclidean distance, error probability will be
minimized by choosing a which maximizes

r= (Z > |h,-,k|2ai> (15)
1=1 k=1
m—1 m n
+ 2Re (Z Z (Z hi,khzl> Oékoél>
k=1 I=k+1 =1

Note that I in this case is a strictly convex function of
a;’s and hence the maximum value of T is achieved at
one of the vertices of the constraint set. Hence, I' is max-
imized by choosing a; = 1 corresponding to the trans-
mit antenna with the best channel SNR while «; is set
to zero for all the other transmit antennas. This is noth-
ing but selection diversity at the transmitter. Hence, we
have the following result.

Result 3 In the absence of channel phase informa-
tion at the transmitter, transmit selection diversity mini-
mizes the codeword error probability among all the beam-
forming schemes.

Selection diversity uses [log,(m)] bits of feedback for
each frame. It turns out that additional information
about the channel amplitude does not help if the channel
phase information is not known at the transmitter.

The analysis of the performance for selection diver-
sity over a Rayleigh fading channel, in the case of a
single receive antenna follows directly from the analysis
in [12] for selection diversity at the receiver with a single
transmit antenna. The SNR enhancement factor over a
system without diversity is given by

1
Toa =2 3
k=1
which can be approximated by logm for large m. Hence,
the loss in performance of selection diversity compared
to the generalized beamforming with multiple transmit
and a single receive antenna is given by

L) dB,
m

Fsd,loss = 1010g10 <10g

(16)
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for large m. Note that the performance loss increases
with m, unlike the case of equal gain combining, even
though the rate of increase is very small.

5 Simulation Results

In this section, we provide simulation results for gen-
eralized beamforming, equal gain combining and selec-
tion diversity schemes discussed in this paper, assuming
Rayleigh fading statistics for the channel. Antipodal
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Figure 1: Comparison of multiple antenna transmit
schemes in the presence of feedback with 2 transmit and
2 receive antennas

signaling without any channel code is used with all the
schemes. It follows from the analysis in this paper that
codes with good Euclidean distance properties are opti-
mal with each one of these schemes. We look at the cases
of two receive antennas along with two transmit anten-
nas in Figure 1 and three transmit antennas in Figure 2.
Selection diversity requires 1 and 2 bits of feedback re-
spectively, in these two cases. Generalized beamforming
and equal gain combining require substantially higher
amounts of channel information at the transmitter. We
also look at the performance of equal gain combining
with quantized phase feedback. We use a uniform scalar
quantizer to quantize each phase quantity. In particular,
we use 1 and 2 bits for quantizing the phase information
in our simulations.

Generalized beamforming performs the best in all
the cases. This is not surprising since it is the opti-
mal scheme in the sense of minimizing error probability.
It also requires the largest amount of channel informa-
tion at the transmitter. Equal gain combining performs
between the generalized beamforming and the selection
diversity scheme, in accordance with the extent of feed-
back required in each case. It is interesting to note the
performance of the equal gain combining with quantized
feedback since two bits of quantization for each phase
quantity approaches the performance of complete phase
feedback. In Figure 1, we observe that beamforming
with phase feedback is less than 0.5dB away from gen-
eralized beamforming while 2 bit quantized feedback is
less than 0.1dB further away. Selection diversity per-
forms the same as 1 bit quantized phase feedback, which
is about 1dB away from the generalized beamforming.
We see similar trends in Figure 2 except that the selec-
tion diversity performs better than the 1 bit per phase
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Figure 2: Comparison of multiple antenna transmit
schemes in the presence of channel feedback with 3
transmit and 2 receive antennas

feedback. Note that we have not designed optimal quan-
tizers in the case of phase feedback.

6 Conclusion

In this work, we have analyzed various transmission
strategies with limited channel information at the trans-
mitter. In particular, we looked at generalized beam-
forming, equal gain combining and selection diversity
schemes at the transmitter. These schemes require dif-
ferent kinds of channel parameters at the transmtter to
achieve the maximum diversity order available in the
system. It was observed that a few bits of phase in-
formation suffices to achieve the gains promised in the
case of equal gain combining. Similarly, we require fi-
nite amount of feedback in the case of selection diver-
sity. The next step in our analysis would be to look
at the design of feedback channels with finite resources
and corresponding optimal transmission schemes which
minimize the error probability. In particular, the trade-
off between the channel phase information and channel
amplitude information, given finite feedback resources,
would be addressed in our future work. Another in-
teresting issue which requires attention is a framework
where the performance of a transmission scheme can be
normalized by the amount of feedback resouces required
by the scheme. Such a framework would help in a fair
assessment of the performance of various schemes.
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