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NOMENCLATURE

a Streamwise component of fluid momentum, appendix D
A Constant in model for effective viscosity, chapter III
A,B,C,D Coeffiéients used in stability analysis, appendix F
A,B,C Fitted coefficients for extrapolation, chapter IX
b Normal component of fluid momentum, appendix D
CD Local drag of friction coefficient, chapter IX
Co Acoustic velocity for fluid, equation (D-9)
: CP Specific heat at constant pressure
C. Specific heat at constant volume
c' Parameter characterizing turbulent fluctuations, appendix C
E Unspecified constant coefficient in an alternate model for
turbulent stress, chapter V
e Specific flow energy, equation (A-13)
f Time derivative, %%-, chapter IV
f,g,[',G General dependent variables or functions
g Gravitatiomal constant
Knudsen number, chapter II
k Parameter characterizing turbulent fluctuations, appendix C
Ly,Ly Scaling lengths for streamwise and normal dimensions,
appendix D
2'2% Mizing lengths normal to and parallel to the solid boundary,

appendix C
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£y Initial value for q, equation VII-S
ﬂa,ﬂb,ﬂc Spacings between nodes, figure 2
m Fluid momentum vector, equation (A-11)
Free-stream Mach number, equation (D-9)
M,N Groupings used in stability analysis, appendix F
N Reynolds number based on L,, equation (D-7)
N_ Reynolds number based on boundary layer thickness, chapter

IT

P_ Fluid Prandtl number, equation (D-8)

RT Turbulent Prandtl number, equation(C-20)
p Fluid pressure
q Coordinate transformation function, equation (VII-9)
§ Viscous stress tensor, equation (B-9)
s Transformed independent variable, equation (E-1)
T Temperature of fluid
t Independent variable time
U,U0 Free stream fluid velocity, equation (D-6)
U Internal energy of fluid, equation (A-20)
u. Shear velocity, chapter III
u,v Components of fluid velocity parallel to and normal to the
solid Boundary, equation (D-5)
v Fluid velocity vector
X,y Distance measured parallel to and normal to the solid

boundary

R}

Non-dimensional.distance measured normal to the solid boundary,

equation (E-1)
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Relaxation factor, equation (VIII-1); period of disturbance
for stability analysis, appendix F

Coordinate transformation parameter, equation (E-2)
Specific heat ratio for fluid, appendix D

Boundary layer thickness, chapter VI

Displacement thickness, chapter III

Spacing between nodes, figure 2

Ratio of scaling distances, equation (D-11)

Non-dimensional fluid temperature; stability phase angle,
appendix F

Thermal conductivity for fluid, equation (A-9); constant in
effective viscosity, chapter III

Non-dimensional effective viscosity, equation (D-6)

Dynamic viscosity of fluid, equation (B-9); stability param-
eter, appendix F

Effective viscosity due to turbulence, chapter III

General dependent variables or functions

Non-dimensional distances measured normal to and parallei
to the solid boundary, equation (D-6)

Convergence tolerance, equation (VIII-2)

Fluid density

Time period over which fluctuatiné quantities are averaged,

appendix B

Wall shear stress, chapter III

‘"Turbulent stress tensor, equation (C-27)

Combined viscous and turbulent stress tensor, equation (D-3)
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viii

Non-dimensional step size in transformed coordinate system

Size of time step, chapter IV

Nodal spacing in streamwise dimension

SUBSCRIPTS

Time-averaged quantity, appendix B
"Standard" or 'scaling" value for a variable
Free-stream conditions

Identify components of tensor quantities

SUPERSCRIPTS

Vector quantity
Tensor quantity
Fluctuating component of a turbulent quantity, equation

(B-1); non-dimensional form of a variable, equation (D-6)
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CHAPTER I

INTRODUCTION

The quantitative description of the physical properties of a
fluid flowing along a solid boundary is a problem of long-standing
interest to engineers working in a variety of fields. It is a fact of
nature that the interaction of fluid viscosity and energy transfer be-
tween the boundary and the fluid takes place in a narrow region adjacent
-to that boundary. Thus the fluid properties in this region largely de-
termine the forces which the fluid impresses upon the boundary and the
energy transfer between the fluid and the boundary. Not surprisingly,
this region is called the boundary layer.

Historically, attempts at the analytic solution of successively
more complicated (and more difficult) boundary layer problems have
followed the examples of Prandtl in reducing the mathematical expres-
sions of the goverriing physical laws to their dominant terms and of
Blasius in employing a high level of mathematical sophistication to
obtain a solution of the simplified equations. These efforts are
summarized in [1], [10], [9].

The utility of Prandtl's simplifying approach in attaining analytic
solutions to the less complicated problems is unassailable. As solu-

tions to more complex problems have been required, however, even the

Prandtl approach does not reduce the equations (a group of coupled,



non-linear partial differential equations in two, three or four inde-
pendent variables) to a tractable form. Variable transformations can
sometimes convert the equations to the appearance of the equation set
first solved by Blasius to yield a solution for the transformed variables.

More often, the engineer seeking information about the boundary
layer developed in a particular flow application is forced to make a
priori assumptions concerning the detailed structure of the boundary
layer flow (a technique which was originated by von Karman). At the
same time, he must accept less detail in the solution obtained, and
answers often consist only of gross parameters which roughly characterize
the flow.

The use of digital computers to solve the fundamental equations
of fluid mechanics for various fluid flow situations is presently a
developing art. As examples of current achievements, problems have
been treated involving jet mixing [12], cellular convection [13],
laminar separated fiows [14] [14], vortex shedding from cylinders [17],
shock wave propagation [15], shock wave - shock layer formation around
a blunt body [16] and development of a hypersonic wake [19].

The application of numerical techniques to boundary layer problems
has been rather cautious. Most (if not all) of the documented effort
has been directed toward the solution of slight generalizations of the
same simplified equations which Blasius treated (for example [18], [20],
[21]). Apparently little effort has been made to utilize the flexibility
and calculation speed of the digital computer in exploring the details

of boundary layer flow in complex situations.



The préblem of describing the flow of an ideél gas in a turbulent
boundary layer is an excellent candidate for solution by numerical tech-
niques. The severely nonlinear empirical models required make mathe-
matically sophisticated approaches (such as similarity assumptions) ex-
tremely difficult to apply, and more details of the flow may be needed
than are available from von Karman integral techniques.

In developing such a numerical technique, a number of separate
problems must be considered.

(1) The equations which describe the motion of a fluid must

be carefuily reviewed.

(2) An empirical physical model to describe the nature of the
turbulent "stress" terms encountered must be selected or de-
veloped.

(3) Numerical problems relating to numerical stability of the
solution algorithm, mathematical boundary conditions and
computer program logistics must be recognized and solved.

(4) An actual numerical solution must be obtained and compared to
representative experimental data to assure the physical
relevance of the numgrical solution.

The procedure outlined above has been carried out in developing

a numerical technique for describing the flow of an ideal gas in a
turbulent boundary layer. The various steps are described in the
following chapters of this dissertation. This description is developed
within the framework of a general numerical approach to the detailed

description of a general class of turbulent boundary layer problems.



CHAPTER II
DEVELOPMENT OF THE FUNDAMENTAL EQUATIONS

In this chapter the derivation of the continuum laws of fluid
mechanics are reviewed and the various assumptions are discussed. The
normal modification of these equations to describe turbulent flows is
reviewed, leading to the form into which the empirical "turbulent .

stress tensor'" model development in chapter III will be introduced.

Fundamental Laws and Assumptions

The idea that physical systems obey a set of fundamental rules,
or physical laws, is basic to engineering and science. In this sec-
tion, the basic physical laws which apply to fluid mechanics problems
are stated, and the assumptions introduced in appendix A are discussed.
The mathematical expressions for the laws and the notational manipula-
tions are presented in appendix A.

The first basic assumption is that the fluids to be studied can
be considered as continuous; that is, the fluid flow must obey the
rules of continuum mechanics. This assumption allows the behavior
of individual molecules to be averaged and represented by appropriate
parameters without introducing significant error. Schaaf and

Chambre [22] set a limit for continuum flow in a boundary layer of



where K is the Knudsen number, the ratio of molecular mean free path
to boundary layer thickness, M is the Mach number and NG is the
Reynolds number based on the boundary layer thickness. In the present
work,

A3 < M < .6
and

.2 x 108 < Ny < 1.0 x 108,
which gives

K~ .6 x 10-6
Thus the assumption of continuum flow is quite adequate. In appendix A,
the equations are developed from the assumption of a continuous fluid.

It has been assumed in appendix A that no chemical reactions are
occurring in the flow being studied. That is, the effects of concen-
tration gradients due to chemical reactions and mass diffusion are not
considered. In the development of the mathematical expression for the
mass conservation law (equation A-16), no further assumptions have been
introduced.
The equation of motion (Newton's second law) is developed into

the desired form (equation A-17) by defining the momentum and combin-
ing with the mass conservation law. The resulting equation allows a

convenient transformation to the finite difference approximations

later. The momentum rather than the velocity was used as the principal

“This expression has been altered to reflect a turbulent boundary
layer thickness.



variable by Burnstein [23], Van Driest [8] and Walker [12]. The body
forces (gravitational, electrical and magnetic forces) have been
assumed to be negligible. While this assumption is not strictly neces-
sary, the effects of these forces are normally small in the physical
cases of interest for this study.

One other assumption has been included in developing equation
(A-17). Newton's second law applies in an "inertial coordinate system'",
a reference system fixed in the center of the sun. Goldstein [25] cal-
culated the centrifugal correction needed when expressing the law in
a coordinate system fixed on the surface of the earth to be about 0.36%
of the gravitational attraction. Thus, when gravitational and other
body forces are ignored, the centrifugal correction due to rotation
of the earth is certainly negligible. However, centrifugal effects
may be important when analyzing flow in rotating equipment such as
centrifuges, turbines or compressors.

The first law of thermodynamics, expressing the conservation of
energy, is applied to the case of a moving fluid by assuming that the
fluid is in local thermodynamic equilibrium (see [11]). A specific
allowance for radiant heat transfer between fluid elements or between
the fluid and its surroundings has not been included. Burstein [23]
and Walker [12] have chosen to express this law in terms of changes
in the specific flow energy (equation A-20) rather than temperature;
this approach has been followed in the present work. Equation (A-18)
expresses the first law of thermodynamics.

The assumptions described above are among those normally intro-

duced when a boundary layer problem is formulated; thus the equations



listed at the end of appendix A should yield solutions which may be

compared to existing solutions.

Modifications Preparatory to Modeling Turbulent Flow

Turbulent fluid flows are characterized by rapid fluctuations in
velocity, pressure and the other basic flow properties. Little progress
has been made in analyzing the details of these fluctuations and their
dependency on the independent time and space variables. In fact, meas-
urements of fluctuations other than those associated with velocity are
scarce.

The normal engineering approach to solving the equations of fiuid
mechanics for turbulent flows is to introduce a separate variable for
the turbulent fluctuation of each basic flow property. When the re-
sulting equations are averaged over a suitable period of time, the
averaged equations describe the behavior of the non-fluctuating portions
of each basic flow property. In this section, the above procedure and
the assumptions introduced are discussed. The equations and algebraic
details are presented in appendix B.

The traditional approach to laminar boundary layer problems is to
simplify the "complete' equations of fluid mechanics (appendix B)
through an analysis of the magnitude of each term, retaining only the
dominant terms in each equation. The resulting equations are usually
referred to as the "boundary layer" equations. When studying turbulent
boundary layers, the variables representing turbulent fluctuations are
usually substituted into these boundary layer equations rather than

into the complete equations. In this work, fluctuations have been



introduced into the full equations, giving rise to turbulent fluctua-
tion averages which are not easily dizcarded through the normal order-
of-magnitude»analysis. This doubtful elimination of these terms (which
do not appear in the traditional formulation) is not necessary or even
desirable when applying the present method of solution to a turbulent
boundary layer problem.

The introduction of fluctuating components, the time-averaging
and the algebraic reduction of the resulting equations to equations
(B-4) through (B-6) are relatively straightforward operations. The
requirement of internal consistency among definitions and averaging
laws which leads to equations (B-7) and (B-8) is detailed in appendix
B. The additional assumption necessary in treating time variation of

the mean flow quantities,

¥ T
£gf = % j: E(E)g'(t)dt = “‘E—T(T) J‘: g'(t)dt =0,

is mathematically valid if the function £ (t) is analytic (and can
thus be expanded in a Taylor series). Intuitively, the assumption is
that £ (t) is "sufficiently smooth". As a practical matter, the as-
sumption was introduced without comment by Walker [12] and others and
apparently caused no complications.

The assumptions concerning the physical nature of the fluid and
the turbulent fluctuations are of more interest than those listed
above.

The choice of the ideal gas as a working fluid could be designated

as a part of the problem statement rather than an assumption. Other



equations of state might have been selected at only a slight cost in
computer program complexity.
The assumption that density fluctuations are negligible,

p' =0,
limits the range of applicability of the formulation, but the extent of
the limitation is not well defined. Nagamatsu estimated the assumption
to be satisfactory for a free-stream Mach number less than 1.5 [26].
Ferrari estimated the Mach number limit to be "about three" [27], while
Walz élaimed "10 or 5" as the upper limit for the validity of the assump-
tion [28]. The density fluctuation has been modeled by various in-
vestigators ({29] and [30] for example) using the mixing length approach
discussed in the following chapter. However, there is apparently no
method available to measure density fluctuations or velocity-density
fluctuation averages. Thus the selection of a density mixing length
would require yet another empirical parameter (see [10] for example).
A third alternative would be to neglect pressure fluctuations,

p' =0,
and obtain density fluctuations from temperature fluctuations through
the ideal gas law. This approach has no apparent advantage over the
alternatives but would require a more complicated computer code.

The assumption that viscosity and thermal conductivity fluctua-

tions are negligible,

is based on the fact that the viscous contribution to shear stress and

the molecular contribution to-heat transfer are nearly negligible except
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very near the boundary in a turbulent boundary layer. In that region,
all fluctuations are nearly negligible. Since either the mechanism or
fluctuation amplitude is small throughout the boundary layer, significant
contributions from the combined effects seem unlikely. In this situa-
tion also, the complications of empirical parameter selection for a
mixing-length model seem unjustified.

