


ABSTRACT

Time-Based Bayesian Optimal Interval (TITE-BOIN) Design Algorithm

Performance under Weibull Distribution on Simulated Phase I Clinical Trial Data

by

Donald Rogers

In phase I clinical trials, the goal is to effectively treat the patient while minimizing

the chance of exposing them to excessively toxic doses of a new drug. In order to

choose the correct dose, we use an adaptive dose-finding design, the Bayesian optimal

interval design (BOIN), to aid in this selection. Here, we propose an evaluation of the

Bayesian optimal interval design with patient accrual given under the Weibull and

uniform distribution, comparing it to a time-based algorithm of the BOIN; Time to

Event BOIN (TITE-BOIN). Simulations show that under the Weibull distribution,

standard BOIN surpasses the TITE-BOIN design in terms of recommendation of

maximum tolerated dose and allocation of data. In addition, both designs under the

Weibull perform better than the uniform distribution when selecting a dose. Further

study of the effects of the Weibull parameters on the BOIN design and the duration

of trial under the Weibull is to be considered.
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Chapter 1

Introduction

In phase I clinical trials, there are numerous designs that have been recommended to

identify the dose of a new drug with a dose-limiting toxicity probability. This dose is

close to a target toxicity rate, commonly referred to as the maximum tolerated dose

(MTD). Among these designs, we have 3+3 design [2] [3], the continual reassessment

method (CRM) [4], and others, each having been provided with intensive reviews

of dose-finding methods for phase I clinical trials. The Bayesian Optimal Interval

design is a recently developed method whose practicality and function was created

with the phase I clinical researcher in mind. The design’s purpose is to determine

the maximum tolerated dose that effectively treats the patient and minimizes the

chance of exposing the cohort to subtherapeutic or overly toxic doses of the drug in

question. The algorithm-based process of the design allows for easy implementation

in practice and has excellent operating characteristics. Performance of the BOIN

is comparable to that of the 3+3 and CRM, but has a lower risk of patients being

assigned a subtherapeutic or overly toxic dose. Building upon this, we aim to develop

an algorithm that not only applies a Weibull distribution as a measure for the toxicity

probability, but also incorporates a time factor, such that we are able to determine

the duration of such a trial.

In terms of real world application, this design takes Bayesian interval methodol-

ogy and applies it in a way that locates the MTD within a reasonable range of our

target toxicity rate, while keeping the number of patients exposed to subtherapeutic
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or overly toxic doses at a minimum. Our main motivation behind development of

the algorithm focuses on easy functionality and understanding by clinicians and re-

searchers of different practices.

1.1 Motivation

Dose-finding algorithms for phase I clinical trials have provided researchers with a

method of determining the Maximum Tolerated Dose a patient should be provided

without causing harm. Between the 3+3 Design, continual reassessment method (CRM),

and the Bayesian Optimal Interval (BOIN) Design, it is practical to select the method

that provides the MTD for dose selection without stopping the trial. BOIN currently

does just this under a uniform distribution for observed toxicity, as do the previously

mentioned methods.

Suppose, we were to believe the level of toxicity was to be observed as a Weibull

distribution; how then would this affect the MTD to be given to a cohort or group

of cohorts during a typical phase I clinical trial? Would this predicted distribution

affect the duration of our trial? These are the questions that we hope to answer with

this study.

We begin our study by describing what the 3+3 and continual reassessment are

in order to have a better understanding of what our model will be doing. Focus will

then be placed on what the BOIN interval design is and how it works. We will then

go into detail on the selection of the parameters of the Weibull distribution. From

this point, we proceed to discuss how the accrual rate of patients affects the duration

of the trial, and if the rate and distribution in turn affect the results of the trial in

terms of its duration.
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Chapter 2

Phase I Clinical Trial Designs

Phase I clinical trials primarily focus on the testing of a new drug or treatment on a

small group of people for the first time to evaluate its safety, determine a safe dosage

range, and identify side effects. Designs currently in use are the 3+3 and Continual

Reassessment Method, among numerous other designs. These designs will be briefly

mentioned in this chapter to provide the reader with an idea as to what this study

seeks to accomplish by using the Bayesian Optimal Interval Design.

The following designs can be studied more deeply in Tourneau, Lee, and Siu’s

paper on Dose Escalation Methods on Phase I Cancer Clinical Trials [5].

