VARIETIES OF KLEINIAN GROUPS*

by Irwin Kra

As one of very few (if not the unique one among the) participants at a
conference on singularities who works with Kleinian groups, my biggest
contribution to this volume might be an expository paper concerning some
problems of current interest in the general area of Kleinian groups. I will
hence describe here some new results concerning the variety of homo-
morphisms of a Kleinian group into the M&bius group as well as discuss
several interesting open problems. .

§1. Introduction

Let G be the group of Mabius transformations; that is, G consists of
mappings g of the complex sphere C = C U {0}, where C = the complex
numbers, of the form

(1.1) g(z) = (az+b)(cz+d)~", 2eC, {a,b,c,d}eC*, ad —bc=1.

Let I be a subgroup of G. We say that I" is discontinuous at z € 6] provided

(@ TI.={yel;yz =z} is a finite group, and

(b) thereisa neighborhood U of zsuch thatyUN U = @ foryel-T,,
and yU = U for yeT..

Let Q = Q(I') denote the region of discontinuity of I'; that is, the set
of points z €C such that I is discontinuous at z. It is an immediate con-
sequence of the definition that Q is an open (not necessarily connected)
subset of C. We call " a Kleinian group provided

(a) Q # & (Q is hence dense in é), and

(b) the limit set A =AI) = C — Q(I') consists of more than two
points (A is hence always a perfect closed subset of 0.

Remarks. (1) The groups I where A consists of two or fewer points
are called elementary groups. They are well known. See Ford [6, Chapter
VvI].
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(2) Since G is a Lie group, it makes sense to discuss discrete subgroups
I" of G. Every Kleinian group is discrete (hence countable). However, the
converse is not true. The Picard group consisting of mappings g (see (1.1))
with a,b,c,d Gaussian integers (that is, complex numbers of the form
m 4+ n\/ 1, with m and n integers) is discrete but not discontinuous a¢
any point of C.

(3) The concept of discontinuity introduced above is valid for any
group of motions on a topological space.

An element ge G — {1} is called parabolic if trace’q = (a + d)* = 4,
it is called elliptic if trace?g is real and in the interval [0,4), and loxodromic
otherwise (a loxodromic element with real trace is also called hyperbolic),
A parabolic element has precisely one fixed point in ff; all others have
two. Elliptic elements of infinite order cannot appear in discrete groups
(hence also not in Kleinian groups).

If I is a Kleinian group, then Q" can be given a unique conformal
structure such that the natural projection mapping

(1.2) n:Q = QI

is holomorphic. It is ramified over the points z with I'; non-trivial (T, is
always a finite cyclic group). Thus Q/T is a countable union of Riemann
surfaces.

By a puncture on a Riemann surface S we mean a domain D = S such
that D is conformally equivalent to

{zeC; 0<|z| 21}

with z = Onoton S. Every puncture D on Q/T is determined by a parabolic
element A4 €T (see Ahlfors [1]), in the sense that there exist a closed con-
formal disc U = Q and a parabolic element A eI such that n(U) =
and two points z, and z, in U are equivalent under I'ifand only if z; = 42,
for some integer n. We shall say that A is the parabolic element determined
by the puncture D on QJT. It is quite clear that Q/I" can be imbedded into
a smallest union of surfaces Q/T" such that each component of QT has no
punctures.

§2. The Main Problem

From now on we assume that I" is a finitely generated Kleinian group
(with region of discontinuity © and limit set A); in fact, let yy, -9, be a
fixed set of generators for I'. By Ahlfors’s finiteness theorem [I], QT
is a finite union of compact Riemann surfaces, the natural projection 7
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of (1.2) is ramified over finitely many points, and QT — Q/T" consists of
finitely many points (points of ramification order o).

