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Abstract 

Recently, Zhang, Tapia and Dennis [19] produced a superlinear and quadratic con­

vergence theory for the duality gap sequence in primal-dual interior-point methods for 

linear programming. In this theory, a basic assumption for superlinear convergence is 

the convergence of the iteration sequence; and a basic assumption for quadratic con­

vergence is nondegeneracy. Several recent research projects have either used or built 

on this theory under one or both of the above mentioned assumptions. In this paper, 

we remove both assumptions from the Zhang-Tapia-Dennis theory. 

1 Introduction 

We consider linear programs in the standard form: 

s.t. Ax= b, 

X ~ 0, 

where c,x E Rn, b E Rm, A E Rmxn(m < n) and A has full rank m. 

(1.1) 

It is known that the optimality conditions for (1.1) can be written as a 2n x 2n nonlinear 

system with non-negative variables; namely, 

Ax-b 

F(x,y)= By-Be =0, (x,y)~0, (1.2) 

XYe 

where B E R(n-m)xn is any matrix such that the columns of BT form a basis for the null 

space of A, X = diag(x), Y = diag(y) and e is then-vector of all ones. 

The feasibility set of problem (1.2) is defined as 

F= {(x,y): x,y E R\Ax = b,By = Bc,(x,y) ~ O}. 

A feasible pair ( x, y) E F is said to be strictly feasible if it is positive. In this work we 

assume that the relative interior of F is nonempty, i.e., strictly feasible points exist. We 

2 



denote the solution set of problem (1.2) by 

S = {(x*,y*): F(x*,y*) = 0,(x*,y*) ~ O}. 

The primal-dual interior-point algorithms considered in this research can be motivated in 

several ways, e.g., path-following or potential reduction, but in essence they are all variants 

of Newton's method. The following generic algorithmic framework includes a majority of 

these existing primal-dual interior-point algorithms. 

Algorithm 1 (Generic Primal-Dual Algorithm) 

Given a strictly feasible pair ( x0
, y0

). For k = 0, 1, 2, ... , do 

kT k 
(1) Choose ak E [O, 1) and set µk = ak~-

( 2) Solve the following system for ( .6.xk, .6.yk): 

F'(x',y') ( :: ) = -F(x',y') + µ' (:). 

(3) Choose a step-length o:k = min(l, Tk&k) for Tk E (0, 1) and 

Ak -1 
0: =-----------min( (Xk)-1.6.xk, (Yk)-1.6.yk) 

(1.3) 

( 4) Form the new iterate 

This algorithmic framework was first suggested by Megiddo [9]. There are two funda­

mental parameters in Algorithm 1, the centering parameter ak and the step-length Tk ( or 

o:k). The choice of step-length o:k guarantees (xk+l, yk+l) > 0. It is easy to verify that the 

iterates satisfy the following useful relationships 

and 
kT k 

(Xk)-1.6.xk + (Yk)-1.6.yk = -e + ak::.___!L(XkYk)-1e. 
n 
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Practical implementations and numerical experiments performed by MacShane, Monma 

and Shanno [8] and by Lustig, Marsten and Shanno [6], among others, demonstrated that in 

general the primal-dual approach was computationally superior to both the primal and the 

dual approach. 

The theoretical properties of algorithms m the framework of Algorithm 1 have been 

extensively analyzed. Most existing theoretical results for Algorithm 1 can be classified 

into two basic categories: worst-case complexity analysis and asymptotic convergence rate 

analysis. Early works focusing on the former include Kojima, Mizuno and Yoshise [5], 

Monteiro and Adler [12], and Todd and Ye [14]. 

The analysis of superlinear and quadratic convergence properties for Algorithm 1 started 

with Zhang, Tapia and Dennis [19] and has recently become an active research direction. 

For linear programming, works in this direction include Zhang and Tapia [18], Ye, Tapia and 

Zhang [17], McShane [7], and Ye, Guler, Tapia and Zhang [16]. For linear complementarity 

problems, works in this direction include Zhang, Tapia and Potra [20], Kojima, Kurita and 

Mizuno [4] and Ji, Potra, Tapia and Zhang [3]. 

