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ABSTRACT  
 
Hazardous environments are an important application of modern robotic techniques.  
However, failures can be quite serious in such environments, especially if they trap the 
robot within or damage containment efforts.  Thus robust early fault detection is 
especially important for such robots.  In this paper we discuss the application of one such 
method, analytical redundancy, to a hydraulic system similar to the one found in 
hazardous environment robots such as the Rosie worksystem.  Further, we extend the 
method beyond its linear formulation to better deal with the nonlinearities inherent to 
hydraulic systems. 
 
 

1.  Introduction 
 
One of the most important and fast growing areas in the robotics industry is the 
development of robots capable of working in hazardous environments [4, 5, 6, 12].  
Providing a high level of functionality in these arenas is important simply because 
humans cannot safely or cheaply work there.  This allows completion of previously 
impossible tasks and often involves the creation of new jobs rather than the destruction of 
old ones. 
 
The usefulness of robots in hazardous situations is highly dependent on their reliability.  
Hazardous environments can damage robotic components, and many of them can be 
made more hazardous by the presence of a malfunctioning robot.  Additionally, humans 
usually cannot enter these areas to repair or remove a failed robot.  For these reasons, our 
team has investigated reliability issues for robots extensively [7, 8, 9]. 
 
The Rosie mobile worksystem [1, 3] is an important and interesting example robot that is 
on the cutting edge of hazardous environment robotics, which has served as our 
inspiration and motivation for this work.  Rosie, under development by RedZone 
Robotics Inc. and Carnegie Mellon University's Field Robotics Center, is a heavy-duty 
hydraulic robot designed for nuclear reactor decontamination and dismantlement.  The 
robot has four independently steerable wheels powered by hydraulic motors supporting a 
chassis sporting a heavy-duty crane/manipulator.  Fault detection for Rosie is interesting 
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and important, and we are additionally using Rosie as a intermediate step to begin 
looking at fault detection for hydraulic systems in general. 
  
This paper will focus on a method known as analytical redundancy [2, 9], or AR.   AR is 
a model-based state-space technique that derives the maximum number of independent 
tests of the consistency of sensor data with the linearized system model and past control 
inputs.  It yields tests to determine whether the system is performing nominally, or is 
deviating from the desired plan and presumably under fault conditions. Our group has 
used this technique successfully on electrical robotic systems in the past [12], and is now 
applying it to the hydraulic Rosie-like systems. 
 
In a previous paper [9], we discussed the derivation through AR of a suite of model based 
tests for the default sensor package for hydraulic wheel actuators.  Some of these tests are 
comparison of the actual system response to control inputs to the predicted response 
indicated by the model.  The other tests uncovered by the AR analysis reflect higher order 
state interdependencies.   
 
However, due to the state-space nature of AR, these tests are all inherently linear.  
However, the hydraulic valve and motor system behavior is highly nonlinear in nature, 
which leads to a degradation in the performance of the AR method.  In this paper, we will 
show how to formally extend the linear AR tests into the nonlinear realm, making the AR 
method suitable for analysis of nonlinear systems such as this. 
 

 
 
2. Hydraulic Model and Testbed 
 
The hydraulic wheel actuator subsystem has been determined to be a vital component of 
the mobile platform through abstract reliability analysis.  A failure of a wheel mechanism 
may prevent the removal of the chassis from the reactor work site, which may be 
hazardous to potential repairmen.  Our goal is to detect as many such faults as possible 
before they become serious, minimizing the risk to the robot.  Our research group is 
working with Foster-Miller Technologies Incorporated, an organization with considerable 
experience in evaluating the reliability of hydraulic systems, to develop effective sensor 
configurations and data analysis procedures for hydraulic wheel actuators and implement 
them on a testbed system under construction at Foster-Miller.   The results of this project 
can then be used to enhance the reliability of existing and future robots. 
 
