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Second-Order Statistical Measures for Text-Independent

Speaker Identi�cation

Abstract

This article presents an overview of several measures for speaker recognition. These measures relate to

second-order statistical tests, and can be expressed under a common formalism. Alternate formulations

of these measures are given and their mathematical properties are studied. In their basic form, these

measures are asymmetric, but they can be symmetrized in various ways. All measures are tested

in the framework of text-independent closed-set speaker identi�cation, on 3 variants of the TIMIT

database (630 speakers) : TIMIT (high quality speech), FTIMIT (a restricted bandwidth version of

TIMIT) and NTIMIT (telephone quality). Remarkable performances are obtained on TIMIT but the

results naturally deteriorate with FTIMIT and NTIMIT. Symmetrization appears to be a factor of

improvement, especially when little speech material is available. The use of some of the proposed

measures as a reference benchmark to evaluate the intrinsic complexity of a given database under a

given protocol is �nally suggested as a conclusion to this work.

Abstandsma�e basierend auf statistischen Methoden

zweiter Ordnung zur textunabh�angigen

Sprecheridenti�zierung

Zusammenfassung

Dieser Artikel beschreibt mehrere Abstandsma�e der Sprechererkennung. Diese Abstandsma�e

beziehen sich auf Tests basierend auf statistischen Methoden zweiter Ordnung und k�onnen unter

einem gemeinsamen Formalismus betrachtet werden. Alternative Formalismen werden vorgestellt

und ihre mathematischen Eigenschaften untersucht. In ihrer urspr�unglichen Form sind diese Ab-

standsma�e asymetrisch. Sie k�onnen jedoch auf vielf�altige Weise in eine symetrische Form umge-

wandelt werden. Alle Abstandsma�e werden im Rahmen einer textunabh�angigen Sprechererkennung

einer geschlossenen Sprechermenge an drei Variationen der TIMIT-Sprachdatenbank (630 Sprecher)

getestet : TIMIT (Sprache mit hoher Aufnahmequalit�at), FTIMIT (eine Version von TIMIT mit

eingeschr�ankter Bandbreite) und NTIMIT (Telephonqualit�at). Beachtenswerte Ergebnisse wurden

mit TIMIT erreicht, die sich mit FTIMIT und NTIMIT verschlechtern. Es stellt sich heraus, da� die

Symetrisierung einen Verbesserungsfaktor darstellt, vor allem, wenn wenig Sprachmaterial vorhanden

ist. Die Verwendung einiger der vorgeschlagenen Abstandsma�e als Referenzvergleich zur Evaluierung

der Komplexit�at einer gegebenen Sprachdatenbank unter einem gegebenen Protokoll wird am Ende

dieser Arbeit vorgeschlagen.
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Mesures statistiques du second ordre pour l'identi�cation

du locuteur ind�ependante du texte

R�esum�e

Cet article pr�esente un ensemble de mesures pour la reconnaissance du locuteur. Ces mesures re-

posent sur des tests statistiques du second ordre, et peuvent être exprim�ees sous un formalisme com-

mun. Di��erentes expressions de ces mesures sont propos�ees et leurs propri�et�es math�ematiques sont

�etudi�ees. Dans leur forme la plus simple, ces mesures ne sont pas sym�etriques, mais elles peuvent être

sym�etris�ees de di��erentes fa�cons. Toutes les mesures sont test�ees dans le cadre de l'identi�cation du

locuteur ind�ependante du texte en ensemble ferm�e, sur 3 versions de la base de donn�ees TIMIT (630

locuteurs) : TIMIT (parole de tr�es bonne qualit�e), FTIMIT (version �ltr�ee de TIMIT) et NTIMIT

(qualit�e t�el�ephonique). Des performances remarquables sont obtenues sur TIMIT, mais les r�esultats

se d�egradent naturellement avec FTIMIT et NTIMIT. La sym�etrisation apparâ�t comme un facteur

d'am�elioration, plus particuli�erement lorsque l'on dispose de peu de parole. Il est �nalement sugg�er�e,

comme conclusion �a ce travail, d'utiliser certaines mesures propos�ees comme m�ethodes de r�ef�erence

pour �evaluer la complexit�e intrins�eque d'une base de donn�ees quelconque, sous un protocole donn�e.
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1 Introduction

1.1 A brief overview

Recent experiments [2] [16] [5] [17] using vector Auto-Regressive models for speaker recognition con�rm

and further develop work carried out by Grenier [13]. The vector AR approach provides excellent

results on a subset of the TIMIT database (420 speakers), in a text-independent mode : with a

training of 5 sentences (approximately 15 seconds) and tests of 1 sentence (approximately 3 seconds),

closed-set identi�cation scores reported by Montaci�e [17] are of 98.4 %, and reach 100 % when using 5

sentences for testing. By incorporating a discriminant analysis, the 98.4 % score improves to 99.3 %.

On the same database, other approaches have been recently tested, in particular Neural Network

based methods. For instance, Rudasi and Zahorian propose binary discriminative networks [20], and

reach a 100 % identi�cation score, with 47 speakers, 5 sentences for training and 5 others for testing.

Bennani [3] reports experiments with a modular TDNN-based architecture which provides 100 %

correct identi�cation for more than 100 TIMIT speakers, using about 15 seconds for training and less

than 1 second for testing.

An other method used by Hattori [14] is based on predictive networks. Under this approach, a neural

network is trained, for each speaker, to predict a speech frame given the 2 previous ones. During

recognition, the identi�ed speaker is the one corresponding to the network with the lowest prediction

error. With the best variant, Hattori obtains 100 % correct identi�cations on 24 speakers (from

TIMIT), with about 15 seconds for training and 9 seconds for testing.

Still on TIMIT database, Reynolds [19] shows that a Gaussian Mixture speaker model (with 32

Gaussian distributions with diagonal covariance matrices) leads to a very high level of identi�cation

performance : 99.7 % for 168 speakers, using 8 sentences for training and 2 for testing. As discussed

by Furui [9], the Gaussian Mixture approach shares strong similarities with the Vector Quantization

based approaches [22] and with the Ergodic HMM based methods [18] [21]. It is therefore very likely

that these approaches would also provide excellent results on TIMIT.

