
VARIETIES OF KLEINIAN GROUPS* 

by Irwin Kra 

one of very few (if not the unique one among the) participants at a 
nce on sitlgularities who works with Kleinian groups, my biggest 
ution to this volume might be an expository paper concerning some 

lems of current interest in the general area of Kleinian groups. I will 
describe here some new results concerning the variety of homo- 

hisms of a Kleinian group into the Mobius group as well as discuss 
a1 interesting open problems. 

G be the group of Mobius transformations; that is, G consists of 
ings g of the complex sphere e = C U (a), where C = the complex 
ers, of the form 

g(z)= ( a z + b ) ( c z + d ) - ' ,  Z E ~ ,  { a , b , c , d ) ~ C ' ,  a d - b c = 1 .  

be a subgroup of G . We say that T is discontinuous at z E 2 provided 
T, = ( y  E T ;  yz = z) is a finite group, and 
there is a neighborhood U of z such that yU n U = @ for y E T- I?,, 

U  = U  for y ~ r , .  
St = Q(r) denote the region of discontinuity of r; that is, the set 

ints z ~e such that T is discontinuous at z .  It is an immediate con- 
nce of the definition that St is an open (not necessarily connected) 
t of e. We call T a Kleinian group provided 

St # @ (St is hence dense in 6, and 
the limit set A = A(T) = 2: - Q(T) consists of more than two 

s (A is hence always a perfect closed subset of e). 
Remarks. (1) The groups F' where A consists of two or fewer points 

are called elementary groups. They are well known. See Ford [6, Chapter 
VI] . 
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(2) Since G is a Lie group, it makes sense to discuss discrete subgroups 
r of G.  Every Kleinian group is discrete (hence countable). However, the 
converse is not true. The Picard group consisting of mappings g (see (1.1)) 
with a ,  b, c, d Gaussian integers (that is, compl& numbers of the form 
m + n JT, with m and n integers) is discrete but not discontinuous at 
any point of e.  

(3) The concept of discontinuity introduced above is valid for any 
group of motions on a topological space. 

An element g E G - {l) is called parabolic if trace2g = (a + d), = 4, 
it is called elliptic if traceZg is reaI and in the interval [O,4), and loxodromic 
otherwise (a loxodromic element with real trace is also calIed hyperbolic). 
A parabolic element has precisely one fixed point in e; all others have 
two. Elliptic elements of infinite order cannot appear in discrete groups 
(hence also not in Kleinian groups). 

If r is a Kleinian group, then !2/T can be given a unique conformal 
structure such that the natural projection mapping 

is holomorphic. It is ramified over the points z with I', non-trivial (T: is 
always a finite cyclic group). Thus !2/r is a cotintable union of Riemann 
surfaces. 

By a puncture on a Riemann surface S we mean a domain D c S such 
that D is conformalIy equivalent to 

with z = 0 not on S . Every puncture D on R/T is determined by a parabolic 
element A E Y  (see Ahlfors [I]), in the sense that there exist a closed con- 
formal disc U c Q and a parabolic element A ET such that n(U) = D ,  
and two points z ,  and z, in U are equivalent under r if and only if z, = Anz2 
for some integer n .We shall say that A is the parabolic element deternzined 
by the puncture D on Q l r .  It is quite clear that a/I' can be imbedded into 
a smallest union of surfaces aF such that each component of !27 has no 
punctures. 

$2. The Main Problem 

From now on we assume that r is a finitely generated Kleinian group 
(with region of discontinuity !2 and limit set A); in fact, let y,, ...,y, be a 
fixed set of generators for I'. By AhIfors's finiteness theorem [I], Q?@ 
is a finite union of compact Riemann surfaces, the natural projection 71 
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) is ramified over finitely many points, and fi/r- L?/r consists of 
many points (points of ramification order a). 

Hom(F, G) denote the affine algebraic variety (see Bers [4])  of 
orphisms of into the Mobius group G .  A homomorphism 

m(T, G) is called parabolic if 

~ ( y )  is parabolic or the identity 

ry parabolic element y E T determined by a puncture on Q / r  . The 
algebraic variety of parabolic homomorphisms ((2.1) is, of course, 

alent to the statement tra~e',y(~) = 4) of I? into G is denoted by 
( r ,  G) . We are, of course, viewing Hom(T, G) as a subvariety of 

an~ple 1. Let D be a domain in C  ̂ bounded by 2p (p 2 2) disjoint 
e closed curves (usually circles) C,, C;, ..., Cp, CL. For j = l;..,p, 