The stress law selected for the fluid (equation B-9) is that
normally selected for an ideal gas. Slight inaccuracies in the values
for the molecular stresses are probably not significant, since the
molecular terms are important only near the solid boundary, and only
one term is of substantial size there.

The assumptions discussed above have largely been made for con-
venience in empirical modeling and ease of computer programming. It
should be noted that the assumptions do not introduce fundamental
limitations to the usefg}ness of the calculation method being developed.
In the case of the equation of state and the molecular streés law,
some specification must always be made; those used here were selected
due to their convenience. In the case of assumptions regarding the
nature of density and kinetic coefficient fluctuations, the choices
were made for convenience and in the light of a shortage of experi-
mental information which might be used to construct models.

One additional assumption should be discussed here although it is
first introduced in appendix C. That is the assumption of two-
dimensional flow. As introduced in appendices C and D, this is really
three assumptions. First, the mean flow variables are assumed to

depend upon spatial dimensions parallel and normal to the solid boundary



11

but not upon the third dimension normal to these two. Second, the
components of vector (momentum, velocity, heat flux) and tensor (shear
stress) quantities associated with that third dimension are neglected.
Third, the velocity fluctuations associated with that third spatial
dimension have been neglected in developing and modeling the turbulent
fluctuation averages. The first two assumptions are acceptable since
they approximate actual fluid flow situations of interest. The third
assumption 1s accepted as a matter of necessity, since adequate informa-
tion for modeling is not available. It is known that velocity fluctua-
tions are decidedly three-dimensional [6]. This assumption is used
widely and has probably influenced the empirical constants specified in
the following chapter so that some compensation for errors it might
introduce is included in the models developed.

After appropriaté models for the averages of products of fluctuat-
ing terms have been constructed, the resulting set of equations will
be presumed to describe the time-dependent behavior of a turbulent

boundary layer flow.
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CHAPTER III

EXPIRICAL MODEL FOR AVERAGES OF PRODUCTS

OF FLUCTUATING COMPONENTS

Possibly the most important portion of the solution of any fluid
mechanics problem involving turbulence is the specification of the model
for the turbulent stress tensor. The model functions, which relate the
time averages of the products of fluctuating components to the slowly-
varying components, vary vastly in form from one class of problem to
anotﬁer. Thus, they are highly empirical and are usually developed from
a combination of experimental data, intuition, dimensional analysis and
conjecture. In this chapter, some previous modeling approaches for
turbulent boundary layers are summarized, the model used in the present
work 1s developed, and the model for temperature-velocity fluctuation
products is discussed. The manipulative details associated with model

development are reported in appendix C.

Some Approaches to Modeling the Turbulent
Stress Tensor
The universal first step in solving a boundary layer problem is to
reduce the equations of fluid mechanics to the 'boundary layer" equations.
This was originally done through a careful order-of-magnitude analysis,
such as that reported by Schlichting [1]. The consequence of performing

E—

this analysis before introducing the fluctuation variables and time-averaging
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(the most common approach) is that only two components of the turbulent
stress tensor appear and the equation describing the normal component of
momentum is reduced to a single term. Despite these traditional simplifi-
cations, the resulting equations present formidable mathematical dif-
ficulties. Thus the selection of a model equation for the turbulent
shear stress is usually strongly influenced by the need for mathematical
simplicity. Several approaches to modeling which appear in this current
literature are sketched and discussed below.

One simplification is to specify the functional forms for the
velocity and temperature rather than determining them by solving the
partial differential equations. These specifications and subsequent
integration normal to the boundary reduce the boundary layer equations
to coupled ordinary differential equations with the streamwise co-
ordinate as the independent variable. This, of course, is von Karman's
integral approach. The solutions obtained from this procedure consist
of various '"typical' thickness parameters as functions of the stream-
wise coordinate. Because most of the desired answer is specified, the
success of this approach depends upon the accuracy of the functions
specified. Various attempts to model the velocity profile are described
by Hinze [6].

A less restrictive approach is to specify the turbulent stress as
a function of the independent variables (see [42] for example). This
approach usually requires a numerical solution, but the velocity profile
is calculated from its governing equation rather than being stipulated
arbitrarily.

Another less restrictive approach is to specify the turbulent stress

as a function of local values of the dependent variables and their
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derivatives as well as the independent variables. This places minimum
restriction upon the modeling goal and is usually the starting point
for attempts to develop the velocity profiles mentioned above. While
this technique should allow the most accurate modeling for the shear
stress at any point in a given flow by allowing maximum freedom for
expression of intuition, it is still highly empirical, and a given
model will apply at best only to a class of turbulent boundary layer
problems. The probable difficulties in solving the boundary layer
equations with such an unrestricted function for the turbulent stress
model virtually require the use of numerical solution techniques.

The model described in the next sections allows local specifica-
tion of the elements of the turbulent stress tensor in terms of local
independent variables, dependent variables and derivatives of dependent
variables. The additional stress elements arise from the use of the
"complete" equations rather than the boundary layer equations, as
mentioned in chapter II. The concept adopted is that of the eddy

viscosity, due to Boussinesq and described in [7] for example.

Description of the Model
In appendix C, the mixing-length technique is used to establish

the elements of the turbulent stress tensor in terms of the eddy viscosity

v o
e
/ du
- 12 - LETAl BE —_—
= 1 pu pu'v ) PV, 14.18 w5 5y
& 2 | T g oy oy | (62D
- L ETR - R - - - —
c pv'u pv c 4,25 ™ 3.33 5y

The development of this expression is discussed in this section. The
form and values $£ér v, are described in the following section, completing

the specification of 7.
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The mixing-length technique was selected as a relatively straight-
forward approach to expressing all of the fluctuating components of
velocity in terms of the slowly-varying components. In appendix C, the
representations selected are not unique. Even after arranging the factors
so that a common multiplier Ve could be drawn from each term, the re-
maining portion of each element could have been expressed in terms of

several gradients. For example, using the assumptions introduced in

appendix C,

Vv

- U.'V'= v au:f_\)_e_gl:_pve—al:_pei}é
P Ve 3y T Tk Ty K2 3% K3 3x

are four possible representations for one element of the tensor, de-
pending on the combination of dependent variable and independent variable
in the partial derivative in the model equation. The selections were
made finally on the basis of a linearized numerical stability analysis,
which is discussed in chapter V. Two restrictions imposed by the form
of the equation analysed for stability are used to select each element

of the turbulent stress tensor.

1. The dependent variable in the model should be the same as
that determined by the equation in which the model is used.

For example, - pu'v' appears in the equation which determines

the steamwise component of momentum, Y Thus two of the

c
possible choices presented above (those in which the dependent

variable is the normal velocity, v) are discarded, and

N du PVe du
- pu'v’. = pv -é-};' or —‘}:rax
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2. The derivative contained in the model should be with respect
to the same independent variable as the derivative of that
turbulent stress element in the equation. Continuing the

above example, in the streamwise momentum equation,

3a(-pu'v') 3 , du
oy oy PVe ¥y /)

which finally establishes the desired form for the stress

element.
This particular stress element is of course the only one normally appear-
ing in the boundary layer equations. Its form is routinely established
not from stability conditions but through analogy with the major viscous
stress term. The remaining elements in equation (C-27) are defined
through similar application of the rules from the stability analysis
(see chapter IV, following).

An additional stability requirement is imposed on the stress ele-
ments
- py'u' and -pv'?

from the normal component of the momentum equation. That requirement
is that the sign of the coefficient must be positive. Thus in the

numerical work reported in chapter IX, the signs of these two elements

are changed so that

- pv'u' = + 4,25 pv Eg and - pv'2 = + 3.33 pv i; ;
€ 3x - € dy
Obviously the model equation (C-27) contains several rather sweep-

ing approximations and assumptions; in fact the experimental information

used to evaluate the correlation coefficients (equations C-25, 26) was



measured in an incompressible fluid. The necessity of changing the
sign on two elements to establish numerical stability for an equation
which supposedly describes a physical situation suggests that the intui-
tive mixing length concept for turbulent boundary layer flow has been
extended nearly beyond its limit of applicability.

Despite the obvious shortcomings of equation (C-27), it at least
provides a first approximation for the remaining elements in the turbulent
stress tensor; no previous attempts to model these elements for a tur-
bulent boundary layer have been discovered in the literature. Also, the
model as presented provides the mechanism necessary for numerical

stability of the finite difference analog to the equation system.

Model for the Eddy Viscosity
In this section the model for the turbulent stress tensor is
completed by esteblishing the functional form for the eddy viscosity.
It is convenient to divide the turbulent boundary layer into two regions
normal to the boundary, the wall region and the wake region, as sketched
in figure 1.
In the wall region, the form for the eddy viscosity results by

comparing equations (C-4) and (C-9):

Ju

= g12
v 2 3y

e

Van Driest [37] suggested a correction factor,

(1 - e-y7A)2
where
26 v
A= 3 ,
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v is the kinematic viscosity for the fluid, u is the shear velocity,

).

and T is the shear stress at the wall,

_ [ pv 8u>
W\ 5y
& Y/ w

The inclusion of this factor in the model resulted in more accurate
calculation of velocivy profiles and is discussed in chapter IX. Prandtl
(see [1]) postulated thav the mixing length %' should be proportional to
the normal variable y for small y (physically near the solid boundary).
The proportionality constant is normally taken from the data of Nikuradse
for incompressible turbulent flow through smooth pipes (as reported in
Schlichting [1]) so that

LY = by .
Thus, in the wall region, the eddy viscosity used in this work has the

form

Ju

-v/A -
Vg = (.uy)2(1 - e y/ )2 3 (111-1)

For the wake region, Clauser [31] established a very simple form

for the eddy viscosity,
Ve =Kk U 6%

where U is the free stream velocity and 8% is the displacement thickness

defined by

f°° / alx,y)
sh(x) = J (1 sl ey L | (I1I-2)
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a is the streamwise component of momentum, equation (D-5). Mellor and
Gibson [32] have detarmined the optimum value of k by comparing numeri-
cal and experimental results for a variety of flows, including some
negotiating streamwise pressure gradieﬁts. Therefore the eddy viscosity
used in the wake region is

v, = .016 U 6% . (III-3)

Many of the models encountered in the literature provide for an
overlap region, which allows a smooth mathematical transition between
the wall and wake regions. In this work, the results of preliminary
numerical studies led to the use of a cubic polynomial to round the
corner at the junction of the model egationms.

In applications described in the literature, equation (III-3) is
often multiplied by an intermittency factor, introduced in an attempt
to describe the fact that turbulent fluctuations tend to occur in
"bursts" or pulses alternating with "quie¢'" flow. These turbulent
bursts occur less and less frequently as the free stream is approached.
If the bursts are absorbed in the time averaging of the basic equations
in the correct manner, the model for the turbulent stress should show
a proper reduction as the intermittency factor becomes smaller. Smith,
Jaffe and Lind [39] observed negligible effect on numerical results due
to this correction, and no correction for intermittency has been used
in the present work. Equations (III-1) and(III-3) represent the

empirical eddy viscosity selected for a compressible turbulent boundary

layer.

Modeling of Té@mperature — Velocity Fluctuation Averages

The "turbulent heat flux" has been defined by equations (C-20, 21).
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The effect of the manipulations detailed in appendix C is to relate the
heat flux vector to the turbulent stress tensor through the parameter PRT,

the "Turbulent Prandtl Number."

The virtue of this parameter is that it appears to be nearly constant
across the width of the boundary layer ([4u4], [451), although a few sources
report a variation (see [43] for example). Most references suggest a

rough value of

PRT = .8 . | (3-4)
This value has been used in the present work, although a functional

variation,

PRT = PRT (y) ,

could be easily accommodated in the numerical technique under develop-
ment if that were found desirable to match available data on temperature
profiles.

The developments described in this chapter show the empirical
nature of turbulent shear stress models quite well. In addition to
gross physical assumptions, the form of the model equations is restricted
by the necessity for numerical stability. Within these limits, the
proposed numerical procedure is not dependent upon the model actually

described and used but could be used to test other proposed models.
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CHAPTER 1V

NUMERICAL METHOD

GENERAL DISCUSSION AND DIFFERENCE ALGORITHMS

In this chapter, the philosophy of the numerical method being
developed is explained and compared with existing numerical methods
of solution for the boundary layer equations. The necessity for
finite difference forms which make efficient use of computer memory
space and time is discussed. The finite difference expansions used
in this work are developed within that framework. A coordinate trans-

formation utilized to give a further savings in memory requirements

is described.

Background aﬁd Philosophy

In chapter III, the prevalent practice of reducing the governing
equations of fluid mechanics to the dominant terms was mentioned. If
a turbulent boundary layer flow is under study, the mathematical
simplifications realized are usually exploited by using one of several
specialized numerical techniques, all of which depend on the absence
of derivatives higher than first order with respect to the streamwise
coordinate (in the "steady-flow" formulation, derivatives with
respect to time are absent by definition). Various methods are

described by Gilliam [33] and Blottner and Flugge-Lotz [34] for example.
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The type of problem in which second derivatives with respect to
the streamwise coordinate are absent is known as an "initial value
problem" in the streamwise coordinate. The finite difference analogs
for the differential equations can be solved for the nodes distributed
across the boundary layer at each value of the streamwise coordinate
in turn, starting upstream at the initial values and "marching'" down-
stream. This solution is accomplished relatively easily, since the
knowledge of the solution at one streamwise location allows either an
explicit evaluation at the next or an implicit equation system which
is easily inverted to obtain that evaluation.