Let Hom(I', G) denote the affine algebraic variety (see Bers [4]) of
homomorphisms of I' into the Mobius group G. A homomorphism
y € Hom(I', G) is called parabolic if

(2.1 x(y) is parabolic or the identity

for every parabolic element yeI” determined by a puncture on Q/T". The
affine algebraic variety of parabolic homomorphisms ((2.1) is, of course,
equivalent to the statement trace’y(y) = 4) of I" into G is denoted by
Hom,,(I', G). We are, of course, viewing Hom(I", G) as a subvariety of
G’, via the map

Hom([,G)ay & (x(yy), -, 2(y)) €G-

Example 1. Let D be a domain in € bounded by 2p (p = 2) disjoint
simple closed curves (usually circles) Cy,CY,-+,C,,C,. For j =1,-,p,
let A;€G be such that 4(C;) = C; and 4(D)N D = J. Let T" be the
group generated by Ay,---,4,. The group I’ is called a Schottky group of
genus p. It is easy to show that O(I') is connected (of infinite connectivity)
and that (T")/T" is a compact Riemann surface of genus p. Furthermore,
I is a purely loxodromic free group on the p generators A, -+, 4,. Thus,
we see that

Hom(T', G) = G”.

Example 2. A Kleinian group F is called Fuchsian if there is a circle C
in the complex sphere C such that F leaves the interior of C invariant.
By conjugation we may always assume that C is the extended real axis
R U {0}, For such a group A c C. It is called of the first kind whenever
A = C; of the second kind otherwise, Let F be the covering group of a
compact Riemann surface S of genus p = 2. It is well known that F may
be realized as a Fuchsian group that is generated by 2p elements
Ay,By,---,A,,B, with defining relation
2.2) ABA;'B7'- A,B,A;'B, = 1.

Itis quite clear that we may use (2.2) to define a complex analytic mapping

P:G*?* > G,
Thus

Hom(F, G) = {g& G*?; P(g) = 1}.
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Note that for every Fuchsian group F of the first kind, the region of
discontinuity consists of precisely two simply connected invariant cop.
ponents: namely the upper half plane U and the lower half plane L. Further.
more U/F is anti-conformally equivalent to L/F. For Fuchsian groups p
of the second kind, Q/F consists of a single Riemann surface (Q is connected)
with an anti-conformal involution J. In this case U/F consists of a single
Riemann surface with border QN (R U {0})/F.

Remark. If F is a group of conformal automorphisms of U (hence
F < G), then F is discrete if and only if it acts discontinuously on U (that
is, if and only if U < Q(I")).

Problem. Describe the variety Hom,, (I, G) . Some particular questions

include:

(2.1) Is the identity a manifold point of Hom,, (T, G)?

What does a neighborhood of the identity look like?

(2.2) Is the set of isomorphisms, Isom,,(I",G), in Hom, (T, G) con-
nected? More specifically, is the set of isomorphisms of I onto
Kleinian groups, K-Isom,, (I', G), connected? Does the boundary
of this set contain only discrete subgroups of G?

To begin to talk about such problems, we must discuss one of the two

most important tools available in this area: quasiconformal mappings.

§3. Quasiconformal Stability

Letw:C—>Cbea homeomorphism of the Riemann sphere. The auto-
morphism w is said to be quasiconformal if it possesses measurable, locally
square integrable derivatives that satisfy the Beltrami equation

3.1) Wy = Wy,

where g has L” (supremum) norm less than one. The basic result of
Ahlfors-Bers [2] establishes a canonical one-to-one correspondence be-
tween the open unit ball in L“’(CA) and normalized (fixing 0, 1, o) quasi-
conformal automorphisms of C; that is, for every pEL“’(é) with

| #]| = sup{|u(2)]; ze €} <1

there is a unique quasiconformal automorphism w = w*" that fixes 0,1, co
and satisfies the Beltrami equation (3.1). Furthermore, every other quasi-
conformal w that satisfies the same Beltrami equation is given by

(3.2) w=gow, gegq.
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A quasiconformal automorphism w is compatible with the Kleinian
group I' provided wIw=! < G. We denote by M(I') = M(I',C) the set
of Beltrami coefficients for I'; that is, those ,uEL""(C) that satisfy

Y(2) A
W(yz) —= = u(z), ae. zeC, all yel,
uly V) H(z ?

and
[ul <1

1t is routine to verify that a quasiconformal automorphism w is compatible
with I if and only if in the decomposition (3.2), e M(I"). If w is compat-
ible with I, then the mapping

I'sye 3(y) =woyow leG

defines an isomorphism of I' onto the Klieinian group wI'w~' called a

quasiconformal deformation of I'. We thus have a well defined holo-
morphic mapping

(3.3) 7: G x M(T') - Hom,, (T, G).