2.1 3+3 Design

The most prevalent of the Phase I cancer clinical trial designs, the 3+3 is a rule-

based design that is carried out with a cohort of three patients [2]. The first cohort

is provided treatment at a starting dose that is determined to be safe based on data

collected prior to the trial. Subsequent cohorts are then treated at fixed increasing

dose levels that were also determined prior to the trial. Should any of the three

patients in the fist cohort not experience a dose-limiting toxicity, the next three

patients are to be treated at the next higher dose level. If one of the patients dose

experience a dose-limiting toxicity, the following three patients will be treated at the

same dose level. This process of escalation continues until until at least two of patients
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among a cohort of three to six patients experiences dose limiting toxicities.

In addition to being both a simple to implement and safe design, the ability to

accrue three patients per dose level provides additional information about the patient

variability in terms of how their bodies responds to a drug. This, however, does not

make up for the large proportion of patients treated at low, possibly subtherapeutic,

doses as a result of the high number of escalation steps, which further leads to few

patients actually receiving doses at or near the recommended dose for a trial. A

method better suited for handling such a case is the continual reassessment method.

2.2 Continual Reassessment Method

Known as the first Bayesian model-based method proposed for use in phase I clinical

trial designs, the continual reassessment method makes use of a θ estimate which is

derived from information provided by those who have familiarity with the preclinical

data or have experience with similar drugs if any exist [4]. Providing guidance about

dose escalation, it should be noted that the initial estimate may not be the most

accurate. In the continual reassessment method [4], all patients are treated at the

dose perceived to be closest to the MTD, which corresponds to the dose at the target

dose-limiting toxicity level. Updating the estimate of the probability of encountering

a dose-limiting toxicity for each new patient who enter the study at any dose level,

the method continues until a prespecified condition is met, resulting in the trial being

stopped. Among the various stopping rules, the most trivial one requires that the

trial be stopped when six patients are assigned the same dose. A trial can also be

stopped if a certain precision in the probability of dose-limiting toxicity at the esti-

mated MTD level is achieved. This method allows for multiple dose escalation and

de-escalations.
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A major disadvantage of this method is that if the prespecified dose model is

incorrect, this puts patients at risk of being exposed to overly toxic doses of a drug.

The BOIN design seeks to provide a method which lowers such a risk for patients in

a given phase I clinical trial.

2.3 Bayesian Optimal Interval Design

The Bayesian optimal interval (BOIN) design proposed by Liu and Yuan [6] is a rising

new method for finding the MTD of a drug in phase I clinical trials. BOIN design

seeks to find the MTD while also minimizing the probability of assigning a patient or

group of patients a subtherapeutic or overly toxic dose.

Under BOIN, a new class of phase I trial designs known as interval design is being

used. The idea behind the design is to determine how to transition between dose lev-

els based on previous observations. More formally, the interval design is one in which

the dose transition is defined by the approximate location of the observed toxicity

rate at the current dose with respect to a pre-specified toxicity tolerance interval [7].

This design proves beneficial when determining whether to escalate, deescalate, or

retain the dose of a new drug in a phase I trial, and can be comparable to additional

designs, such as the 3+3 and CRM.

Let us consider phase I clinical trials as a form of decision-making, where the

choices are as follows: escalate, deescalate, or retain the current drug dosage for a

patient. To ensure that the drug is being assigned at a level that provides the desired

results, we treat each of our decisions such that we escalate the drug dose when the
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current dose is under the MTD to avoid treating at subtherapeutic levels; deescalate

when the current dose is the above the MTD in order to avoid giving the patient an

overly toxic dose; and retain the same dose when the current dose is equal to or close

to the MTD [6]. In practice, however, this is usually not the case since we do not

have knowledge as to whether the current dose is lower, higher, or equivalent to the

MTD. At the same time, we must be able to make an inference based on the data

collected from patients currently enrolled in the trial, so that a decision on dose can

be assigned for the next cohort. Accompanied by randomly observed data and small

sample size, the inferences made based on the information provided is often incorrect,

resulting in a disruption in ethics. A phase I clinical trial often leads to a patient,

or group of patients, being improperly assigned a dose level, i.e. a patient receives a

lower dose of a drug, when in reality they either needed a higher dose or required no

escalation at all. This, in turn, leads to the desire for a design which minimizes the

chance of such an error in the decision process occurring. It is for these reasons that

the BOIN design was created.
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Chapter 3

Bayesian Optimal Interval Design

3.1 Method

By applying the Bayesian Optimal Interval design boundary conditions with a simu-

lated observed toxicity under a weibull distribution, the algorithm will provide results

similar to that of the BOIN under the uniform distribution. The focus of the algo-

rithm is to get the best results for the MTD with the lowest risk of poor allocation

possible. Patient entry into the study will be modeled as a Poisson process. The

times of entry will be recorded so as to determine how long such a trial would take

under desired conditions.

