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Abstract
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probability model based on Dirichlet process mixtures. The modeling

methodology borrows strength across term structures for purposes of

estimation. The main advantage of our framework is its ability to pro-

duce reliable estimators at the company level even when there are only

a few bonds per company. After describing the proposed model, we

discuss an empirical application in which the term structure of 197 in-

dividual companies is estimated. The sample of 197 consists of 143

companies with only one or two bonds. In-sample and out-of-sample

tests are used to quantify the improvement in accuracy that results from

approximating the term structure of corporate bonds with estimators

by company rather than by credit rating, the latter being a popular

choice in the financial literature. A complete description of a Markov

chain Monte Carlo (MCMC) scheme for the proposed model is available

as Supplementary Material.

KEY WORDS: Dirichlet process mixture; Hierarchical model;

Nonparametric Bayes; Yield curve; Credit spread; Treasury bond.

1 Introduction

The term structure of interest rates, also called the zero-coupon yield curve,

refers to the relationship between the interest rate of zero-coupon bonds and

their time to maturity. The term structure can be estimated for government

or corporate bonds. In both cases the resulting estimators have important

practical applications. The term structure of government bonds–also referred

to as risk-free term structure–contains information about macroeconomic con-

ditions and expectations of market agents about the future of the economy

(Anderson and Breedon 1996). On the other hand, the term structure of cor-
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porate bonds is an essential input for pricing defaultable bonds and credit

derivatives (Jarrow and Turnbull 1995), inferring the credit quality of bonds

for risk management purposes (Saunders and Allen 2002), and assessing the

risk of derivative products (Hull and White 1995; Duffee 1996).

This paper focuses on corporate debt. The rest of this section introduces

the single-curve approach for estimating corporate term structures, describes

why having small samples of bonds is a limitation for improving the single-

curve estimators, and explains how the characteristics of the proposed model

make it suitable to cope with such a limitation.

A popular approach for estimating the term structure of corporate bonds

is the single-curve approach which consists of grouping the bonds by credit

rating level, and then estimating the term structure of each class by using

methods similar to those developed for government bonds (Schwartz 1998).

Such methods include the use of splines (McCulloch 1971) and exponential

polynomials (Nelson and Siegel 1987; Svensson 1994). An improvement on

the single-curve approach consists of jointly modeling both corporate and gov-

ernment bonds (Houweling et al. 2001; Jankowitsch and Pichler 2004). The

joint-model has the advantage of producing, for each rating class, estimators

of credit spread curves that are smoother as a function of time to maturity

than those produced with the single-curve approach; credit spreads are de-

fined as the difference between term structures of corporate bonds and those

of treasuries.

The single-curve approach uses credit ratings as a metric to define groups

of bonds. Although ratings are accepted in practice as a sufficient metric to

define homogeneous groups, it has been reported that there are other bond

characteristics that influence their term structure: default risk, liquidity, tax
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liability, recovery rate and bond age (Elton et al. 2004). A natural approach

for incorporating these factors into the single-curve approach would be to use

them as metrics for defining bond classes. However, such an alternative is not

feasible in practice given the current estimation methods because, as Elton

et al. (2004) pointed out, this would result in classifications with too few

bonds within each group to estimate term structures with any accuracy.

Another criterion for grouping corporate bonds that has been considered

in the literature is the issuer company. This classification is relevant because

the resulting estimators approximate the term structure of individual firms,

and consequently, they reflect the uniqueness of a firm’s credit risk. Jarrow

et al. (2004) proposed a spline-based model that describes the term structure

of corporate debt as the sum of the risk-free term structure and a spread

curve. A Bayesian version of Jarrow’s model is described in Li and Yu (2005).

A similar approach was used in Krishnan et al. (2009) with the difference that

the spread curves were modeled with exponential polynomials following the

parameterization introduced by Diebold and Li (2006).

An important constraint, however, for estimating the term structure of

individual companies is that most of the companies only issue a handful of

bonds. As a result, empirical studies use monthly data and consider only

companies with a large number of outstanding bonds to support estimation.