G be such that Aj(Cj) = C(i and Aj(D) n D = @. Let r be the 
generated by A , ,  ..., A,. The group F is called a Schottky group of 

p .  l t  is easy to show that Q(F) is connected (of infinite connectivity) 
hat Q(T)/T is a compact Riemann surface of genus p. Furthermore, 

purely loxodromic free group on the p generators A,, ..., A,. Thus, 

Hom(F,G) g GP. 

nzple 2. A Kleinian group F is called Fucksian if there is a circle C 
ompIex sphere such that F leaves the interior of C invariant. 
ugation we may always assume that C is the extended real axis 

co) . For such a group A c C .  It is called of the first kind whenever 
of the second kind otherwise. Let F be the covering group of a 

t Riemann surface S of genus p 2_ 2 .  It is well known that F may 
ized as  a Fuchsian group that is generated by 2p elements 

, ..., Ap,B, with defining relation 

A ~ B ~ A ~ ' B ; '  ... A,B,A,~B,' = 1.  

uite clear that we may use (2.2) to define a complex analytic mapping 

P :  GZP -+ G. 

Thus 
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Note that for every Fuchsian group F of the first kind, the region of 
discontinuity consists of precisely two simply connected invariant corn- 
ponents: namely the upper half plane U and the lower half plane L. Further- 
more U/F is anti-conformally equivalent to LIF. For Fuchsian groups F 
of the second kind, RIF consists of a single Riemann surface (a is Connected) 
with an anti-conformal involution J .  In this case UIF consists of a single 
Riemann surface with border R n (R U { c o ) ) / ~ .  

Remark. If F is a group of conformal automorphisms of U (hence 
F c G), then F is discrete if and only if it acts discontinuously on U (that 
is, if and only if U c R(r)). 

Problem. Describe the variety Hom,,,(T, G) . Some particular questions 
include : 

(2.1) Is the identity a manifold point of Hom,,,(T,G)? 
What does a neighborhood of the identity look like? 

(2.2) Is the set of isomorphisms, Is~m,,,(r, G), in Hom,,,(T, G) con- 
nected? More specifically, is the set of isomorphisms of r onto 
Kleinian groups, K-Isom,,,(r, G), connected? Does the boundary 
of this set contain only discrete subgroups of G? 

To begin to talk about such problems, we must discuss one of the two 
most important tools available in this area; quasiconformal mappings. 

$3. Quasiconformal Stability 

Let w: -t e be a homeomorphism of the Riemann sphere. The auto- 
morphism w is said to be quasicorrfoi~mal if it possesses measurable, locally 
square integrable derivatives that satisfy the Beltrami equation 

where p has L* (supremum) norm Iess than one. The basic result of 
Ahlfors-Bers [2]  establishes a canonical one-to-one correspondence be- 
tween the open unit ball in L*(@ and normalized (fixing O,1, co) quasi- 
conformal automorphisms of e; that is, for every p 6 ~"(e) with 

there is a unique quasiconformal automorphism w = w" that fixes O , 1 ,  co 
and satisfies the Beltrami equation (3.1). Furthermore, every other quasi- 
conformal w that satisfies the same Beltrami equation is given by 
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quasiconformal automorphism w is compatible with the Kleinian 
r provided w r w - '  c G .  We denote by M ( r )  = M(T, e) the set 

Itrarni coeficients for I?; that is, those p E L ~ ( & )  that satisfy 
-- 

Y '(z) ,u(yz) ,- = p(z), a.e. z E e, all y E T , 
Y (2)  

and 

routine to verify that a quasiconformal automorphism w is conlpatible 
r if and only if in the decomposition (3.2),ji E M ( r ) .  If w is compat- 

with r ,  then the mapping 

T 3 y  H X(Y) = w o  Y~ W - I  E G  

phism of l? onto the Kleinian group w r w - '  called a 
sicor?for~~zal defovmation of r .  We thus have a well defined holo- 

x :  G x M(T) + Hom,,,(T, G )  . 

e mapping (3.3) is, of course, not one-to-one.) Following Bers [4), the 
T is called (quasicoizfornzall~~) stable if there exists a neighborhood V 
identity in Hom,,,(T, G) such that every X E  V is a quasiconformal 
ation. 

lems. (3.1) What are necessary and sufficient conditions for 

.2) Is a quasiconforrnal deformation of a stable group again stable? 