Some of the main factors to keep in mind are the accrual rate, the assessment

period, and the number of observed toxicities that occur beyond the halfway point of

the study. For the sake of this study, we will focus on a simulation of the algorithm

under fixed ”true” toxicities as seen under varying accrual rates of patients.

3.2 Interval Design

Interval designs are generally described as follows with the assumption of J pre-

specified doses and we allow φ to denote the target toxicity rate specified by physi-

cians:

1. Patients in the first cohort are treated at the lowest dose level.
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2. At the current dose level j, assume that a total (or the cumulative number) of

nj patients have been treated, and mj of them have experienced toxicity. Let

p̂j = mj/nj denote the observed toxicity rate at dose level j, and λ1j(nj , φ)

and λ2j(nj, φ) denote the pre-specified lower and upper (or dose escalation and

deescalation) boundaries of the interval respectively, with 0 ≤ λ1j(nj , φ) <

λ2j(nj, φ) ≤ 1. To assign a dose to the next cohort of patients,

• if p̂j ≤ λ1j(nj , φ), we escalate the dose level to j+1;

• if p̂j ≥ λ2j(nj , φ), we deescalate the dose level to j-1;

• otherwise, i.e. λ1j(nj, φ) < pj < λ2j(nj , φ), we retain the same dose level

j.

To ensure that the dose levels of the treatment always remain with the pre-

specified dose range, the dose escalation/deescalation rule requires some

adjustments when j is at the lowest or highest level. That is, if j=1 and

p̂j ≥ λ2j(nj, φ) or j=J and p̂j ≤ λ1j(nj , φ), the dose remains at the same

level, j.

3. This is continued until the maximum sample size is reached or the trial is

terminated due to excessive toxicity, i.e. where the boundary condition for

observed toxicity has been reached or exceeded [6].

What allows BOIN to stand apart from the other designs is its dependence on

both the dose level j and the number of patients being treated, nj , while the other

methods assume the interval boundaries are independent of j and nj.

Within the algorithm in question, special attention is given to the boundary con-

ditions that classify how the dose-escalation/deescalation decision for a drug takes
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place. In addition, the toxicity probability seen by the Weibull distribution will be

discussed in further detail.

3.3 Late Onset Toxicity

Perhaps the more difficult concept of the design is the understanding of how the

observation of late-onset toxicity works and how it affects the results of the trials.

Here, we briefly discuss the concept of this non-ignorable missing data to aid in

understanding of how it applies in this study. The following image depicts how,

given a cohort of patients, the decision of what dose of a drug in question to give a

patient or group of patients would be decided. Of the patients being treated, only

two patients have experienced a toxicity. With this in mind, the dose of the drug to

give to a patient or group of patients will be selected based on the results of those

Figure 3.1 : Illustration of missing toxicity outcomes under fast accrual. For each
patient, the horizontal line segment represents the follow-up, on which toxicity is
indicated by a cross [1].
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being treated. Note, the two patients that did not observe any toxicity cannot just

be ignored when making this decision, and also must be considered when making a

choice in dose. It is at this point that the BOIN design aids in the decision.

To further elaborate upon this, let us consider what it means to have non-ignorable

missing data. Referring back to our image, consider the patient inter-arrival time τ ,

which is shorter than the assessment period T . In this scenario, if a dose were to be

assigned to a newly accrued patient, i.e. patient 4 at time 3τ , some of the patients

who have entered the trial, i.e. patients 2 and 3, may have partially been followed,

but their toxicity outcomes may not be available. Let ti denote the time to toxicity

for the ith subject. Subjects who do not experience toxicity during the trial have

a set ti = ∞. Let ui (0 ≤ ui ≤ Ti) denote the actual follow-up time for subject i,

and let Mi(ui) be the missing data indicator for Yi at the moment a decision for dose

assignment must be made. It then follows that:

Mi(ui) =











1, if ti > ui and ui < T.