(The mapping (3.3) is, of course, not one-to-one.) Following Bers [4], the
group I is called (quasiconformally) stable if there exists a neighborhood V
of the identity in Hom,,(I", G) such that every y &V is a quasiconformal
deformation.

Problems. (3.1) What are necessary and sufficient conditions for
stability?

(3.2) Is a quasiconformal deformation of a stable group again stable?

(3.3) If I'y is a normal subgroup of finite index in I" and if 'y is stable,
is I" also stable?

Remark. I have very recently been able to answer the last of the above
problems in the affirmative. The details will appear elsewhere.

To study this general question of quasiconformal stability we must
turn to

§4. Quadratic Differentials

Recall that Q is the region of discontinuity of the finitely generated
Kleinian group I'. A holomorphic function ¢ on Q is called an automorphic
form of weight —4 (quadratic differential) if

d(p2)y'(2)* = ¢(2), all yel, zeQ.
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The function ¢ is a cusp form if it satisfies one (and hence both) of the
following equivalent conditions

lol: = J.er | $(2)dz A dZ| < oo

and
| ¢ = sup{A-*(2)| ¢(2)|; zeQ} < w0,

where );(z)|dz| is the Poincaré metric on Q (the unique complete Rie-
mannian metric on  of constant negative curvature —4). We denote
by A(Q) the space of cusp forms for I'.

Write

m

or= )8

i=1

where each S; is a compact Riemann surface of genus p; = 0 with g, > 0
punctures, and the map

o~ (S) — S;

is ramified over r; = 0 points. Let n; = g; + r;. Then it is a well known
consequence of the Riemann-Roch theorem that

dimAQ) = X B3p;,—3+ny).
i=1
In [4], Bers obtained the following sufficient condition for stability.

If the variety Hom,, (T, G) is locally irreducible at the identity and
has dimension dim A(Q) + 3 there, then T" is stable and the identity is
a regular point of Hom, (I",G).

The proof actually yields more. One constructs a map

(4.1) ®: G x A(Q), —» Hom,,(T',G)

as follows:
(Here A(Q), is the open unit ball in A(Q) with | - |, norm.)

Fof ¢ € A(Q), define
A7%¢ on Q
- | .
0 on A

(Remark. It is not known if there are any finitely generated Kleinian
groups I whose limit set A has positive two dimensional Lebesgue measure.)
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For (g,¢) e G x A(Q), , we define O(g, ¢) as conjugation of " by g o wk,
One shows that ® covers a neighborhood of the identity in Hom,, (T, G).
 To obtain a sufficient condition for stability that does not require in-
formation on the local properties of the variety Hom,, (T, G) at the identity
we must turn to

§5. Eichler Cohomology for Kleinian Groups

The Lie group G acts on the right (by the Eichler action) on the vector
space IT of quadratic polynomials via

: py(z) = p(yz)y'(2)™", pell,yeG, zeC.
‘One can thus define the first cohomology group H'(T,II) for any (finitely
generated Kleinian) subgroup I' of G, as follows: A cocycle is a mapping
T - IT such that

110 72) = 13y + 2(2)> B1.y2) €T2.

If pell, then its coboundary is the cocycle

x7) = py—p, yer.

The cohomology group H'(I',TI) is the group of cocycles factored by the
group of coboundaries. A cohomology class y € H'(I',I1) is called parabolic
if for every parabolic element 4 e I" that is determined by a puncture on
QI", we have

x| (4) = {0}.

The subgroup of parabolic cohomology classes is denoted by H;H,(I‘,l'[).
For ¢ € A(Q), we define (see Ahlfors [1])

1) J‘ f 2(C)tﬁ(ﬁ) >
h(z) = f A dC.
= o =DC-n " "
It is then easy to check that for ye I,
P (2) = h(yz)y'(z)~! — h(2), zeC,
defines an element of TI. Hence h defines a cohomology class
p*¢ € H,, (I, II). We have thus defined the injective map (see Ahlfors [1]),
B*: A(Q) — Hp, (T, T0).
Remark. The map f* need not be surjective. For a complete description
of H,, (I, TI) see, for example, Kra [9], [10].

par
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In terms of the above concepts, Gardiner and Kra [7] obtained:

The group T is stable provided B* is surjective.

As before, the map ® of (4.1) covers, under this hypothesis, a neigh.
borhood of the identity in Hom,, (T, G).