.3) If r0 is a normal subgroup of finite index in r and if To is stable, 

mark. I have very recently been able to answer the last of the above 
lems in the affirmative. The details will appear elsewhere. 

study this general question of quasiconformal stability we must 
to 

Quadratic Diff'eventials 

that R is the region of discontinuity of the finitely generated 
group T .  A holomorphic function r$ on R is called an autotnorphic 

of weight -4 (quadratic diFerentia1) if 

r$(yz)y'(~)~ = r$(z) ,  all y ET, Z E R .  
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The function 4 is a cusp fornz if it satisfies one (and hence both) of the 
following equivalent conditions 

and 

I/ 4 I), = sup{~-"z) >l cb(4 I ; E Q) < 

where I(z) 1 dz 1 is the Poincart metric on Q (the unique complete Rie- 
mannian metric on Q of constant negative curvature -4). We denote 
by A(Q) the space of cusp forms for T .  

Write 

where each S i  is a compact Riemaml surface of genus pi 2 0 with q,  2 0 
punctures, and the map 

is ramified over ri 2 0 points. Let ni = q i  + r ; .  Then it is a well known 
consequence of the Riemann-Roch theorem that 

I l l  

dim A(R) = (3pi - 3 + 1 1 , ) .  
i = l  

In [a], Bers obtained the following suficient condition for stability. 
If tlze variety Hom,,,(T, G )  is locally irrerlucible at  the identity aricl 

has dimension dimA(Q) + 3 there, tllerz r is stable and the identity is 
a regular point of Hom,,,(T, G)  , 

The proof actually yields more. One constructs a map 

as follows: 
(Here A(Q), is the open unit ball in A(Q) with 11 . 11, norm.) 

Fof 4 G A(Q) , define 

(Remark. It is not known if there are any finitely generated Kleinian 
groups r whose limit set A has positive two ditnensional Lebesgue measure.) 
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r (g, 4) E G x A(Q)Z), , we define @(g, 4)  as conjugation of T by g o w'. 
ows that @ covers a neighborhood of the identity in Hom,,,(T, G). 
btain a sufficient condition for stability that does not require in- 

tion on the local properties of the variety Hom,,,(T, G) at the identity 

$5.  Eichler Col~ornology for Kleinian Groups 

Lie group G acts on the right (by the Eiclzler action) on the vector 
II of quadratic polynomials via 

py(z) = p(yz )y ' (~ ) -~ ,  p E n, y E G,  z E C .  

can thus define the first coho~nology group H1(T,II) for any (finitely 
rated Kleinian) subgro~rp r of G, as follows: A cocycle is a mapping 
-t IT such that 

X ( Y ~  0 YZ) = X(YI)YZ + ~ ( ~ 2 1 9  ( Y I ~ Y ~ ) E ~ ~ .  

If p e n ,  then its coboundary is the cocycle 

cohon7ology group H1(r,I1) is the group of cocycles factored by the 
of coboundaries. A coho~noIogy class x E H1(T, II) is called parabolic 
every parabolic element A E T that is determined by a puncture on 
we have 

group of parabolic cohomology classes is denoted by H~,,(T,II). 
r 4 E A(Q) ,  we define (see Ahlfors [ I ] )  

en easy to check that for y G T ,  

P(Y) (z) = h(yz)yl(z)- ' - z G C ,  

es an element of ll. Hence h defines a col~omology class 
w~,,(F, n ) .  We have thus defined the injective map (see Ahlfors [ I ] ) ,  

/3" : A(t2) -, H~,,(T,  I1). 

mark. The map p* need not be surjective. For a complete description 
,(r, n) see, for example, Kra [9] ,  [ lo].  
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In terms of the above concepts, Gardiner and Kra [7] obtained: 
T h e  group r is stable providecl fi* is surjective. 
As before, the map cD of (4.1) covers, under this hypothesis, a neigh. 

borhood of the identity in Hom,,,(T, G). 

Problems. (5.1) Does stability imply surjectivity of the map p*? 
(5.2) If P is surjective for a group T ,  is it also surjective for a quasi- 

conformal deformation of F? (This is the linear version of Problem (3.2).) 
The first of the above problems is intimately connected with another 

interesting problem. The G-module lI of quadratic polynomials with the 
Eichler action is G-isomorphic to the Lie algebra B(E' Sl(2,C)) of G with 
adjoint action. Thus H1(T, ll) is canonically isomorphic to Hi(T, 9).  If 
fi is a one parameter family of llomomorphisms of T into G with fi(0) = 
identity, then 

- 1 

c(y) = lim 
1-0 f 

defines a 3-cocycle for r (hence via the isomorphism mentioned above 
a ll-cocycle). 