0, if ti ≤ ui or ui = T.

Under this missing data mechanism, we then treat the missing data induced by

late-onset toxicity as non-ignorable with Pr(Mi = 1|Yi = 0) > Pr(Mi = 1|Yi = 1) [1].

What this means is that this induced missing data is informative as a result of the

probability of missingness of Yi depending on the underlying time to toxicity, and thus

implicitly depends on the value of Yi itself. Further examination of this mechanism

can be studied in Liu, Yin, and Yuan’s Bayesian Data Augmentation Dose Finding

article [1].
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Chapter 4

Weibull Distribution

The Weibull distribution has been used in a variety of reliability and life data, or

survival, analysis. Using this distribution allows for numerous life behavior models

depending on the selection of the parameters. These parameters are seen to have

much affect on the distribution characteristics of the Weibull; from the shape of the

density curve to the reliability and failure rate.

In the BOIN setting, we will choose our scale and shape parameters such that the

output of the cumulative distribution function at a given assessment period will be

the probability of toxicity occurrence.

4.1 Parameter Selection

To determine what values to use for our scale and shape parameter, we will be using

a similar methodology as seen in [1]. With the time to toxicity under the Weibull,

we desire to control the percent of toxicity events, denoted as the parameter δ, that

occur in the latter half of the assessment period (T/2,T). That is to say at each dose

level, the scale and shape parameters of the Weibull distribution were chosen such

that

1. the cumulative distribution function at the end of the follow-up time T would

be the toxicity probability of that dose; and

2. among all the toxicities that occurred in (0,T), δ% of them would occur in
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(T/2,T), the latter half of the assessment period.

For the duration of the study the assessment period will remain fixed at T = 3 months.

Note that the scale and shape parameter of the distribution can be selected differently

under each dose, as seen in Liu, Yin, and Yuan [1]. However, for the duration of the

trial, the shape parameter will be fixed at 4 with an allowed variation of the scale

parameter either 1 and .4 as seen in Cheung and Chapell [8].
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Chapter 5

Numerical Studies

5.1 Simulation

The simulation will be run with the following conditions: each trial will be run with a

sample size of 36, an assessment period of 3 months and an accrual rate of 5 patients

every 30 days. Similar to Cheung and Chapell [8], the shape parameter of the Weibull

will be fixed at 4 and the scaling parameter will be selected such that the resulting

cumulative distribution displays the probability of observed toxicity. There will be 10

scenarios using ”true” toxicity probabilities of five doses to aid in the trials. Results

are to be compared to those of the BOIN model under the Uniform and Weibull

distribution.
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Chapter 6

Results

The percentages of the recommended doses at the Maximum Tolerated Dose are

shown in the tables 8.1-8.5 with their respective scenarios.

The BOIN based algorithm applied with Weibull distribution seems to be fairly

comparable to that of the classic BOIN design. With a fixed shape and scale pa-

rameter, the results of the two designs are almost similar. However, when viewing

the results of the algorithm, we see there is a problem when determining what dose

to provide to the following cohorts. This situation may very well result from the

allocation of the data within the algorithm, implying that the selection options of

escalation/deescalation are in need of revision. In addition, it has been seen through

further simulations that the shape, scale, and sample size do have an effect on the

results of both algorithms.

Given the results, the study could extensively go on in order to determine the best

choice for these three variables when handling the output. Comparing this algorithm

to the BOIN method, BOIN is seen to show remarkable results under the Weibull.
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Table 6.1 : Operating Characteristics of BOIN and TITE-BOIN design under pre-
specified dose toxicity scenario 1-2. Target toxicity rate of .30

