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FINITE ELEMENT ANALYSIS
OF BEAMS ON ELASTIC FOUNDATIONS

BY
QIDAC ZHANG

ABSTRACT

When an elastic foundation is incapable of exerting tensile reaction on
the beam it supports, Winkler foundation models cannot be used throughout
the whole span of the beam. An iterative procedure is used to produce the
more realistic solutions. Two-parameter foundation model is employed. It
is more accurate than one-parameter (Winkler) model, and is simpler thap
continuum foundation model. Both C' and C? continuity elements are
displayed. Numerical tests show that the element based on the C2
continuity polynomial can give more accurate results with fewer elements.
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NOMENCLATURE

3, coefficient of polynomial expansion;
{c}---- element force vector;

E--—-- elastic modulus of structure;

E -~ elastic moduius of foundation;

(F)---- system force vector;
[H]---- interpolation function;

Ky — modulus of Winkler foundation;
KS ---~ modulus of second-parameter foundation;

[K]---~ system stiffness matrix;
[K]---- element stiffness matrix;
[K,}--- beam stiffness matrix;

[K2]--- geometric stiffness matrix;
[K3]--- second-parameter foundation stiffness matrrix;
[K,J--- Winkler foundation stiffness matrix;

Le ____length of element;
M----- point moment;
N-==-- axial force;

p---- point load;

q----- distributed load;
Q----- nodal vertical forces;

{u}---- element nodal displacement vector;
{U}---- system nodal displacement vector;
W -~ vertical deflection;
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1. INTRODUCTION

1.1 Generalization

The stresses in a statically indeterminate structure are influenced by
the deformation of the foundation while the pressure distribution on the
foundation is affected by the relative stiffnesses of the structure and the
foundation medium. To allow for this structure-foundation interaction the
powerful finite element method is ideally suited.

This problem has been studied by many authors (4, 5, 8, 17, 18, 19, 22).
Most of those works use Winkler hypothesis, and assume that the soil
adheres to the beam, i. e, the separation between beam and soil is not
allowed. This is not true for many physical cases. For instance, when a
beam or a beam-column rests on the soil foundation with some type of load
on it, some parts of the beam might be lifted up. Because of soils lacking
both adhesive and cohesive properties, gaps occur in those region (see Fig.
3.10). The method presented in this thesis represents the foundation by a
one-dimensional line finite element. The foundation is assumed to be of the
two-parameter type. Also, the separation between structure and soil

foundation is allowed when tension develops. The location of those regions
is solved by recycling the solutions.



1.2 Governing Differential Equations

We cut out of the beam an infinitely small element bounded by two

verticals a distance dx apart shown in Fig. 1.1, where Ov(x) is the transverse

shear force, M(x) is the bending moment q(x) is the general load, N is the
axial load, and p(x) is the general foundation reactions. From the

equilibrium equations and moment-curvature equation of elementary beam
theory, we obtain

dQ, (x)/dx = q(x) - p(x) (1.1)
dM(x)/dx = Q,(x) = N dw(x)/dx (1.2)
El d?w(x)/dx2 = M(x) (1.3)

in which the bending stiffness Ei is assumed to be a constant and the

transverse deformation is neglected. The normal shear Q, acting in the

plane of the section normai to the deflection line can be obtained as

Qy =Q,cos6 - N sing (1.4)
and for this, making the usual assumption that since 8 is generally small,
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Fig. 1.1 Equilibrium of an Infinitesimal Element. (a) A beam on an
etastic foundation with axial loading;(b)An infinitesimal element.



cos® = 1, andsin@ = ta® = 6 = dw/dx, thus
Q,=Q,-N dw(x)/dx = dM(x)/dx . (1.5)

Substituting Eq.(1.3) into Eq. (1.2), then differentiating with respect to x,

we obtain the differential equation of beam on elastic foundation as

El dw/dx? + N d®w/dx® - k_ d®w/dx? + kW = q(x) (16)

in which k,, and k_ are Winkler modulus and second-parameter respectively.

When the axial force N is compression, the differential equation can be
obtained simply by changing the sign of the axial force N in Eq. (1.6). When N

and k, are equal to zero, Eq. (1.6) becomes

El dw/dx? + kw = a(x) . (1.7)

This is the differential equation of ordinary beam on Winkler elastic
foundation which is well known. |

1.3 Equations for Foundation Modulii

The two foundation parameters kw and ks are evaluated by Viasov's
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For plane strain problem, according to elementary thin-plate theory, EI used
in plane stress problem should be replaced by

_ Ebnd
D-W (1.12)

in which b is the width of the beam and h is its depth. Coefficient r depends
on the properties of the foundation. In following examples, we let r=1. For

sandy clay foundation, we choose that the foundation elastic modulus is
45.4N/mm?, and the Poisson ratio of it is 0.21.