Problem. (5.3) Does every n-cocycle for T arise in the above manner? 
As a consequence of the above criterion for stability as well as the results 

of Kra [9],  [ lo]  on cohomology of Kleinian groups, we conclude at once 
that Schottky and F~ichsian groups (all groups are assumed to be finitely 
generated) are stable, as are Kleinian groups with two invariant compo- 
nents. However, degenerate groups (O connected and simply connected) 
are not stable. 

06. Quasiconfor~nal  Defori7latiorz Spaces 

Let A be an invariant union of components of O(F), with T a finitely 
generated Kleinian group. Let M(T,A) denote the space of Beltrami co- 
efficients for T that vanish outside A. This is (an infinite dimensional) 
Banach manifold. Each p e M(T,A) determines an isomorphism X, of 1 
into G as follows: 

An element p E M(T,A) is called a trivial if X ,  is the identity isomorphism. 
The set of trivial Beltrami coefficients is denoted by Mo(T, A). The set 
M,(T,A) acts as a group of right traizslations and biholomorphic self- 
mappings of M(T,A) by 
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M(r ,  A) x MdT,  A) 3 ( v ,  I*) H. VI* IS M(T, A), 

where 
,,,"P = \vVw" . 

The cjt~asiconformnl rleforlnafion space o f  T (with support i r z  A) is 

owed with the quotient topology. 
is a finitely generated Fuchsian group of the first kind operating 
upper half plane U ,  then T ( F ,  U) is the usual Teichnziiller space 

known (Maskit [I.!?], Kra [I41 and Bers [5], Marden [16], under 
tive hypotheses) that T(T, A) is actually a finite dimensional complex 

tic manifold of the same dimension as 

A(A) = ( 4  E A(R); 4  vanishes outside A } .  

describe the deformation space T(T,A) more precisely, let 
= I , . . . ,  m ,  be a maximal collection of non-equivalent components 
For each j, let Tj be the stability subgroup of A j ;  that is, 

hlfors's fitliterless theorem [I], rj is again a Kleinian group, and (see 

,!I 

T(l?, A) z T ( T j , A j ) .  
j=l 

study the structure of these deformation spaces, it suffices to 
t A is an invariant component of the group T .  Since A contains 

than two points, the holomorphic universal covering space of A is 
rinaliy equivalent to the upper half plane U. We choose a holo- 

phic universal covering map 

p :  U - + A ,  

let F be the Fuclisian inode1 of I?; that is, 

F = {JE C ;  f U = U and p o f = yo p for some y e  T) . 
ce AlT r UIF, it is easy to see that F is a finitely generated Fuchsian 

p of the first kind. One shows (see Maskit [I91 or  Kra [14J) that 
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where covp is a group of biholomorphic automorphisms of T ( F ,  US. 
Furthermore, the group cov p acts discontinuously and fixed point freely 
on T ( F ,  U ) .  Since T(F, U )  is simply connected, it is the holomorphic uni- 
versal covering space of T(T,A)  and covp is isomorphic to the fun- 
damental group of T ( r ,  A ) .  

To discuss some open problems we return to the general situation (ar- 
bitrary r and A ) .  We use (6.1) to define a holomorphic mapping 

This mapping is one-to-one and of maximal rank. 

Problems. (6.1) Is @(T(T, A)) a submanifold of Horn,,,(F', G)? 
(6.2) Describe the boundary of rD(T(T, A)) in Hom,,,(T, A) .  In parti- 

cular, does every boundary point represent a discrete subgroup of G? 
(6.3) We have stated that T(T,  A) is a d-dimensional compIex analytic 

manifold (d = dim A(A) ) .  Ts it bihololnorphically equivalent to a sub- 
manifold of CJ? 

For Fuchsian groups F of the first kind the answer to Problem 6.3 is 
known. The realization of T(F,  U )  as a submanifold of A(L) (L= lower half 
plane) is one of the central results of Teichmiiller space theory (Bers [3]). 

For a class of "nice" Kleinian groups (see also @), Maskit obtains a 
positive solution in a forthco~ning paper. The general problem is, however, 
still open. 

