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ABSTRACT

Hazardous environments are an important application of modern robotic techniques.

However, failures can be quite serious in such environments, especially if they trap the
robot within or damage containment efforts. Thus robust early fault detection is
especially important for such robots. In this paper we discuss the application of one such
method, analytical redundancy, to a hydraulic system similar to the one found in
hazardous environment robots such as the Rosie worksystem. Further, we extend the
method beyond its linear formulation to better deal with the nonlinearities inherent to
hydraulic systems.

1. Introduction

One of the most important and fast growing areas in the robotics industry is the
development of robots capable of working in hazardous environments [4, 5, 6, 12].
Providing a high levd of functiondity in these aenas is importanit Smply because
humans cannot safely or chesply work there.  This dlows completion of previoudy
impossible tasks and often involves the creation of new jobs rather than the dedtruction of
old ones.

The ussfulness of robots in hazardous Stuations is highly dependent on ther rdiability.
Hazardous environments can damage robotic components, and many of them can be
made more hazardous by the presence of a mafunctioning robot. Additiondly, humans
usually cannot enter these areas to repair or remove a failed robot. For these reasons, our
team has investigated rdigbility issues for robots extensively (7, 8, 9].

The Rose mobile worksystem [1, 3] is an important and interesting example robot that is
on the cutting edge of hazardous environment robotics, which has served as our
ingoiration and motivetion for this work.  Rode, under development by RedZone
Robatics Inc. and Canegie Mdlon University's Field Robotics Center, is a heavy-duty
hydraulic robot desgned for nuclear reactor decontamination and dismantlement. The
robot has four independently steerable wheels powered by hydraulic motors supporting a
chasss sporting a heavy-duty crang/manipulator.  Fault detection for Rose is interesting
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and important, and we ae additiondly usng Rose as a intermediate step to begin
looking at fault detection for hydraulic syssemsin generd.

This paper will focus on a method known as analytical redundancy [2, 9], or AR. AR is
a mode-based state-gpace technique tha derives the maximum number of independent
tests of the consstency of sensor data with the linearized sysem mode and past control
inputs. It yidds tests to determine whether the sysem is peforming nomindly, or is
deviating from the dedred plan and presumably under fault conditions. Our group has
used this technique successfully on eectricd robotic systems n the past [12], and is now
aoplying it to the hydraulic Rode-like systems.

In a previous paper [9], we discussed the derivation through AR of a suite of model based
tests for the default sensor package for hydraulic whed actuators. Some of these tests are
comparison of the actua system response to control inputs to the predicted response
indicated by the modd. The other tests uncovered by the AR andyss reflect higher order
dtate interdependencies.

However, due to the date-space nature of AR, these tests ae dl inherently linear.
However, the hydraulic vadve and motor sysem behavior is highly nonlinear in nature,
which leads to a degradation in the performance of the AR method. In this paper, we will
show how to formaly extend the linear AR tedts into the nonlinear redm, making the AR
method suitable for analyss of nonlinear systems such asthis.

2. Hydraulic Model and Testbed

The hydraulic whed actuator subsystem has been determined to be a vitd component of
the mobile platform through abdract reiability andyss A falure of a whed mechaniam
may prevent the removad of the chasss from the reactor work ste, which may be
hazardous to potential repairmen. Our god is to detect as many such faults as possble
before they become serious, minimizing the risk to the robot. Our research group is
working with Foster-Miller Technologies Incorporated, an organization with considerable
experience in evduding the rdiability of hydraulic sysems, to develop effective sensor
configurations and data andysis procedures for hydraulic whed actuators and implement
them on a testbed system under congtruction at Foster-Miller.  The results of this project
can then be usad to enhance the rdiability of existing and future robots.

The system we are consdering conssts of a rotary hydraulic motor connected to a 3000
PS hydraulic power supply through a hydraulic spool vave, as seen in figure 21. This
system has consderable advantages as an actuator in a nuclear environment.  Hydraulic
systems are rugged and powerful, and much less likely to produce dangerous sparks than
an dectricd sysem. However, hydraulic sysems are vulnerable to many faults that
electricd systems do not experience, and ae much harder to modd due to their
inherently nonlinear nature.
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2.1 Notation

The following variable names are used in this paper:

- A B,and C arethe canonica discrete time state space system matrices

- By isthe viscous damping coefficient

- Cim = CemtCim represent total, external, and interna |eakage, respectively

- dpy isthe volumetric displacement of the motor

- Jiistheinertiaof the motor and load

- K, kq and k are valve flow coefficients

- M = K¢+ Cyy, isagenerdized pressure coefficient

- prand p(k) are the continuous and discrete pressure drops across the motor

- psisthe hydraulic power supply nomina pressure of 3000 PSI

- Qisthene fluid flow into the spool vave

- tisthe continuoustime variadle, k the discrete time variable, [ isthe time step

- Ty isthetorque generated by the motor

- T, istheload torque

- V1 through V4 ae liner AR tests, NV3 and NV4 ae nonlinear tests, PLV3 isa
piecewise linear AR test

- viisthevolume of fluid within the motor

- Xy and x(K) are the servovave position

- Y(K) isthe state vector

- beisthe bulk modulus of the hydraulic fluid

- Om and k) arethe podtion of the motor shaft

- r isthehydraulic fluid densty

Spool Valve
P(supply) M otor

Hincn
R

Figure 2.1: Hydraulic System Testbed

Friction Fault

The equations for modeling this system are as follows:

TQ = pldm :‘]tdm + qum +TI’
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. V. [
Q:X\/Kf'\l%(ps - pl) :qum+(cim+cem)pl + 41?' :

e

These eguations have been used to create a Simulink [10] modd of the system in
guestion. This modd follows the above equations with the additiona implementation of
supply pressure limits, linear and Coulomb friction, control valve dither and sysem and
sensor noise. Severd faults have been mathematicdly modded and built into the system
in such a way as to dlow anaysis of various methodologies before data from the
hardware testbed is available. It was used to provide input to al the tests described in the
rest of this paper.

It is obvious that the hydraulic flow equations are highly nonlinear, due to the square root
and coupling of varigbles. The standard linearization of this equation is as follows.

_ 4 A
Q - kqxv - kc pl - qum + (Cim+cem) pl + 4t.b| :

e

Note that this is not a drict linearization of the flow equation about zero pressure and
vave pogtion. Such an equation would not have a backpressure Kc) term. However, this
term helps reduce the error in the regions in which the system is likely to be controlled.

Note that the line of zero eror in figure 2.2 below is in the middle of the ool vaves
operating range. Linearized equations are suiteble for use by dandard linear control
methods. Tuned error tracking control is usudly sufficient to ded with any dgnificant
differences between the linear modd and the nonlinear system, athough these differences
can be quite Sgnificant, as seen in figure 2.2 below:

Linear Approximation Error
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Figure 2.2: Error between original and linearized flow equations

The discrete time state-space control matrices for this system can be obtained as follows:
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3. Analytical Redundancy

The andyticd redundancy (AR) method dlows us to explicitly derive the maximum
possible number of linearly independent consstency tests for a system [2, 12].  Usng a
liner mode of the sysem of interest, AR exploits the null space of the observability
matrix to alow the creation of a st of test equations. These tests use sensor data
higtories and known past control inputs to detect any deviaion whatsoever from the datic
or dynamic behaviors of the modd. The deviations can then be andyzed for sgns that
indicate specific faults within the system.

The core of AR is the following equation [2], which is used to determine the sysems
observahility null space:

€Observabilityu
a 1 y(k) =0.

W & Matrix H yk)

W is the matrix representation of the space which the properly behaving system should

never enter. Since most sysems will be somewhat noisy and possbly inaccurately
modded, it is likely that the state vector will project dightly into this null space.

For our testbed, usng the linearized model equations from the previous section, we can
derive the AR tests below:

_B,Dt-J, - d_Dt

V1 q(k) +a(k+1 + p(k) =0,
t t
2 2 2 2 A 2 2 A
V2=§ 1+ 2B,.Dt 4o Bmf)t +4bdet %q-(k)_l_gﬂmB,th 4o 2d Dt + 4b,d MDt“ 0
J, J; JVvi g J; J, NAYA &
. e 4bdmqut2 0
+q(k+2)+ g—:x(k) =0,
JVi B
4 . 4b MDt - - 4b_k Dt
V3= Mq(k) +& p(k) + p(k +1) +—qx(k) =0,
V,

t t t
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These tests correspond to descretized versons of our mode eguations (V1 is torque
equation, V3 isflow equation) and their first derivatives (V2 and V4).