Problems. (5.1) Does stability imply surjectivity of the map f*?
(5.2) 1If B is surjective for a group T, is it also surjective for a quasi-
conformal deformation of I'? (This is the linear version of Problem (3.2))
The first of the above problems is intimately connected with another
interesting problem. The G-module IT of quadratic polynomials with the
Eichler action is G-isomorphic to the Lie algebra #(= SI(2,C)) of G with
adjoint action. Thus H'(I',IT) is canonically isomorphic to H'(I',¥). If
f is a one parameter family of homomorphisms of I' into G with f(0) =
identity, then
O .
r=0 f

s yel,

defines a %-cocycle for I' (hence via the isomorphism mentioned above
a IT-cocycle).

Problem. (5.3) Does every Il-cocycle for I' arise in the above manner?

As a consequence of the above criterion for stability as well as the results
of Kra [9], [10] on cohomology of Kleinian groups, we conclude at once
that Schottky and Fuchsian groups (all groups are assumed to be finitely
generated) are stable, as are Kleinian groups with two invariant compo-
nents. However, degenerate groups (2 connected and simply connected)
are not stable.

§6. Quasiconformal Deformation Spaces

Let A be an invariant union of components of Q(I'), with I" a finitely
generated Kleinian group. Let M(I', A) denote the space of Beltrami co-
efficients for I' that vanish outside A. This is (an infinite dimensional)
Banach manifold. Each pe M(I',A) determines an isomorphism y, of T
into G as follows:

(6.1) 2(y) = wtoyo (w)~', yel.

An element g e M(I, A) is called a trivial if y, is the identity isomorphism.
The set of trivial Beltrami coefficients is denoted by My(I', A). The set
My(T,A) acts as a group of right translations and biholomorphic self-
mappings of M(I',A) by
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M(T,A) x My(T,A)=(v,u) vue M(T',A),

where

w' = w'w".

The quasiconformal deformation space of T (with support in A) is
T(T',A) = M(T', A)/M (T, A)

endowed with the quotient topology.

If F is a finitely generated Fuchsian group of the first kind operating
on the upper half plane U, then T(F, U) is the usual Teichmiiller space
(see Bers [3]).

It is known (Maskit [19], Kra [14] and Bers [5], Marden [16], under
restrictive hypotheses) that T(I", A) is actually a finite dimensional complex
analytic manifold of the same dimension as

A(A) = {¢p € A(Q); ¢ vanishes outside A}.

To describe the deformation space T(I,A) more precisely, let
Aj,j= 1,:--,m, be a maximal collection of non-equivalent components
of A. For each j, let I'; be the stability subgroup of A;; that is,

By Ahlfors’s finiteness theorem [1], I'; is again a Kleinian group, and (see
Kra [14])

m

TN & [ TF,A)-

i=1

Thus, to study the structure of these deformation spaces, it suffices to
assume that A is an invariant component of the group I". Since A contains
more than two points, the holomorphic universal covering space of A is
conformally equivalent to the upper half plane U. We choose a holo-
morphic universal covering map

p:U—= A,
and let F be the Fuchsian model of I'; that is,
F={feG;fU = U and pof=yo p for some yel}.

Since A/l = UJF, it is easy to see that F is a finitely generated Fuchsian
group of the first kind. One shows (see Maskit [19] or Kra [14]) that

T(T,A) = T(F,U)fcovp,
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where covp is a group of biholomorphic automorphisms of T(F,U).
Furthermore, the group covp acts discontinuously and fixed point freely
on T(F,U). Since T(F,U) is simply connected, it is the holomorphic uni-
versal covering space of T(I',A) and covp is isomorphic to the fun-
damental group of T(I',A).

To discuss some open problems we return to the general situation (ar-
bitrary I" and A). We use (6.1) to define a holomorphic mapping

®: T(T',A) —» Hom,, (T, G).
This mapping is one-to-one and of maximal rank.

Problems. (6.1) Is ®(T(T',A)) a submanifold of Hom,, (T, G)?

(6.2) Describe the boundary of ®(T(T,A)) in Hom,,(I',A). In parti-
cular, does every boundary point represent a discrete subgroup of G?

(6.3) We have stated that T(I', A) is a d-dimensional complex analytic
manifold (d = dim 4A(A)). Is it biholomorphically equivalent to a sub-
manifold of C%?