1.2 Motivation

In spite of the fact that all approaches mentioned in this brief overview were tested on the same

database, it is still di�cult to have a clear idea of their relative performances. Among the factors of

variability between the experiments are the speech signal pre-processing, the type of acoustic analysis,

the length of training and test utterances and of course the number of speakers for which the results

are reported.

A systematic comparison of any new approach with all pre-existing methods, under the exact same

protocol, is theoretically possible but practically unfeasible ; not only owing to the amount of work

involved, but also because it may be very di�cult to reproduce in detail a speci�c algorithm for which

all needed information may not be publicly available, or which is sensitive to initialization conditions.

Moreover, it can be argued that such or such database is easy and non-discriminant (which may very

well be the case for TIMIT), but we lack reliable tools to evaluate the intrinsic di�culty of a database.
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A possible way to address this problem of evaluation is the use of a common algorithm as a reference

benchmark to evaluate the complexity of a given database under a given protocol [7]. Desirable

properties for such a reference method are its relative e�ciency and robustness, but also its easy

implementation and its absolute reproductibility [6].

The work reported in this article is dedicated to similarity measures between speakers which are derived

from statistical tests, with an underlying Gaussian speaker model. The theoretical formulation of these

measures illustrates their straightforward reproductibility, while the experimental results evaluate their

e�ciency on several databases : namely TIMIT (high quality speech), FTIMIT (a 0-4 kHz version of

TIMIT) and NTIMIT (telephone quality speech).

In parallel to this large scale evaluation, we discuss the possibility of using one or two of the proposed

approaches as systematical benchmarks, in order to provide baseline performance for any database

and protocol. Such reference scores would give an idea of the degree of complexity of a given task,

and the improvement obtained by any other method would indicate the bene�ts of a more elaborate

speaker model.

1.3 Outline

Three families of measures are investigated in this paper, namely :

� log-likelihood based measures

� sphericity test based measures

� relative eigenvalue deviation measures

In section 3, we present all measures under a common formalism (de�ned in section 2), and we study

their mathematical properties. In their original forms, these measures are not symmetric, and we

describe, in section 4, some possibilities to symmetrize them. Section 5 is dedicated to the description

of our evaluation protocol, and to the corresponding results. In section 6, we discuss, the possibility

of using some of the measures as reference methods.

2 Notation, de�nitions, properties

2.1 A Gaussian model per speaker

Let fxtg1�t�M be a sequence of M vectors resulting from the p-dimensional acoustic analysis of

a speech signal uttered by a speaker X . For instance : �lter-bank coe�cients, linear prediction

coe�cients, cepstrum coe�cients,... Under the hypothesis of a Gaussian speaker model, the vector

sequence fxtg can be summarized by its mean vector �x and its covariance matrix X, i.e.

�x =
1

M

MX
t=1

xt and X =
1

M

MX
t=1

(xt � �x) � (xt � �x)T (1)

Similarly, for a speaker Y, a parameterized speech utterance fytg of N vectors can be modeled by �y

and Y , with

�y =
1

N

NX
t=1

yt and Y =
1

N

NX
t=1

(yt � �y) � (yt � �y)T (2)
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Vectors �x and �y are p-dimensional, while X and Y are p � p symmetric matrices. Throughout this

article, a speaker X (respectively Y) will be represented by �x, X and M , (respectively �y, Y and N).

We will also denote

� = �y � �x

� = X
� 1

2 Y X
� 1

2

� = N
M

where X
1
2 is the symmetric square root matrix of X. Note that, when swapping X and Y, vector �

becomes ��, matrix � becomes ��1 and real number � becomes 1=�.

2.2 Second-order statistical measures

We focus on similarity measures � between speakers X and Y which can be expressed as a function

� (X ; Y) = � (�x; X; M; �y; Y; N) (3)

The measures � that we investigate are derived from statistical hypothesis testing. They are con-

structed so that they are non-negative, i.e.

8 X ; 8 Y; � (X ; Y) � 0 (4)

and they satisfy the property

8 X ; � (X ; X ) = 0 (5)

In their basic forms, the measures are non-symmetric, but we propose several ways to symmetrize

them, so that

8 X ; 8 Y; � (X ; Y) = � (Y; X ) (6)

2.3 Relative eigenvalues

We will denote as f�ig1�i�p the eigenvalues of matrix �, i.e. the roots of the equation

det [� � �I] = 0 (7)

where det denotes the determinant, and I the unit matrix. Matrix � can be decomposed as

� = � � ��1 (8)

where � is the p� p diagonal matrix of the eigenvalues, and � the p� p matrix of the eigenvectors.

Classically, the eigenvalues �i are sorted in decreasing order when i increases.

Solutions of equation (7) are known as the eigenvalues of Y relative to X. Because X and Y are

positive matrices, all eigenvalues �i are positive. Note also that the eigenvalues of X relative to Y

(i.e. the eigenvalues of ��1) are f1=�ig1�i�p.
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2.4 Mean functions of the eigenvalues

Three particular functions of the eigenvalues �i are used in this article :

The arithmetic mean : a (�1; :::; �p) =
1

p

pX
i=1

�i (9)

The geometric mean : g (�1; :::; �p) =

 
pY
i=1

�i

!1=p

(10)

The harmonic mean : h (�1; :::; �p) =

 
1

p

pX
i=1

1

�i

!�1
(11)

Because all eigenvalues �i are positive, it can be shown that

a � g � h (12)

with equality if and only if all �i are equal. Moreover, swapping X and Y turns a into 1=h, g into 1=g

and h into 1=a. In other words,

a (
1

�1
; :::;

1

�p
) =

1

h (�1; :::; �p)
(13)

g (
1

�1
; :::;

1

�p
) =

1

g (�1; :::; �p)
(14)

h (
1

�1
; :::;

1

�p
) =

1

a (�1; :::; �p)
(15)