In the context of the present work, it is important to observe that in establishing su­

perlinear convergence of the duality gap ( or complementarity) to zero, all of the above 

authors, except Ye et al [16], assumed the convergence of the iteration sequence for super­

linear convergence and nondegeneracy for quadratic convergence. Ye et al [16] studied the 

Mizuno-Todd-Ye predictor-corrector algorithm, which takes ak = l and ak = 0 alterna­

tively, and obtained the impressive result of quadratic convergence of the duality gap to 

zero without the assumption of nondegeneracy or the assumption of the convergence of the 

iteration sequence. This quadratic rate is based on counting the predictor and the corrector 

steps as a single step; otherwise, the rate becomes two-step quadratic. At this juncture, a 

question naturally arises: whether a convergence theory can be developed which guarantees 

superlinear convergence of Algorithm 1 without the assumption of the convergence of the 

iteration sequence, and quadratic convergence without the assumption of nondegeneracy. In 

this paper, we answer this question affirmatively by removing from the Zhang-Tapia-Dennis 
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convergence theory [19] the assumptions of the convergence of the iteration sequence and 

nondegeneracy. A question that still remains open is the existence of an algorithm in the 

form of Algorithm 1 which is one-step quadratically convergent for degenerate problems. 

This paper is organized as follows. In Section 2, we introduce some known results that will 

be used in the development of our main result. In Section 3, we establish Theorem 3.2 which 

gives rather mild sufficient conditions for the superlinear and the quadratic convergence 

of Algorithm 1. In Section 4, we partially validate the assumptions of Theorem 3.2 by 

constructing simple choices of the parameters uk and ak for all cases of the theorem except 

the case leading to one-step quadratic convergence. We make some concluding remarks in 

the final section. 

2 Preliminaries 

In this section, we introduce our notation and recall some known results that will be used 

in the development of our main results. 

For brevity, we use the notation z = ( x, y) E R2n, i.e., 

{ 

Xi, 1 ~ i ~ n, 

Zi = Yi, n < i ~ 2n. 
(2.1) 

The theorem below is Theorem 3.2 in [13]. It gives a bound on the steps generated by 

Algorithm 1. 

Theorem 2.1 (Tapia-Zhang-Ye) Let {zk - (x\yk)} and {~zk} be generated by Algo­

rithm 1. Assume 

A2 min(XkYke)/xkT yk ~ 1 /n for all k and some I E (0, 1). 

Then there exist constants /3' > 0 and /3" > 0 such that 

(2.2) 
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Lemma 2.1 below is Lemma 2 of Giiler and Ye [2], tailored to fit the needs of this paper. 

Many interesting properties of interior-point algorithms follow from this simple fact. 

Lemma 2.1 (Giiler-Ye) 

Let { zk} = {( x\ yk)} be generated by Algorithm 1. Assume 

Al xkT yk converges to zero. 

A2 min(XkYke)/xkT yk ~ 1 /n for all k and some I E (0, 1). 

Let z* be a limit point of { zk}. Then 

(i) z* is a strictly complementary solution of Problem 1.2 and 

(ii) limk ...... 00 inf zf > 0 for every i such that z; > 0. 

El-Bakry, Tapia and Zhang [1] recently demonstrated that the relative interior of S 

and the set of solutions satisfying strict complementarity coincide. Furthermore, the zero­

nonzero structure of solutions in the relative interior of S ( equivalently solutions satisfying 

strict complementarity) is invariant. 

For any z* = (x*, y*) in the relative interior of S, define 

I; = { i: x; > 0, 1 :::; i :::; n} and 1: = { i : Yi > 0, 1 :::; i :::; n }. (2.3) 

Since the zero-nonzero structure of the relative interior of Sis invariant, the above two index 

sets are independent of the choice of z*. By strict complementarity of z*, 

1:u1: = {1,2, ... ,n} and 1:n1: = 0. (2.4) 

3 Superlinear and Quadratic Convergence Revisited 

In [19], Zhang, Tapia and Dennis established sufficient conditions for the superlinear and 

quadratic convergence of the duality gap sequence generated by Algorithm 1. Their results 

can be summarized as the following theorem. 
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Theorem 3.1 (Zhang-Tapia-Dennis) 

Let { ( xk, yk)} be generated by Algorithm 1. Assume 

Al {(x\yk)} converges to a solution (x*,y*). 

A2 min(XkYke)/xkT yk ~ 1 /n for all k and some I E (0, 1). 

Then the duality gap sequence { xkT yk} converges to zero Q-superlinearly, z. e., 

Assume further 

A5 x* is a nondegenerate vertex of {1.1). 