2. LITERATURE SURVEY

2.1 Solution of Beam on Elastic Foundation

The analysis of beams, beam-columns and plates on elastic foundations
is widespread in engineering. Hetenyi (2) extensively develops the classical
differential equation approaches. Miranda and Nair (19) adopt the method of
initial parameters to express the solution of the beams on elastic
foundation differential equation in terms of four special functions that are
associated with the deflection, slope, moment and shear, respectively.
These special functions possess an interesting property. The derivatives of
these functions can be related back to the original functions, leading to

substantiai simpiification in the soiution of boundary value problem.

In recent years, finite element approachs have been used extensively in
the analysis of beams on an elastic foundation (3, 4, 5, 16, 18, 21). Most of
these works use the Winkier hypothesis. Thus, the foundation acts as if it
consisted of infinitely many closely spaced linear springs. Bowles (18)
formulates a stiffness matrix by combining a conventional beam element
with discrete soil springs at the end of the beam. The degree of accuracy
using this element is highly dependent on the number of elements modeled.
Ting (5) derives the stiffness and flexibility matices from the exact
solution of the differential equation. Some authors (3) use the cubic

Hermitian polynomial (C! element) to approximate the beam on elastic



foundation.

The Winkler model is very simple. But interactions between springs
are not considered, so it does not accurately represent the characteristics
of many practical foundations. For some problems a continuous medium
model is more accurate, but it is difficult to obtain an exact solution with

this model and is expensive to obtain a numerical result by finite element
methods.

2.2 Foundation Models

Fig. 2.1 shows the action of an elastic foundation. When unloaded, the
beam axis and the x-axis coincide. As a result of a line load q(x) on the
upper surface the beam deflects, causing the foundation to resist with a
line load p(x), whose units may be taken as N/mm. Various foundation
models define p(x) in various ways.

Winkier Foundation (2).--This foundation model has been used for a

century. It assumes that the foundation applies only a reaction p(x) normal

to the beam, and that p(x) is directly proportional to the beam deflection
w(x):

p(x) = kw(x). 2.1)

The Winkler foundation modulus k has units N/mm/mm. Effectively, this
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Fig. 2.1 Portion of Deflected Beam on

Elastic Foundation



foundation is a row of closely-packed linear springs. There is only one
foundation parameter in Eq. (2.1). To improve the Wihkler mode! some
authors assumed interactions between the springs and added a second
parameter to Eq. (2.1). In the following we outline four of these

two-parameter modeis.

Filonenko-Borodich Foundation.--Filonnenko-Borodich assumed
that the top ends of the springs are connected to an elastic membrane that
is stretched by a constant tension T. He obtained

p(x) = kw(x) - T d2w(x)/dx2 . (2.2)

Pasternak Foundation--Pasternak introduced shear interactions
between the springs. He assumed that the top ends of the springs are
connected to an incompressible layer that resists only transverse shear
deformation, and obtained

p(x) = kw(x) - K d2w(x)/dx? . (2.3)
in which k. = a parameter of the shear layer.

oeneraiized Foundation--This modei assumes that at each point of
contact there is not only a pressure but also a moment applied to the beam

py the foundation. The moment is assumed to be proportionai to the angie



of rotation. Thus, action of the foundation per unit length of the beam is
taken as

p(x) = kw(x) (2.4a)

m(x) =k dw(x)/dx (2.4b)

in which k and k_, are the two modulii of the foundation. From m(x) we can

obtain an equivalent line load. This can be done in the same way that

twisting moment M, on the edge of a plate is standard in elementary
Xy 9

thin-plate theory. Thus, Egs. (2.4) can be replaced by
p(x) = kw{x) - k_ d?w(x)/dx? (2.5)
without any moment load from the foundation.

Viasov Foundation (7) -- Some authors did not start from Winkler
foundation but regarded the foundation as a semi-infinite elastic medium.
This approach is mathematically complicated, so simplifying assumptions
were introduced (7). Viasov obtained the foundation reaction

p(x) = kw(x) - 2t d2w(x)/dx? (2.6)

10



as well as formulas for determining the parameters k and tin terms of

elastic constants and dimensions of the beam and foundation.