2.5 Computation of a, g and h

Given that the trace (denoted tr) satis�es tr (AB) = tr (BA) and that the determinant (denoted

det) veri�es det (AB) = det A � det B, we have the following properties :

a (�1; :::; �p) = 1
p
tr � = 1

p
tr � =

1

p
tr (Y X�1) (16)

g (�1; :::; �p) = (det �)1=p = (det �)1=p =

�
det Y

det X

�1=p
(17)

h (�1; :::; �p) = p

tr (��1)
= p

tr (��1)
=

p

tr (XY �1)
(18)

These equations show that functions a, g and h can be computed directly from X, Y , X�1, Y �1,
det X and det Y , without extracting explicitely the eigenvalues �i, nor calculating the matrix square

roots of X and Y . Moreover, tr (Y X�1) and tr (XY �1) can be computed without calculating the full

matrix product, but only the diagonal elements of the product.
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3 Second-order statistical measures

3.1 Gaussian likelihood measure

3.1.1 De�nition

By supposing that all acoustic vectors extracted from the speech signal uttered by speaker X are

distributed like a Gaussian function, the likelihood of a single acoustic vector yt uttered by speaker Y

is classically

G (yt j X ) =
1

(2�)
p

2 (det X)
1
2

e
� 1

2
(yt��x)TX�1(yt��x) (19)

If we assume that all vectors yt are independent observations, the average log-likelihood of fytg1�t�N
can be written

GX (yN1 ) =
1

N
log G (y1 ::: yn j X ) =

1

N

NX
t=1

log G (yt j X ) (20)

= �
1

2

"
p log 2� + log (det X) +

1

N

NX
t=1

(yt � �x)TX�1(yt � �x)

#

By replacing yt � �x by yt � �y + �y � �x and using the property

1

N

NX
t=1

(yt � �y)TX�1(yt � �y) = tr (Y X�1) (21)

we get

GX (yN1 ) +
p

2
log 2� = �

1

2

h
log (det X) + tr (Y X�1) + (�y � �x)TX�1(�y � �x)

i
(22)

and

2

p
GX (yN1 ) + log 2� +

1

p
log (det Y ) + 1 (23)

=
1

p

�
log

�
det Y

detX

�
� tr (Y X�1) � (�y � �x)TX�1(�y � �x)

�
+ 1

Therefore, if we de�ne the Gaussian likelihood measure �G as

�G (X ; Y) =
1

p

�
tr (Y X�1) � log

�
det Y

detX

�
+ (�y � �x)TX�1(�y � �x)

�
� 1 (24)

=
1

p

h
tr � � log (det �) + �

T
X
�1
�

i
� 1 (25)

= a � log g +
1

p
�
T
X
�1
� � 1 (26)

we have
Argmax GX (yN1 ) = Argmin �G (X ; Y)

X X (27)
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3.1.2 Properties of �G

Matrix X�1 being, like X, positive de�nite, �TX�1
� � 0. Moreover, we have log g � g � 1

and a � g. Therefore, a � log g � 1 � 0 and �G (X ; Y) � 0. Measure �G (X ; Y) = 0 if and

only if all eigenvalues �i are equal to 1 and � is the null vector, i.e. if and only if X = Y and

�x = �y. However, �G (X ; Y) is non-symmetric, its dual term being

�G (Y; X ) =
1

h
+ log g +

1

p
�
T
Y
�1
� � 1 6= �G (X ; Y) (28)

3.1.3 A variant of �G

When dealing with noisy or distorted speech, the mean vectors �x and �y may be strongly in-


uenced by the channel characteristics, while covariance matrices X and Y are usually more

robust to variations between recording conditions and transmission lines [11]. Thus, the di�er-

ence � = �y � �x may be a misleading term in �G.

A Gaussian likelihood measure on the covariance matrices only, denoted here �Gc, can therefore

be derived from the previous likelihood measure as

�Gc (X ; Y) =
1

p

"
tr (Y X�1) � log

 
det Y

det X

! #
� 1 (29)

=
1

p
[ tr � � log (det �) ] � 1 (30)

= a � log g � 1 (31)

This measure can be expressed as a function of the eigenvalues �i of matrix �. However, it does

not require an explicit extraction of the eigenvalues. It has the same properties as measure �G.

In particular, it is still non-symmetric, since

�Gc (Y; X ) =
1

h
+ log g � 1 6= �Gc (X ; Y) (32)

3.2 Arithmetic-geometric sphericity measure

3.2.1 De�nition

As presented by Anderson [1], a likelihood function for testing the proportionality of a covari-

ance matrix Y to a given covariance matrix X is

S (Y j X) =

2
4 det (X� 1

2Y X
� 1

2 )�
1
p
tr (X� 1

2Y X
� 1

2 )
�p
3
5
N

2

=

2
4 det ��

1
p
tr �

�p
3
5
N

2

(33)

This expression results from the combination of two criteria : one on the diagonality of matrix

�, and a second one on the equality of the diagonal elements of �, given that � is diagonal.

9



By denoting as SX (yN1 ) the average likelihood function for the sphericity test,

SX (yN1 ) =
1

N
log S (Y j X) (34)

and by de�ning

�Sc (X ; Y) = log

2
4 1

p
tr �

(det �)1=p

3
5 (35)

= log

2
64

1
p
tr (Y X�1)�
det Y
det X

�1=p
3
75 (36)

= log

 
a

g

!
(37)

we have
Argmax SX (yN1 ) = Argmin �Sc (X ; Y)

X X (38)

Measure �Sc appears as the logarithm of the ratio of the arithmetic and the geometric means

of the eigenvalues of Y relative to X. As for measure �Gc, �Sc derives from a test on the

covariance matrices only. It can be expressed as a function of the eigenvalues �i, but it does

not require the search for the eigenvalues. The use of the arithmetic-geometric sphericity test for

speaker recognition was initially proposed by Grenier [12], in the framework of text-dependent

experiments.