Figures 3.1 and 3.2 below show the pressure and velocity responses of the system to both
a norma ramp Xy input and the same input with a lesk fault that reduces the net flow to
hdf its former value a t = 9s. Note that for these plots and dl plots following the nort
time varidble has been scded in such a way to give results of smal magnitude, thus
faciliteting plot reading. However, gresat care has been taken to preserve relative scaes
between plots of the same AR tedts, so that they may be compared to each other without
bias. (All XV3 tests use the same scale, for example.)

Velocity Pressure
1 1
0.5 0.5
; ) W
T
0 10 20 0 10 20

Figure 3.1: Fault Free operation, ramp input.

Velocity Pressure
1 1
0.5 0.5
0 /\ 0 J
0 10 20 0 10 20

Figure 3.2: Leak Fault a t = 9s, ramp input.

Figure 3.3 shows the reaults of the V3 linearized modd test in response to the above
inputs. (We choose to focus on this test because it is the most draightforward of the
linearized tets) The trend of the test away from its nomind zero-centered vaue in the
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fird plot is due to the differences between the linear tes and the nonlinear system it is
atempting to modd. This is undedrable, as it may mask an actud fault that will dso
cause the V3 linearized AR test to drift in that direction. The second plot shows the
effect of a lesk fault on the V3 test. Although this is a sudden, serious, fault, note that the
magnitude of the change isthe same as that of the drift.

V3 V3

Ww

0 10 20 0 10 20

Figure 3.3: Response of AR test V3 to fault free and leak fault
ramp inputs seen above. (Figures3.1and 3.2)

4. Extension of AR to Nonlinear Systems

Andytica redundancy uses the standard linear State-space control model to derive a st
of condslency teds that detect any devidion from this modd. This is especidly
convenient from a control theory point of view snce dtate space control is a wdl-
developed fidd, alowing one to derive AR tests as a dmple addition to the required
condruction of the sysem controller.  Additiondly, it results in AR tests that ae
ubgantidly smilar to the control equationss making it condderably esser to
comprenend what the physcd dgnificance of the teds is  For example in the teds
above, it was possible to determine the relationship of every test to the model equations.

However, nonlinear model equations are not compatible with the state space method, and
thus it is impossble to paform an AR andyss of a nonlinear sysem usng exising
methods. The system must be linearized, and as we demondrate in this paper, this results
in AR tedts that are inferior to the basic condstency tests derived from amply tracking
the compliance of the modd with the nonlineer model equations. At the same time, it is
not obvious thet it is theoreticaly judtifisble to use nonlinear mode equetions in place of
lineer modd eguations that may result from an AR andyds. The andyss is only drictly
goplicable to the linear system.

One way to atempt to circumvent this is to run severd AR tedts for the system linearized
about different sets of control variables. Each set would be theoreticaly robust, and in
the loca region esch set would be more accurate than a generd linearizetion of the
control equations for the entire workspace. An example of this technique, and the
improvement it brings, is illusrated below in figure 4.1. In this case, the pressure-vave
position workspace in which the flow equation is nonlinear is divided up into nine equa
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regions. The modd equation is linearized about a point a the center of each and normd
AR tedts ae deived. (Actudly, due to the symmetry of the system, only four
linearizations are needed) During operation, the AR test used is the one that was
linearized about a point closest to the current postion, with interpolated trangtions near
the borders of each region.

Pressure
3000 PS
> .
Linearization |
Points
Valve
Position
Transition
Regions —|
[
-3000 PSl

-0.5in. 0.5in.

Figure 4.1:Piecewise Linear division of workspace

In response to the same tedts as in the previous section, the piecewise linear tests gave the
results seen in figure 4.2. The firg plot is for norma operation. The second plot is the
response of the system to the same fault asthe linear AR test in the previous section.

PLV3 PLV3
0.15 0.2

0.1 0

Nl

0.05 . '||
i o \‘J\\MM
-0.05 3 0.6
0 10 20 0 10 20

Figure 4.2:Piecewise Linear AR test resultsfor inputs from
figure3.1and 3.2.
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Note that the drifting behavior of the linear test has been dragticaly reduced from figure
3.3. Before the test can drift far from the point aout which it was linearized, the system
trangtions into another, more appropriate AR test linearized about a point closer to the
actud dae of the sysem. This reaults in a fault sgnature (circled) that is an order of
magnitude larger than the sgnd produced by the drifting within the regions and the
trangitions between them, making the fault much essier to detect.