Remarks-- Mathematically, Eqs. 2.2, 2.3, 2.5 and 2.6 are equivalent.
The only difference is the definition of the parameters. When we solve the
problems mathematically we need not pay attention to this difference, so

we rewrite these equations in the form

p(x) = kw(x) - k, dw(x)/dx? (2.7)

in which k is the first parameter (Winkler's modulus); and k, is the second

parameter.

11



‘3. THE FINITE ELEMENT MODEL

3.1 Introduction

In classical continuum mechanics, as we discussed in CH.1, the physical
problem is usually described by a set of differential or partial differential
equations with proper boundary conditions, or by the extremum (in most
cases, the minimum) of a variational principle, if it exists. Today the finite
element method has become the most popular method for solving such
equations. The method coupled with developments in computer technology
has successfully been applied to the solution of steady and transient
problems in linear and non-linear regions for one-, two-, and
three-dimensional domains. It can easily handle discontinuous geometrical

shapes as well as material discontinuities.

For the mathematical point of view the finite element method is based
on integral formulations. Modern finite element integral formulations are
obtained by two different procedures: variational formulations and weighted
residual formulations. All of these technigues use the same bookkeeping
operations to generate the final assembly of algebraic equations that must
be soived for the unknown nodal parameters. Many physicai problems have

variational formuiations that resuit in quadratic forms. These in turn yield



definite. Another important practical advantage of variational formulations

is that they often have error bound theorems associated with them.

There is a increasing emphasis on the various weighted residual
techniques that can generate an integral formulation directly from the
origional differential equations. The weighted residual method starts with

the governing differential equation like

Lu)=Q (3-1)
and avoids the often tedious search for a mathematically equivalent
variational statement. In these methods, an approximate solution is
substituted into the differential equation. Since the approximate solution
does not satisfy the equation, a residuai or error term resuits. Suppose
that u* is an approximate solution to eq. (3-1). Substitution gives

Uu*)-Q=R=0 (3-2)

since u* does not satisfy the equation. The weighted residual method
requires that

f
J

0 RWda=0 . (3-3)

The residual R is multiplied by a weighting function W, and the integral of

13



the product is required to be zero. The number of weighting functions
equals the number of unknown coefficients in the approximate solution.
There are several choices for the weighting functions, and some of the
more popular are the collocation method, subdomain method, Galerkin's

method, and least square method, etc.. To obtain the Galerkin criterion one
selects

W = y* (3-4)
while for a least squares criterion
W = 9R/du* (3-5)

gives the desired resuit. Similarly, selecting the Dirac deita function gives
a point collocation procedure; i.e.

W= 5. (3-6)

For both variational and weighted residual formulations the following
restrictions are now generally accepted as means for establishing
convergence of the finite element model as the mesh refinement increase
[k |

1. (A necessary criterion) The element interpolation functions must be
capable of modelling any constant values of the dependent variable or its

derivatives, to the order present in the defining integrai statement, in the

14



limit as the element size decreases.

2. (A sufficient criterion) The element shape functions should be chosen
so that at element interface the dependent variable and its derivatives,
of one order less than those occurring in the defining integral statement,

are continuous.

Interpolation functions are used for the approximate solution, u*, and
the weighting function, W, and resuit in a set of algebraic equations that
can be solved for the unknown coefficients in the approximate solution. In
following two sections and CH. 5, we are going to employ both cubic and
fifth order Hermite interpolation functions.

3.2 Cubic Elements (C' continuity)

The practical application of the finite element method depends on the
use of various interpolation functions and their derivatives. Most of the
interpoiation functions for C% and Ci continuity elements are well known.
The C? functions are continuous across an inter-element boundary while the
C! functions also have their first derivatives continuous across the
boundary. Here we display a C' continuity element. This element is
obtained by using Hermite interpolation polynomial and nodal variables that
include derivatives as well. The geometrical nodes, function H and the
Jacobian matrix [J] remain identical to those of the linear element (C°
continuity element).

15
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Note that a global derivative has been seiected as a degree of freedom.
Since there are two nodes with two degree of freedom each, the
interpolation function has four constants. Thus, it is a cubic polynomial.
The element is shown in Fig. 3.1 along with the interpolation functions and
their global derivatives. Fig. 3.2 shows such a set of cubics. In order to
obtain the element properties, we consider the typical element shown in
Fig. 3.3, where 1 and 2 are local node numbers. Consider the cubic

polynomial for deflection, w,

W(X) =3, + 3% + 3,x% + agx° | (3.7)

If w(x) and its derivatives are evaluated at the node coordinates X, and X

we obtain

- 2 3
W= 8y " LagXy * 23X, ¢
= 2 3 (3.8)