3.2.2 Properties of �Sc

Since a � g, it is obvious that �Sc (X ; Y) � 0. Measure �Sc (X ; Y) = 0 if and only

if all eigenvalues �i are equal, i.e. if and only if X and Y are proportional. In particular,

�Sc (X ; X ) = 0, but X = Y is not a necessary condition. Finally, �Sc is not symmetric, and

�Sc (Y; X ) = log

�
g

h

�
6= �Sc (X ; Y) (39)

3.3 Absolute deviation measure

3.3.1 De�nition

The expression of �Gc and �Sc as functions of the eigenvalues �i are :

�Gc (X ; Y) =
1

p

pX
i=1

(�i � log �i � 1) (40)

�Sc (X ; Y) = log

 
1

p

pX
i=1

�i

!
�

1

p

pX
i=1

log �i (41)
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As a matter of fact, it is possible to construct other metrics to measure the dissimilarity between

speakers, through their covariance matrices. Any function of the eigenvalues �i, which is non-

negative, and which takes the zero value when all eigenvalues are equal to unity, is a possible

choice.

This approach was proposed by Gish [10], who constructed a measure which is based on the

total absolute deviation of the eigenvalues from unity. The generic expression of this measure,

which we will denote as �Dc, is

�Dc (X ; Y) =
1

p

pX
i=1

j �i � 1 j (42)

In this formulation, measure �Dc is the average absolute deviation of the eigenvalues �i from

unity. Gish showed that robustness can be gained by removing large eigenvalues from the

summation, because they may correspond to \abnormalities in small dimensional subspaces".

3.3.2 Properties of �Dc

It can be easily checked that measure �Dc is non-negative, and that it is null if and only if

covariance matrices X and Y are equal. The measure is non-symmetric, since

�Dc (Y; X ) =
1

p

pX
i=1

j
1

�i
� 1 j 6= �Dc (X ; Y) (43)

4 Symmetrization

4.1 Motivation

All measures reviewed in the previous section have the common property of being non-

symmetric. In other words, the roles played by the training data and by the test data are

not interchangeable. However, our intuition would be that a similarity measure should be sym-

metric.

The asymmetry of measures �G, �Gc and �Sc can be explained by the following fact. These

measures are based on statistical tests which suppose that the reference speaker model X is

exact, while the test model Y is an estimation. But in practice, both reference and test models

are estimates. Therefore, it is natural to search for a symmetric expression of originally asym-

metric tests.

Moreover, it can be foreseen that the reliability of a reference model is dependent on the num-

ber of data that was used to estimate its parameters. This is experimentally con�rmed by the

discrepancies that can be observed in speaker identi�cation performances, between � (X ; Y)
and � (Y; X ), all the more as M and N , the number of reference and test vectors, are dispro-

portionate (i.e. when � = N=M is very di�erent from 1).
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4.2 Symmetrization procedures

A �rst possibility for symmetrizing a measure � (X ; Y), is to construct the average between
the measure and its dual term :

�[0:5] (X ; Y) =
1

2
� (X ; Y) +

1

2
� (Y; X ) = �[0:5] (Y; X ) (44)

For instance, the Gaussian likelihood measure, symmetrized in this manner, becomes

�G[0:5]
(X ; Y) =

1

2

�
a +

1

h
+

1

p
�
T (X�1 + Y

�1) �
�
� 1 (45)

which, for the covariance only measure, simpli�es into

�Gc[0:5] (X ; Y) =
1

2

�
a +

1

h

�
� 1 (46)

while the arithmetic-geometric sphericity measure becomes proportional to the arithmetic-

harmonic sphericity measure [4] :

�Sc[0:5] (X ; Y) =
1

2
log

�
a

h

�
(47)

This procedure of symmetrization can improve the classi�cation performance, compared to both
asymmetric terms taken individually. This is the case when training and test patterns have
comparable length. However, we observed an ine�ciency, or a degradation of the performance
when the lengths di�ered signi�cantly (� �= 1). When training and test patterns are obtained
from speech utterances with very di�erent lengths, it turns out that � (X ; Y) performs better
than � (Y; X ) when � � 1, and conversely. In other words, when the amount of training data
is signi�cantly lower than the amount of test data, it is preferable to model the test data and
compute the average likelihood of the training data for the test model, rather than doing the
opposite.
In the lack of a rigorous theoretical framework, we have limited our investigations to empirical
trials. We have postulated an arbitrary form for more general symmetric measures �, i.e. linear
combinations of the asymmetric terms, weighted by coe�cients that are function of the number
of training and test vectors (respectively M and N) :

�[ MN ] (X ; Y) =  MN � � (X ; Y) +  NM � � (Y; X ) (48)

with

 MN +  NM = 1 (49)

We have limited our tests to 2 particular functions  MN and  NM , namely :

 MN = �MN =
p
Mp

M+
p
N

=
1

1 +
p
�

(50)

 NM = 1� �MN =
p
Np

M+
p
N

=

p
�

1 +
p
�

(51)
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and

 MN = �MN = M
M+N

=
1

1 + �
(52)

 NM = 1� �MN = N

M+N
=

�

1 + �
(53)

A similar approach was used by Montaci�e on AR-vector model residuals [17]. Note that, when
M � N , � � 1 and therefore 0:5 � �MN � �MN .
We will not give the detailed expression of each measure, for each set of weights in this text.
As an example, measure �G weighted by �MN becomes

�G[�
MN

]
(X ; Y) =

M � �G (X ; Y) + N � �G (Y; X )

M +N
(54)

=
1

1 + �
a �

1� �

1 + �
log g +

�

1 + �

1

h

+
1

p
�
T

 
X
�1 + � Y

�1

1 + �

!
� � 1 (55)

=
1

p

�
1

1 + �
tr (Y X�1) �

1� �

1 + �
log

�
detY

detX

�
+

�

1 + �
tr (XY �1)

�

+
1

p

"
(�y � �x)T

 
X
�1 + � Y

�1

1 + �

!
(�y � �x)

#
� 1 (56)

The symmetry of this expression can easily be checked.