We assume that the finitely generated Kleinian group r has a simply 
connected invariant component D . Fix a point z ,  E D  . For every 4 E A(D) , 
let f = f+ be the unique solution to the Schwarzian equation 

normalized so that 

From the Cayley identity, one concludes that for each y  ET there is a 
~ ~ ( 7 )  E G so that 

It is easy to check that the mapping 
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and that we have constructed an injective 
ra [13]) holomorphic mapping 

Y ,: A(D) -, Hom,,,(r, G). 

ows from Gardiner-Kra [7] that a neighborhood of the identity 
,,,(T, G) is biholomorphically eq~tivalent to a neighborhood of 

G x A(D) x A ( D )  

t two components are mapped into Horn,,,(T, G) via the map 4, 

and the last via the map Y of (7.1)). In some sense @(G x A(D)) 
to Y,>(A(D)). But I do not know how to 

us specialize to a finitely generated Fuchsian group F of the first 
alf plane U (thus also on the lower half 

. Even in this very classical case many questions remain. 

) . Find necessary and sufficient condi- 
r x,(F) to be Kleinian. 

olved (Kra [ I I ] ,  [12]): 
following are equiualent for q5 E A(U): 
T h e  group x+(F) acts discontinuo~isly on f+(U), 

nbraiiclzed unra~nif ied covering, and 

as shown that the above does not tell the whole story. 
, covering groups of compact surfaces) 
) is Kleinian (even Fuchsian and isomor- 

on Y,(A(U)) x Y,(A(L))  consist only of the 

orthogonality" condition. A partial result has 
btained by Kra-Maskit [15]: 
: U -+ i? and f,: L -+ are two h o l o ~ ~ ~ o r p k i c  uniuersal covering 

figs of subdon~alns  in (? such that  for each y E F ,  there is a ~ ( y )  
ing to a Kieinian group r with 

f j o  Y = ~ ( ~ ) 3 f ; . ,  f o r j  = 1,2, 

here is a g E G such that 

91 U = f ,  and g I L = f , ,  

. In  general x(F) i s  Fuchsiaiz or a Z2- 
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$8. Cornbination Theorems 

The basic idea of Klein's combination theorem is quite simple. One 
starts with two Kleinian groups TI and T, satisfying certain algebraic and 
geometric conditions. and one concludes that the group T generated by 
r, and r2 is again Kleinian. Furthermore, the struct~lre of Q(T)/ris read 
OR from the structure of Q(T,)/T, and Q(T,)/T,. 

In KIein's original theorem, is the free product of T, and T,. Maskit 
[20] has generalized this theorem considerably. He studies two cases. In 
the first, r is the free product of T, and T, with amalgamated subgroup H 
(us~lally cyclic). In the second, T2 is cyclic and the generator of T2 conjugates 
a (usually cyclic) subgroup HI of T,  into a stibgroup H, of T,. 

Starting with a set of building blocks (consisting of elementary groups, 
Kleinian groups with two invariant components [this includes Fuchsian 
groups], degenerate groups and Schottky groups) and applying the above 
combination theorems one obtains a set of "nice" Kleinian groups. In a 
forthcoming paper Maskit investigates aIternate descriptions for the set 
of "nice" Kleinian groups, and establishes necessary and sufficient con- 
ditions for stability of such groups. 

I t  is also possible to obtain illformation on collomology and cusp forms 
for r from the corresponding information for T I  and T,. This point of 
view will be pursued by this author in a subseq~~ent paper on stability of 
Kleinian groups. 

$9. T h e  Upper Half '  Space 

Let A be an invariant union of components for a KIeinian group T. 
By a firndanzel~tal clornain w for r in A we mean an open subset w c A 
such that no two points of w are eq~~ivalent under T, and every point in A 
is equivalent under r to a point of the closure of w. Using Ahlfors'sfinite- 
ness theorem [ I ] ,  and classical constructions for Fuchsian groups (see, for 
example, Ford [6, Chapter I l l ] ) ,  it is easy to show that for r finitely gen- 
erated we can construct an w that consists of a w ion  of finitely many 
non-Euclidean polygons in A each with finitely many sides. As a matter 
of fact: 

I f  A is an  invariant cort~porzent of a Kleiniarz group T, tkerl T isJinitely 
generated if and only $I' has a funclan?erztal clornain in A that  is af ini tely  
sided non-Eucliclearz polygon. 