The system we are considering consists of a rotary hydraulic motor connected to a 3000 
PSI hydraulic power supply through a hydraulic spool valve, as seen in figure 2.1.  This 
system has considerable advantages as an actuator in a nuclear environment.   Hydraulic 
systems are rugged and powerful, and much less likely to produce dangerous sparks than 
an electrical system.  However, hydraulic systems are vulnerable to many faults that 
electrical systems do not experience, and are much harder to model due to their 
inherently nonlinear nature.   
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2.1 Notation 
 
The following variable names are used in this paper: 
- A, B, and C  are the canonical discrete time state space system matrices 
- Bm is the viscous damping coefficient 
- Ctm = cem+cim  represent total, external, and internal leakage, respectively 
- dm is the volumetric displacement of the motor 
- Jt is the inertia of the motor and load 
- Kf, kq and kc are valve flow coefficients  
- M = kc+Ctm is a generalized pressure coefficient 
- pl and p(k) are the continuous and discrete pressure drops across the motor 
- ps is the hydraulic power supply nominal pressure of 3000 PSI 
- Q is the net fluid flow into the spool valve 
- t is the continuous time variable, k the discrete time variable, ∆t is the time step 
- Tg  is the torque generated by the motor 
- Tl  is the load torque 
- V1 through V4 are linear AR tests, NV3 and NV4 are nonlinear tests, PLV3 is a 

piecewise linear AR test  
- vt is the volume of fluid within the motor 
- xv and x(k) are the servovalve position 
- y(k) is the state vector 
- βe is the bulk modulus of the hydraulic fluid 
- θm and θ(k) are the position of the motor shaft 
- ρ  is the hydraulic fluid density 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The equations for modeling this system are as follows: 
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Figure 2.1: Hydraulic System Testbed 
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These equations have been used to create a Simulink [10] model of the system in 
question.  This model follows the above equations with the additional implementation of 
supply pressure limits, linear and Coulomb friction, control valve dither and system and 
sensor noise.  Several faults have been mathematically modeled and built into the system 
in such a way as to allow analysis of various methodologies before data from the 
hardware testbed is available. It was used to provide input to all the tests described in the 
rest of this paper. 
 
It is obvious that the hydraulic flow equations are highly nonlinear, due to the square root 
and coupling of variables.  The standard linearization of this equation is as follows: 
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Note that this is not a strict linearization of the flow equation about zero pressure and 
valve position.  Such an equation would not have a backpressure (kc) term.  However, this 
term helps reduce the error in the regions in which the system is likely to be controlled.  
Note that the line of zero error in figure 2.2 below is in the middle of the spool valve's 
operating range.  Linearized equations are suitable for use by standard linear control 
methods.  Tuned error tracking control is usually sufficient to deal with any significant 
differences between the linear model and the nonlinear system, although these differences 
can be quite significant, as seen in figure 2.2 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The discrete time state-space control matrices for this system can be obtained as follows: 
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3. Analytical Redundancy  
 
The analytical redundancy (AR) method allows us to explicitly derive the maximum 
possible number of linearly independent consistency tests for a system [2, 12].    Using a 
linear model of the system of interest, AR exploits the null space of the observability 
matrix to allow the creation of a set of test equations.  These tests use sensor data 
histories and known past control inputs to detect any deviation whatsoever from the static 
or dynamic behaviors of the model.  The deviations can then be analyzed for signs that 
indicate specific faults within the system.  
 
The core of AR is the following equation [2], which is used to determine the systems' 
observability null space: 
 

[ ] 0)( =
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Ω is the matrix representation of the space which the properly behaving system should 
never enter.  Since most systems will be somewhat noisy and possibly inaccurately 
modeled, it is likely that the state vector will project slightly into this null space.   
 
For our testbed, using the linearized model equations from the previous section, we can 
derive the AR tests below: 
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These tests correspond to descretized versions of our model equations (V1 is torque 
equation, V3 is flow equation) and their first derivatives (V2 and V4).  
 
Figures 3.1 and 3.2 below show the pressure and velocity responses of the system to both 
a normal ramp xv input and the same input with a leak fault that reduces the net flow to 
half its former value at t = 9s.  Note that for these plots and all plots following the non-
time variable has been scaled in such a way to give results of small magnitude, thus 
facilitating plot reading.  However, great care has been taken to preserve relative scales 
between plots of the same AR tests, so that they may be compared to each other without 
bias.  (All XV3 tests use the same scale, for example.)   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 shows the results of the V3 linearized model test in response to the above 
inputs. (We choose to focus on this test because it is the most straightforward of the 
linearized tests.)  The trend of the test away from its nominal zero-centered value in the 
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Figure 3.1: Fault Free operation, ramp input. 
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Figure 3.2: Leak Fault at t = 9s, ramp input. 
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first plot is due to the differences between the linear test and the nonlinear system it is 
attempting to model.  This is undesirable, as it may mask an actual fault that will also 
cause the V3 linearized AR test to drift in that direction.  The second plot shows the 
effect of a leak fault on the V3 test.  Although this is a sudden, serious, fault, note that the 
magnitude of the change is the same as that of the drift. 
 