Even though they are empirical, the symmetrizations using �MN and �MN provide generally

better results than the symmetrization with weights equal to 1
2
. The optimal expression for

symmetrized measures can certainly be derived from estimation theory, but it is not a trivial

problem.

An exception to the general approach was applied to measure �Dc, since we experienced that

it was slightly more e�cient to symmetrize log �Dc as above, instead of �Dc itself. However,

log �Dc can not be considered as a measure in the mathematical sense, since it is not non-

negative. Therefore,

log [�Dc[ 
MN

]
(X ; Y)] =  MN � log [�Dc (X ; Y)] +  NM � log [�Dc (Y; X )] (57)

which is equivalent to

�Dc[ 
MN

]
(X ; Y) = �Dc (X ; Y)  MN � �Dc (Y; X )  NM (58)
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5 Experiments and results

5.1 Task

We have tested the measures described in this article, in the framework of closed-set text-

independent speaker identi�cation. There is a single reference per speaker (composed of a mean

vector �x, a covariance matrix X and a number of data M). All test utterances are di�erent from

all training utterances, and all training utterances are di�erent from one another. Each measure

is evaluated as regards its classi�cation ability using a 1-nearest neighbour decision rule. The

possibility of rejection is not taken into account : the test speaker is always part of the set of

references.

5.2 Databases

For our experiments, we used TIMIT and NTIMIT databases. TIMIT [8] contains 630 speakers

(438 male and 192 female), each of them having uttered 10 sentences. Two sentences have the

pre�x \sa" (sa1 and sa2). Sentences sa1 and sa2 are di�erent, but they are the same across

speakers. Three sentences have the pre�x \si" and �ve have the pre�x \sx". These 8 sentences

are di�erent from one another, and di�erent across speakers. Sentences \sa" and \si" have an

average duration of 2.9 seconds. Sentences \sx" have an average duration of 3.2 seconds. The

speech signal is recorded through a high quality microphone, in a very quiet environment, with

a 0-8 kHz bandwidth. The signal is sampled at 16 kHz, on 16 bits, on a linear amplitude scale.

Moreover, all recordings took place in a single session (contemporaneous speech).

The NTIMIT database [15] was obtained by playing TIMIT speech signal through an arti�cial

mouth installed in front of the microphone of a �xed handset frame and transmitting this input

signal through a di�erent telephone line for each sentence (local or long distance network).

The signal is sampled at 16 kHz, but its useful bandwidth is limited to telephone bandwidth

(approximately 300-3400 Hz). Each sample is represented on 16 bits (linear).

5.3 Signal analysis

Each sentence is analysed as followed : the speech signal is decomposed in frames of 504 samples

(31.5 ms) at a frame rate of 160 samples (10 ms). A Hamming window is applied to each frame.

The signal is not pre-emphasized. For each frame, a Winograd Fourier Transform is computed

and provides 252 square module values representing the short term power spectrum in the 0-8

kHz band.

This Fourier power spectrum is then used to compute 24 �lter bank coe�cients. Each �lter is

triangular (except the �rst and last ones which have a rectangle trapezoidal shape). They are

placed on a non-uniform frequency scale, similar to the Bark/Mel scale. The central frequency

of the 24 �lters are, in Hz : 47, 147, 257, 378, 510, 655, 813, 987, 1178, 1386, 1615, 1866,

2141, 2442, 2772, 3133, 3529, 3964, 4440, 4961, 5533, 6159, 6845, and 7597. Each �lter covers

a spectral range from the central frequency of the previous �lter to the central frequency of the
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next �lter, with a maximum value of 1 for its own central frequency. For each frequency, only

2 �lters (maximum) are non-zero, and their magnitudes add up to 1.

We �nally take the base 10 logarithm of each �lter output and multiply the result by 10, to

form a 24-dimensional vector of �lter bank coe�cients in dB. For the TIMIT database, all 24

coe�cients are kept, from which we compute, for each utterance a 24-dimensional mean vector

and a 24 � 24 (symmetric) covariance matrix.

In order to simulate, for some of the experiments, a low-pass �ltering of the speech signal in

the 0-4 kHz band, we have simply discarded the last 7 coe�cients of the 24-dimensional vectors

obtained from the full band signal. The last �lter, with index 17, has a central frequency

of 3529 Hz, and becomes zero above 3964 Hz. This is the approach we used for NTIMIT

database, since the useful bandwidth does not exceed 4000 Hz for these data. We also used

this approach on TIMIT, in order to obtain results corresponding to a 0-4 kHz bandwidth,

without the telephone line variability. We will refer to these data as FTIMIT data. Under

these analysis conditions, each mean vector is 17 dimensional, while covariance matrices are

17 � 17 (symmetric) matrices.

5.4 Training and test protocols

We use 2 training protocols, namely a \long training" and a \short training".

� For the \long training", we use all 5 \sx" sentences concatenated together as a single

reference pattern for each speaker. The average total duration of a \long training" pattern

is 14.4 seconds. A single reference (mean vector �x, covariance matrix X and number

of vectors M) is computed for each speaker from all speech frames, represented as �lter

bank coe�cients. In particular, no speech activity detector is used to remove silent speech

portions.

� For the \short training", we only use the �rst 2 \sx" sentences in alphanumeric order, in

the same way as for the \long training". The average total duration of a \short training"

is 5.7 seconds (including silences).

For the tests, we also have 2 distinct protocols : a \long test" and a \short test".

� For the \long test", all \sa" and \si" sentences (5 in total) are concatenated together as

a single test pattern, for each speaker. In this framework, we therefore have a single test

pattern per speaker, i.e. 630 test patterns altogether. In average, each pattern lasts

15.9 seconds.

� For the \short test", each \sa" and \si" sentences are tested separately. The whole test

set thus consists of 630 � 5 = 3150 test patterns, of 3.2 seconds each, in average.