Jarrow et al. (2004) and Li and Yu (2005), for example, applied their method

to a data set consisting of bonds issued by AT&T that included, on average, 4.3

bonds per month. Krishnan et al. (2009) applied their method to companies

having transaction prices for at least 5 bonds per month and with maturities

that span at least 7 years. In practice, however, it is common to find companies

for which there are fewer bonds available. For example, the data set described
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in Section 4, which includes daily information for 2009, shows that the average

number of bonds per company is as small as 2.1.

It follows from the discussion above that the estimation of corporate term

structures could be improved if we had estimation methods capable of pro-

ducing reliable estimators based on small samples. Specifically, such methods

will allow us to use different criteria for defining homogeneous groups of bonds

as well as to estimate the term structure of single companies using daily data

and without having to filter out companies with a small number of outstanding

bonds. In this paper we introduce one such estimation method.

The key feature of our approach is to compensate for the small number of

bonds per group/company by jointly modeling their term structures. Unlike

Houweling et al. (2001) or Jarrow et al. (2004), however, we do not focus on

the relationship between corporate and government term structures, instead

we propose to pool information and borrow strength across the groups of

corporate bonds. We achieve this by using a Bayesian hierarchical model

which is defined as follows. First, each group of corporate bonds is modeled

as a subject with its term structure being determined by a four-dimensional

vector of parameters corresponding to the functional form proposed by Nelson

and Siegel (1987). Next, we pool information among the subjects by setting

a prior distribution that represent the subject-specific parameters as a sample

from a common distribution. Since our goal is to perform estimation when

only a small sample is available, the use of a hierarchical model is a natural

choice because this type of model is known to perform well in situations when

there are more parameters than data points per subject (Gelman et al. 2004).

The prior distribution in our model should be flexible enough to capture

the heterogeneity across the subject-specific parameters, including outliers,
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over-dispersion, and multimodality. Such a flexibility is achieved by using a

mixture prior distribution in which the number of components and their co-

rresponding parameters are random. Specifically, the weights and the location

parameters of the components in the mixture are both modeled via a Dirichlet

process (DP). The use of a DP prior is a popular modeling approach among

the so-called Bayesian nonparametric methods (Müller and Quintana 2004).

It has been used in many applications including pharmacokinetics (Rosner

and Müller 1997), stochastic frontier models (Griffin and Steel 2004), spatial

modeling (Gelfand et al. 2005), density estimation (Dunson et al. 2007), and

survival analysis (De Iorio et al. 2009).

The proposed model is illustrated with an empirical analysis in which the

term structures of individual companies are estimated. This empirical analysis

also quantifies the improvement in performance that results of using estimators

by company–produced with the proposed model–versus those obtained when

the bonds are grouped by credit rating. The performance is measured in

terms of price residuals; the residual of each bond is defined as its observed

price minus its theoretical price implied by the estimated term structure. We

consider in this paper price residuals corresponding to both in-sample and out-

of-sample tests, with the latter being computed via cross-validation. Using a

sample of 599 U.S. bonds traded on June 15, 2009, we found that the estimators

by company show price residuals smaller than those of estimators by credit

rating; the reduction in terms of in-sample price residuals is 80% while for

out-of-sample price residuals is on average 61%.

Our empirical analysis uses only corporate bonds–treasuries are not included–

and it uses the same sample of bonds to perform estimation at both the com-

pany and rating level. These features are favored because we are interested
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in, on the one hand, showing the positive effect of modeling the information

shared among corporate bonds (producing reliable estimators with small sam-

ples), and on the other, quantifying the improvement in accuracy that results

of analyzing a given sample of bonds at the firm rather than the rating level.

Because of the goals just described, our empirical analysis does not include a

comparison to the estimation methods introduced by Jarrow et al. (2004) and

Krishnan et al. (2009), respectively. These two approaches combine corporate

and government bonds and, as explained earlier, their implementation has been

limited to monthly data and companies with a large number of outstanding

bonds to support estimation.

This rest of this paper is organized as follows. Section 2 introduces the

discounted cash flow principle and shows how it is used for estimating the

term structure. Our proposed model is described in Section 3. The details of

the empirical application are given in Section 4. And finally, conclusions and

discussion appear in Section 5.

2 Estimation of the Term Structure

Since most of the corporate and government bonds have a positive coupon,

their term structures are not observable and they have to be estimated from

market prices using statistical techniques. In this paper we consider estimation

methods that are based on the discounted cash flow (DCF) principle. This

section defines the DCF principle and explains how it has been used to estimate

term structures.