 
 
 
 
 
 
 
 
 
 
4. Extension of AR to Nonlinear Systems 
 
Analytical redundancy uses the standard linear state-space control model to derive a set 
of consistency tests that detect any deviation from this model.  This is especially 
convenient from a control theory point of view since state space control is a well-
developed field, allowing one to derive AR tests as a simple addition to the required 
construction of the system controller.  Additionally, it results in AR tests that are 
substantially similar to the control equations, making it considerably easier to 
comprehend what the physical significance of the tests is.  For example, in the tests 
above, it was possible to determine the relationship of every test to the model equations. 
 
However, nonlinear model equations are not compatible with the state space method, and 
thus it is impossible to perform an AR analysis of a nonlinear system using existing 
methods.  The system must be linearized, and as we demonstrate in this paper, this results 
in AR tests that are inferior to the basic consistency tests derived from simply tracking 
the compliance of the model with the nonlinear model equations.  At the same time, it is 
not obvious that it is theoretically justifiable to use nonlinear model equations in place of 
linear model equations that may result from an AR analysis.  The analysis is only strictly 
applicable to the linear system. 
 
One way to attempt to circumvent this is to run several AR tests for the system linearized 
about different sets of control variables.  Each set would be theoretically robust, and in 
the local region each set would be more accurate than a general linearization of the 
control equations for the entire workspace.  An example of this technique, and the 
improvement it brings, is illustrated below in figure 4.1.  In this case, the pressure-valve 
position workspace in which the flow equation is nonlinear is divided up into nine equal 
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Figure 3.3: Response of AR test V3 to fault free and leak fault 
ramp inputs seen above.  (Figures 3.1 and 3.2) 
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regions.  The model equation is linearized about a point at the center of each and normal 
AR tests are derived.  (Actually, due to the symmetry of the system, only four 
linearizations are needed.)  During operation, the AR test used is the one that was 
linearized about a point closest to the current position, with interpolated transitions near 
the borders of each region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In response to the same tests as in the previous section, the piecewise linear tests gave the 
results seen in figure 4.2.  The first plot is for normal operation.  The second plot is the 
response of the system to the same fault as the linear AR test in the previous section. 
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Figure 4.1:Piecewise Linear division of workspace 

Transition
Regions 

0 10 20 
-0.05 

0 

0.05 

0.1 

0.15 
PLV3 

0 10 20 
-0.6 

-0.4 

-0.2 

0 

0.2 
PLV3 

Figure 4.2:Piecewise Linear AR test results for inputs from 
figure 3.1 and 3.2. 
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Note that the drifting behavior of the linear test has been drastically reduced from figure 
3.3.   Before the test can drift far from the point about which it was linearized, the system 
transitions into another, more appropriate AR test linearized about a point closer to the 
actual state of the system.  This results in a fault signature (circled) that is an order of 
magnitude larger than the signal produced by the drifting within the regions and the 
transitions between them, making the fault much easier to detect. 
 
Each partition would use a different linearization of the control equations, but it is 
important to note that the different linearizations will all share the same basic form, 
differing only in the values of various constants.  This means that the form of the AR 
tests generated by the different linearizations will also be of the same form.  In fact, they 
will share the relationship to the original model that the globally linearized system 
possessed!  For example, in our system there will always be a test corresponding to the 
linearized flow equation, only differing in the point about which it is linearized.   
 
Now if we take the partition method to its logical extreme by taking smaller and smaller 
partitions, the above discussion makes it clear that we will in the limit approach the 
nonlinear model equations!  This means we can in principle justify using the nonlinear 
model equations in an AR context.  Similarly, the AR tests that correspond to derivatives  
(V2 and V4) of the linear model equations (V1 and V3) can be shown to be more 
accurately represented by the derivatives of the nonlinear ones.  In fact, the nature of the 
AR method insures that all tests derived from it can be related somehow to the initial 
system equations, so in theory any tests resulting from a linearized equation can be 
converted back to a more accurate nonlinear equation. 
 