Even though the \sa" sentences are the same for each speaker, these sentences are used in the

test set. Therefore, the experiments can be considered as totally text-independent.
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5.5 Experiments

In the experiments reported in this article, we have systematically tested the 4 families of

measures :

� �G

� �Gc

� �Sc

� �Dc

in two asymmetric forms :

� � (X ; Y)

� � (Y; X )

as well as in the three symmetric forms proposed in section 4 :

� �[0:5] (X ; Y)

� �[�MN ] (X ; Y)

� �[�MN ] (X ; Y)

These evaluations were carried out on :

� TIMIT (24 �lter bank coe�cients between 0 and 8000 Hz)

� FTIMIT (�rst 17 �lter bank coe�cients from TIMIT between 0 and 4000 Hz)

� NTIMIT (17 �lter bank coe�cients between 0 and 4000 Hz)

It is reasonable to expect that the 3 databases, in this order, correspond to an increasing degree

of di�culty.

In each case, we give the results for 4 possible training � test protocols, corresponding to

various typical values of the total amount of speech material per speaker T = M + N , of the

ratio � between test and training material, and therefore to di�erent weighting factors �MN

and �MN :

� \long-long" protocol : long training � long test
�T � 3000 cs, �� � 1:10, ��MN � 0:48, ��MN � 0:49

� \short-long" protocol : short training � long test
�T � 2150 cs, �� � 2:79, ��MN � 0:26, ��MN � 0:37

� \long-short" protocol : long training � short test
�T � 1750 cs, �� � 0:22, ��MN � 0:82, ��MN � 0:68

� \short-short" protocol : short training � short test
�T � 900 cs, �� � 0:56, ��MN � 0:64, ��MN � 0:57
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5.6 Results

The results are organized in 3 sets of 4 tables. The �rst set of tables (numbered I.1, I.2, I.3 and

I.4) corresponds to results for TIMIT, the second set (Tables II.1 to II.4) for FTIMIT and the

third set (Tables III.1 to III.4) for NTIMIT. The �rst table of each set (i.e. Tables I.1, II.1 and

III.1) reports the results obtained for the \long-long" protocol, while the second one (I.2, II.2

and III.2) reports those for the \short-long" protocol. Similarly, the third and fourth tables

of each set correspond respectively to the \long-short" and \short-short" protocols. In each

table, the results relative to a given family of measures are organized in columns. The �rst line

corresponds to the scores of both asymmetric terms (each cell is subdivided into 2), while the

second, third and fourth lines show the results for the various symmetric forms. All results are

given in terms of percentage of correct identi�cation. Depending on this percentage S, and on

the number of test patterns n, we give in Table 0 the half-width of the 95 % con�dence interval,

which is calculated as :

� 2

s
S � (100� S)

n

Note that this quantity is the same for a score S and for 100� S.

score : S j 100 - S 95 j 5 85 j 15 75 j 25 65 j 35 55 j 45
long test, n = 630 � 1.7 % � 2.8 % � 3.5 % � 3.8 % � 4.0%

short test, n = 3150 � 0.8 % � 1.3 % � 1.5 % � 1.7 % � 1.8%

Table 0 : Half-width of the 95 % con�dence interval for di�erent values of the identi�cation

score S in %, corresponding to the long and short test protocols.

We will not comment in detail each performance �gure in Tables I, II and III, but we will rather

try to underline several global trends.

For all measures, � (X ; Y) and � (Y; X ) perform di�erently. The term � (X ; Y) performs

better when the training speech material has a longer duration than the test material, and

conversely. The discrepancy between the performances of the asymmetric terms is especially

obvious for measure �Dc
With non-distorted speech (TIMIT and FTIMIT), measure �G outperforms measure �Gc and

all other measures on covariance matrices only. On the opposite, when channel variability is

present (NTIMIT), the use of the mean vectors is, as expected, detrimental to the results.

In their asymmetric forms, the most e�cient measure among the covariance-only measures is

measure �Sc. However, when symmetrisation is applied, the performances tend to level-o�,

with a slight advantage for �Dc.

Among the symmetrization procedures that we tested, the most e�cient one seems to be the

one using weights �MN and �NM for �G, �Gc and �Sc, whereas �MN and �NM appear to be

preferable for log �Dc.
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Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 100 % 100 % 100 % 99.8 % 100 % 100 % 99.5 % 99.8 %

�[0:5](X ;Y) 100 % 100 % 100 % 100 %

�[�MN ](X ;Y) 100 % 100 % 100 % 100 %

�[�MN ](X ;Y) 100 % 100 % 100 % 100 %

Table I.1: long training (5 sentences � 14.4 s) { long test (5 sentences � 15.9 s)
�T � 3000 cs, �� � 1:10, ��MN � 0:48, ��MN � 0:49

Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 93.2 % 99.4 % 86.7 % 97.1 % 94.9 % 96.4 % 73.3 % 92.1 %

�[0:5](X ;Y) 98.1 % 94.6 % 95.7 % 95.1 %

�[�MN ](X ;Y) 98.7 % 95.7 % 96.2 % 97.0 %

�[�MN ](X ;Y) 99.2 % 96.5 % 96.0 % 97.0 %

Table I.2: short training (2 sentences � 5.7 s) { long test (5 sentences � 15.9 s)
�T � 2150 cs, �� � 2:79, ��MN � 0:26, ��MN � 0:37

Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 97.9 % 89.7 % 96.2 % 78.8 % 97.3 % 93.6 % 83.6 % 59.4 %

�[0:5](X ;Y) 97.2 % 93.9 % 97.0 % 97.3 %

�[�MN ](X ;Y) 98.4 % 97.1 % 97.3 % 97.6 %

�[�MN ](X ;Y) 98.4 % 97.6 % 97.6 % 94.8 %

Table I.3: long training (5 sentences � 14.4 s) { short test (1 sentence � 3.2 s)
�T � 1750 cs, �� � 0:22, ��MN � 0:82, ��MN � 0:68

Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 83.8 % 78.2 % 73.5 % 64.9 % 81.9 % 77.7 % 52.9 % 45.4 %