3 - 2
Wo= 8, + 285X, *+ 33,%°

Equations (3.8) can be used to solve for the a(i=1,23, 4 in terms of the

fbur nodal values w, and w'; (i = 1, 2). If we define the generaiized nodai

displacement vector U by
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¥ _J W
y B | .
i j X
W, S + w!
L b]
L b

w(x) = H(x) w©
we = | W, wi' W, wJ?]
H (%) = [(1-36%28%) L(B-28%8%) (38%28%) L(B>-E7)]

H'(x) = [((6BZ6B)/L (1-4B+3B2) (6B-6B°)/L (38%2B)]
H'(x) = [(12B-6)/° (6B-4)/L (6-6B)/€ (6B-2)/L]

B=S/L, S=X-X;, L=¥-X.

Fig. 3.1 A One-Dimensional Hermite Cubic Element
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Fig. 3.3 Element Nodal Parameters: (a)Nodal Displacements .
(b)Nodal Loads; (c) Degree of Freedom; (d) Local Coordinates.
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UT=lw, w, w, wol=[u u, u; u] (3.9)
then w(x) can be written in a form where appropriate interpolation
functions are exhibited. In this case the functions turn out to be

third-order Hermitian interpolation functions, from which we obtain

4
w(x) = 2 u H, (%) (3.10)

i=1

where the H, are given in Fig. 3.1. In terms of nodal quantities, Eq. (3.4) can

be written as

w(x) = H,w, + Hw', + AW, + H,W, (3.11)
or

w(x) = H,u; + qu2 + H3u3 + H_;u_; . (3.12)
In matrix notation, it becomes

w(x) = [H] (U] . (3.13)

The error of using £q. (3.13) with a § withinr, tor, is given by

E(r) = wi(e) [L(r]?/4! (3. 14)
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where
L) =(c-r)(r-r)..(r-r ). (3.15)

Thus, if w(¢) is a polynomial of order 2m-1 or less, this interpolation is

exact for certain load conditions.

3.3 Fifth Order Element (C? Continuity)

We now have three variables per node: w;, W', w°.. The corresponding

generalized parameters are u,, U, and U, respectively. For a two nodes line

element, the equation of deflection is
W(x) = Hu, + Hou, + Houz + Hyu, + Houg + Hu, (3.16)
The shape function in local coordinates are

H, = 1-10r% + 15r%- 6r°

Hy=(r-6r3 +8rf-3r9)L,

Hy=(r2-3r3+ 309 -12) L 2/2 (317
Hy=10r% - 15r4 + 6r°

Hg = (7r-3r° - 4rd) L



Hg = (3 - 2r1+ )L 2/2

where L, = x,-X, is the length of the element, and x =rL_. The first three
functions are shown in Fig. 3.4. The error in this case fora ¢ within r,

to Ty 1S

E(r) = wh(g) [L(NP/61 . (3.18)

22
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3.4 Stiffness Matrix

This derivation is limited to a one-dimensional beams on a two-
parameter foundation with the axial loads. The differential equation for
deflection, w, of a beam on an elastic foundation with uniform cross section
has been obtained in CH.1 [Eq. (1.6)l. This is mathematically equivalent to
the problem of finding the extremum of functional

- IL[EI(W')z/Z + N(W2/2 - k (W)/2 + k w?/2 - gtwldx (3.19)

for all smooth functions w satisfying the boundary conditions. In a finite-
element formulation the assumed interpolation functions used to represent
w should be such that w and w' are continuous. This assures that 7 is
~ defined and that we can write 11 as a sum of contributions from the
elements into which the region is divided. Therefore, using Eq. (3.19), we

have

=1 % H

= ,21 [ lEI(w")2/2+N(w‘)2/2-l<s(w‘}2/'2+|< w2/ 2-qw) (3.20)
Ll B w

x.
i

where n denotes the number of nodes (i.e., there are n-1 elements). Eq.
(3.20) can also be written in matrix form with w of each element expressed

in terms of generalized coordinates and interpolation functions, as
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TT= 2007k, Ju)/2 + WTkylul/2 + (W) IkgHu)/2 +

(W (u}/2 - (W)T(ch (3.21)

or

10 = 20T KD (W}/2 -7 (ch (3.22)
where [K] is the total element stiffness matrix
K1 = [k, ] + [,] + [kg) + k,] (3.23)

where [k.] is the beam stiffness matrix which involves the beam flexural
stiffness El; [k2] is the stiffness matrix which involves the axial load N, we
call 1t "geometric stiffness matrix"; [k,] is the second-parameter foundation

stiffness matrix; and [k4] is the Winkler foundation stiffness matrix. They

are defined by the relations

T tk,] () = JErtw)2 ox (3.242)
T ik, {uj = J-N(w')z dx (3.24b)

W' k,] (U] = J’-ks(w')z dx (3.24c)
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7 i = fic, w2 ax (3.240)

" () = Jabow dx (3.24e)

where the intégrations are carried out over the element and where u is
defined by Eq. (3.9).