For Fuchsian groups F of the first kind the answer to Problem 6.3 is
known. The realization of T(F, U) as a submanifold of A(L) (L= lower half
plane) is one of the central results of Teichmiiller space theory (Bers [3]).

For a class of “‘nice’” Kleinian groups (see also §8), Maskit obtains a
positive solution in a forthcoming paper. The general problem is, however,
still open.

§7. Holomorphic Deformations

We assume that the finitely generated Kleinian group I' has a simply
connected invariant component D, Fix a point z, € D. For every ¢ € A(D),
let f = f, be the unique solution to the Schwarzian equation

(7)-2(7) - ¢

f(2) = (z=20) + O(| z = 2,|%), z = 2,.

normalized so that

From the Cayley identity, one concludes that for each yel" there is a
x4(?) € G so that

foy=jxnof.
It is easy to check that the mapping

Fayr gy eC
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is a parabolic homomorphism, and that we have constructed an injective
(sce Kra [13]) holomorphic mapping

(7.1) lP.D: A(D) == Hompnr(ra G)'

It follows from Gardiner-Kra [7] that a neighborhood of the identity
in Hom,,(I', G) is biholomorphically equivalent to a neighborhood of
(1,0,0) in

G x A(D) x A(D)

(the first two components are mapped into Hom, (I, G) via the map ®
of (4.1), and the last via the map ¥ of (7.1)). In some sense ®(G x A(D))
should always be “‘orthogonal’ to W,(A(D)). But I do not know how to
formulate this precisely.

Let us specialize to a finitely generated Fuchsian group F of the first
kind operating on the upper half plane U (thus also on the lower half
plane L). Even in this very classical case many questions remain.

Problems. (7.1) Let ¢ A(U). Find necessary and sufficient condi-
tions for y,(F) to be Kleinian.

A simpler problem has been solved (Kra [11], [12]):

The following are equivalent for ¢e A(U):

(a) The group y,(F) acts discontinuously on fy(U),

(b) The magping fo 1s an unbranched unramified covering, and

© fU) % C.

Maskit [17] has shown that the above does not tell the whole story.
For some groups F (for example, covering groups of compact surfaces)
there are ¢ € A(U) for which y,(F) is Kleinian (even Fuchsian and isomor-
phic to F) but f,(U) = C. _

(7.2) Does the intersection ¥ (A(U)) x W (A(L)) consist only of the
identity?

Again, this is a kind of “‘orthogonality’” condition. A partial result has
been obtained by Kra-Maskit [15]:

If fi:U - C and foiL— C are two holomorphic universal covering
mappings of subdomains in C such that for each yeF, there is a y(y)
belonging to a Kleinian group T' with

fiory=xnof forj=1.2,
then there is a g€ G such that
g|U =f and g|L=f,,

‘Whenever f, and f, are schlicht. In general y(F) is Fuchsian or a Z,-
extension of a Fuchsian group.
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§8. Combination Theorems

The basic idea of Klein’s combination theorem is quite simple. QOpe
starts with two Kleinian groups I'y and I', satisfying certain algebraic ang
geometric conditions. and one concludes that the group I" generated by
T'; and T, is again Kleinian. Furthermore, the structure of Q(T")/T is read
off from the structure of T,)/I"; and T,)/T,.

In Klein’s original theorem, I" is the free product of I'; and I', . Maskit
[20] has generalized this theorem considerably. He studies two cases. In
the first, T is the free product of I'; and I', with amalgamated subgroup §
(usually cyclic). In the second, I', is cyclic and the generator of I', conjugates
a (usually cyclic) subgroup H; of I'; into a subgroup H, of I',.

Starting with a set of building blocks (consisting of elementary groups,
Kleinian groups with two invariant components [this includes Fuchsian
groups], degenerate groups and Schottky groups) and applying the above
combination theorems one obtains a set of “‘nice’” Kleinian groups. In a
forthcoming paper Maskit investigates alternate descriptions for the set
of “nice’” Kleinian groups, and establishes necessary and sufficient con-
ditions for stability of such groups.

It is also possible to obtain information on cohomology and cusp forms
for T from the corresponding information for I'; and I',. This point of
view will be pursued by this author in a subsequent paper on stability of
Kleinian groups.