Then {( xk, yk)} converges to ( x*, y*) Q-quadratically. 

Originally, Zhang, Tapia and Dennis also assumed strict complementarity for (x*, y*). 

Thanks to Lemma 2.1 that assumption has been effectively eliminated. Observe that un­

der primal nondegeneracy and strict complementarity, the convergence of the duality gap 

sequence to zero implies the convergence of the iteration sequence because of the uniqueness 

of the solution. 

Based on Theorem 3.1, Zhang and Tapia [18] constructed the first polynomial and su­

perlinearly convergent primal-dual algorithm for linear programming. Its superlinear con­

vergence was established under the assumption of the convergence of the iteration sequence. 

Furthermore, under the assumption of nondegeneracy, they also demonstrated quadratic 

convergence for the iteration sequence. More recently, Ye et al [16] gave the first proof 

of quadratic converegnce for a primal-dual algorithm for linear programming that did not 

assume the convergence of the iteration sequence or nondegeneracy. They demonstrated 

quadratic convergence of the duality gap to zero in the Mizuno-Todd-Ye predictor-corrector 
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algorithm [11]. As mentioned in Section 1, this rate is based on counting the predictor and 

the corrector steps as a single step. 

Theorem 3.2 below improves Theorem 3.1 by replacing the assumption (xk, yk) -+ (x*, y*) 

with xkT yk -+ 0, and removing the nondegeneracy assumption. 

Theorem 3. 2 Let { zk = ( xk, yk)} be generated by Algorithm 1. Assume 

A2 min(XkYke)/xkT yk ~ 1 /n for all k and some I E (0, 1). 

(i) Then the duality gap sequence {xkT yk} converges to zero Q-superlinearly, i.e., 

Assume further 

Then 

(ii) the duality gap sequence {xkT yk} converges to zero with Q-rate 1 + ,\ 1 i.e., 

xk+lTyk+l 
lim sup T < oo; 

k-+oo (xk yk)H,\ 

(iii) the iteration sequence {(xk, yk)} converges to a solution with R-rate 1 + ,\. 

Proof: (i) From (1.4), Assumption A3 and the choice of ak = Tkak, 

k+lT k+l 
limsup x Ty = limsup(l - Tk&_k(l - ak)) = limsup(l - &_k). 

k-+oo xk yk k-+oo k-+oo 

Hence it suffices to prove &_k -+ 1. Note that in Theorem 2.1 ak -+ 0 implies ll~zkll -+ 0. 

In view of (3.1) and (ii) of Lemma 2.1, we have that for any i E If, ~xf -+ 0 imply 

6:.xf / xf -+ 0. Similarly, for i E 1: we have 6:.yfl yf -+ 0. 
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It follows from (1.5), Assumptions A2 and A3 that 

Therefore, for each i E {1, 2, ... , n} either 

or 

'6.x~ 
-f----+ 0, 

X· i 

'6.x~ '6.yf 
-f----+ -1, -k-----+ 0 (i Er:). 
xi Yi 

By the definition of ci (1.3), the relations (3.2) and (3.3) imply ci ----+ 1. 

(ii) We need to show 

From (1.4) and Assumption A4 

xk+1Tyk+1 T 
T = l - Tk&k(l - ak) = 1 - &k + O((xk yk)>-). 

xk yk 

(3.1) 

(3.2) 

(3.3) 

Hence it suffices to show 1 - &k = O((xkTyk)>-). Furthermore, from (1.3), (3.2) and (3.3), 

1 - &k = O((xkT yk)>.) is equivalent to 

1 (( kT k)>.) 1 + '6.z~ / z~ = 0 x y , for all i such that zf ----+ 0. 
I t 

Without loss of generality, consider i E 1,: (i.e., yf ----+ 0). It follows from (1.5) and Assump­

tion A4 that 

1 1 '6.xf/xf-O((xkTyk)>.) 
1 + '6.yflyf = l - 1 + '6.xf /xf - O(ak) = 1 + '6.xf!xf- O((xkTyk)>-)° 

Therefore, it is sufficient to have 

'6.xf = O((xkTyk)>.), i E 1,:, 
'6.yf = O((xkT yk)>-), i E 1:. 

The above relations follow directly from Theorem 2.1 and Assumption A4. 