For ecuilibrium, minimizing the functiconal m, i.e., dn/du = O, we have
(K] {u} = (c} . : (3.25)

Assembling the elements stiffness matrices by "bookkeeping™ according the

connectivity of elements, the system equation can be obtained as
(K] (U} = (F}. (3.26)
This is equivalent to the differential equation obtained in CH.1 .

By using the numerical integration and cubic interpolation on Eq. (3.24),

gne obtains the numerical form eguivalent to element stiffness matrices in
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Fig. 3.5 Element Stiffness Matrices for Cubic Interpaolation

and Constant Properties.
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Fig. 3.6 (a)Elastically-supported beam element with a
trapezoidal line load; (b)Tupical element load vector for

a cubic element.
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3.5 Member Force Recovery
We can write the system equilibrium equation [Eq. (3.25)] in the form
KW =Cc))+Ep)) (3.27)
where {F) = (2(c)) + (S{p)). The first term of right-hand side denotes the
distributed load resultants, and the second denotes concentrated joint
forces and moments. An approximation is to assume that each element is
also in equilibrium, so
[K] (u} = (c} + (p} . (3.28)
Thus, we approiimate the member joint forces as
{p} = [K] {u} - (c} (3.29)
the matrices [K] and {c} must be stored for latter use in computing the final
member actions. Assume [K] is a sum of beam and foundation effects shown

in Eq. (3.23). We want to know the reactions from the foundation, and the
beam internal effects, from Eq. (3.28) we have

(0} = (k) + [, + lkg) +k ) () - () (3.30)



and set (¢} = -([k;] + [k D) (u), here c; are the reactions from the foundation,

we obtain
(p} = (Ik,1+ K, DU} - () - (c]). (331)

After {u] has been computed the foundation reactions and member forces are
recovered for each element.

Suppose a beam on elastic foundation shown in Fig. 3.7 loaded by a

concentrated force in midspan. The numerical values of the parameters are:

Ky = 6.12N/mm; E = 5200N/mm?; | = 3.413(107)mm¢, L = 5500mm; P = N. The

deflection curve in this case is symmetric. Member forces recovery are
computed for each element of the 4-element half span shown in Fig. 3.8.

Both system and element equilibriums are satisfied. The flowchart of this
procedure is in Fig. 3.9.

3.6 The Treatment for Gaps

Fig. 3.10 shows the situations of separations between structures and
soil foundations. We may simply call them gaps. Sections AB in both
schematics are lifted up and the structure-foundation interaction no longer
exists in those sections. So Winkler model cannot be used throughout the
whole span of the beam. What we are intrerested in is the locations of

zero-deflection points from which we can find the regions of gaps. In
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Fig. 3.7 Example for force recovery. (a) Simply supported beam
under a concentrated 1oad at midspan; (b) Elements mesh.
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(a) Schematic of Beam on an Soil Foundation

pipeline

(b) Schematic of Buried Pipeline

Fig. 3,40 Separations Between Structure and

Feundaticen



zero-deflection points A and B, four continuity conditions are required,
ie.,

(1) continuity of deflection
Waten ™ Warign =0 (3.32)

(2) continuity of slope; (3) continuity of moment; and (4) continuity of
shear force. The differential equation for the gap section is

El dWw/dxX4 = q(X) (3.33)

and for the sections where beam contacts with the foundation Eq. (1.6) is
employed. Now we have two kinds of differential equations. To solve the
problem the finite element procedure is employed. In all cases, the
six-point Gaussian quadrature is used for numerical integration. Testing
each Gauss point, we can find the zero-deflection points. Two types of
elements, one resting on the foundation and another one lifting off the
foundation, are established. By using the iterative procedure, solution is
repeated until nodal coordinates of zero-deflection points remain
unchanged. Then, the deflection of beam on the whole length can be found.
This means we can find the gaps, if they exist. By recycling the solution in
the iterative steps, the effect of foundation is ignored in the sections with

gaps. Usually, a quickly converged solution can be obtained. During this
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procedure the foundation modulii, Ky and k,, are not constant but depend on

location. Thus, the usual form in Fig. 3.5 is no longer valid. The most

practical way to treat partial contact over the element is to numerically

integrate the contributions to [k,] and [k,]. Using Gaussian quadratures also

simplifies the programming required to implement both the €2 and C! beam
elements and their associated load resuitants. Fig. 3.11 gives the flowchart
of this procedure. To distinguish from the Winkler foundation modet, |

simply call the procedure a no-tension foundation model.
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4. NUMERICAL EXAMPLES