Each patition would use a different linearization of the control equations, but it is
important to note that the different linearizations will dl share the same basc form,
differing only in the vaues of various condants. This means that the form of the AR
tests generated by the different linearizations will dso be of the same form. In fact, they
will share the rdationship to the origind modd that the globdly linearized sysem
possesed!  For example, in our system there will aways be a test corresponding to the
linearized flow equation, only differing in the point about which it is linearized.

Now if we take the partition method to its logica extreme by teking smdler and smdler
patitions, the above discusson makes it clear that we will in the limit approach the
nonliner modd equationd  This means we can in principle judtify usng the nonlinear
mode equations in an AR context. Similarly, the AR tedts that correspond to derivatives
(V2 and V4) of the linear modd equations (V1 and V3) can be shown to be more
accuratdly represented by the derivatives of the nonlinear ones. In fact, the nature of the
AR method insures that dl tests derived from it can be rdaed somehow to the initid
sysem equations, so in theory any tests resulting from a linearized equation can be
converted back to amore accurate nonlinear equation.

As linear AR resulted in the modd equations and their first derivatives, the nonlinear AR
tests are the nonliner modd equations and ther fird derivatives. Since only the flow
equation was nonlinear, we only need two new AR tests, seen below.

3= 220nDt gy 4 A0CRDU Vg gy 2R o T )=
V, \'A VM/E
nva= ER B - q(k))+p(k+2)+§ 2+ S ok
+§i- 4b+- (k) + 9 - J_ 1x(k+1> x(K)W(p. - p(K)
+ém'bequt9Xk (p(k+])' p(k)):O

& VAP g (p, - p(k))

In response to the same inputs as the previous two flow equation tests, NV3 produced the
results seen in figure 4.3. Note how large the fault Sgnd (circled) is reative to the noise
in the fault-free test run.
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Figure 4.3:Nonlinear AR test resultsto inputs from figure 3.1
and 3.2.

5. Response of AR Teststo System Faults

Additiond smulated results from our nonlinear AR models of the testbed are shown in
the Appendix and discussed below. First we see the results of dl four AR tests (V1, V2,
NV3, and NV4) for fault free ramp input in figure A.1. V1 and V2 suffer a samdl drift due
to unmoddable friction effects and the flow based AR tests are performing wdl. The
gep input in figure A.2, however, shows large spikes in the AR tests even during fault
free operdtion. While unfortunate, this effect is unavoidable for any smilaly violent
input, since the AR tests are operating on a timeframe much larger than the control input.

This test is useful to provide a contrast between the error signas caused by such strong
control inputs and actud faultsin the system.

Next we look a an example system fault — a farly serious lesk in the hydraulic system,
resulting in a drastic loss of power and peformance. A quick perusa of the AR test
results seen in figures A.3 and A.4 will show that an important characteristic of this kind
of falure is a shap change in every tes but NV4. A look at the eguations shows that
NV4's sengtivity to the flow coefficient kg is dependent on the first derivative of xy, which
changes only dowly in mog Stuations Note that the magnitude of these sgnds is
amdler than the signd for the step input, so this digtinction may prove quite useful.

Next we see the reaults of a friction fault, representing a jamming or sticking in the whed
mechaniam, in figures A5 and A6. It is interesing to note thet this fault results in
negligible sgnds in most teds except V1 a the time of occurrence, but causes large
ggnds when the ramp leves off. The tests in question show a strong response when
there is a change in accderation. This suggedts that a change in only the fird AR test
suggedts afriction fault. It aso gives usagood way to test this suspicion.

The find st of figures, A.7 and A.8, show the response of the AR tests to a 10% increase
in the model parameters used by the smulation, without changing the parameters used by
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the AR tests.  Note the smal change in response, indicating the genera robustness of the
AR method.

Despite the large improvement in AR performance when extended nonlinearly as seen
above, we ill wish for greaster thoroughness in the overall mathematics Our extenson
method is idedl for geiting the best results out of linear AR gpplied to a nonlinear system,
but does not actudly conditute nonlinear AR. The null space tha is generated by our
state-space methods is a linear null space of a linear sysem. We can gpproximate the
nonlinear sysem by taking dense samples and linearizing a many points, evertudly
taking the nonlinear equations as a limit, but in the process we ae dill redricting
oursalves to the linear dependencies of the sysem. We would like to know the full shape
of the nonlinear system's null space.