If the boundary layer assumptions which simplify the equations of
fluid mechanics are not justified or not desirable, a situation which
seems quite likely in some turbulent boundary layer problems, the
simple marching technique can no longer be used. The differential
equations in this case contain second derivatives with respect to the
streamwise coordinate, so that a solution for the finite difference
equations at each node requires solutions from nodes both upstream and
downstream of the node. Thus solutions cannot be obtained for all
nodes at a streamwise location and then projected to the next group of
nodes. The difference analogs for the "complete'" equations must be
solved simultaneously for every node in the flow field under considera-
tion. This type of problem is known as a "boundary value problem'" in
the streamwise and normal coordinates.

The solution of such a system is not a trivial matter. Trial-
and-error techniques, such as linearization combined with repeated

matrix inversion or a systematic relaxation scheme, appear as natural
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candidates for the job. However, inversion of very large matrices is
required in the former method, and the automatic correction scheme
required by relaxation techniques is not available.

One method of solution for a physical boundary value problem is
to utilize the "unsteady terms", the temporal derivatives, casting the
problem as an initial value problem in the independent variable time.
If the steady-state solution is known to exist, then the time-dependent
solution of the equations should converge to the steady-state solution.

In this method, a flow field (e.g., values for the dependent
variables) at some arbitrary time is assumed, the spatial derivatives
are evaluated by finite differences or a related technique, and the
derivatives of dependent variables with respect to time are calculated
from the spatial derivatives. These temporal derivatives are then
replaced by differences for a short increment of time and the dependent
variables are evaluated at the new time. This process is repeated
until the time derivatives are sufficiently near zero, that is, until
the flow field at the current time is sufficiently near steady state.

This approach is used routinely to solve heat conduction problems
(see [36], for example). Aziz [13] has used the technique to solve a
problem in cellular convection, and Walker [12] has described the flow
field of a turbulent, supersonic jet. The technique is sometimes known
as the '"time-marching technique" or the '"unsteady approach'.

As a final note on this technique, if the initial flow conditions
assumed represent an actual flow field, the numerical solution will
mimic the development of the physical flow in time. Thus a time-

dependent problem can be solved.
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Finite Difference Terminology and Factors
Effecting Computer Time Usage

The solution being sought for equations (D-12) — (D-15) consists
of values of the mean flow variables (density, two components of fluid
momentum, specific flow energy, temperature and pressure) throughout
a defined region of space, subject to given mathematical boundary con-
ditions and determined for the steady state (derivatives with respect
to time negligible). If a finite difference technique is adopted, the
solution is obtained only at specified points within the spatial region
of interest; these points are usually called grid or mesh points or
nodes. The collection of nodes is known as the finite difference net,
mesh or grid. The instantaneous values of the mean flow variables
associated with the mesh at any particular time are known as the
solution at that time plane.

One requirement determined from the stability analysis presented
in appendix F was that the difference equations should be implicit in
the variable time. Briefly, this means that spatial derivatives are
evaluated at the nearest unsolved time plane; thus the equations at
each time plane must be solved by trial-and-error, by iteration.

Mathematical theorems establishing the convergence of the solu-
tion of difference equations to the solution for the associated dif-
ferential equations are not available for systems such as the present
coupled, non-linear set. Therefore, a comparison of numerical resuits
to experimental data is desirable to establish convergence to the
physical solution. Intuitive assurance of convergence and uniqueness

is provided by assuming initial conditions relatively far removed from
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the known physical answer and allowing the numerical calculations to
proceed to the physical answer. This procedure is needed only once to
establish physical relevance; subsequently significant savings in com-
puter time consumption can be realized by selecting initial conditions
very near the expected final answer.

In order for a calculation technique to be most useful, its re-
quirements for computer storage space and time should be modest. The
time demand and storage demand are each proportional to the number of
nodes required on the difference net. Storage demands can usually be
reduced by increasing the time requirements. The most efficient
approach, however, is to reduce the number of nodes to a minimum. The
number of nodes has been reduced by two methods in the present work:

1) The coordinate transformation shown in appendix E has

been used to locate most nodes within the region of
physical interest; and

2) a non-uniform grid spacing has been devised as described

in the next section, placing nodes closer together where

the largest errors are expected and spreading nodes

elsewhere.

Difference Analogs for Partial Derivatives
With Respect to Spatial Coordinates
In chapter V and appendix F, the basic equations to be solved are
of the general form

3 _3F, 36
3t ¥x ¥y

To evaluate the right-hand size of this equation, finite difference

analogs must be developed for terms of the form
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of oF 3G
Wy O % and 3; .
The purpose of this section is to develop these difference formulae.
Two approaches are possible in developing these analogs:
1) force a parabola through the values at three points
and evaluate the derivative of the parabola at thé
desired point; or
2) expand the functions in Taylor series about the points
where the functions are known and solve the resulting
equation set for the desired derivative.
The resulting formulae are identical for computing purposes, but the
latter option gives some idea of the magnitude of the truncation error.
Thus the Taylor series approach is followed below. The notation is
identified on figure 2.
In deriving the expression for

%53 the difference analog is

derived at the node 3 (or d). The expansions are written around the

node 3:
fél fé'l
fq=f3+f§63+7—632+ 633 + . ,
fél féll
fz = f3 - f§ 52 + ———-522 - —h— 623 +

Solving these to eliminate the term f}', the result is

(fy - £3)62% - (f, - £3)632  fyr!

- 883+ . . . . (1Iv-1)

£y = 556508, + 83) 5

If §5 = 83, (IV-1) reduces the usual centered difference formula.

The final term,

f'Y'
5 8283
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SCHEMATIC DIAGRAM OF NODAL SPACING NORMAL TO
THE SOLID BOUNDARY WITH NOTATION IDENTIFIED
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is the first term neglected in the expansion and the dominant term
of the remainder. It is therefore an indication of the magnitude of
the truncation error.

As mentioned in the previous section, the size of the error has
been limited without resorting to an enormous number of nodes by
closely spacing the nodes (6, and §3 small) near the solid boundary
where the function f changes rapidly and thus the derivative f''' is
presumably large. In regions more remote from the solid boundary
where f is known to change slowly and f£''' is presumably smaller, nodes
have been more widely spaced (8, and 83 larger). Brailovskaya and
Chudov [38] applied the difference formula (IV-1) by choosing three
zones normal to the boundary, each having a unique mesh width. Their
technique, using four zones instead of three, has been adopted in the
present work. Other techniques involving a constant ratio §3/8;, to
give a continuously growing mesh spacing or a transformation on the
independent variable normal to the boundary [39] were available. It
was felt that the zonal spacing variation used offered the advantages
of programming simplicity and ease of interpretation of the numerical
results.

The term %g-is also to be evaluated at the node 3 (or d), but
the values of G are known at the midpoints a, b, c. The expansions

are written about the node d:

G" Gl'?

d d
= 1 — 2 3
G =Gyt Gy ettt
G" G"'
d d
= - 1 . 2 . 3
Gb Gd Gdlb + S Zb 5 lb U
G" 11t
d 2 d 3
= - 1 — - —
G, =Gy - Gy, + oL — 13,
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If the terms involving Gé" are truncated, the equations form a linear

set in the unknowns

| 1t
Gy » Gy » G}

Inverting the set for G', the desired expression is

BGd

3y
2 _ g2y _ 2 _ 2 2 _ 2
o Ga(zc 2,2 Gb(zc " ) + Gc(zb %_4)
1 2 ) 5 -
d za.(zb + zc) togy (za + zc) t g, (zb za)

(Iv-2)

As in the case above, the term

GI'I 22

6

is an indication of the magnitude of the error in the difference

formula. If 6) = 8§, = &3, the above expression reduces to the usual
centered difference formula,
3G G - Gb
d _ ¢
TR . (1V-3)

For the term

oF
ax

the difference analog used was equation (IV-3),

R Tl (1v-1)

with values of F to the right (R) and left (L) of the node at which
the equation is evaluated.

In the_present problem, the functions F and G are complicated
conglomerates of dependent variables and partial derivatives which

represent the strong non-linearities and coupling in the problem.

Expansion for Time Derivatives
A Taylor series expansion in the variable time may be made about

the known time plane tj, or the unknown time tj:
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. £
fp = £f1 + £ At+—2—(At)2+...
. f,
fl = £5 - 5 0t + — (AD)2 - . . . .

For advancing the solution in time, two formulae are possible,

fy

Fooz= Fv o+ Fy A+t &+ — (A+Y2 o
~Z -1 ~1 - 2 Nl 24 L
and
. fy
£ = £ + £y At--2—(A‘c)2+...... ,
where the terms
£ £y

5—-(At)2 and - 54-(At)2
are the first terms neglected by the difference schemes.
The explicit form,
fp = £y + %1 At
can be evaluated without trial-and-error at each node (the subscripts
represent time planes here; %1 is evaluated at each node from the
fundamental equations) because all conditions at time plane 1 are
known. Unfortunately, this form is shown to be unstable in appendix [}
that is, the truncated terms tend to accumulate and grow in size,
eventually destroying any physical sense in the numbers calculated.
As is shown in appendix F, the implicit form
£, = £ + £, At o av-9)
is stable if certain rules are obeyed in developing the model equations
for the turbulent stress tensor. Since the derivative

fa

is determined from spatial derivatives evaluated at the time plane 2
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where the solution is not yet known, (IV-5) must be solved by trial-

and-error. The technique used in this solution is described in chapter

VIII.
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CHAPTER V
CONSIDERATIONS FOR NUMERICAL STABILITY

The problem of numerical stability is dominant when attempting
finite difference solution techniques. If the difference analog is
stable, a solution may be possible; if the scheme is unstable, com-
pletely meaningless numbers result. In this chapter, the concept of
numerical stability is explained, and results of the stability
analysis in appendix F are interpreted for this specific boundary
layer problem,

Repetitive evaluation of finite difference algorithms introduces
perturbations into the numbers calculated to represent the dependent
variables at the various nodes. These perturbations may be due to
roundoff error (digital computers usually carry the equivalent of eight
decimal digits), truncation error in the difference formulae or some
other source such as random machine error. The important point is
that such numerical disturbances are always present; if the algorithm
is such that they accumulate and grow as the calculation progresses,
the algorithm is said to be unstable.

The objective of a stability analysis is to determine under what
conditions a calculation scheme is stable. To do this, disturbances
are introduced into the difference equations for a single node, and

the equations which result describe the variation of ihe disturbance
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as the calculation develops. In order to accomplish this, it is usually
necessary to linearize the equation for the disturbance and to assume a
solution for the resulting equations. When a non-linear equation is
linearized, a variety of linear equations may result; therefore, the
result of a stability analysis may not be unique. For this reason, the
analysis which has proved successful in this work has been presented in
some detail in appendix F. Other, unsuccessful, analyses have not been
presented; their existence is mentioned here as a warning that the as-
sumptions made during analysis render all conclusions conditional. The
results of a stability analysis can be regarded as useful guidelines
only after numerical verification for a typical problem.

In appendix F, the four fundamental equations are represented by
the general equation,

of _ 9F | 3G
ﬁ-ax‘fa—y'- (F-1)

This equation is linearized into the form

3f . of 32f g 3%g
-B?—Aay‘f'B'Wz"‘l'Cay'fDayz‘l‘... . (F3)

The implicit difference analog for this equation is analyzed for
numerical stability in the interaction between the variables t and y
(x considered constant) and the variables t and x (y considered con-
stant). The result of that analysis is that, for numerical stability,

the condition

%—z‘y-)-z' (B + D g/f) >0 (F-10)
must be satisfied at every node. The dependent variables g represent

coupling between the fundamental equations at any node under consideration.
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In the case of the streamwise momentum equation (D-13),

B=S-(1+1) and D=0 .

Ng

With B > 0 no stability problem is anticipated. For the normal com-

ponent of the momentum equation (D-14),

(4 A £ -
B = <§-- ET> N and D=0 .

In this case,
B <O

for most nodes. Thus the sign on the model used in this equation was

changed to give
B>0 .
When (F-10) is applied to the streamwise difference analogs

(x-derivatives instead of y-derivatives), the equation is

At
M=tz (B+Deg/f) >0 . (F-10a)

In this case, for the streamwise momentum equation,

which is stable. However, an unsuccessful attempt was made to model

this element of the turbulent stress tensor in a form which required

B<0O .
That model resulted in unstable behavior.

For the normal component of the momentum equation,

=

B=— {1 - o and D = =~
£ NR k R

=

It was necessary to change a sign in this model to allow
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B>0

and insure stability. The turbulent stress term under consideration

here is

(the turbulent shear stress term encountered in the streamwise momentum
equation), an early attempt was made to model the two terms identically.

This led to an unstable solution. In retrospect, the explanation is
clear from (F-10a).

In that model,
1 .
BpO,D=g=(1+21) ,

while

f

ti

o
0
ko]
N
1]
n
o]
n
©
=t

The stability condition (F-10a) is virtually

L (L +x) 250
NR v —

This depends on the sign of u and v. While
u>0
generally in a boundary layer and
v>0
is the normal steady-state result,
v <0
is encountered routinely in the numerical transient solutions. There-
fore the normal component of the momentum equation leads to unstable

numerical behavior.
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Thus it is desirable for numerical stability that models be con-
structed which minimize the dependence of the condition (F-10) upon the
ratio g/f. That is, the equations should be de-coupled as much as is
feasible. In termé of the coefficients,

B> D .
In the present condition this was done by constructing the model to
depend on the variable

b = pv

rather than

a= pu
in the equation used to calculate b.
The third restriction on the model equations for stability was,
essentially, to avoid cross derivatives. As an example,
9T 0 du
Wz'a?/'<°“eﬁ>
was chosen rather than
5 (oo, )
oy 3y e 99X
This rule was imposed due to the difficulty in analyzing cross dif-
ference analogs for stability and the more complicated computer codes
required to handle the cross terms.
The energy conservation law (D-15) will not be discussed, since
B>0 and B >> D
are implicit in the formulation. Thus no additional restrictions are
developed.from this equation.
This completes the interpretation of the stability condition

developed in appendix F.
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CHAPTER VI
BOUNDARY AND INITIAL CONDITIONS

Since a solution is being sought for a problem of interest only
within a limited physical region, the boundary layer, provision must
be made for treating nodes in the finite difference net which lie on
the boundary of that region. 1In this chapter, the techniques used in
obtaining solutions to the equations at the boundary nodes will be dis-
cussed and the conditions actually used will be detailed. The initial

conditions are discussed briefly.