4.1 Infinite Beam with Concentrated Load

Consider a long beam resting on the elastic foundation loaded by a
concentrated force at the middie point of the beam as shown in Fig. 4.1. The
numerical values for the parameters are: Young's modulus E = 9100N/mm>;

Winkler foundation modulus K, = 40N/mm?; the second-parameter of

foundation K, = 6%10°N; P = 20000N; L = 18050mm. Since it is symmetry,
Fig. 4.1 shows only half of the beam.

100mm

u_—. b4 %—I}.‘Ot}mm

l 10000N

Fig. 4.1 Haslf of the infinite beam resting on the 2lastic
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One-parameter solutions by using both C' and C2 continuity element
models are compared with the analytic infinite beam solution in Table |
through Table 4. The C2 continuity element model gives more accurate
results than those obtained by using the C' continuity element model. Even
the S-element solution of C2~model is better than those of 20-element by

C'-model. Table S shows the two- parameter solutions.

From the numerical results of Table | to Table 4, we can see that the
deflection and the rotation at the far end point are very close to zero. It is
reasonable that we add boundary condations w=0 and dw/dx=0 at the far end
point. Then, the probiem was resolved under the conditions by the iterative
procedure with the consideration of no-tension foundation model, i.e., set

k_“.,=0 in the sections where the beam 1ifted off from the foundation. Fig. 4.2

shows the comparision of deflections of Winkler model solution and the
no-tension foundation model solution (CH. 3.6). The iterative solution
converges within five steps. If this problem is solved with free boundary
conditions at far end, solutions will converge after nine steps. Also the
deflection at that point will be lifted up very high. This is impossible for a
physical long beam resting on the elastic foundation. The weight of the
beam is not considered here. The self-weight is included in the second

example. So the curves of deflection look more realistic.



Table 1: Deflections --Winkler model solution

1

2

Nope | INFINITE c! continuity | c2continuity | cZconTinuiTy
SOLUTION 20 ELEMENTS | 20 ELEMENTS | 5 ELEMENTS

1 2.83271 2.83191 2.83271 2.83322
2 2.31280 2.31207 2.31280

3 1.40045 1.39989 1.40045

4 | 063310 0.63274 0.63310

5 0.15856 0.15839 0.15856 0.15855
6 |-0.06184 -0.06188 -0.06184

7 j-01217 -0.12169 -0.12171

8 |-0.10507 -0.10502 -0.10507

9 |-0.06614 -0.06609 -0.06614 -0.06614
10 |-0.03139 -0.03136 -0.03139

11 |-0.00905 -0.00903 -0.00905

12 | 0.00183 0.00183 0.00183

13 0.00516 0.00516 0.00516 0.00517
14 | 0.00474 0.00475 0.00475

iS 0.00311 0.00311 0.0031 1

16 | 0.00154 0.00155 0.00155

17 | 0.00050 0.00050 0.00050 0.00050
18 |-0.00004 -0.00004 -0.00004

19 |-0.00022 -0.00024 -0.00024

20 |-0.00021 -0.00029 -0.00029

21 |-0.00015 -0.00029 -0.00029 -0.00029
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Table 2: Rotations

--Winkler model solution

sope | INFINITE | ' conTinurty | cZcoNTinuiTy | cé conTinurT
SOLUTION 20 ELEMENTS | 20 ELEMENTS | 5 ELEMENTS