6. Conclusions and Future Work

The andyticd redundancy technique for fault detection is a promisng and theoreticaly
robus method for use in wel-modeed linear systems. It provides the theoreticd
maximum amount of information regarding the deviation of such a sysem from its
expected behavior. The work presented in the above section shows the effectiveness of
this method for detecting important system faullts.

However, AR is not as ussful for deding with nonliner sysems snce too much
informetion is log in the linearization of the system so that the state space modd can be
used. AR only detects how far the sysem deviaes from the modd — if the modd darts
out consderably different due to linearization, thereis little information to be gained.

Our method of extending liner AR into the nonlinear domain reduces this problem
consderably. We bring the modd back in tune with the system, so our tests become
much more sengtive and meaningful.  With this method, we can creste meaningful AR
tests for a nonlinear sysem. However, in the process we lose some of the theoretica
robustness inherent in the origind linear AR technique. The null space we ae interested
in is the null space of the nonlinear systlem, the one we are examining is an extenson of
the null space of a linearized verson of the sysem. This prevents us from being entirely
satisfied with the technique.

An obvious solution to this is to consder a truly nonlinear AR technique, where the null
goace of the origind nonlinear system is conddered. This will require condderable use
of nonlinear control techniques, and promises to be an exciting avenue for future
resserch.  Our other mgor avenue of interest for the future of this topic is the integration
and testing of our techniques on the physica testbed under congtruction a Foster Miller
Technologies We antticipate that this platform will be useful in refining and expanding
these techniques.
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Appendix

Velocity Pressure V1
1 1 1
O I
0.5 0.5 1
_2 M‘hl
Moiyhilarnd
0 0
-3
0 10 20 0 10 20 0 10 20
V2 NV3 NV4
1 0.04 0.4
0.02 0.2
‘&}\ 0 0
-1
N rtrme]  -0.02 -0.2
-2 -0.04 -0.4
0 10 20 0 10 20 0 10 20
Figure A.1: Fault free ramp input. (Same parameters asfigure 3.1.)
Velocity Pressure V1
1 1 2
0
0.5 b 05 Mhirw@wﬂhm
-2
0 om |
. -4
0 10 20 0 10 20 0 10 20
V2 NV3 NV4
5 0.5 10
0 -
0 b4 0 |
N s pimtagho -10
-5 -0.5
-20
-10 -1 -30
0 10 20 0 10 20 0 10 20

Figure A.2: Fault free step input. Note large AR signalsin response to sudden,
large changes in input.
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0.5 0.5
/\
0 0
0 10 2
V2
2 0.2
O Jnith / 0
-2 ﬂ \) -0.2
X
-4 -0.4
-6 -0.6
0 10 20 10 20 10
Figure A.3: Leak Fault at t=9, Ramp Input. Note large, clear signalsin V2 and
NV3.
Velocity Pressure
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Leuschen-1

Figure A.4: Leak fault at t=9, step input. Notelarge AR signals (orange,

dashed) at t=2s, when step begins. Fault signal (red) issmaller, but behaves.
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Velocity Pressure V1

1 1 1
0 |
0.5 ALy
0 /
0 10 20
V2

2

L Ml
0 F' v

’ Lf'M 02
-4 -03 M“ -2

0 10 20 0 10 20 0 10 20

Figure A.5: Friction fault at t=9s, ramp input. Note small initial response (red)
and larger response when system stops accel erating (green, dashed).

Velocity Pressure V1

0
0.5 frrf 3 0.5 m )
2

0 10 20 0 10 20 0 10 20
V2 NV3 NV4
5 0.5 10
0 i
0 i 0
LSNP LT RPTTOpY -10
-5 -0.5
-20
-10 -1 -30
0 10 20 0 10 20 0 10 20

Figure A.6: Friction fault at t=9s, step input. Note virtually no response from
any test besides V1 to fault.
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Velocity Pressure V1
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05 05 1 _
, by,
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V2 NV3 NV4
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0.2

-1 H -0.02
N -0.2

-2 -0.04 -0.4
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Figure A.7: 10% Parameter estimation error, ramp input. Note strong similarity
between this set of signalsand figure A.1
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1 1 4
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0.5 0.5 0
[,ANW.-*-:. At ey
-2 \|
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V2 NV3 NVv4
5 1 50
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0 [ 0
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-5 -50
-0.5
-10 -1 -100
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Figure A.8: 10% Parameter estimation error, step input. Comparetofigure A.2.
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