(iii) The R-convergence rate of the iteration sequence follows essentially from (iv) of 

Theorem 4.1 of Tapia, Zhang and Ye [13]. This completes the proof. D 

It is important to observe that the parameters ak and Tk are under direct control of the 

algorithm designer. This is a point often missed by some readers. 
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4 Consistency Of Assumptions 

In this section, we demonstrate the consistency of the assumptions made in Theorem 3.2 

except for the case >. = 1. 

While the current work was in progress, Ye [15] reported the following result. If the 

duality gap is small enough and if one takes pure Newton steps (a-k = 0) to the boundary 

of a gradually expanding neighborhood of the central path, then the duality gap sequence 

will converge to zero with Q-rate 1 + >. for >. E [½, 1 ). Here >. depends on the rate of the 

expansion. With additional effort, his result can be extended to include the case ). E (0, ½ ). 

Although Ye's construction essentially can be used to demonstrate the consistency of the 

assumptions made in Theorem 3.2 except for the case >. = 1, for the sake of completeness 

we feel that it is expedient to include our own construction here. It is based on the same 

principle but is somewhat simpler and gives a slightly more general result. 

Let 

( 4.1) 

for some constants a- E (0, 1) and p > 0. For each k choose Tk so that ak = rk&.k is the 

largest number in (0, 1] such that fork> 0 and>. E (0, 1) 
. ( k+l k+l) 

mm xi Yi > k = k-1 _ Ok(xkT k)l-A > 0 
xk+lTyk+l/n - ' ' y ' 

( 4.2) 

where , 0 = 21 for some constant I E (0, 1/2) and Ok ::::: 0 is chosen to ensure ,k > 0. 

We need the following two technical lemmas to prove our main result. 

Lemma 4.1 Let o-k and ak be chosen as in (4.1} and (4.2). If ,k ::::: 1 , then there exists a 

constant 'T/ E (0, 1) such that 

( 4.3) 

Proof: Since 1 - a-k ::::: 1 - a- > 0, it follows from (1.4) that it is sufficient to establish a 

positive lower bound for ak. It has been shown (see Lemma 3.4 of Zhang and Tapia [18]) 

that with the choice ( 4.2) 

( 4.4) 

10 



When ak = a, it is known that ak is bounded away from zero (see [18], for example). 

Otherwise, ak = pxkT yk. By Theorem 2.1, l6.x76.yf I = O((xkT yk)2). Hence it follows from 

( 4.4) that ak is also bounded away from zero. D 

Lemma 4.2 Let { ak} and { ak} be chosen as in (4- 1) and (4-2). There exist { Ok} and a 

constant O > 0 such that Ok 2'. 0 Jor k sufficiently large and ,k 2'. 1 . 

Proof: Let T/ E (0, 1) be as in ( 4.3) and let 

Ok = 0 = ,(1 - T/1->.) > 0. 
(xoT yO)l->. 

Since , 0 > 1 , the lemma holds for k = 0. Suppose that the lemma holds for k = p - 1. Then 

(4.3) in Lemma 4.1 holds and 

p-1 p-1 

1 k 2'. 1o _ O(xoT yo)1->. L T/(1->.)k = 21 _ ,(l _ 771->.) L 71 (1->.)k > ,. 
k=O k=O 

So the lemma also holds for k = p. This completes the proof. D 

The following theorem establishes, for general problems, the consistency of the assump­

tions made in Theorem 3.2 except for the case>.= 1 (i.e., except for quadratic convergence). 

Observe that the consistency of these assumptions for>. = 1 and for nondegenerate problems 

follows from Zhang and Tapia [18]. 

Theorem 4.1 Let {(xk, yk)} be generated by Algorithm 1 with the the choices (4- 1) and 

(4.2), and let {Ok} be such that Lemma 4.2 holds. Then for any>. E (0, 1) 

(i) Assumptions A1-A4 of Theorem 3.2 are satisfied,-

(ii) the duality gap sequence {xkT yk} converges to zero with Q-rate 1 + >.,-

(iii) the iteration sequence {( xk, yk)} converges to a solution with R-rate 1 + >.. 

Proof: (i) It suffices to demonstrate that Assumptions Al, A2 and A4 are simultaneously 

satisfied. Assumptions Al and A2 follow from Lemmas 4.1 and 4.2. The first part of 

Assumptions A4 is enforced in (4.1). Hence, we only need to show Tk = 1 - O((xkT yk)>-). 