�[0:5](X ;Y) 89.7 % 82.2 % 82.7 % 84.4 %

�[�MN ](X ;Y) 90.1 % 83.4 % 83.0 % 84.2 %

�[�MN ](X ;Y) 89.7 % 83.6 % 83.3 % 80.1 %

Table I.4: short training (2 sentences � 5.7 s) { short test (1 sentence � 3.2 s)
�T � 900 cs, �� � 0:56, ��MN � 0:64, ��MN � 0:57

Tables I.1, I.2, I.3, I.4 :

Text-independent speaker identi�cation { TIMIT database (630 speakers).
The results are given in percentage of correct identi�cation.
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Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 98.4 % 99.4 % 96.1 % 98.3 % 97.6 % 98.1 % 90.5 % 95.4 %

�[0:5](X ;Y) 99.4 % 97.9 % 97.9 % 98.3 %

�[�MN ](X ;Y) 99.5 % 97.9 % 97.9 % 98.6 %

�[�MN ](X ;Y) 99.5 % 97.9 % 97.8 % 98.4 %

Table II.1: long training (5 sentences � 14.4 s) { long test (5 sentences � 15.9 s)
�T � 3000 cs, �� � 1:10, ��MN � 0:48, ��MN � 0:49

Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 78.7% 88.6% 63.2 % 77.0 % 72.9 % 76.4 % 44.1 % 65.6 %

�[0:5](X ;Y) 87.0 % 76.8 % 76.4 % 76.7 %

�[�MN ](X ;Y) 87.9 % 77.5 % 76.2 % 77.6 %

�[�MN ](X ;Y) 89.0 % 77.8 % 76.4 % 76.2 %

Table II.2: short training (2 sentences � 5.7 s) { long test (5 sentences � 15.9 s)
�T � 2150 cs, �� � 2:79, ��MN � 0:26, ��MN � 0:37

Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 81.4 % 67.9 % 70.0 % 49.8 % 70.7 % 66.3 % 48.1 % 33.3 %

�[0:5](X ;Y) 81.8 % 67.3 % 70.4 % 72.2 %

�[�MN ](X ;Y) 84.2 % 71.8 % 71.7 % 73.1 %

�[�MN ](X ;Y) 83.6 % 72.6 % 72.0 % 64.4 %

Table II.3: long training (5 sentences � 14.4 s) { short test (1 sentence � 3.2 s)
�T � 1750 cs, �� � 0:22, ��MN � 0:82, ��MN � 0:68

Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 54.7% 49.7% 39.8 % 32.2 % 42.6 % 41.2 % 23.1 % 20.6 %

�[0:5](X ;Y) 61.4 % 43.9 % 44.4 % 46.5 %

�[�MN ](X ;Y) 61.8 % 45.3 % 44.5 % 46.8 %

�[�MN ](X ;Y) 61.4 % 45.8 % 44.4 % 43.6 %

Table II.4: short training (2 sentences � 5.7 s) { short test (1 sentence � 3.2 s)
�T � 900 cs, �� � 0:56, ��MN � 0:64, ��MN � 0:57

Tables II.1, II.2, II.3, II.4 :

Text-independent speaker identi�cation { FTIMIT database (630 speakers).
The results are given in percentage of correct identi�cation.
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Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 45.3 % 50.3 % 59.5 % 63.0 % 66.0 % 64.9 % 41.0 % 51.0 %

�[0:5](X ;Y) 49.4 % 63.0 % 66.4 % 67.9 %

�[�MN ](X ;Y) 49.0 % 63.0 % 66.5 % 68.4 %

�[�MN ](X ;Y) 49.4 % 63.6 % 66.5 % 68.6 %

Table III.1: long training (5 sentences � 14.4 s) { long test (5 sentences � 15.9 s)
�T � 3000 cs, �� � 1:10, ��MN � 0:48, ��MN � 0:49

Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 17.6 % 24.9 % 22.2 % 31.0 % 28.4 % 29.7 % 12.4 % 22.5 %

�[0:5](X ;Y) 24.4 % 29.5 % 29.8 % 30.3 %

�[�MN ](X ;Y) 24.8 % 30.5 % 30.0 % 30.8 %

�[�MN ](X ;Y) 25.7 % 31.3 % 30.5 % 30.8 %

Table III.2: short training (2 sentences � 5.7 s) { long test (5 sentences � 15.9 s)
�T � 2150 cs, �� � 2:79, ��MN � 0:26, ��MN � 0:37

Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 20.7 % 13.8 % 25.4 % 13.5 % 26.3 % 23.0 % 14.1 % 5.2 %

�[0:5](X ;Y) 19.3 % 23.4 % 25.2 % 25.2 %

�[�MN ](X ;Y) 21.1 % 25.4 % 26.1 % 26.4 %

�[�MN ](X ;Y) 21.4 % 26.1 % 26.7 % 20.5 %

Table III.3: long training (5 sentences � 14.4 s) { short test (1 sentence � 3.2 s)
�T � 1750 cs, �� � 0:22, ��MN � 0:82, ��MN � 0:68

Measures �G �Gc �Sc �Dc

�(X ;Y) �(Y ;X ) 10.1 % 9.0 % 12.0 % 8.9 % 13.7 % 12.8 % 6.4 % 3.1 %

�[0:5](X ;Y) 11.7 % 13.7 % 14.3 % 14.4 %

�[�MN ](X ;Y) 11.7 % 14.2 % 14.4 % 14.8 %

�[�MN ](X ;Y) 11.6 % 15.0 % 14.4 % 12.7 %

Table III.4: short training (2 sentences � 5.7 s) { short test (1 sentence � 3.2 s)
�T � 900 cs, �� � 0:56, ��MN � 0:64, ��MN � 0:57

Tables III.1, III.2, III.3, III.4 :

Text-independent speaker identi�cation { NTIMIT database (630 speakers).
The results are given in percentage of correct identi�cation.
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The positive e�ect of symmetrization is important when little speech material is available.

The most signi�cant di�erences are observed for the short training � short test protocol.

Table IV gives orders of magnitude of the relative error rate reduction between the asymmetric

measures and their best symmetric version. If S is the percentage of correct identi�cation for

the asymmetric measure and S
0 is the percentage of correct identi�cation for the symmetric

measure, the relative error rate reduction is calculated as :

S
0 � S

100� S

This relative improvement is given for the two protocols using short duration test data only.