1 0.0000E+00 | O.0000£+00 0.0000£+00 | 0.0000E+0Q0

2 1|-1.88386-03 | -1.8835E-03 | -1.8838E-03

3 |-1.9705€-03 | -1.97006-03 | -1.970SE-03

4 |-1.38376-03 | -1.38326-03 | -1.3837E-03

S |-7.3866E-04 | -7.3830E-04 | -7.3866E-04 | -7.3961E-04

6 |-2.7501E-04 | -2.7479e-04 | -2.7SD1E-04

7 |-2.2010€-05 | -2.191iE-05 | -2.2010€-0S

8 7.5887€-05 | 7.5903E-05 7.5887E-05

g 8.7296E-05 | 8.7270E-05 8.7296E-05 | B8.6601E-05

10 6.4021€-05 | 6.3984E-05 6.4021E-05

14 %5571E-05 | 3.5540£-05 3.5572E-05

12 1.4183E-05 | 1.4165€-05 1.4185E-05

13 2.0423E-06 | 2.0363E-06 2.0460£-06 | 2.2501E-06

14 |-2.9646E-06 | -2.9613E-06 | -2.9587E-06

16 1.2 925&f-06 | -292786.0¢ | -3 R28AE-06

16 |-2.9459€-06 | -2.9405E-06 | -2.9427t-06

17 |-1.70206-06 | -1.7093€-06 | -1.7114E-06 |-1.7380E-06

18 |-7.2082£-07 | -7.5545E-07 | -7.5693E-07

19 |-1.4187€-07 | -2.1991E-07 | -2.2086E-07

20 1.1085E-07 |-1.7793E-08 | -1.8473E-08

21 1.66976-07 | 1.1096E-08 1.0464E-08 | 1.1007E-08
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Table 3: Moments

--Winkler model solution

c2 CONTINUITY

C2 CONTINUITY

nopg | 'NFINITE C' CONTHIUITY
SOLUTION 20 ELEMENTS | 20 ELEMENTS | S ELEMENTS
1 4412730.00 4412340.00 4412730.00 4412540.00
2 1013010.00 | 1012710.00 | 1013010.00
3 | -527428.00 | -527529.00 | -527428.00
4 |-916038.00 | -915960.00 | -916038.00
5 |-768508.00 | -768336.00 | -768508.00 | -768600.00
6 |-474423.00 | -474241.00 | -474423.00
7 |-219861.00 | -219722.00 | -219861.00
8 -59351.80 -59270.80 -59351.70
9 16990.50 17022.30 16990.50 17000.00
10 39118.70 39119.10 39118.30
11 34808.50 34794.20 34807.30
12 22341.40 22323.90 22339.20
13 10850.60 10835.80 10847.70 10853.30
14 3214.86 3305.32 3312.37
15 -435.06 -437.11 -434.14
16 -1647.29 -1638.13 -1637.68
17 -1566.64 -1540.58 -1541.25 -1543.01
18 -1046.29 -998.32 -999.17
19 -531.00 -463.97 -464.52
20 -179.14 -116.64 -116.82
21 3.60 0.00 0.00 0.00
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Tabled: Shears

--winkler model solution

2

NODE INFINITE ¢! conminuity | c2continuity | c2conTinuiTy
SOLUTION 20 ELEMENTS | 20 ELEMENTS | S ELEMENTS

i 1.0000E+ 04 1.0000E+04 1.0000€E+04 1.0000€+04

2 5.23016+03 | 5.2297E+03 5.2301E+03

3 1.8743€+03 | 1.8738E+03 1.8743E+03

4 7.9534E+01 | 7.9188E+01 7.9534E+01

S |-5.90916+02 | -5.9103+02 | -5.9091E+02 | -5.9088E+02

6 |[-6.4671E+02 | -6.4667E+02 | -6.4671E+02

7 |-46396E+02 | -4.6383E+02 | -4.6396E+02

8 |[-252728+02 | -2.5259E+02 | -2.5272E+02

9 |-9.7484E+01 | -9.7392E+01 | -9.7483E+01 | -9.7510E+01

10 |-1.1080€+01 | -1.1029e+01 | -1.1079E+01

R 2.3471E+ 01 2.3489t+ 01 2.34735+ 01

12 2.8536E+01 | 2.8535E+01 2.8538E+01

13 2.1408E+01 | 2.1398E+01 21409E+01 | 2.1420E+01

14 1.2130E+01 | 1.2116E+01 1.2127€+01

iS5 | 4.989it+00 | 4.565it+00 4.5766E+ 00

16 | 8.5600e-01 | 8.2531€-01 8.2926E-01

17 |-8.98956-01 | -9.4316€-01 | -9.4189E-01 | 9.4341E-01

18 |-1.2482£+00 | -1.29856+00 | -1.2987E+00

19 |-9.8233E-01 | -1.0091£+00 | -1.0099E+00

20 |-5.7862E-01 |-5.1769E-01 -5.1839¢€-01

21 |-25196t-01 | 0.0000E+00 0.0000E+00 | 0.00G0E+0O0
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Table 5: Two-parameter elastic foundation model solutions
by using C2 continuity element