§9. The Upper Half Space

Let A be an invariant union of components for a Kleinian group T.
By a fundamental domain o for I' in A we mean an open subset w c A
such that no two points of w are equivalent under I', and every point in A
is equivalent under I' to a point of the closure of w. Using Ahlfors’s finite-
ness theorem [1], and classical constructions for Fuchsian groups (see, for
example, Ford [6, Chapter I11]), it is easy to show that for I finitely gen-
erated we can construct an o that consists of a union of finitely many
non-Euclidean polygons in A each with finitely many sides. As a matter
of fact:

If A is an invariant component of a Kleinian group U, then I is finitely
generated if and only if U has a fundamental domain in A that is a finitely
sided non-Euclidean polygon.

Every Kleinian group may be viewed as a group of motions of the upper
half space

H = {(z,1); zeC, teR, t>0}.
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Every g€ G is a product of inversions in circles, which can be extended
to inversions in half spheres in 2 that surmount the circles. In this way
g acts as a conformal map (and an isometry in the non-Euclidean metric)
of #. The formula for the action of g on 2# is hardly ever used, but it
is given as follows: If g(z) = (az + b)(cz + d)~', and if

9(z,1) = (z',1),

then

_(az+b)(cz +d) + act* t
lez+d|?+|c]?® |ez + d|2+ | e[

!

If T = G is arbitrary, then I acts discontinuously on 2 if and only
if T is discrete.

Furthermore, fundamental domains and fundamental polyhedra for I
in J are defined as in the two-dimensional case. Not all finitely generated
I’ admit finitely sided fundamental polyhedra in 2 (degenerate groups are
a counterexample, see Greenberg [§]). For discrete ', /T is always a
three dimensional manifold. It has a boundary if and only if I is Kleinian.
In this case the boundary is Q(I')/I". This three dimensional point of view
was already familiar to Poincaré. However, until recently, it provided
very little new information. Among the recent important results of this
approach are the following:

If T and T'" are two discrete subgroups of G, with #(U and #[T’
having finite non-Euclidean volume, then every isomorphism

P B

is conjugation by a diffeomorphism g with g or g€ G.

The above is a deep result of Mostow [27]. (See also Marden [16].)
It does not, of course, apply to Kleinian groups (these do not have finite
non-Euclidean volume). Recently Marden [16] has obtained the follow-
ing:

If T is a torsion free Kleinian group that admits a finitely sided funda-
mental polyhedron, then T is stable and the image ®(T(T',Q(I))) is a
submanifold of Hom,, (T, G).

§10. Isomorphisms of Kleinian Groups

There js a vast body of unpublished work by W. Fenchel and J. Nielsen
that goes under the title *‘Discontinuous groups of non-Euclidean motions.”
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It is intimately related to the problems discussed in this paper, in partic.
ular Problem 2.2.

Let F be a Fuchsian group operating on U. If ye F is loxodromic, thep
A,, the axis of y, is the non-Euclidean straight line in U joining the fixed
points of y. An isomorphism y between two Fuchsian groups F; and F,
is called allowable if

(a) for any pair of loxodromic elements y, and y, € F,, 4, and A, inter-
sect if and only if 4,, , and 4,,,, intersect, and

(b) for any triple y;,7,,y; of loxodromic elements of F;, A, separates
A,, and A,, if and only if 4,,,, separates 4,,,, and 4,,,.

Maskit [18] obtained the following special case of a Fenchel-Nielsen
result:

Let F, and F, be finitely generated Fuchsian groups acting on U,
Let y: Fy = F, be a type preserving allowable isomorphism. Then there
is a quasiconformal automorphism w of U such that wo y = y(y)o w,
for all yeF,.

The isomorphism y is called type-preserving whenever trace’y =
trace?y(y) for every y€ F, such that y or ¥(y) are non-loxodromic.

The above shows that every allowable type-preserving isomorphism of
a finitely generated Fuchsian group F onto another such group “‘is’’ in
the Teichmiiller space of F (which is known to be connected). Thus we
have a partial answer to Problem 2.2 in the special case of Fuchsian groups.
The general problem is open. However (see Maskit [19]) the following
special case is known:

Let T be a finitely generated Kleinian group. If w: Q') = Q) is a
quasiconformal automorphism satisfying

woy=9yow for all yeT,
then there is a (global) quasiconformal automorphism Wofé - C such
that

Woy=yo0 W, for all yel',

and W| Q) = w.