Boundary Conditions

In this work, the term "boundary" is used to refer to the edges
of the region of physical interest, including the actual solid physical
boundary, the upstream edge, the free-stream edge and the downstream edge.
Figure 3 is a sketch of a typical solution region.

When explicit closed-form functional solutions to partial dif-
ferential equations are sought (see Wylie [4] for example), the boundary
conditions of the problem are used to evaluate the arbitrary constants
which appear in the solutions. One boundary (or edge) condition is
selected for each undetermined constant in the solution; the selection
of these conditions usually specifies the unique physical situation
under study.

When the problem under study is to be solved using finite dif-

ference techniques, as in the present case, the numerical procedure
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simply requires some method of calculating values for each dependent
variable at each boundary node. This is necessary because the difference
equations at a particular node depend on values at the surrounding
nodes, and the boundary nodes are not "surrounded". As in the case where
closed-form solutions are possible, selection of the boundary conditions
determines the unique physical situation the solution is to describe.
Among possible special techniques are:

1. specification of the values at each boundary node,

2. specification of slopes at each boundary node, and

3. substitution of alternate exsressions for the difference

equations at each boundary node.
Eight variables,
p, &, b, e, p, u, v, T,

are to be determined (or specified) at each node, including the
boundary nodes. To balance the variables, eight equations are avail-
able, including the four basic partial differential equations ((D-12) -
(D-15)), definitions for momentum and specific flow energy ((D-16),
(D-5)), and the ideal gas law (D-17). Each time a value is specified,
an equation is discarded.

The specific conditions applied in the numerical work are dis-

cussed in the following sections.

Upstream Conditions
The upstream conditions were specified for all nodes along the
line
S=0,0<2Z <1, (VI-1)

The momentum component a was given as the cubic polynomial



b1

a(0,2) = e(e? - 3¢ + 3), € = %-. (Vi-2)
The thickness § is given in table I.
This polynomial (VI-2) approximates the classical laminar solu-

tion. The normal momentum component b was calculated from the continuity

equation for steady state:

Z ~n
b(0,2) = b(0,0) - Bq {a(0,2) - a(0,0)}-q.j; (%S) az .
The pressure was constant at the free-stream value. The temperature

was scaled between the value at the wall and the free-stream value:

T(0,2) = 70,0) + {1(0,1) - T(0,0)} 2K . (VI-3)
The density was then calculated from the ideal gas law, and the velocity
components were calculated from the momenta and density. Finally, the
specific flow energy e was calculated from its definition (with no tur-
bulent terms included). Once these values were determined, they were
frozen for the dufafiog‘of‘the calculation.

The idea on this boundary was to approximate a laminar, steady-
state solution, with the first few columns of nodes immediately down-
stream being in the "transition" zone. This was intended as a numeri-
cal transition, and the values calculated at those nodes should not be
interpreted as valid physical quantities. Some difficulty was en-
countered in obtaining convergence for the nodes nearest this upstream
edge. Therefore, the variables on the second column of nodes were
evaluated by interpolation between the first (edge) column and interior
columns. The values on the second column were frozen during the inter-

tive solution for each time step, and the interpolation was performed

before continuing with the next time step.
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A turbulent solution (from existing solutions for the boundary
layer equations) might have been substituted to simulate further de-

velopment of an already-turbulent boundary layer.

Solid Boundary (Wall)
The first conditions selected here were the classic set. The

velocity was specified as zero (the no-slip condition),

u(s,0) = v (s,0) =0,
which implied -
a(s,0 =>b<(s,0 =0 . (VI-4)

As suggested above, the wall temperature was specified as constant,
T (s,0) = constant . (VI-5)
Alternately, the heat flux or temperature gradient might have been

specified,

%% (s,0) = £(s) . (VI-5a)
This would include the special case of an adiabatic wall,

f(s) =0 -
The pressure at the wall was replaced by the pressure at the node
nearest to the wall after each iteration. The specific flow energy
was determined from its definition, equation (D-16), (the turbulent
effects were assumed to be zero at the wall). The density was cal-
culated from the ideal gas law, equation (D-17).

On this boundary, only the no-slip condition and the wall tem-

perature were frozen. Values for the other variables were updated as

values on the mesh were changed due to iteration and advancing time

steps.
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Free Stream

The free stream condition is only approached in the physical
case. The distance from the solid boundary at which the influence of
that boundary upon the local flow properties is negligible is a matter
of engineering judgment for a particular problem. In the present
work, the numerical boundary (Z = 1, 0 <Ss i_l) was located at about

Ly = 1.25 x §

where § is the boundary layer "thickness" determined from von Karman
integral solutions for the boundary layer equations. L, is the scaling
factor used for non-dimensionalizing the basic equations (see appendix

D).

Along the free stream boundary, the streamwise momentum, pressure
and temperature were specified:
a(s,1) = a_, p(s,1) = p_, T(s,1) = T . (VI-6)
The density was calculated from the ideal gas law. The condition

-g% (s,1) = 0 (VI-7)

was imposed, and a parabolic extrapolation was substituted for the
normal component of the momentum equation to determine b(s,l1). The
velocities were calculated from the definition of momentum, equation
(D-16). The specific flow energy e(s,l) was calculated from its
definition. The values of v(s,l) and e(s,l) changed slightly as
values on the interior nodes were updated and were re-evaluated
after each iteration and each time step.

The model for the turbulent stress tensor described in chapter
III has no provision for the effects of free stream turbulence;

hence no boundary condition is imposed upon the fluctuation averages.
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If the intermittency correction sketched in figure 1 were incorporated
into the model, the shape of that curve would reflect an imposed boundary
condition upon the value of the free-stream turbulence. An investigation
[(46] of the effect of free-stream turbulence upon velocity profiles in

a boundary layer indicated a negligible effect for values of free-

stream turbulence less than those generated within the boundary layer.

Downstream
For the group of nodes along the boundary,

s=1,0<2Z2 <1 ,
the objective of the boundary conditions was to insure a controlled
numerical behavior. It has been established that the techniques used
did not effect the solution significantly at the interior nodes (see
chapter IX).

During any time step, the values along this boundary were frozen.
After the iterations on the interior nodes were completed, the values
on the column

s=1,0<2<1
were updated by one of two methods:
(1) the values were replaced by values from the column
s=1-8s,0<Z <1 ;3* (VI-8)
(2) new values were calculated by linear extrapolation of

values at

s=1-6s,s=1-28s; 0<Z<1 . (VI-9)

%*This technique was suggested by Professor W. F. Walker.
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Various one-sided difference analogs and extrapolations were
attempted at these boundary nodes during preliminary development
of the computer program. These algorithms were applied at every itera-
tion over the grid, and all resulted in an interaction between the
values at the boundary and those in the interior which rapidly caused

the calculation to generate meaningless numbers.

Initial Conditions

The selection of starting values is somewhat arbitrary, the main
objective being to assure smooth profiles and compatibility among de-
finitions for the dependent variables.

As a starting point, a momentum profile a(s,Z) was specified which
matched those boundary conditions already selected:

a(s,0) = 0 , a(s,l) = a_ .

The remaining momentum component was estimated from steady-state con-

tinuity requirements,

Z
b(s,Z) = b(s,0) - Bq {a(s,z) - a(s,0)} - g .]; { %S(S,Z)}'dz .

(Vi-10)
The temperature was interpolated between the values in the free stream

and at the wall,

a(s,Z)
= - . -1
T(s,2) T(s,0) + {T(s,1) T(s,0)} ETETIT (VI-11)
The pressure was initially constant across the boundary layer,
p(s,2) = p(s,1) , (VI-12)
and the density was calculated from the ideal gas law. The specific

flow energy was then calculated from its definition.
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Once the initial profile a(s,Z) is selected to achieve some objec-
tive, the other starting values can be generated automatically. For

the initial numerical work reported in chapter IX, a cubic profile was

selected,

a(s,z2) =

|
D
~—”
-
TN
on| N
~%
]

w
TN
o[ N
~——~
+
w
Y
Hh
o}

o}

[NV
A
o

and (VI-13)

a(s,2) = a, forz > $
§ = 8(s) = 8(0) + .8s .

This approximates a laminar profile and is quite far removed from the
expected turbulent profile. Considerable computer time was consumed
in generating a steady-state turbulent solution from this starting pro-
file. However, the accomplishment of the solution (see chapter IX) is
solid heuristic evidence of the validity of the time-marching technique
in obtaining physically valid solutions to boundary-layer problems.
For the remaining demonstration of the time-marching technique, approxi-
mate turbulent solutions were used as initial conditions in order to con-
serve computer time.

As the introduction to this chapter suggests, there appears to be
no single accepted technique for selecting or evaluating the boundary
conditions needed to complete a numerical solution for partial differential
equations. The techniques described above have resulted from extensive
devélopment and have been developed with two goals in mind:

1. to obtain algorithms which are '"well behaved" numerically

so that the evaluation of the boundary conditions does not

complicate the task of obtaining solutions within the interior

of the mesh; and
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2. to select conditions reflecting the experience available from

solutions for classical boundary layer problems.
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CHAPTER VII

SUMMARY OF EQUATIONS AND SPECIFICATION OF THE

PHYSICAL CASE TO BE STUDIED

Ih this chapter, the system of equations to be studied is col-

lected into a single grouping, and the specific physical cases to be

studied are presented.

Equation Summary
In appendix F, the general equation

9f _ aF . 3G

3't_-5-;+3—)7 (F—l)

is expressed in finite difference form and analyzed for numerical
stability. When the non-dimensional form of the equation (appendix D)
is treated with the coordinate system transformation developed in

appendix E, the resulting form is

9fF F  _3F € 3G
E-as'{'s-a—z-'f' E'é— . (VII—l)

By comparison with equations (D-12) — (D-15), f, F, and G are identified

as
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v yM A 1  du B du € av>} _
eTR PTS {au t by eNp (c'k2 %5 T c'kZ 92 ' o'q 3 - (V6)

In equation (VII-5) and (VII-6), the sign change required for numerical

stability (chapter V) has been introduced. For completeness,

%= 1, (D-17)"

- % , (D-11)
A= -;—Z-i- . (D-6)
8= - %g_g. (VII-8)

Details of the model for the effective viscosity are listed in chapter
III and will not be repeated here. The function q(s) was

q(s) = 29 + (1 - 24) (2s - s2) (VII-9)
where

Lo = 1.25 x 6(0)

2

was selected.

The equations above are the set which was converted to a finite
difference system, using equations (IV-1), (IV-2), (IV-4), and (IV-5).
The physical parameters which remain to define the boundary conditions
and various coefficients which specify the physical problem under study
will be defined in the following section. The equations above are

written in terms of variables non-dimensionalized according to equa-

tions (D-6).
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Case to be Studied

The parameters defining the case to be studied are listed in
table I. The reasons for selecting this case are discussed below.

The calculations discussed in the following chapter were made
with the thermodynamic properties of air (specific heat CP, thermal
conductivity k and viscosity u) frozen at their free-stream values.
This simplification allowed a slightly less complex computer program
and a corresponding savings in computer time.

The value for free-stream Mach number,

M_=0.13 ,

was selected as a test of the ability of the numerical method to
describe a nearly incompressible flow. The terms in the two momentum

equations which involve derivatives of the pressure have a coefficient
of
1
M2

[+<]

Thus, for small Mach numbers, the pressure gradient terms will have a
very large coefficient. Even though the pressure gradients may be quite
small, a certain amount of numerical noise is inevitable. For suf-
ficiently small Mach numbers, the pressure gradient term will dominate
the normal component of the momentum conservation law due to the com-
bined effects of the huge coefficient and numerical noise. This limit-
ing Mach number is a function of the digital computer and program used.
The Mach number 0.13 led to unanticipated difficulties which are ex-
plained in the following chapter. However, the numerical solution

was accomplished, and the results have been compared to the extensive

experimental data available for incompressible boundary layers.
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TABLE I

SUMMARY OF PHYSICAL PARAMETERS

DIMENSIONLESS PARAMETERS CASE 1

Free Stream Mach Number, UO//§§;§56 0.13
Reynolds Number/Foot, (poUp/g ug) 0.96 x 10°
Fluid | Air
Wall Temperature, 6(s,0) 0.9
Free Stream Temperature, 6(s,l) | 1.0
Free Stream Momentum, a(s,l) 1.0
Free Stream Prandtl Number, PRO 0.694
Turbulent Prandtl Number, PRT 0.8
Free Stream Pressure, p(s,l) 1.0
e = L1/Ly 50,
§(0)/Ly .0185

SCALE PARAMETERS (see appendix D)
Ly, ft. 0.2
To» R 560.
Up, ft/sec 150.

pg, 1b /ft3 0.08
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CHAPTER VIII
NUMERICAL METHOD

PROCEDURE FOR SOLUTION OF THE BOUNDARY LAYER PROBLEM

During development of the numerical procedure used to solve the
present turbulent boundary layer problem, several seemingly slight
variations in the numerical technique led to unsuccessful results.
Therefore the successful technique is described and diagrammed in this
chapter. The unsuccessful variations are discussed. A diagram of the
program logical flow is included as figures 4a and ub.

Since the total time needed to run a single case amounted to
several hours, the program was designed to allow the calculation to be
interrupted ﬁnd restarted; intermediate results were stored on magnetic
tape. Values of the dependent variables

P, @, b, e
were retained at two successive time steps, while the most recent values
of temperature and pressure,

6, p
were retained. Storage space was assigned for a grid having fifty nodes
normal to the solid boundary and forty-one nodes in the streamwise
direction. As listed in table II, only various pqrtions of the grid

were used as step sizes were varied.