Before introducing the DCF principle, we discuss equivalent representa-

tions of the term structure. One representation is the zero-coupon yield curve,
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y(T ), which describes the relationship between spot rates of zero-coupon bonds

and their time to maturity, T . Two other representations of the term struc-

ture are the discount curve, D(T ), and the forward rate curve, f(T ). The

representations y(T ), D(T ) and f(T ) are all equivalent since they satisfy the

following relationships:

D(T ) = exp {−Ty(T )} = exp

{
−

∫ T

0

f(s)ds

}
. (1)

In this manuscript we will refer to the term structure using any of these equi-

valent representations.

In order to estimate the term structure, the discounted cash flow (DCF)

can be used to link bond prices to the discount curve. A bond is a debt in

favor of the bondholder, who receives in return a cash flow composed of interest

(coupon) and the payment of the principal at the set maturity date. The DCF

principle states that an investor is willing to pay for a given bond, b, the sum

of the present value of the remaining payments in the cash flow:

PDCF,b =

mb∑
j=1

CFb(j) ∗D(tb,j), (2)

where PDCF,b denotes the DCF bond price, CFb is the cash flow vector in-

cluding the mb remaining payments, and D(·) is the discount curve evaluated

at the time tb,j when the jth cash flow is paid. The discount function re-

flects the time value of money as well as a risk premium. Although equation

(2) express PDCF,b in terms of the discount function, the relationships in (1)

allow us to write PDCF,b in terms of any of the equivalent representations

of the term structure. For example, using the zero-coupon yield curve, y(·),
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PDCF,b =
∑mb

j=1 CFb(j) ∗ exp {−tb,j y(tb,j)}.
Based on the DCF principle, we can estimate the term structure as fol-

lows. First, any of the equivalent representations of the term structure is

approximated using a parametric function; we denote its parameters as θ.

Such a parametric function is called an approximating function. Two popular

functional forms are splines (McCulloch 1971) and exponential polynomials

(Nelson and Siegel 1987). Next, the discount function is written in terms

of the approximating function by using the relationships (1) and is used to

compute the DCF bond price which now is a function of θ. Finally, θ is

estimated by comparing the DCF price to the observed price of each bond in

the sample; observed prices, also referred to as dirty prices, incorporate any

interest accrued. The basic estimation problem is to find a discount curve with

optimal explanatory power, that is, a discount curve that minimizes pricing

errors with respect to a given norm. For example, using a quadratic loss

function as the norm and approximating the zero-coupon yield curve with a

parametric function, the details of the estimation problem are as follows. The

yield curve is now a function of both time, t, and a vector of parameters,

θ, corresponding to the functional form being used: y(t,θ). Using (1), the

discount function is given by D(t, θ) = exp {−t y(t, θ))} and the DCF bond

price is equal to

PDCF,b(θ) =

mb∑
j=1

CFb(j) ∗D(tb,j, θ). (3)

The estimated term structure corresponds to θ that minimizes

L(θ) =
∑

b

ωb (Pb − PDCF,b(θ))2, (4)

where Pb is the observed price of the bond b, and each bond weight, ωb, can
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be set based, for example, on the duration of the bond.

The estimation procedure just described can be applied to both government

and corporate bonds, respectively. Unlike government bonds, however, we

cannot assume that all corporate bonds have the same term structure because

they are associated with different default risk levels. It is common practice to

split the corporate bonds into homogeneous groups based on some criterion

and estimate the term structure for each group using the DCF principle. A

popular criterion used in practice for defining groups is the credit rating level

of the bonds. We follow Houweling et al. (2001) and refer to this case as the

single-curve approach.

In our hierarchical model, the DCF principle is used to define the likelihood.

The details are shown in the following section.

3 A Semiparametric Bayesian Hierarchical Model

Consider n term structures to be estimated. For example, when working

with corporate bonds those term structures could correspond to rating classes

or individual firms, depending on the criterion used for grouping the bonds.

Let θi be the vector of parameters characterizing the ith term structure. In

this section, we introduce a Bayesian hierarchical model for jointly estimating

{θ1, θ2, . . . , θn}.
Let Pib be the logarithm of the price of the bth bond corresponding to

the ith term structure, the proposed Bayesian hierarchical model includes the

following three main components:

p(Pib|θi), p(θi|φ), p(φ), (5)
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where the likelihood p(Pib|θi) links bond prices and term structures via a non-

linear regression model, p(θi|φ) is the prior for the vector of parameters θi,

and p(φ) denotes the probability model of the hyperparameters φ.