Not every isomorphism between Kleinian groups can be induced by
a global quasiconformal automorphism of €. LetTbea degenerate group.
Let

p: U= Q)

be a holomorphic universal covering map, and let F be the Fuchsian
model of I'. The map p induces an isomorphism y of F onto I" via
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poy=x()op, yeF.

It is obvious that p cannot be extended to be a quasiconformal automor-
phism of C.

Remark. A. Marden has also investigated this general area, and has
obtained new proofs of many results of Fenchel-Nielsen.

REFERENCES

[1] AHLFORS. L. V., “Finitely generated Kleinian groups,” Amer. J. Math.
86 (1964), 413-429, and 87 (1965), 759.

, and L. Bers, “Riemann’s mapping theorem for variable
metrics,” Ann. of Math. 72 (1960), 385-404.

[3] BErs, L., “Automorphic forms and general Teichmiiller spaces,”
Conf. on Complex Analysis (Minnesota, 1964), 109-113.

[#]

[4] , “On Boundaries of Teichmiiller spaces and on Kleinian
: groups: L,” Ann. of Math. 91 (1970), 570-600.
[5] , “Spaces of Kleinian groups,” Lecture Notes in Mathematics

155 (Berlin: Springer-Verlag. 1970), 9-34.

[6] ForD, L., Automorphic functions, second edition (New York: Chelsea,
1951).

[7]1 GarDINER, F., and I. Kra, “Quasiconformal stability of Kleinian
groups,” Indiana Math. J. 21 (1972), 1037-1059.

[§] GREENBERG, L., “On a theorem of Ahlfors and conjugate subgroups of
Kleinian groups,” Amer. J. Math. 89 (1967), 56-68.

[9] Kra, 1., “On cohomology of Kleinain groups,” A4nn. of Math. 89
(1969), 533-556.

[10] ———, “On cohomology of Kleinian groups: IL,” Ann. of Math. 90
: 575-589.
[11] , “Deformations of Fuchsian groups,” Duke Math. J. 36

(1969), 537-546.

[12] ———, “Deformations of Fuchsian groups, II,” Duke Math. J. 38
(1971), 499-508.

, “A generalization of a theorem of Poincaré,” Proc. Amer.
Math. Soc. 27 (1971), 299-302.

_[14] ———, “On spaces of Kleinian groups,” Comment. Math. Helv. 47
(1972), 53469.

, and B. Maskit, “Involutions on Kleinian groups,” Bull.

Amer. Math. Soc. 78 (1972), 801-805.

(23]

115]




56 RICE UNIVERSITY STUDIES

[16] MARDEN, A., “The geometry of finitely generated Kleinian groups,”
(to appear).

[17] MaskiT, B., “On a class of Kleinian groups,” Ann. Acad. Sci. Fenn,,
Ser. A. 442 (1969), 8 pp.

[18] ———, “On boundaries of Teichmiiller spaces and on Kleinian groups:
I1,” Ann. of Math. 91 (1970), 607-639.

, “Self-maps of Kleinian groups,” Amer. J. Math. 93 (1971),

840-856.

, “On Klein’s combination theorem, III, Advances in the theory

of Riemann surfaces,” Ann. of Math. Studies 66 (1971), 297-316,

[21] MosTow, G. D., “Quasiconformal mappings in n-space and the rigid-

ity of hyperbolic space forms,” Inst. Hautes Etudes Sci., Publ,
Math. 34 (1968), 53-104.

[19]

[20]

STATE UNIVERSITY OF NEW YORK, STONY BROOK



	article_RIP5920041RIP590219.tif
	article_RIP5920041RIP590220.tif
	article_RIP5920041RIP590221.tif
	article_RIP5920041RIP590222.tif
	article_RIP5920041RIP590223.tif
	article_RIP5920041RIP590224.tif
	article_RIP5920041RIP590225.tif
	article_RIP5920041RIP590226.tif
	article_RIP5920041RIP590227.tif
	article_RIP5920041RIP590228.tif
	article_RIP5920041RIP590229.tif
	article_RIP5920041RIP590230.tif
	article_RIP5920041RIP590231.tif
	article_RIP5920041RIP590232.tif
	article_RIP5920041RIP590233.tif
	article_RIP5920041RIP590234.tif