The difference analogs for the equations
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9 OF . OF . € 3G
—_— = = B— = == F-1
5t os ' "z T 43 (F-1)

were solved by a relaxation technique for each time step. The steps
followed were:
(1) values at t, (fp(tp)) were estimated;
(2) the right-hand sides of the equations (F-1) were evaluated,
using difference equations (IV-1), (IV-2) and (IV-4);
(3) revised predictions of the values at tg (f1(t;)) were cal-
culated from equations (IV-5);
(4) the predictions were 'relaxed" according to equation (VIII-1)
to give a new estimate for the values at tp (£f1%(ty)),
F1#%5(tp) = £1(t)) + alf)(ty) - Folty)} (VIII-1)
(5) the pressure, temperature and velocity components were
recalculated based on the new values f;#*(t,).
Steps (2) — (5) were performed at each interior node in turn,
sweeping the nodal pattern repeatedly until inequality (VIII-2) was
satisfied for each equation at every node. The convergence test used

for the iterative procedure was
£1(tp) -
[fo(tz) l|l<nm , (VIII-2)

where m was the convergence tolerance. When (VIII-2) had been solved
at each node, the solution for time plane t, (the set f*(t,)) was con-
sidered complete. As indicated in figures 4a and 4b, the eddy vis-
cosity A was evaluated for the entire field before each sweep of the
nodal pattern. Similarly, boundary conditions were adjusted as has been

detailed in chapter VII.
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An alternate method was attempted in which steps (4) and (5) were
performed for the entire nodal pattern after steps (2) and (3) had been
performed for the entire pattern. This scheme led to a divergence of
predicted values from the estimates.

One supposedly minor modification which proved undesirable was
the evaluation of the eddy viscosity at the time plane t;, thus re-
moving that calculation from the iterative scheme and avoiding the time
loss due to its repetitive calculation. This caused the convergence
ratio (left-hand side of inequality (VIII-2)) to grow with successive
iterations, leading to the generation of meaningless numbers.

A matrix inversion technique, the highly-regarded ADI* method [40],
was programmed as an attempt to obtain a more rapid and efficient solu-
tion. No solution was obtained using the ADI method, and successive
iterations led to divergence between the estimates and resulting pfedic—
tions.

In chapter VII, the effect of the pressure gradient term in the
normal component of the momentum equation in restricting the study of
low Mach number flows was described. Several attempts were made to
reduce the random character of that gradient term. Low-order poly-

nomials were fitted to the pressure values at nodes across the boundary

layer, and the term

9
’a'% (2)

was evaluated analytically at each node. No improvement in the be-
havior of calculated values of b (s,Z) was observed. Attempts to

smooth the function G(Z) in the normal component of the momentum equation

“Alternating — Direction Implicit
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(equation (VII-&)) and b(s,Z) itself were also unsuccessful,

Selection of values for the relaxation factor a in equation (VIII-1)
was critical in obtaining a solution. Optimum values of a > 1 have
been reported for linear difference equations [49]. For most of the
current work,

a = .08 (VIII-3)
proved to be a more suitable value. For larger values, successive
estimates and the resulting predictions from equation (VIII-1) diverged.

Due to the small relaxation factor required, the selection of the
starting estimate f((t;) became important as the time derivatives be-

came small. Three estimates have been employed in various phases of

the present work:

(1) folty) = £ (t;) , (VIII-u)

(2) foltp) = £ (ty) + [£(ty) - £(tg)] (VIII-S)
and

(3) £0(tz) = £(t1) + 3 [8(t)) - £(t0)] . (VIII-6)

Equations (VIII-4) and (VIII-5) bracket the eventual solution; equa-
tion (VIII-6) is the arithmetic average of the other predictions.
Briefly, as time derivatives become small (approaching steady state)
during the numerical solution, inequality (VIII-2) would be satisfied
after only a few (2-4) iterations. Since only a small portion of the
predicted change was allowed by equation (VIII-1), a significant error
could be introduced unless the tolerances m were made quite small. This
error could be reduced by placing the initial estimate fo(ty) at each
node near the eventual solution. Equations (VIII-5) and (VIII-6) are

attempts to refine that initial estimate based on simple assumptions

about the derivative
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The consequences of these prediction schemes are presented in chapter
IX.

In this chapter, details of the relaxation technique used to solve
equations (VII-2) — (VII-6) have been presented, and unsuccessful modifi-

cations to that technique have been listed. Numerical results are pre-

sented in chapter IX.
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CHAPTER IX
NUMERICAL SOLUTION FOR THE CASE M_ = 0.13

The numerical solution for the case characterized by
M_ = 0.13
is presented and discussed in this chapter. The case has been divided
into runs, each of which demonstrates a specific point. These runs are
described separately and are summarized in table II.

The computer code was developed and exploratory studies were run
on the Rice University IBM* 7040 computer system. Runs A-E were gen-
erated on the Univac®* 1108 computer system at the National Aeronautics
and Space Administration — Manned Spacecraft Center (NASA — MSC),
Houston, Texas. All other runs were made on the IBM 360/75 computer
system at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennes-
see, %%%

In the discussions which follow, frequent reference is made to
figures 5 and 6, which trace the development in time of the streamwise

momentum at selected nodal locations.

*International Business Machines Incorporated.
*%Sperry Rand Corporation.

“*%0Operated for the United States Atomic Energy Commission by Union
Carbide Corporation.
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Figure 5 follows the momentum at a node near the solid boundary
(node 3) and near the upstream boundary (s = 0.2) of the numerical
region.

Figure 6 follows the same component of momentum at a node (node 9)
much further downstream (s = 0.8) and removed from the influence of the
upstream boundary conditions.

Run A

This exploration run was started with the initial conditions
specified in chapter VI. As is seen in figure 5, the values at node 3
began an oscillation at about the one hundredth time step. If a curve
similar to figure 5 were plotted for values of normal momentum at node
3, similar oscillations would be visible in the earliest time steps.
The oscillations were quite violent, including rapid sign changes, and
eventually were transmitted to the specific flow energy and pressure
and finally appeared in the streamwise momentum. From figure 6, values
of streamwise momentum at node 9 showed no evidence of these oscillationms.

This oscillatory behavior of the streamwise momentum during run A
led to a careful reexamination of the numerical stability conditions as
described in chapter V and appendix F.

Run B

The model for the turbulent stress tensor was revised to assure
numerical stability as described in chapter III. Run B was a continua-
tion of run A to demonstrate the stable behavior of the revised model.
In figure 5, the immediate reduction in the amplitude of the oscilla-
tions can be seen. The value at node 9 remained stable but showed an

upward movemént which approached the values obtained in run C.
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The step size ratio (see chapter IV) was changed from run A to run
B. However, various values of the ratio have been used in runs J and K
with no indications of instability. Therefore, the oscillatory be-
havior of the momenta seen in run A is attributed to the model used in
that run.

Run €

Run C was started at the initial condition and proceeded to what
was virtually a steady-state solution. Although the solution obtained
is far from that expected, the results of this run show no evidence of
oscillation and demonstrate that, with the model selected, a steady-
state solution can be attained. Runs D and E explore improvements in
the model which allow closer agreement between the calculated results

and solutions for the classical, incompressible boundary layer equations.

Run D

When considering numerical stability, one line of argument led
to the addition of a constant term to the value of eddy viscosity, A,
at each node. For run D, this constant was eliminated with the im-
provement in the calculated values as shown in figures 5 and 6. The
marked change in the velocity profile due to the removal of the con-
stant term from A suggests that the Artificial Viscosity technique,
often applied to control numerical stability when using explicit dif-
ference schemes (see [12]), would be difficult to apply to a turbulent
boundary layer solution.

Run E

In run E, the exponential factor suggested by Van Driest [37]

(see chapter III) was added to the eddy viscosity model. The improvement
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in the calculated value is again obvious from the upward changes in the
traces in figures 5 and 6.

Run F

Examination of the results of run E led to the conclusion that
the calculation would not converge to the expected solution. As a
check on this conclusion, run F was started at the expected answer,

the experimentally-proven one-seventh power law for the velocity profile:

1/7
a(s,z) = a(s,») (ZG(:D e (IX-1)

The thickness profile was based on that velocity profile and a von Karman
integral solution for the boundary layer equations:
0.4L;s
§(s) = z;r—3775 . (IX-2)
RS
As the figures illustrate, the calculated values immediately moved
toward those obtained in run E, demonstrating that the steady-state solu-
tion to the difference equations with the stated step sizes and model
parameters was not equation (IX-1).
Run G
Run G was a continuation of run E. This run established the cor-
rectness of the conversion from the Univac 1108 system to the IBM 360/75
system. It was established during this conversion that double precision
arithmetic was required to continue this case on the system /360.

Run H

Run H started at the same point as run G, but equation (VIII-6)

was used to generate initial estimates for the solution at each time

step. In both runs G and H, the relaxation factor a was 0.08, and
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only two or three iterations were required to solve the equations at
each time step. The difference between runs G and H (seen on both
figure 5 and 6) demonstrates the effect of starting estimates for the

solution at each time step, as discussed in chapter VIII.

Runs E_and Q

The results of run H (or G) do not approach the expected solu-
tion. In runs I and J, the step size AZ was systematically reduced
in the region nearest the solid boundary. The step size used in run I
was one-half that used in run H, and the step size used in run J was
one-half that used in run I. In each case, the initial values for the
dependent variables were generated at the newly-added nodes by paraboli-
cally interpolating the previous results. Referring to the earlier
discussion of run B, the step size ratio was the same as that used in
run A, and no instability was evident. This tends to support the con-
clusion that the damping of oscillations accomplished in run B was due
to model changes and not step size ratio adjustments.

It is apparent from the figures that the numerical solution is
not approaching the expected solution. In order to formalize this con-
clusion, the traces for runs H, I and J at nodes 3 and 9 were fitted
with an exponentially decaying curve,

f=A+ Bexp (-Ct) ,
which was then extrapolated to infinite time (the steady state). These
extrapolated values have been plotted against step size AZ in figure
)

9. Clearly, when these values are extrapolated to zero step size, they

do not agree with the expected solution, equation (IX-1).
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A careful analysis of the results of run J revealed that values
calculated for e the wall shear stress, were about 50% low when com-
pared to correlations based on data for incompressible flow (figure 9).
Since Ty is calculated from the velocities at nodes immediately ad-
jacent to the solid boundary, the values for those velocities were ex-
amined. The viscous sublayer is a thin region in which the effect of the
dynamic viscosity of the fluid is of the same magnitude as the eddy
viscosity due to the turbulence. For run J (and all previous runs), the
node nearest to the solid boundary was located well outside the viscous
sublayer. Thus the influence of an entire physical region on the
velocity profile was eliminated by the choice of grid spacing near the
boundary. Since the wall shear stress Ty depended strongly upon the
velocity profile within that region, erroneous values for the shear
stress were inevitable.

When the initial conditions were set up (run C), the velocity
profiles which were generated resulted in a value for the displace-
ment thickness of about twice the value predicted by the "one-
seventh law'" velocity profile. Although the velocity profile resulting
from run J was much different from the initial profile, values for the
displacement thickness, 6%, remained at about twice the expected value.
The explanation was simply that the momenta at nodes away from the im-
mediate vicinity of the solid boundary were changing very slowly. How-
ever, most of the contribution to 6% (equation (III-2)) was from the
more distant nodes, so that marked changes in the velocity profile near

the wall caused only slight changes in §%.
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Run L

The results of run J were parabolically interpolated, placing four
additional nodes in the region between the wall and the innermost
node used in run J. At least two of those nodes were expected to lie
within the viscous sublayer. The values generated by this interpola-
tion were used as initial conditions for run L.

The results of run L are represented on figures 5 and 6 as about
the last one-tenth of an inch on the traces labeled "Run J". Run L was
terminated due to excessive use of computer time (see table II) with-
out completing sufficient time steps to extrapolate run L and add the
result to figure 7. The values of the wall shear stress did increase
significantly however.

From the entire span of figures 5 and 6, the momenta are clearly
approaching the neighborhood of the expected values (shown by the
starting points for run F). This tends to verify the fundamental as-
sertion that the time-marching technique will "automatically" seek
the steady state solution if the flow is modeled correctly and the
boundary conditions are correct. The indifferent changes in the cal-
culated values for the displacement thickness (ranging from a 25% re-
duction at s = 0.3 to virtually no change for s > 0.7) establish that
the convergence to steady state is at best very slow for eqﬁations
representing nodes further removed from the solid boundary. Because
this slow convergence would require large blocks (estimated at several
hours) of computer time to complete run L, the run was not continued.

.-

Expected Results

To this point, the stardard to which the numerical results are

being compared has been only vaguely defined. In this section, the
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correlations of experimental data which have been termed "expected
results" are stated.

Data relating to the turbulent boundary layer, especially velocity
profiles, have been compiled and organized by Hinze [6]. Velocity

profiles are presented in the form of
u (“ry>
— f —— )
u v
T

where u is the streamwise velocity, u is the shear velocity (defined
in chapter III of this work), v is the kinematic viscosity of the fluid
and y is the normal distance from the solid boundary. These correlations

are presented in table III.

TABLE III
CORRELATIONS OF VELOCITY PROFILES TO BE USED AS STANDARDS

FOR COMPARISON TO NUMERICAL RESULTS

Range of
Uy Correlation
v
uy
< 10 L (IX-3)
- u v
T
u Uy
10-200 G—-= 2.44 &n <-1;-> + 4.9 (IX-u)
T
. uy 1/7
> 200 a— = 8.3(T> (IX—S)

In order to evaluate u_, two further relationships are necessary:
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=0-2
= 0.0583 (22 (1x-6)
CD \ EH
and
1/2
iT_ = EP_ (IX-7)
U 2 :

In these equations, the group

N = (pUx)
X g M
is the local length Reynolds number and CD is the local drag of friction
coiefficient. As presented in [6], the experimental data show a spread

of roughtly #5% about the correlations.

Run K

The initial conditions specified for run K were approximately
the expected results. Specifically, the momenta profiles were generated
from equations (IX-1) and (IX-2), using the grid spacing from run L.

Time-momentum traces are shown in figure 8. The momenta at
node 3 and node 9 are virtually constant over the entire run. The time

derivatives for run K are compared to those for run J in table IV.