As linear AR resulted in the model equations and their first derivatives, the nonlinear AR 
tests are the nonlinear model equations and their first derivatives.  Since only the flow 
equation was nonlinear, we only need two new AR tests, seen below. 
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In response to the same inputs as the previous two flow equation tests, NV3 produced the 
results seen in figure 4.3.  Note how large the fault signal (circled) is relative to the noise 
in the fault-free test run.   
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5.  Response of AR Tests to System Faults 
 
Additional simulated results from our nonlinear AR models of the testbed are shown in 
the Appendix and discussed below.  First we see the results of all four AR tests (V1, V2, 
NV3, and NV4) for fault free ramp input in figure A.1.  V1 and V2 suffer a small drift due 
to unmodelable friction effects and the flow based AR tests are performing well.  The 
step input in figure A.2, however, shows large spikes in the AR tests even during fault 
free operation.  While unfortunate, this effect is unavoidable for any similarly violent 
input, since the AR tests are operating on a timeframe much larger than the control input.  
This test is useful to provide a contrast between the error signals caused by such strong 
control inputs and actual faults in the system. 
 
Next we look at an example system fault – a fairly serious leak in the hydraulic system, 
resulting in a drastic loss of power and performance.  A quick perusal of the AR test 
results seen in figures A.3 and A.4 will show that an important characteristic of this kind 
of failure is a sharp change in every test but NV4.  A look at the equations shows that 
NV4's sensitivity to the flow coefficient kq is dependent on the first derivative of xv, which 
changes only slowly in most situations.  Note that the magnitude of these signals is 
smaller than the signal for the step input, so this distinction may prove quite useful. 
 
Next we see the results of a friction fault, representing a jamming or sticking in the wheel 
mechanism, in figures A.5 and A.6.   It is interesting to note that this fault results in 
negligible signals in most tests except V1 at the time of occurrence, but causes large 
signals when the ramp levels off.  The tests in question show a strong response when 
there is a change in acceleration.  This suggests that a change in only the first AR test 
suggests a friction fault.  It also gives us a good way to test this suspicion. 
 
The final set of figures, A.7 and A.8, show the response of the AR tests to a 10% increase 
in the model parameters used by the simulation, without changing the parameters used by 
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Figure 4.3:Nonlinear AR test results to inputs from figure 3.1 
and 3.2. 
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the AR tests.   Note the small change in response, indicating the general robustness of the 
AR method. 
 
Despite the large improvement in AR performance when extended nonlinearly as seen 
above, we still wish for greater thoroughness in the overall mathematics.  Our extension 
method is ideal for getting the best results out of linear AR applied to a nonlinear system, 
but does not actually constitute nonlinear AR.  The null space that is generated by our 
state-space methods is a linear null space of a linear system.  We can approximate the 
nonlinear system by taking dense samples and linearizing at many points, eventually 
taking the nonlinear equations as a limit, but in the process we are still restricting 
ourselves to the linear dependencies of the system.  We would like to know the full shape 
of the nonlinear system's null space.   
 

 
6.  Conclusions and Future Work 
 
The analytical redundancy technique for fault detection is a promising and theoretically 
robust method for use in well-modeled linear systems.  It provides the theoretical 
maximum amount of information regarding the deviation of such a system from its 
expected behavior.  The work presented in the above section shows the effectiveness of 
this method for detecting important system faults. 
 
 However, AR is not as useful for dealing with nonlinear systems, since too much 
information is lost in the linearization of the system so that the state space model can be 
used.  AR only detects how far the system deviates from the model – if the model starts 
out considerably different due to linearization, there is little information to be gained. 
 
Our method of extending linear AR into the nonlinear domain reduces this problem 
considerably.  We bring the model back in tune with the system, so our tests become 
much more sensitive and meaningful.  With this method, we can create meaningful AR 
tests for a nonlinear system.  However, in the process we lose some of the theoretical 
robustness inherent in the original linear AR technique.  The null space we are interested 
in is the null space of the nonlinear system, the one we are examining is an extension of 
the null space of a linearized version of the system.  This prevents us from being entirely 
satisfied with the technique. 
 