Design d1 d2 d3 d4 d5
Risk of

Poor Allocation, %

Risk of

high Toxicity, %

Scenario 1 Pr(Toxicity) .3 .45 .5 .6 .7

Uniform BOIN 64.6 14.6 2.8 0.5 0.0 8.9 51.1

# patients 18.5 6.6 1.3 0.2 0.0

TITE-BOIN 47.1 2.3 0.9 0.0 0.0 32.9 77.2

# patients 15.6 11.0 2.9 0.4 0.0

Weibull BOIN 86.2 0.0 0.0 0.0 0.0 1.9 46.4

# patients 24.0 3.2 0.0 0.0 0.0

TITE-BOIN 23.2 0.0 0.0 0.0 0.0 49.4 92.7

# patients 14.8 21.1 0.1 0.0 0.0

Scenario 2 Pr(Toxicity) 0.15 0.3 0.45 0.5 0.6

Uniform BOIN 23.9 56.2 17.6 1.5 0.0 12.5 26.2

# patients 10.1 13.3 5.5 0.8 0.1

TITE-BOIN 32.3 14.4 1.3 0.2 0.0 36.1 55.6

# patients 6.4 13.0 8.5 2.0 0.1

Weibull BOIN 11.9 87.8 0.3 0.0 0.0 3.0 23.7

# patients 7.5 19.5 3.0 0.0 0.0

TITE-BOIN 24.1 0.0 0.0 0.0 0.0 49.3 85.0

# patients 3.3 14.3 18.3 0.1 0.0
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Chapter 7

Discussion

7.1 Data Allocation

It should be noted that the results of the simulation occurred due to a variety of

reasons, i.e. the dose that is given to a cohort at the start of the trial, the corre-

sponding shape and scale parameters that align with the aforementioned parameters,

the sample size of the trials, the dose that is given at the start of the trial, and so on.

Perhaps the most difficult part of running the simulations was ensuring that the

correct estimates were being used for each dose being given at the start of the trial,

i.e. currdose = 1,....,6 and shape = ... and scale = ... Even with the suggested

estimates of Cheung and Chappell [8], output was not as desired for the algorithm.

To make sure the seen results permit a correct allocation of the data, the esti-

mates that allowed for the cumulative distribution of the Weibull to be the toxicity

probability under each dose, respectively had to be computed properly. Seeing that

not all clinicians are going to want to compute the estimates that are suitable for the

drug doses they are testing, the Weibull may not be the best distribution, depending

on the true toxicities provided. That is to say, until further study has been done such

that there are universally known estimates that can be used under this distribution

given the starting dose of a trial. However, if there’s a common toxicity by which the

estimates apply, then this shouldn’t be a major problem in the long run.

When the improper estimate is used, large amounts of poor data allocation is seen
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along with high probability of toxicity in the trial. Again, this most likely relates to

the estimates which are chosen for each starting dose in our trials.

7.2 Early Stopping

Another concern is the percentage of early stopping that took place within both the

BOIN and the TITE-BOIN algorithm. Allowing the shape and scale parameters to

remain fixed for the trials shows that it is a necessity to have these values changed

depending on the starting dose of the trial. Here, the starting dose of each trial was

always the first. Given a different starting dose and the qualifying shape and scale

parameter of the Weibull, the results of the BOIN and TITE-BOIN could yield even

better allocation, toxicity probability, and average duration of trials.

7.3 Time Allocation

Another concern is the allocation of the duration of the trials. A majority of the trial

duration times were output as an NA, which isn’t reasonable in terms of real world

application. It is more desirable to have the duration of each trial to exist along the

scope of our assessment period, such that we get accurate data for determining how

long the trials would last overall.

Knowing this time would allow clinicians to properly prepare and anticipate the

time it would potentially take to measure the results.

Given what we know and what we would like to know about the data, it is possible

that there’s a better means of computing the trial duration for this study or any other

study. In addition, we should take into account that the distribution of our observed

toxicities can also play a role in the length of time to complete the phase I clinical

trial.
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Determining the amount of time each of these trials would take proved to be a

bit more challenging than previously anticipated. There are a number of methods

to determine this value separate of our BOIN design, however, the goal here was

to compute this value based on the accrual rate of patients into the trial. Among

the methods identified, both used a Poisson process, one outputting the time in

days, the other in years. The use of this time-based function would be of significant

interest when wanting to predict how long a trial would take under this design. In

this study, the current TITE-BOIN design outputs the time at a rather large span of

approximately 10 years under the current parameters used. Further work and reading

on this portion of the algorithm are to be completed upon further reevaluation of this

topic.
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Chapter 8

Conclusion

The goal of the TITE-BOIN design was to develop an algorithm comparable to the

BOIN model under a Weibull distribution. Working on the development of a time-

oriented BOIN design under the Weibull has led to unexpected results. By seeking

to develop this algorithm, it was discovered that the Weibull distribution could be a

more beneficial distribution to use on an already effective BOIN design. The Weibull

displayed reasonable and comparable results to a uniformly distributed assumption on

patient accrual, having effectively lower poor data allocation than that of the standard

uniform distribution. Each recommended dose provided by the BOIN design was

equivalent, with the design under the Weibull having the higher selection percentage

for a recommended dose.