TABLE IV
COMPARISON OF TIME DERIVATIVES OF NON-DIMENSIONAL

STREAMWISE MOMENTUM

Time Derivative, Units/Standard Time Step

Node 3 Node 9
Run J° 0.0057 0.0069

Run K -0.0002 0.0002
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The small value of time derivatives for run K relative to run J indi-
cate that, at least at these nodes, the difference equations have nearly
converged to a steady state. Momenta at the nodes nearest the solid
boundary (within the sublayer) show a rapid initial decrease, then
approach (apparently assymtotically) values lower than the initial
conditions. This is explained by the fact that equation (IX-1) does not
apply within the sublayer. A similar trend is illustrated for the mo-
mentum at the corresponding node at each streamwise station by figure
9. The drag coefficient profile for run K starts far above the expected
profile but has closed to the immediate neighborhood of the profile at
the end of the run.

Velocity profiles for runs C, L and K at two streamwise loca-
tions (s = 0.2 and s = 0.8) are compared to the expected results in
figures 10 and 11. The movement of the momenta from their starting
values for run K toward the expected results for the sublayer is evident.

The difference between the velocity profiles from run K and the
expected values, as seen in‘Figures 10 and 11, is about 8% for the up-
stream (s = 0.2) station and 5% for the downstream (s = 0.8) station.
This is roughly the amount of spread in the data correlated in [6]. If

the profiles from run K were presented as plots of

instead of

2

Yos I
T Vs i

the calculated curve would lie much closer to the expected (theory)

curve. Conversely, if the data presented in [6] were plotted on figures _
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10 and 11, the spread would probably be greater than *5%.

However, if the difference between the numerical solution and theory
were unacceptable, it could be eliminated by judicious adjustment of
the seven constants required by the empirical model for the turbulent
fluctuation averages (chapter III and appendix c).

AS Parametric Study

A number of runs were attempted to investigate the error due to
truncation of the series expansion for the streamwise derivatives,
equation (IV-4), Those runs were difficult because of the coupling
between the laminar profile at the upstream boundary and the first
column of nodes downstream. Runs with

AS = 0.05
(halving the step size used on all other work) were attempted, dupli-
cating the area covered by run G (see figures 5 and 6). The difference
equations at the streamwise location S = 0.02 were ill-behaved, but
sufficient time steps were taken to establish a trace of node 9 which
was essentially identical to that shown for run G on figure 6. The
step size

AS = 0.10
was thus judged to cause negligible truncation error in the difference

equations.

Discussion of Limiting Time Step Size

In chapters VII and VIII, the effect of the term

p
Y

is dominating the equation for the normal component of momentum is
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described. That term is actually the factor which determines the
maximum time step which may be taken.

The initial conditions as set up for run C (or run K) contain no
numerical noise. In table V, the time derivatives at node 3 are listed
for the initial conditions for run C and after only a single iteration.
The immediate dominance of the term

3b
3t

by the noise is obvious, and the non-dimensional time step must be
selected sufficiently small to control this noise. Furthermore, since
this noise is related to the flow Mach number, it does not diminish as
steady state is approached but remains relatively constant. For the
case

M_ = 0.13
described in this chapter, the grouping

L) At

<L2 AZ>

took a maximum value of 1.0 or less.

TABLE V

COMPARISON OF TIME DERIVATIVES AT NODE 3
CALCULATED FROM INITIAL CONDITIONS USING EQUATIONS (VII-1)

M_ = 0.13
2a ) 2e
9t 3t ot
From Initial Conditions -43. .60 -280.

After One Iteration -2.8 -3850. 770.
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CHAPTER X
CONCLUSIONS AND RECOMMENDATIONS

The conclusions which have been reached regarding the numerical
technique under study in this work are collected in this chapter.
Recommendations for further work are listed.

It is evident from the numerical results presented in chapter
IX that the time-marching technique, when combined with the model for
the apparent turbulent stress presented in chapter IlI, will provide an
adequate description of the fluid in the wall region of a compressible,
turbulent boundary layer.®* A number of qualifications must be stated
for this conclusion:

1. A constant term (such as the artificial viscosity often used

in explicit time-marching schemes) should not be added to
the model for the eddy viscosity.

2. At each streamwise location on the finite difference mesh,

at least one node must be within the region nearest the
solid boundary in which the dynamic viscosity of the fluid

is the same magnitude as the eddy viscosity.

%#This conclusion was strengthened by the results of a second case,
run at M_ = 0.6, which duplicated the numerical behavior reported for
run K in chapter IX. This case roughly duplicated experimental results
reported in [48]. The assistance of Dr. Serafini, National Aeronautics
and Space Administration, Lewis Research Center, Cleveland, Ohio, in

augmenting the published data from his private records is gratefully
acknowledged.
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3. Any alternate model which might be considered to describe the
apparent turbulent stress tensor should be constructed with
careful attention to numerical stability.

4. The numerical treatment of mathematical boundary conditions
which is described in chapter VI is preferred. In particular,
upstream and downstream conditions should be changed only after
each time step while solid boundary and free stream condi-
tions may be updated after each iteration.

5. When sweeping the nodal network during an iteration, newly-
calculated values for the variables at each node must be used
as soon as they are calculated. This was discussed in chap-

ter VIII.

It is obvious that the algorithm as presented in this work re- -
quires large amounts of computer time to solve a specific problem. For
that reason, the convergence of the numerical solution to a physical
solution has not been absolutely verified within the outer portion of
the boundary layer.

The large computer times required result from the effects of
numerical noise on the normal pressure gradient term and the dominance
of the equation for the normal component of momentum by the pressure
gradient. After examining the behavior of the other equations (VII-1),
it is concluded that control or avoidance of that numerical noise would
allow much larger time steps, thus requiring much less computer time
for solution of a particular problem. Therefore additional develop-

ment effort could be profitably directed at a controlled, efficient

solution of the equation for the normal momentum.
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The time-marching technique requires less a priori knowledge of
(or assumptions about) the properties of the turbulent boundary layer.
It is recommended that this technique be applied to the study of
those boundary layer situations in which the basis for broad assumptions
about the nature of the flow is uncertain. A typical (but far from
exhaustive) list of these situations includes:
1. Flow negotiating substantial free-stream pressure gradients,
including near-separation conditions,
2. TFlow along non-uniformly heated or cooled walls,
3. Flow along a boundary with mass injection into or re-
moval from the boundary layer,
4, Flow along a moderately curved boundary.
It is also suggested that the time-marching technique is a use-
ful tool for exploration of the effects of alternate models for the

turbulent stress tensor on boundary layer solutions.
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APPENDIX A

REVIEW OF DERIVATION OF FUNDAMENTAL EQUATIONS

The basic equations of fluid mechanics have been repeatédly
derived in the literature ([1], [2] for example). The derivations are
outlined below in order to establish the notational system and to
introduce the various simplifying assumptions.

The starting point for each derivation is the appropriate physical
law, which is applied to the fluid moving through a particular region
of space (the control volume) or to the fluid contained within a mathe-
matical envelope (the control volume) which moves with the fluid.

Vector notation has proved useful in improving the clarity and

brevity of this and the following appendices.

Conservation of Mass

The law of conservation of mass states that, barring nuclear re-
actions, mass can be neither created nor destroyed. The assumption of
a continuum fluid (... "the properties of the smallest portions into
which we can conceive it to be divided are the same as those of the
substance in bulk." [3]) is introduced here for convenience. The
mass of fluid crossing an element of the control volume surface dA in
time At is:

pv * n dA At
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where p is the density and v the velocity of the fluid crossing dA.

The total increase in mass within the control volume is

j; Ap 4V .

The basic law implies that the net mass crossing the volume surface
must equal the change in mass within the volume:
-faoav=at fov.naa
v A

The unit vector n is normal to the element of area dA and points out-

ward from the control volume.
Ap - =
fA—dv+ f;)V°ndA=O . (A-1)
y 8t A

The second integral is converted to a volume integral through applica-

tion of the divergence theorem, (see [4]),

(pv) « n = « (pv) s
.&'pv n dA j‘;vlpvdV

which gives

Ap - _ _
-/V‘{E-fv'(pv)}dV—O . (A-2)

In order for the first term to be interpreted as an instantaneous

value rather than an average with respect to time, the limit

is taken. Finally, (A-2) must hold over any arbitrary volume in space.

Using the mean value theorem of integral calculus [5], (A-2) becomes
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g‘fc+v-(px7)] /dv=o.
av Jy

Since the volume V can be of arbitrary size, the equation requires that

3_og
[at + v (pv Ay C 0o .

If the volume is allowed to shrink about some point P, in the limit
the value of the bracketed term at P approaches the average value of

the bracketed term, which is zero. Since the location of P is arbitrary,

(]

the bracketed term must vanish at every point. The law of conservation
of mass 1s expressed as:

.§2.+ v . (p\_/):o . (A"B)

ot
Conservation of Momentum
This law is also known as Newton's second law, and a familiar
form is the statement,
"force equals mass times acceleration.”
The law is applied to a fluid "particle'" of mass 2_ 4av, surface area

Cc
dA and velocity v:

The forces are divided into surface forces, ?S, such as pressure and
viscous forces and body forces, ?B’ such as gravitational, magnetic
or electrostatic forces. If the equation above is summed over the

"particles" contained in the control volume V at any particular

instant of time, the result is
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o D\7> _/_ /‘_
—=—=1av = F da + f_dv . (A-4)
/(gc Dt Ja s v B

In equation (A-4), A is the surface area of the control volume V. The

surface integral in (A-4) results because surface forces interior to

the control'volume cancel, leaving only those forces acting on the

surface A. If the surface force is interpreted as a tensor-vector

product, i
E=F-q ,

where P is the pressure tensor, the surface integral can be converted

to a volume integral by using the divergence theorem. Then equation

(A-4) becomes

(A-5)

Since the mean value theorem is used to develop a relationship (such as
equation (A-3)) at a spatial point, equation (A-5) applies to every
point in space. The operator

D
Dt

is known as the "substantial derivative" following changes in a quantity
" due both to time dependency and to spatial dependency. It is written
as

D

¥y

= %i—»r (v » 9)g (A-6)

]

where £ may be a scalar or a vector, depending upon the application.
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The body force EB is assumed to be negligible in the forced con-
vection situations to be studied. Thus that term will be dropped from
the equations.

The momentum conservation law becomes

p—%%+(6-v)6=v-?. (A-7)
gC

Conservation of energy
The first law of thermodynamics, which states that energy cannot be
created or destroyed (again barring nuclear reactions), is applied to a
fixed collection of matter, a "closed system." In this case the system
is to consist of a fluid particle. It is necessary to assume that the
flowing fluid is in local thermodynamic equilibrium. The law will be

written in the form:

Rate of Heat Transfer| _ |Rate at Which Work is
Into the Particle Done by the Particle

Rate of Change of + Rate of Change of
Internal Energy Kinetic Energy

or
DQ DW _ DU, D v v, _
D—t“Dt‘fp[Dt+Dt og ]d" (A-8)
v c
In this case V represents the volume of the fluid particle, Q is the
heat transfer into the particle, W is the work done by the particle and

U is the internal energy associated with the particle. Although the

terminology used is different, it is shown in [1] that

%='Kﬁ-(KVT)dA and-g-g=—’/A‘ﬁ°(1?-x_/)dA . (A-9)
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k represents the thermal conductivity and T represents the temperature
of the fluid. These terms are converted to volume integrals through

the divergence theorem, and (A-8) is rewritten as:

= - D voev
V-(:<VT)+V'(P°V)—p——QJ+ >]dV=O
'/;lf Dt 2gc

The mean value theorem is applied, as before, to establish the validity

of (A-10) at every point in space and for every fluid particle.

Te(kVT)+97 -+ (P-v)=op %;6J+ Vzé V) X (A-10)
C

The basic equations (A-3), (A-7) and (A-10) can be put into a more
convenient form before specializing the problem to turbulent boundary

layer forms. The momentum vector is defined:

. (A-11)
g

from (A-3). This is rearranged as

The left side of (A-7) is

p -aj v - ™ - a_r-r-l- o L] - > . -~ - —a-i - L v -
2 At + (v « ¥V)m = Y + v(V+m)+ (v Vm= Y + ¥ (m + v) .(A-12)
The term

D Vv
° Df(” 2gc)

can be modified somewhat. If a specific flow energy is defined,
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e = pU + _——28 = pU + 2 s (A-13)
c
D (j,¥:¥_ D e _Dé ephp
T 2g © Pt p - Dt ~p? Dt
Dp_ap _. - - . ot _. = - o-
Tl Vp==-Ve(pv)4veVp=-pV-v ,

where the center step is due to (A-3). Continuing,

D e _ De e - _ De .o
p Dt p - Dt + 5 p v Ml v + eV A
_de - - _ Qe . -
=gtV Vet eV - v = o=t v« (ev)
In summary,
D v » v\ %e -
p T U+ Qgc )— ’5‘{*‘ v (ev) . (A-14)

The pressure tensor is normally separated into a component attributed

to the thermodynamic pressure and a component due to the viscosity of

the fluid:

w

P=-pl+ (A-15)
(A-14) and (A-15) are introduced into (A-10), giving (A-18) below.

The notational changes (A-11), (A-12) and (A-15) are incorporated
into (A-3) and (A-17), yielding (A-16) and (A-17).

The system of equations (A-16) — (A-20) includes the notational
changes desired. This system is not complete in that it lacks an
equation of state for the fluid and no defining relation for the stress

tensor is given.

3p -
r T g vV m=0 (A-16)



am
ﬁ”f

oe

9y

Ve(mv)+9p-V-

_......+v.

9t

02,

p U +

[(e+p)¥1 -7 + (5 +¥) =7+ (xVT) =0

=R

<l

S

0

(A-17)

(A-18)

(A-19)

(A-20) .