For the two others, the statistical signi�cance of the observed di�erences are too small to be

conclusive, given the larger con�dence interval.

measure �G �Gc �Sc �Dc

TIMIT � 30 % � 40 % � 10 % � 75 %

FTIMIT � 15 % � 10 % � 5 % � 40 %

NTIMIT � 1 % � 1 % < 1 % � 10 %

Table IV : Order of magnitude of the relative error rate reduction between asymmetric and

symmetric measures. Results for short test protocols only.

These results show that symmetrization improves covariance-only measures (�Gc, �Sc and �Dc)

as the task becomes intrinsically less di�cult (TIMIT > FTIMIT > NTIMIT), and as the

original asymmetric measures perform less well (�Dc < �Gc < �Sc). On the other hand,

when the Gaussian speaker model is not powerful enough for the task (NTIMIT), or when the

asymmetric measure is quite e�cient (�Sc), symmetrization is less useful.

6 Discussion

Our evaluations show that remarkable performances can be obtained on the TIMIT database

for text-independent closed-set speaker identi�cation (630 speakers) by second-order statistical

measures, i.e. with a very simple underlying speaker model. Therefore, TIMIT is certainly an

easy database for speaker recognition, and the measures exposed in this article work very well,

on this database. Naturally, their overall performances degrade with more adverse conditions :

a signi�cant amount of speaker characteristics seems to be contained in the 4{8 kHz band, since

FTIMIT results are signi�cantly worse than TIMIT results. The e�ect of telephone channel

distortion and variability are the cause of an even more severe drop on NTIMIT recognition

scores. The e�ect of temporal drift owed to multisession recordings can not be studied with

TIMIT derived data, but it is easy to predict an additional negative role of this factor on the

performances. If second-order statistical measures are clearly e�cient for relatively simple tasks,

they are obviously not the ultimate solution to speaker recognition for any kind of applications.
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6.1 Beyond the performances

However, second-order statistical measures have several advantages. They are simple to im-

plement and easy to reproduce. Moreover, Gaussian likelihood measures (�G and �Gc) in

their asymmetric forms are particular cases of several general approaches frequently used in

text-independent speaker recognition. A 1-Gaussian speaker model is equivalent to a Vec-

tor Quantization codebook with 1 entry associated with a Mahalanobis distance. It is also

equivalent to any kind of Hidden Markov Model (Left-to-Right, Ergodic,...) with 1 state and

1 Gaussian distribution. It is a particular case of a k-Gaussian Mixture model with k = 1.

Finally, the likelihood criterion is often used on vector prediction residuals obtained from lin-

ear or connectionist models for which the identity model (0th-order prediction) is a particular

case.

Therefore, �G and �Gc are at the intersection of several classical approaches, which are exten-

sions of this basic model in various directions (variations of the distance measure, use of more

or less strong temporal constraints, re�nement of the speaker distribution model, �ltering of the

acoustic parameters,...). Given the extreme simplicity of the second-order statistical measures,

we therefore suggest that any speaker recognition task could be systematically benchmarked

by one or two of these measures, in order to obtain a reference score indicating the intrinsic

complexity of the chosen database and protocol. In particular, the preprocessings, the acoustic

analysis, the training and test splitting of the data, and the decision strategy for the method

under test should be identically used for the benchmark method.

6.2 A possible reference approach

Even though asymmetric Gaussian likelihood based measures do not systematically perform

better than other second-order statistical measures, �G and �Gc may be preferable as reference

benchmark measures in two cases : when they are compared with other asymmetric approaches

(which is the case for VQ, HMM and Gaussian Mixtures), and when the length of training

material is signi�cantly higher than the length of test material. The choice between �G and

�Gc should be guided by the processing that is applied to the data for the system under

evaluation : whether, for this particular protocol, the long term average is substracted or

not to the acoustic parameters. Measures �G[�
MN

]
or �Gc[�

MN
]
can also be implemented simply

and could be systematically tested. However, the lack of theoretical justi�cation for these

measures, and the relatively small improvement they provide as soon as a reasonable amount

of speech material is available, make it more debatable. Nevertheless, if the approach under

test is formally symmetric, it would be fair to compare it to a symmetric reference measure.
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7 Conclusion

The goal of this work has been multiple. Firstly, to investigate the properties and performances

of simple speaker recognition approaches, to compare them and to identify their limits. Our

large scale evaluation on TIMIT, on a low-pass �ltered version of TIMIT and on NTIMIT

illustrates clearly that speech quality and quantity are major factors of performance, and that

on high quality contemporaneous speech, simple and fast methods can be extremely e�cient.

For instance, this type of approach may prove su�cient for applications such as the automatic

speaker labeling of radio or television recordings, for which the signal quality is constant and

the voice drift relatively marginal.

Secondly, our work illustrates the extreme caution with which any conclusion can be drawn on

the merit of a given method outside of any point of comparison. Since it may not be feasible

to compare any new method with all state-of-the-art approaches, it is at least desirable to

benchmark the task with a simple and general reference approach.

Thirdly, we believe that second-order statistical tests and measures, based on the Gaussian like-

lihood scoring are a good compromise as reference measures, since they are easy to implement,

simple to reproduce, inexpensive in computation and light in storage requirements. Moreover,

they appear, in their asymmetric forms, as simpler versions of more elaborate approaches.

Though symmetrization is not a systematic factor of improvement, symmetric versions of the

measures could be tested as well, especially in comparison with other symmetric methods. More

theoretical work on symmetrization is however needed to �nd optimal symmetric forms.

The systematical use of a reference method in order to calibrate the complexity of a speaker

recognition task can only result from a consensus between researchers both on the concept of

a benchmark evaluation by a common approach and on the choice of the reference algorithm

itself. We hope that this article will contribute to widen the concertation that had started

during the SAM-A European ESPRIT project, dedicated to speech assessment methodology.
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