NODE

DEFLECTION ROTATION MOMENT SHEAR

1 2.59396+00 | 0.0000E+00 4.0408E+06 | 1.0000E+04
2 2.1300E+00 |-1.6598E-03 8.2619E+05 | S5.6260£+03
3 1.3355E+00 |-1.7023E-03 -4.7536E+05 2.4967E+03
4 6.7245£-01 |-1.2026E-03 -7.5800E+05 | 7.1903£+02
9 2.5251E-01 {-6.7616E-04 -6.2180E+05 |-7.9831E+01
6 3.8850E-02 |-2.9982E-04 | -3.8961E+05 |-31725E+02
7 |-42803E-02 |-8.6168(-05 | -1.96056+05 |-2.9924E+02
B |-5.6620£-02 | 9.7698E-06 | -7.3533t+04 |-2.0306E+02
9 | -4.4059E-02 | 3.82276-05 | -1.1242E+04 |-1.1031E+02
10 |-2.6654E-02 | 3.6008E-05 1.2540E+04 |-4.6662E+01
R -1.29145.02 | 2.4417£.05 165418404 1.1 1740c.01
12 |-45198€-03 | 1.3256E-05 1.2859E+04 3.2247t+00
13 |-4.0769E-04 | 5.6042E-06 7.7736E+03 7.1527E+00
14 | 1.0625E-03 | 1.4098E-06 3.7629E+03 | 6.2783E+00
15 | 1.22408-0% |.z287126-07 121526402 | 40022c.00
16 | 9.1071E-04 |-8.5841E-07 1.2034E+02 | 2.1347E+00
17 | 5.3456E-04 |-75756E-07 |-2.9892E+02 | 8.3766E-01
18 | 2.4810€-04 |-50868E-07 |-3.3007E+02 1.4840E-01
19 | 6.8533E-05 |.3Qg1615-07 |-2.1586E+02 |-1.2325£-01
20 |-3.8968SE-05 |.1 91386-07 |[-8.4153E+01 |-1.4246E-01
21 [-1.1691E-04 |_| 6451E-07 0.0000E+00 | 0.0000E+00
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4.2 Infinite Beam with Uniform Load

This example is the same as example | except for the consideration of
the beam weight which we take as the uniform load on the beam shown in
Fig 43. Fig. 44 shows the comparisions of Winkler model solutions and
the no-tension foundation model solutions for deflections. The iterative
procedure used for the no-tension foundation model converges within nine

steps.

I 10000N q=0.1N/mm 100rmm

Fig. 4.3 Half of the infinite beam resting on the elastic

foundation including the uniform load.
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4.3 Finite Beam with Axial Load

Consider a more complex problem which includes concentrated forces
and moments, as well as axial forces as shown in Fig. 45. The beam also
has different cross sections and different foundation modulii. These make
the problem more complicated to obtain the analytic solutions, but it is
easier to get the finite element solutions. Since it is a symmetric problem,
we only need to compute half of the beam. A ten-element mesh is used. The
solutions converge within four iterations. Deflections and moments are
shown in Fig. 46, and 4.7 respectively. This example may represent a
non-uniform foundation beam supporting three columns. The inclusion of the
axial load N also leads to buckling eigenvalue problems where N plays the
role of the eigenvalue. Additional detail for such problems will not be
discussed here.

E = 20x108
1000 3000 1000
[ ] - -
1oooe L & 2000 2000 L% 1000 05 gs
TRECRR 1.5 ZRK
;SRR AAOOOOON R A anna
TR RERAE
I 9 y
£ S5x2.4 —f
Foundstion Modulit: Ef k=100000 k=50000

Fig. 4.5 Beam on elastic foundation with axial losd and nan-
uniform foundation.
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9. CONCLUSIONS

Two kinds of elements presented in this paper can be used to analyze
beams resting on one- or two- parameter elastic foundation. Elements
based on a cubic displacement function can give reasonable results for
deflections, rotations, and bending moments by a moderately fine element
mesh. A very fine mesh is needed to obtain good predictions for transverse
shear force. Elements based on a fifth order displacement function can give
exact solutions at most nodal points for deflections, rotations, bending
moments, as well as transverse shear forces. Even using very small number
of elements, the accuracy is still higher than that obtained by using a cubic

element model with much larger numbei' of elements.

When the second-parameter k. is not very large the beam can be
analyzed as if it rests on Winkler foundation. When k, is large, especially
when k_ is close to (4KEDY2, the error caused by ignoring k. may be -

appreciable. The appropriate value of ks, either from experiment or from

formulas that use known foundation data, is a topic that requires a great
deal more study.

The iteration procedure has been found very efficient for solving the
beam on elastic foundation problems with the consideration of gaps
(no-tension foundation). Even for the more complex probiems the solutions
were obtained requiring a small number of elements and within only a few

iterations.
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