Every Kleinian group may be viewed as a group of motions of the upper 
half space 

3" = { ( z , t ) ;  Z E ~ ,  ~ E R ,  t > 0 ) .  
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g E G is a product of inversions in circles, which can be extended 
ersions in half spheres in 2' that surmount the circles. In this way 
as a conformal map (and an isometry in the non-Euclidean metric) 
The formula for the action of g on If is hardly ever used, but it 

en as follows: Tf g( z )  = ( a s  + b ) ( c z  + d ) - ' ,  and if 

then 

z' = ( a z  f b ) ( c z  +$) + act2 t' = t 

I C Z + ~ ~ ~ + J C ) ~ ~ ~  ' 
Icz + d l 2  + lcI2tz '  

r c G is arbitrary,  then r acts discontinuo~rsly on 8 i f  and o i ~ l y  

rthermore, fundamental domains and filndamental polyhedra for I? 
are defined as in the two-dimensional case. Not all finitely generated 
it finitely sided fundamental polyhedra in -s/P(degenerate groups are 

nterexample, see Greenberg [a]). For discrete T ,  %/r is always a 
dimensional manifold. It has a boundary if and only if I? is Kleinian. 

case the boilndary is R(T)/T. This three dimensional point of view 
iliar to Poincart. However, until recently, it provided 

little new information. Among tlle recent important results of this 
roach are the following: 

I- and I" are two discrete subgroups of G ,  with .P/r and .%''/I? 
izg finite non-Euclideai~ uolun?e, then every i s o r n o r p h i s ~ ~ ~  

l : ~ + r t  

rzjugation by  n difieomorphisnz g with g oi- i j ~  C. 

he above is a deep result of Mostow [21]. (See also Marden [16].) 
s not, of course, apply to Kleinian groups (these do not have finite 
uclidean volume). Recently Marden [I61 has obtained the follow- 

is a torsion free Kleinian group that adrnits a f in i te ly  sided funda- 
1 polyhedron, tlterz r is stable anrl the irnage (D(T(T,R(T))) is a 
nifold of HomP8,,(r, G )  . 

$10. I s o ~ ~ ~ o r p h i s t ~ ? ~  of Kleinian Groups 

ere is a vast body of unpublished work by W. Fenchel and J. Nielsen 
s under the title "Discontinuous groups of non-Euclidean motions." 
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It is intimately related to the problems discussed in this paper, in partic. 
ular Problem 2.2. 

Let F be a Fuchsian group operating on U . If y E F  is loxodromic, then 
A, ,  the axis  of y, is the non-Euclidean straight line in U joining the fixed 
points of y. An isomorphisn~ x between two Fuchsian groups F ,  and F ,  
is called allowable if 

(a) for any pair of Ioxodromic elements y, and y, E F , ,  A,, and A,, inter. 
sect if arid only if A,( , , ,  and A,( ,,,, intersect. and 

(b) for any triple y,, y2,y3 of loxodromic elements of F,, A , ,  separates 
A,, and A,, if and only if A,( ,,,, separates A,( , , ,  and AY(Y3 , .  

Maskit 1181 obtained the following special case of a Fenchel-Nielsen 
result : 

Let F ,  and F 2  be jinitely generated Fucllsian groups actirlg on U ,  
Let X: F ,  + F ,  be a type  preseruiizg al lo~vable ison~orpltism. T h e n  t l ~ e r . ~  
is a quasiconformnl automorphistn w o f  U such that w o  y = x(y)o rv, 
for all y E F ,  . 

The isomorphism x is called type-preserving whenever trace2? = 
t r a ~ e ~ ~ ( ~ )  for every y E F ,  such that y or ~ ( y )  are non-loxodromic. 

The above shows that every allowable type-preserving isomorphism of 
a finitely generated Fuchsian group F onto another such group "is" in  
the Teichmiiller space of F  (which is known to be connected). Thus we 
have a partiaI answer to Problem 2.2 in the special case of Fuchsian groups. 
The general problem is open. However (see Maskit [19]) the following 
special case is known: 

Let T be a finitely get~erateci Kleiniatl group. If w :  R ( T )  4 Q ( T )  is o 
qtrasiconformal n~rtomorpkism satisfying 

rvo y = yo w for all Y E T ,  

then there is a (global)  quasicoi~formal automorplzisin W of C  ̂ -+ S U C I I  
that 

W o y = y o  W, for all y ~ r ,  
and WI R ( T )  = w .  

Not every isomorphism between Kleinian groups can be induced by 
a global quasiconformal automorphism of 2. Let I' be a degenerate group. 
Let 

p :  U + R ( T )  

be a holomorphic universal covering map, and let F  be the Fuchsian 
model of T. The map p induces an isomorphism x of F  onto r via 
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vious that p cannot be extended to be a quasiconformal automor- 

ark. A. Marden has also investigated this general area, and has 
ed new proofs of many results of Fenchel-Nielsen. 
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