95

APPENDIX B

INTRODUCTION OF FLUCTUATING COMPONEHNTS AND

TIME ~ AVERAGING OF THE EQUATIONS

Experimental observations of turbulent fluid flow have shown that
the mechanical and thermodynamic properties of a fluid at a point in
space may be separated into two components. One component (under-
scored) is "slowly varying' with respect to time; the other component
(primed) is "fluctuating" with respect to time. For the instantaneous
value of a typical fluid property £(t),

g(t) = g(t) + £'(t) . (B-1)

Exhaustive definitions and discussions of turbulent motion and the
engineering approaches to describing it are given in [1] and [6]. 1In
this appendix, the usual engineering approach is developed to obtain
the fundamental equations in terms of 'time-averaged" variables and the
averages of the products of the "fluctuating" components. In appendix
C the products of fluctuating components are related to the "time-
averaged" variables through the introduction of an empirical model.

If the instantaneous value £(t) is subjected to an averaging

process over a period of time, it is observed that

T .
£'(t) = -l-f; E'(t) dt = 0

T

From this observation, a list of rules for treating the fluctuating
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components mathematically has been derived. These rules are developed
in (6] and are repeated here for convenience.
£E=8+¢' c=g¢+ '
E=LETE')=E=§

£t =L =0 (B-2)

Goldstein [9] has pointed out that, if £ happens to be £(t), the

equation

represents an additional assumption. This observation applies to the
present work.

The usual approach to treating turbulent flow problems is to
introduce the characteristic fluctuation terminology into equations
(A-16) to (A-20). Then the time averages of the equations are taken,
resulting in equations which, if they could be solved, would describe
the behavior of the mean flow variables.

The following terms are introduced. The underscores represent

time averages, while the overscores designate vector or tensor

quantities:
p=p+top' m = é.+ m' v = i_+ v!
p=p=p' T=T+T" e=¢e+te'
S=85+8" U=U+U . (B-3)
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Continuity
?—(D+p')+g Ve(m+m')=0
ot c - ?
a—fdt+a—-fp'dt+g v-frﬁdt+frﬁ'dt]=o
3t J & 3t c’ LJ= ’
or
Lig v-m=0 . (B-4)
Momentum
g—t(§+ﬁx)+v'[(§l+r¥>'),(_G_+x7')]=-v(P_+p')
+v-(§+=§')
or

S+ U (m,Y) 4V (M) = -Wp+ VS (B-5)
Energy
o€

=+9V-[(etpte'+p') - (v+v")]

=V [+ 8 (T4+VNI+ T [+ D)V (T+ T)]

=+V:[(e+pv+ (e +p)v']

=V e[S+ 9+ (5 - 901+ V-« [kIT +x'90'] . (B-6)

In the above equations, the following assumptions were tacitly

introduced:
Sraat=a=0 , fSa=5-:0,
jp e'dt=e'=0 , _I'T'dt =T' =0
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The physical validity of these conditions was noted above; mathemati-
cally the imposition of these conditions defines the manner in which m',
?', and T' are related to velocity, pressure and density fluctuations.

As an example, the conditions imposed on the momentum vector m'
will be developed.

(1) The definition (A-19) is to hold:

E:—;T-p;}: (p +0") (i+\_/') . (a)

C c

EL
+
=1
1]

UOII—'

(2) The average of the fluctuating component is to vanish:
jra'dt =0 . (b)
(3) The rules established for p and v must hold:

p v =p' v=0 . (c)

r_?1_=-3é—(9__\2+o'V’) . (d)

If (d) is subtracted from (a), the defining equation for m' results:

m' = (o' v+o'v' -p' V') . (B-7)

L
Ec
Similarly, using (A-20),

et =W AU +Z (A T 4D T 40U - U
(B-8)
1 ,- - - -
+ = (m" + v!' = m'-v)
2 ————
The equivalent expressions for S' and T' could be developed from the
definitions for S and T.

The stress law selected is that of the Stokesian fluid [2], in

which stress is proportional to strain rate:
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5= u{w,;) AR XURROH } o 8-

The meaning of the operator <> is also defined by (B-9).
The ideal gas law was selected as the equation of state:
p = pRT . | (B-10)
The variables are separated into slowly — varying and fluctuating com-

ponents, as before:

Y
u

2l

+

[y

(p+ u') (<v> + <v'>)
and
p=p+p =R(p+p") (T+T")

Taking the time average of these gives

lent

= p <v> +u'<v'> and p=R(pT+p'T),
At this point the assumptions discussed in chapter II are introduced.
They are:

p' = ¢' = ' =20 . (B-11)
The definitions for S' and T' are developed after introducing these
simplifying assumptions:

§' =0 and T'=p'/(Rp) . (B-12)
The utility of the assumption p' = O is obvious here, since under that
assumption the quantities p-and T as well as p and T conform to the
ideal gas law. Similarly, the stress law (B-9) is obeyed by time-
averaged as well as instantaneous quantities.

The defining equation for the quantity e (A-20) is treated next.

The equation of state (B-10) is used to convert the internal energy U

into a more convenient form. For an ideal gas,



Then (A-20) becomes

and

C
oC T = ﬁx-pRT
C
_ Vv
e—§—p+
C
et e' =
C
e=gxg Rt

10

0

(B-13)

Utilizing the simplifying assumptions, the set of primary and

auxiliary equations relating the several flow variables are collected

below:

I

am
ot

ge
ot

|®
u

EX
"

CV
VvV
g Pt

m! =Lg;'
gC

X

I<

(m',v') = - Vp + V -

(e +p)v']=v+(S-W+7V-

g

(B-4)
(B-5)

(xVT)

(B-14)

(B-13)
(B-15)

(B-16)

(B-17)

(B-18)

(B-19)
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A careful balance of relationships against variables shows that two
additional defining equations for fluctuating components are needed.
The arguments leading to the model selected for these gquantities are

deveiébéa in chapter III. The detailed derivations are presented in

appendix C following.
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APPENDIX C

DEVELOPMENT OF THE MODEL EQUATIONS FOR TURBULENT

STRESS AND HEAT FLUX TERMS

In equations (B-5) and (B-14), certain terms can be interpreted

as a turbulent stress tensor (T) and turbulent heat flux vector (aT).

These are:

Tz - (m',y') (c-1)
and

(¢! +p')i' =3, -3+ T . (c-2)

In this section these quantities are related to the mean flow variables
P, uand T,

At this point, the assumption of two-dimensional flow (see chapter
IT) must be applied. It is advantageous to develop the model equations
in cartesian spatial coordinates. Figure 12 below relates the sym-
bols in the various equations to the physical flow situation.

In this cartesian system,

uvZ u'v' q

i
1l
]
oa llb
Ne}
-3
1"
~~
e
1
w
S

o]
viu' V'2

- %

Specification of Stress Tensor
The component u'v' is usually the one measured experimentally in a

turbulent boundary layer. It was used by Boussinesq (see [1]) to de-

-
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fine an "effective viscosity", which becomes a convenient parameter in

expressing the remaining elements of the tensor T

u'v! = -y == (c-u)

The intuitive argument used to relate Vg to the mean flow vériables
is due to Prandtl and is reported in [1]. The conclusions of that argu-
ment will be sketched here for convenience; they will be expanded slightly
to connect the components to T.

Prandtl's argument is based on the idea (due to Boussinesq) that
turbulent momentum and energy transport are analogous to molecular mo-
mentum and energy transport, with macroscopic ''chunks" of fluid rather

than individual molecules being the transport vehicles. The important

conclusions of the mixing-length argument are

- |du
(a) Iu' = % -;; + ... , (c-5)
jav du
1 - - 1 - i -
(b) IV I = £ 5;{ = k ju = k& 3y , (Cc-6)

(c) u' and v' are on the average opposite in sign.

Finally, a correlation coefficient is defined:

uTv'

c = - v . {(c-7)

(C-5, 6, 7) are combined to give:

du 2

—u'v! = 1 )= 2
u'v c lu ]lv |= cks Y

The coefficients ¢ and k are absorbed into a general coefficient,

2'2 = ckp? . (c-8)
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One additional feature is desirable for the model, that being for
the turbulent shear stress to change sign when the derivative of mean

velocity changes sign. The resulting form is:

(3_5> . (c-9)
dy

Prandtl's argument (as presented in [1]) is complete at this

- u'v' = 12

3y

péint. The "mixing length" &' is the link between the empirical model
and experimental results.
A similar mixing-length argument applied in the tangential (x)

direction gives

9

[u] = ex|==| + . . . (Cc-10)
ax -
av

lv'l = el= + . . . (c-11)
ax

If (C-6) and (C-10) are combined, the length £%* is obtained:

and from mass continuity at steady state,

Ju v
— n, a—
ox| v |9y
so that
A
P = = (C-12)

The remaining elements in the stress tensor (C-3) can now be con-
structed in the desired form. In estimating the values for the parameters

¢ and k (equations C-20, 22), it was assumed that
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Jl""l' = -L\LI. - f
u|2 _—Z_V'
From this,
ulZ:L|u|I|u‘l ,
f2
and
Ju Ju 42
- 72 - p - o u _ -p_—
pu TR a;“ ) Er =
f
: p1213%) |2 P ve du
— £2 ck? ay| ax] ~ K2g2 9%
Finally, since
82_( o
%
in a boundary layer,
py Ju
-p U'z = e -
- 2.2 \ 9%
ckef
Next,
v Ju DC.Q,Z u
-p v'u' = pcf® | .} L= = 3y
B 19x| |3y % v
- pQ"Z 39_{ -a__\_]-_ ) p \)e _?é
) kz ay_ 33{ ) kZ 9x
Again,

| 2u
|3y

av
9x

ou
oK

(c-13)

(C-1u4)
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is expected in a turbulent boundary layer, but the term

viu' < 0

also (see Prandl's conclusions above). Thus:

P Vo/ov
-p vig! = - _"'>
- 12 ax

For the last component of the stress tensor,

) ?
-0v'2=—pl—-[v'|[v'|=-9——kz_.E_-‘tv
- f2 f?. ay ay
pk 2'2 |3y} |3V P, |x
fz ck ay 3y sz e y
Since
V'2>0,—9_V'2<0
so that
-pv'2= o By o)
T cf2 © i,
Summarizing,
[ 1 du 3u |
ck2f2 9% 3y
7.l e
g
¢ 1 3v 1 9y
i 12 9x of? oy ]

Specification of the Heat Flux Vector

(C-15)

(C-16)

(c-17)

Experimentally a similarity has been observed between the turbulent

transfer of energy and momentum.

This is known as Reynolds Analogy
(see, for example, {11, 7] or [9]).
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It is convenient to perform some simplifying manipulations on
(C-2) before dealing with the heat flux vector.

From (B-18),
_ R+ C _
(e' + p')v' = ( v)p'v'

R
G R RN A CURS I CAN C IR TAN
Introducing (B-19) and taking the time average gives
R+ C
' 1Yot = V 15 E_g. ot .
(e' + pHv. = plv! + o= [(v

ga

Vv + (v
C

- v v

+ (v - v')v']

According to [8], the triple product of fluctuating components may be
neglected, and for an ideal gas
R + CV = C

P
The equation becomes
C
(e' + Ev);v= P

___",*_9-2.
A

== (v',v') (c-18)
e
From (B-12),
C
_E. '\-/' =
R BV

1ot
(E_CP) T'v

(C-19)
A "Turbulent Prandtl Number" is defined in [1], which in the
present notation becomes

pv C
p. =2 P | (C-20)
RT K
e
where «_ is an eddy thermal conductivity. [1] further relates Ko to
a; by
Qp = = K, VT

(c-21)
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which is written (after Boussinesq) in analogy with the case of
molecular energy transport.
(C-22) results from a comparison of (C-2, 18, 19, 21):
qQn = - = A -2
A kg ¥ T (g_CP) T'v (c-22)
This equation might also be developed by an extension of Prandtl's

intuitive approach which was used to obtain (C-17).

Finally, (C-2, 20, 22) are combined to give:

2'\)

P;-vg-i-? ) (C-23)

The advantage of this expression is that the turbulent Prandtl number

(e' + E');L’= -

is nearly constant through a turbulent boundary layer, reflecting the
similarity between momentum and energy transfer mentioned previously.
The utility of the turbulent Prand*l number and the selection of a

proper value are discussed further in chapter III.

Estimation of Numerical Values for
Coefficients in (C-13)
It is necessary to estimate values for the coefficients c, k and f.

Correlation coefficients are usually defined as

~u'v!

|/u|2 V'z

c! =

which should be compared to (C-7). By assuming a simple wave form for
the fluctuation components,
u' = v' = sin Qt ,

the averages are formed to give

-1—2- =S = 1,24 . (C-24)
f c!
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From [1] (p. u466) or [9] (p. 194), a value for c' was selected,

| ¢ = .3 . (c-25)
This value is rather arbitrary due to the scale of curves being inter-
preted, but it is compatible with the approximate wave form chosen.

A value for

vl

[u7]

can be estimated from data reported in [6] (p. 488). It is observed

k =

that the value for k changes only a slight amount over most of the

thickness of the boundary layer. From this, the value of k has been

selected as

k = .u485 . (Cc-26)

The (C-17) becomes

Ju Ju
14,18 = 5;
T = € . c-27)
gC
: ov
-4,25 EZ - 3.33 —=
X y

This equation and (C-22) represent the model equations for turbu-

lent fluctuation averages. The form for Ve is justified in chapter

ITI.



111

APPENDIX D
NON-DIMENSIONAL FORM OF THE EQUATIONS

In this appendix, the equations developed in appendices B and C
will be combined, expressed in their cartesian components and non-

dimensionalized with respect to suitable "representative'' scaling

quantities.