From (1.4) it suffices to prove ak = 1 - O((xkT yk)>-). 
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Let 

fi(a) = (x? + a~x?)(y; + a~yf), i = 1, 2, ... , n, 

and 
- 1 n 
f(a) = - Lfi(a). 

n i=I 

Then condition (4.2) is equivalent to choosing ak to be the largest number in (0, 1] such that 

hi(a) = fi(a) - "'/ J(a) 2: 0, i = 1, 2, ... , n. 

Denote Ji = fi(0), i = 1, 2, ... , n, and J = f(0). It is clear that h - ,k-I J 2: 0. A 

straightforward calculation, together with Lemma 4.2, gives for k sufficiently large 

hi(a) ~xf ~yfa2 + o-k(l - ,k)Ja + (Ji - ,k f)(l - a) 

~x? ~yf a2 + o-k(Jk(xkT yk)I->. Ja + 0k(xkT yk)I->. ](1 - a) 

+a-k(l - ,k-1 )J a+ (Ji - ,k-1 J)(l - a) 

> ~x7 ~yf a2 + o-k0(xkT l)1->. Ja + 0(xkT yk)t->.1(1 - a) 

hi( a). 

Hence it suffices to show that all positive roots of hi(a), i = 1, 2, ... , n, are of the order 

1 - O((xkT yk)>.). We only need to consider the case ~x7~yf < 0; otherwise, the roots will 

be greater than one. Let e = 0(xkT yk)l->. J, then 

The positive root of hi(a), when ~x7~yf < 0, is 

- 2 

O'.i = J(l - o-k)2 - 4~xf ~yf/e + 1 - o-k. 

Note that 0-k = O(xkTyk) by (4.1), l~x7~Yfl = O((xkTyk)2) by Theorem 2.1 and e = 
O((xkTyk)2->-). Therefore, -4~x7~yf/e = O((xkTyk)>.). Clearly, O'.i = 1-0((xkTyk)>.) for 

all i with ~x7~yf < 0. This implies ak = 1 - O((xkT ykV) and proves (i). 

The results in (ii) and (iii) follow directly from Theorem 3.2. D 
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5 Concluding Remarks 

It is known that for degenerate problems the Jacobian matrix F'(x, y) is necessarily singular 

at any solution (see (19], for example). Interestingly, in practice it had been observed that 

even for highly degenerate problems when the parameters were chosen as in Assumption A4, 

then primal-dual interior-point algorithms in the generic class of Algorithm 1 exhibited effec­

tively quadratic convergence until numerical singularity was encountered. Fortunately, for 

most problems we tested, numerical singularity occurred at points extremely close to a solu­

tion; though there were exceptions. We believe that Theorem 3.2, together with Theorem 4.1, 

provides a satisfactory theoretical explanation for the above unexpected but pleasing phe­

nomenon. Still, for degenerate problems, the existence of a one-step quadratically convergent 

algorithm remains an open question. 

The theoretical and practical values of superlinear and quadratic convergence are well­

accepted in the continuous numerical optimization community. In comparison to an average 

linearly convergent algorithm, a superlinearly or quadratically convergent algorithm generally 

exhibits significant advantages at two stages. At an intermediate stage the transition to 

necessarily fast local linear convergence accelerates the convergence process. Then at the final 

stage the constantly improving fast local convergence produces a highly accurate approximate 

solution very quickly. It should be clear that the onset of these stages is problem-dependent 

and can vary considerably from one problem to another. 

Superlinear and quadratic convergence are relatively new concepts in linear program­

ming. The area has been dominated by the simplex method for decades and since the simplex 

method has finite termination these notions, defined for infinite iterative procedures, do not 

apply. Recently, in trying to take advantage of the combinatorial information inherent in the 

linear program, finite termination techniques have been devised for interior-point methods. 

A procedure recently proposed by Mehrotra and Ye [10] has been shown to possess a solid 

theoretical foundation and good numerical performance. The existence of such finite ter­

mination procedures undoubtedly diminishes the significance of the final-stage advantage of 

superlinear and quadratic convergence. However, since at this juncture no finite termination 
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procedure has been shown to have the ability to terminate interior-point algorithms success­

fully at early stages, it is still safe to say that the final-stage advantage of superlinear and 

quadratic convergence still exists to some extent in linear programming. On the other hand, 

it is not at all clear if finite termination techniques have any effect on the intermediate-stage 

advantage of superlinear and quadratic convergence. These topics certainly merit further 

study. 
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