Intensive research is to be considered for the selection of the shape and scale

parameter of the Weibull as well as the effects of sample size, accrual rate, and other

parameters for both designs used in this study. One of the major shortcomings of

both the TITE-BOIN algorithm and potentially the BOIN is the duration a phase I

clinical trial would take under the assumption of a Weibull distribution. Although

selection of the MTD under the BOIN provides desirable results, the time in which

it would take seems unreasonable. Overall, the algorithm is in need of improvement,

but the BOIN design is seen to be one that should be used more in phase I trials.
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Chapter 9

Supplementary Material

The following are additional tables from the results:

Table 9.1 : Operating Characteristics of BOIN and TITE-BOIN design under pre-
specified dose toxicity scenario 3. Target toxicity rate of .30

Design d1 d2 d3 d4 d5

Risk of

Poor Allocation, %

Risk of

High Probability, %

Scenario 3 Pr(Toxicity) .1 .15 .3 0.45 0.5

Uniform BOIN 1.6 21.6 11.1 19.6 1.6 17.6 9.5

# patients 4.9 8.5 11.1 4.7 0.9

TITE-BOIN 7.9 23.8 15.4 2.7 0.3 37.6 32.0

# patients 4.5 6.1 10.6 7.0 1.7

Weibull BOIN 0.0 10.1 89.6 0.3 0.0 1.8 10.8

# patients 3.1 6.5 17.4 3.0 0.0

TITE-BOIN 0.1 26.7 0.0 0.0 0.0 50.4 77.1

# patients 3.0 3.2 13.4 16.3 0.0
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Table 9.2 : Operating Characteristics of BOIN and TITE-BOIN design under pre-
specified dose toxicity scenario 4. Target toxicity rate of .30

Design d1 d2 d3 d4 d5

Risk of

Poor Allocation, %

Risk of

High Probability, %

Scenario 4 Pr(Toxicity) .1 .15 .2 .3 .45

Uniform BOIN 1.6 8.4 29.3 42.2 18.3

# patients 4.8 6.4 8.0 7.1 3.6 37.2 3.0

TITE-BOIN 8.5 10.3 20.1 16.4 7.3 50.3 10.1

# patients 4.5 5.9 6.9 7.5 5.2

Weibull BOIN 0.0 0.0 10.1 89.5 0.4 2.4 3.1

# patients 3.1 3.2 6.4 14.5 2.8

TITE-BOIN 0.0 0.7 25.3 0.0 0.0 47.9 70.4

# patients 3.0 3.2 3.9 12.5 13.41

Table 9.3 : Operating Characteristics of BOIN and TITE-BOIN design under pre-
specified dose toxicity scenario 5. Target toxicity rate of .30

Design d1 d2 d3 d4 d5

Risk of

Poor Allocation, %

Risk of

High Toxicity, %

Scenario 5 Pr(Toxicity) .1 .15 .20 .25 .3

Uniform BOIN 1.6 8.4 22.3 28.3 39.2 53.6 1.4

# patients 4.8 6.4 7.3 6.0 5.5

TITE-BOIN 8.2 10.0 13.8 15.7 27.3 51.4 2.9

# patients 4.5 5.9 6.8 6.2 6.5

Weibull BOIN 0.0 0.0 1.1 20.8 78.1 12.7 0.0

# patients 3.1 3.2 4.2 7.0 12.5

TITE-BOIN 0.1 0.3 5.0 27.3 57.5 6.3 2.3

# patients 3.0 3.2 3.8 6.0 20.1
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Table 9.4 : Operating Characteristics of BOIN and TITE-BOIN design under pre-
specified dose toxicity scenario 1-2. Target toxicity rate of .25