Equatiorc in Cartesian Components
(B-5) and (C-1) are combined to give

Bz- 0 @) -V (ErT) (D-1)

(B-14) and (C-2) are combined to give

g%z-v-[(_e_+p_)_—v_—§_'(§_+T)-KVI_+C—1T] . (D-2)
Also
Q= § + 1 , (p-3)

which is written in cartesian components as*

*The smallest viscous stress terms have been neglected to simplify
the computer code. The negligible size of these terms is demonstrated

in [11].
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If (B-u),

coordinates, t

3p

ot
%a
3t
3b

3t

oe
9t

e =

The components

m =

where 1 and j

(related to
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1 pve du

1.2
c'k gM 9x

ou

(B-13), (B-ls);

he results are:

oa db
" gc<w+ 5;)

3 3
T oax [E-E TR- Qxx] - oy [E-E-- Qxy]

< 1 pve>82
———— —— ._.+ —
K? g M X  dy

1l o+

\

pv

>33
dy

g.H

0
[a v - ny] - §§'[9.X.+ P - ny]

3 pveCP oT
- — - |k Q -
ax (e + R)u <: * PRT X 1 XX A
pv C AT
) e’ P -
_W(e+p_)v—<<+ PR >—a—y- ny'i
T
CV -l pv /1 3y, By
Pt x|{au+bv - —(—ru0 -
R 2| =—= == 8o \ k2 ax ¢! 3y
of (B-15) are
- - - -
ai+bj=—(@mi+vi |,
e

(D-1) and (D-2) are written in cartesian

(D-4)

Xy

yy

(C-5)

are the unit vectors in the x and y directions, respectively

the physical situation by figure 12 in appendix C).
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Non-Dimensionalization
The physical quantities in equations (D-4) will be non-dimension -
alized with respect to combinations of the selected "typical" flow
quantities, which are assumed to characterize the problem under study.
The non-dimensional form of the variables are primed (') in the
development below. The relationships between non-dimensional and the

equivalent dimensional variables are:

e =0'po u = u'lp v = v'Up
e = e'(poRTo) p - p'(oORTo) I.= 8T g
poUp poUp Ly
a=a b =b' =t g
Ec e 0 (D-6)
pv
X = = = ———
ELy y nkjy A 2 3
C
— = MHoUo
K'_'K'KO U=U'U() Q=0 ‘—Lz-‘

When the relations (D-6) are substituted into (D-4), the equations

listed below result:

3" gl <00Uo sar PoYo 3b'>

- +
ot! UpPo gCL] 9E gCL2 on
g Lig, 5 [PoUo? HoUo
Bi' = - < 3 a'u' + poRTgp' - = Qxx'
QOUOZLI gC 2
Lig, 4 [poUo? uoUo
- o b'u' - —— !
9 L X
poUo’L2 nL Be 2
Lig -DoUoz ugUg
ab' _ c_9_ aly! Q
at' d T L X
DOUOZLI 2 L gC 2 y
Lig, 5 |eol? HoUo
- = | = b'v' + pgRTgp' ~ — Q'

3 L
ooUo2L, M| Ec 2 Yy
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Ly To AC_ug
de! 3 L v pYBc\ 26
= - — + - — t —— T
ot oRTU.L; 3¢ | PoRTolole! + phiut - o« P )t
T
woUg?

! 1 1 !
T, (u Q. 'tV Qxy )

L

T AC_ug
! 3 0 P'Cc) 36
- ———————— —_— 1 1 1 e e —— ——
poRToUgLy 9n PoRTUp(e! + p')v Ly é TP n

ugUp?
- ('@ '+ v ")
L, g%
cy 1 poUp?
e! = E_..p| + QDORTO z (a'u’ + b'v')

This can be simplified some by recognition of and substitution for
several standard groupings:

The Reynolds number,

poUoL2

N = (D-7)
R gup °

the Prandtl number,

g HC g uoC
p =S P g p =S_FP0 (D-8)
R K Ro Ko

and, interpreting the temperature scale Tg as a representative absolute
temperature, the Mach number,
Up? Up?

M2 = — = . (p-9)
Co2 vg RTo
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If the temperature scale Ty were interpreted as a representative tem-

perature difference, the Eckert number would result:

Uoz Ug Y 1
N.,6 = = < ~ > (D-10)
EK chPoTo g K70 Y

It is convenient to define

Ly
€ = — . (D-11)

Also

RS e AN L+ AR
L, P Ly Py
Ry T
Combining this with (D-7, 8, 9, 11) and the basic equations just
above yields the equation set below. The primes are dropped with the

understanding that all symbols represent the dimensionless forms of

the appropriate variables.

. _(a .23 -
e C <8£ + € 8n> (D-12)
da d [ 0 X 9 X ]
3% - 3t au + £ - ﬁﬁ—- - € n bu - ﬁ—x- (D-13)
| yM2 'R R |
ab 9 [ 0 3 o]
iy B ﬁz—' - e o bv + 2 - L (D-14)
i R n M2 R
i P
de 3 \ o« R\ 20
—_— T . + - —_—
at ag| (& TP <y —1)eN P <1 tAp )ag
; R'R Rp
2
B )}
NR XX Xy
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M2
- — (uQ + vQ ) (D-15)
No yx yy
Sy M2 A 1 du & av
e-'-'-ﬁ—p"l'l—z-— u+bV-E;—'<——"‘Z—,‘5—> B (D-16)
R \c'k? dE "
The ideal gas law (B-16) becomes
i -
S5 =1 - (D-17)
Finally, (D-3) becomes
B du 7]
A Ju —_
cTke 3E (L+2) 5,

2l
i
=

(D-18)

1 - A\lav, du 4 _ A v
e 9g an 3 c'/ 9n
L k2

It should be noted once again that all the variables in equations

(D-12) — (D-16) are dimensionless and that the primes have been dropped.
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APPENDIX E

COORDINATE TRANSFORMATION FROM A NON-RECTANGULAR

PHYSICAL REGION INTO A RECTANGULAR REGION

In this appendix the coordinate transformations necessary to locate
most of the nodes used in the difference net within the physical region
of interest is specified.

The equations (D-12) through (D-18) and (C-12) are expressed in
terms of the independent variables £ and n (and t, which will not be
involved in the present transformations). A transformation which will

expand a region shaped roughly like that sketched in figure 13 into a

rectangular region is

s(g,n) = ¢, 2(g,n) = E?—E—)' . (E-1)

The function q{(£) specifies the shap; of the "edge" of the boundary
region as indicated in the figure. It is assumed to be real, continuous,
positive, finite and differentiable on the range

0_<_€_<_l
The purpose of this appendix, expressed mathematically, is to develop

expressions for

in terms of the new independent variables s and Z. In these and the

following expressions, ¢ is to represent an arbitrary dependent

variable, a function of £ and n.
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MAPPING OF PHYSICAL REGION INTO
A RECTANGULAR REGION
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The expressicn for the differential of ¢ is:

30 ]
d¢ = s ds + 57 dz
From this,
do| _ 20 ds| |, 204z
de| ~ 3s d Z d
g,n s dg 0 9z dg n
Similarly,
) Lads)  ma
d T 3s d 3z d
ﬂg n ng
Forming the indicated partial derivatives from (E-1) gives:
n m q? q
%% = 0 and %E- L
£ ne 9
Defining
- .22
=-q%E

the transformations become

00 _ 30, o 3¢
3¢ - 3s T B3z
and (E-2)
9 _ 1 2e
an g 9
39 :
The factor 3E can be expressed alternmately as
aj.:.aﬁi.saj.:_a&
3 9s 3Z 3¥s

since q:.is not a function of Z. The operators (E-2) are to be applied

whenever the partial derivatives
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are encountered in evaluating equations or boundary conditions. The
finite difference approximations introduced in chapter IV are expressed

in terms of differences in the dependent coordinates s and Z.
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APPENDIX F
ANALYSIS OF NUMERICAL STABILITY

In this appendix, an analysis of the numerical stability of the
system of difference analogs for the equations (D-12) — (D-15) is
presented. The approach used is due to von Neumann fu1].

Two simplifying assumptions are introduced at the outset. First,
only a uniform grid spacing (§; = 87 in equation (Iv-1)) is analyzed.
Second, the representative equation has been analyzed considering the
effect of only two independent variables, either the pair x,t or the
pair y,t. The conclusions can then be applied separately to the x and
y dimensions. This procedure is justified by the convenience of
relatively concise results and the sweeping nature of other necessary
assumptions.

Fach of the partial differential equations (not difference
equations) takes the form

oF | 9G

of
ﬁ -5';{- + ’5‘y— N | (r-1)

where F and G are complicated functions which incorporate coupling and
non-linear terms. In the following development, the equation

of _ 3G

3% ° 3y (r-2)

will be treated.

The function G has the general form
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_ of g
G‘fg+B§'§+Day+"’ s

where g represents dependent variables determined from the other basic
equations. Then the right-hand side of equation (F-2) can be expanded

into equation (F-3) (see (D-12) — (D-15) to identify the coefficients

A, B, C, D):
G, af _  32f _dg . - 3% .
o= Ao+t B——+Co=+D ... (F-3)
y y ayz y ay?_
The coefficients A, B, C, D, . . . will themselves be functions of

bqth dependent and independent variables and contribute to the non-
linearit: and the coupling between equations. At this point, these
coefficients are assumed to be "locally constant'; that is, their
functional dependence will be ignored so that (F-3) can be termed a
"locally linear" equation.

Each dependent variable is separated into a "smooth solution”
and a perturbation:

f=F+ f',g=g+ g, etc. (F-4)

Combining (F-2) — (F-4) and reorganizing yields
3%g

3f' _ . of 3%F og
+§'%——A-3?+B-§-§Z'+Cay+l)ay2+.

|
| Hht

1 21 1 241
sa ¥, %5;-+ p2e .
Yy ay2 y ayZ

The terms containing the "smooth solutions' (f, g) can be eliminated
as a valid solution for (F-2). The equation remaining describes the de-

velopment of the perturbation f':

= A + B
ot oy Byz 9y

1 1 2c1 ' 251
AF' _  Of 22£' . 98 22" | (F-5)
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In writing the difference analog for this equation, the following
notational shorthand is useful (the equation is written for the node

at y = yg, the time plane t; is "known" and the time plane t; is

unknown) :
£'(ty1,y0) = flg , £'(t; + dt,yp + 6) = fép 5
£r(ty + At,yg - 6) = fém , 'ty + At,yg) = £io
with similar expressions for g'. Then the implicit difference analog

for (F-5) becomes

£30 - flo = 5io [ACER - F4) + Cleb - &3]

At
B - 2f £ D -2
+ (Ay)zf (£3, bo + £3,) + Dlgd - 2gdo + gi)]

e . (F-6)
The particular solution assumed for f' (and g', etc.) is a
periodic function in y with an exponential factor which may grow or
decay with time:’
ats
f'(ta,yp + 8) = f1g e e . (F-7)
The constant k is some real number associated with the wave length of

the particular disturbance under study; the constant o may be complex.

With the convenient substitutions

E r-e at2 and ¢ = elk(5 ,
flo = f108, fép = f108¢, 3= £108/%
gbo0 = g106s gép = g108%, g2 = 8108/¢

When these are substituted into (F-6), the resulting equation is:

f10(€ - l) = gAT; (Aflo + Cglo)(d) - %-)

EAL
(ay)?

+

(Bf]lo + Dglg)(‘b -2+ %‘) s
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or

%=1.—M(¢—2+%)—N(¢—%) . (F-8)

The constants M and N are

£10
M=—Ltpg,p——
(ay)2 f10
and

N

§Z§ A+C 1o

From (F-7), the value of f}) will decrease as t increases if
%52 = Jg] <1
That is, the perturbation will be damped and the difference scheme

will be stable if

el <1 or %=>1

The absolute value of (F~8) can be determined, noting that

Im (¢

1]
o

1
2+3)

Re (¢

]

R e
p g
1t
D

Re (¢ - 2 + N 2 (cos k 6§ - 1)

Im (¢

l
| =
N’
"
N

sin k 6

Defining

8=ké6 and uw =cos 8 |,

2
|-lg-‘ -= [1 - 2M(cos © - 1)1% + uN? sin? 8 ,
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or
112
‘21 = [1 - 2M(p - 1)1% + uN2(1 —1?) . (F-9)

Since a difference scheme should be stable with respect to a disturbance
of any wave length, the stability requirement must hold for the entire
range

-liwzsl

Some manipulation of (F-9) gives

2
%1 -1 = = 2M(u - 1) + 4[M2(u - 1)2 + N2(1 - p2)]

The term on the right is positive or zero for all values of M and N
for |ul < 1. Therefore, if the term

- 24(p - 1) >0 ,
stabiliFy is assured. For

lul <1, M>o0
is sufficient to make that term positive. Thus, under the assumptions

listed,

£10
Bt B4 D—>0 (F-10)
(Ay)z flO -

M=

insures numerical stability. The specific stability requirements listed
in chapter III are derived from the condition (F-10).
If the difference equation (F-6) is written in explicit form and
the above manipulations repeated, the equation equivalent to (F-9) is
|é|2 = [1 + 2M(p - 1)1 + uN2(1 - u?)
This can further be rearranged to the form

|£]2 -1 = u(p - 1) [M- M2(1 - u) - N2(L + w)]
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In this caée, the stability condition is
€2 <1,
or that the right-hand side of the above equation be negative for all
lu] < 1. Since
p-1<0 for Iul <1l,
this requirement becomes
M o> M2(1 - u) + N2(1 + )
Incorporating the definitions of M and N and dropping the subscripts,

a maximum permissible time step is determined,

- (B+ D g/f)
max 2 2
<—-g—-—B ki 2y /f> (L - w +<————g——A ki (2: /f> (L + u)

. (F-11)

Equation (F-11) is a '"local" stability limitation on the size of
the time step At; that is, each node has a separate stability criterion
(as does each equation at each node). Since the calculation technique
requires the field to be advanced through a uniform At at every node,
the minimum value of Atm;x for the entire field (every equation at
every node) is the largest acceptable value that can be used in calcu-
lations.

The explicit difference scheme can be eliminated from considera-
tion rather quickly, since

B=DE=0
for the mass conservation equation (D-12). Thus

At =0
max

for that equation and there is no range of stability for the explicit

difference representation of the mass conservation equation. In the
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parallel case for an implicit difference form, equation (F—lO) gives
M=0
for
B=D=zo0 .
This is a case of "neutral" stability. The numerical evidence is that
this equation will remain stable, perhaps due to the influence of
coupling with the other, more stable, equations.
The condition (F-10) does not depend on the value of the coef-
ficients A and C. This is a result of the assumption made above to

consider the independent variables in pairs, t and x or t and y.