An obvious solution to this is to consider a truly nonlinear AR technique, where the null 
space of the original nonlinear system is considered.  This will require considerable use 
of nonlinear control techniques, and promises to be an exciting avenue for future 
research.   Our other major avenue of interest for the future of this topic is the integration 
and testing of our techniques on the physical testbed under construction at Foster Miller 
Technologies.  We anticipate that this platform will be useful in refining and expanding 
these techniques. 
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Figure A.1: Fault free ramp input.  (Same parameters as figure 3.1.)  
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Figure A.2: Fault free step input.  Note large AR signals in response to sudden, 
large changes in input. 
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Figure A.3: Leak Fault at t=9, Ramp Input.  Note large, clear signals in V2 and 
NV3. 
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Figure A.4: Leak fault at t=9, step input.  Note large AR signals (orange, 
dashed) at t=2s, when step begins.  Fault signal (red) is smaller, but behaves. 
differently. 
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Figure A.5: Friction fault at t=9s, ramp input.  Note small initial response (red) 
and larger response when system stops accelerating (green, dashed). 
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Figure A.6: Friction fault at t=9s, step input.  Note virtually no response from 
any test besides V1 to fault. 
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Figure A.7: 10% Parameter estimation error, ramp input.  Note strong similarity 
between this set of signals and figure A.1 
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Figure A.8: 10% Parameter estimation error, step input.  Compare to figure A.2.    



Leuschen-1 16 

Acknowledgements 
 
This work was supported in part by the National Science Foundation under grants IRI-
9526363 and CMS 9796328, by DOE Sandia National Laboratory Contract #AL3017, 
and DOE contract DE-FG07-97ER 14830. 
 
 
 

References 
 
[1] L.C. Bares, L.S. Conley, and B.R. Thompson.  Rosie: A Mobile Worksystem for D&D: Overview of 
System Capabilities and CP-5 Reactor Application.  In Proceedings of the ANS 7th Topical Meeting on 
Robotics and Remote Systems, pages 471-477, Augusta, GA, April-May 1997. 
 
[2] E.Y. Chow and A.S. Willsky.  Analytical Redundancy and the Design of Robust Failure Detection 
Systems.  IEEE Transactions on Automatic Control, AC-29(7):603-614, July, 1984. 
 
[3] L. Conley, W.R. Hamel, and B.R. Thompson.  Rosie: A Mobile Worksystem for Decontamination and 
Dismantlement Operations.  In Proceedings of the ANS 6th Topical Meeting on Robotics and Remote 
Systems, pages 231-238, Monterey, CA, February 1995. 
 
[4] Department of Energy, Washington. D.C., Environmental Restoration and Waste Management 5-Year 
Plan, Fiscal Years 1994-1998, January, 1993.  DOE/S-00097P, Vol.1-2. 
 
[5] Department of Energy, Federal Energy Technology Center, Morgantown, WV.  Environmental Waste 
Management Fact Sheet, October 1997.  http://www.fetc.doe.gov/publications/factsheets/ewm/index.html.  
 
[6]  B.S. Dhillon.  Robot Reliability and Safety.  Springer-Verlag, New York, NY, 1991. 
 
[7]  B.M. Harpel, J.B. Dugan, I.D. Walker, J.R. Cavallaro.  Analysis of Robots for Hazardous 
Environments.  In Proc. IEEE Annual Reliability and Maintainability Symposium, pages 111-116, 
Philadelphia, PA, January 1997. 
 
[8]  M.L. Leuschen, I.D. Walker, J.R. Cavallaro.  Robot Reliability Through Fuzzy Markov Models. In 
Proc. IEEE Annual Reliability and Maintainability Symposium, pages 209-214, Anaheim, CA, January 
1998. 
 
[9]  M.L. Leuschen, I.D. Walker, J.R. Cavallaro.  An Investigation of Reliability of Hydraulic Robots for 
Hazardous Environments Using Analytical Redundancy. In Proc. IEEE Annual Reliability and 
Maintainability Symposium, Washington, DC, January 1999. 
 
[10] Mathworks.  Simulink.  http://www.mathworks.com/products/simulink/. 
 
[11]  W. Stadler.  Analytical Robotics and Mechatronics.  McGraw-Hill, Inc.  New York, NY, 1995. 
 
[12]  M.L. Visinsky, J.R. Cavallaro. I.D. Walker.  A Dynamic Fault Tolerance Framework for Remote 
Robots.  IEEE Transactions on Robotics and Automation, 11(4):477-490, 1995. 
 