Design d1 d2 d3 d4 d5

Risk of

Poor Allocation, %

Risk of

High Toxicity, %

Scenario 1 Pr(Toxicity) .02 .05 .10 .25 .3

Uniform BOIN 0.0 1.6 24.0 46.3 28.1 23.5 2.0

# patients 3.8 5.1 8.4 8.0 4.6

TITE-BOIN 2.1 8.8 29.2 26.3 21.4 53.6 13.2

# patients 3.2 3.8 5.8 11.7 11.5

Weibull BOIN 0.0 0.0 1.1 37.7 61.2 30.6 0.3

# patients 3.0 3.0 5.4 11.5 13.1

TITE-BOIN 0.0 0.5 29.8 0.4 0.2 26.5 80.2

# patients 3.0 3.0 3.2 19.9 6.9

Scenario 2 Pr(Toxicity) 0.08 0.25 0.3 0.4 0.52

Uniform BOIN 15.3 52.0 25.2 6.7 0.8 13.6 21.6

# patients 10.3 11.9 5.7 1.9 0.3

TITE-BOIN 43.3 18.7 6.8 1.8 0.1 47.4 50.6

# patients 5.2 15.4 8.9 4.7 1.8

Weibull BOIN 1.2 35.1 62.0 1.7 0.0 28.6 18.2

# patients 5.7 13.4 13.8 3.0 0.1

TITE-BOIN 30.6 0.0 0.0 0.0 0.0 28.5 93.6

# patients 3.2 23.5 8.9 0.4 0.0
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Table 9.5 : Operating Characteristics of BOIN and TITE-BOIN design under pre-
specified dose toxicity scenario 3-4. Target toxicity rate of .30

Design d1 d2 d3 d4 d5

Risk of

Poor Allocation, %

Risk of

High Toxicity, %

Scenario 3 Pr(Toxicity) .05 .06 .08 0.11 0.25

Uniform BOIN 0.0 1.9 5.1 27.6 65.4 28.6 0.2

# patients 4.4 4.8 5.4 6.9 8.6

TITE-BOIN 1.9 3.8 10.0 32.2 48.1 15.2 3.3

# patients 3.8 4.1 4.5 6.0 17.7

Weibull BOIN 0.0 0.0 0.0 1.9 98.1 1.1 0.0

# patients 3.0 3.0 3.1 5.7 21.2

TITE-BOIN 0.0 0.1 1.6 41.4 11.6 0.1 44.6

# patients 3.0 3.0 3.1 3.4 23.6

Scenario 4 Pr(Toxicity) .25 .3 .38 .45 .56

Uniform BOIN 52.2 24.9 8.6 1.6 0.0 11.9 53.1

# patients 17.5 7.0 2.5 0.6 0.1

TITE-BOIN 57.1 10.5 2.0 0.2 0.0 48.8 69.3

# patients 17.4 10.1 6.3 1.6 0.6

Weibull BOIN 33.9 61.7 3.4 0.1 0.0 28.4 35.6

# patients 15.9 15.8 3.8 0.3 0.0

TITE-BOIN 28.2 0.0 0.0 0.0 0.0 24.7 98.6

# patients 26.9 8.6 0.5 0.0 0.0
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Table 9.6 : Operating Characteristics of BOIN and TITE-BOIN design under pre-
specified dose toxicity scenario 5. Target toxicity rate of .30

Design d1 d2 d3 d4 d5

Risk of

Poor Allocation, %

Risk of

High Toxicity

Scenario 5 Pr(Toxicity) .07 .15 .25 .38 .52

Uniform BOIN 2.6 33.4 45.3 16.6 2.1 57.8 6.3

# patients 6.9 10.2 8.5 3.7 0.7

TITE-BOIN 22.2 27.8 14.1 3.0 0.4 70.6 12.8

# patients 4.7 8.7 11.9 7.9 2.8

Weibull BOIN 0.0 1.2 90.4 8.4 0.0 34.6 0.4

# patients 3.2 5.8 19.8 6.9 0.3

TITE-BOIN 4.1 24.3 0.0 0.0 0.0 46.1 54.9

# patients 3.0 4.7 20.3 7.9 0.0



25

Appendix A

Appendix

A.1 Clinical Trial Overview

In addition to Phase I of a clinical trials, there a other a new cancer drug must pass

when seeking to be admitted into the market. A brief description of what takes place

in each of the trials is as follows:

• Phase I: Research is done on a new drug or treatment on a small group of

people for the first time to evaluate the safety, determine a safe dosage range,

and identify side effects.

• Phase II: The drug or treatment is given to a larger group of people to determine

if it remains effective and to further evaluate its safety.

• Phase III: The drug or treatment effectiveness is confirmed by giving it to a

large group of people, monitoring side effects, comparing it to commonly used

treatments, and collecting information that will allow the drug or treatment to

be used safely.

• Phase IV: After the drug or treatment has been marketed, studies are done

to gather information on the drug’s effect in various populations and any side

effects with long-term use.
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