The following sections describe the distributional assumptions for each

component in (5). The likelihood p(Pib|θi) is set in Section 3.1 while the

distribution p(θi|φ) and p(φ) are introduced in Section 3.2. We explain how

to incorporate bond weights into the model in Section 3.3. And finally, the

sampling scheme for the posterior distribution is discussed in Section 3.4.

3.1 Non-linear Regression Model

The likelihood in our model is given by a non-linear regression based on the

discounted cash flow (DCF) principle. Using the indexes ib to denote the data

of the bond b with term structure i, observed bond prices are modeled as

Pib = Ψ(θi,CFib) + εib, (6)

where Ψ(θi,CFib) is equal to the DCF price (see equation (3)) computed with

the cash flow vector CFib, that is,

Ψ(θi,CFib) =

mib∑
j=1

CFib(j) ∗D(tib,j,θi),

and εib is an error term with εib ∼ N(0, τ−1), where τ is the precision (inverse

variance). The use of an error term is necessary because the exact equality

between observed and DCF prices does not hold in practice due to market

imperfections (Bliss 1997; Houweling et al. 2001). By using normal errors we

can easily introduce bond weights into the model (see Section 3.3).
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To complete the specification of Ψ(θi,CFib), we need to set a parametric

function to approximate the discount function D(t, θi), or any of its equivalent

representations: yield curve or forward curve. We model the yield curve with

the functional form:

y(t, [β0, α, β2, γ]) = β0

(
1− 1− exp(−t/γ)

t/γ

)
+ α

(
1− exp(−t/γ)

t/γ

)

+ β2

(
1− exp(−t/γ)

t/γ
− exp

(
− t

γ

))
,

(7)

where t > 0 denotes time, and the parameters satisfy β0, α, γ > 0 and β2 ∈ R.

The approximating function (7) and the functional form introduced by

Nelson and Siegel (1987) are equivalent, but in the former the only condition

on the parameters, if any, is to be strictly positive. Because of that feature,

we can compute the logarithm of the parameters β, α and γ and use the

parameterization θ = [k0 log(β0), k0 log(α), 10 k0 β2, k0 log(γ)], where

k0 is a positive integer. The coordinates of θ have infinite support, which is

necessary because, as described in Section 3.2, we use a mixture of multivariate

normal distributions to model the parameters of the yield curve. The integer

k0 increases the scale of the coordinates of θ, providing numerical stability.

When k0 = 1 the covariance matrix of θ shows a small determinant that leads

to numerical errors when modeling its inverse (see the hyperprior for S−1 in

Section (3.2)). In our experience, a value of k0 = 50 is adequate to avoid the

numerical problem described above.

Although splines are a popular alternative for modeling the term structure,

we define (7) based on the Nelson-Siegel (N-S) functional because it provides a

flexible representation that is able to generate a wide range of shapes found in

practice including humps, S shapes, and monotonic curves (Nelson and Siegel
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1987). In addition, the (N-S) form is a parsimonious representation of the

term structure which is completely determined by only four parameters. In

contrast, setting a spline-based functional is more complicated because this

would require us to choose a specific family of splines as well as the number

and position of the corresponding knots. Finally, based on an empirical appli-

cation, Ioannides (2003) argued that parsimonious representations of the term

structure–similar to (7)–perform better than those based on splines because

the latter tend to overfit the data.

The approximating function given in equation (7) is used to describe each

one of the n term structures being estimated. Therefore, each term structure

is characterized by a four-dimensional vector θi.

3.2 Prior Distribution: Dirichlet Process Mixture

In order to produce reliable estimators based on small samples, we propose to

borrow strength across the n individual regression models defined in Section

3.1. We achieve this by using a Bayesian hierarchical model with a prior dis-

tribution in which the parameters θi are modeled as a sample from a common

population distribution. We use a mixture prior for such a common distri-

bution so that our model can accommodate heterogeneity such as outliers,

over-dispersion, multiple modes and skewness. Outliers can appear, for ex-

ample, if the term structure of investment-grade firms is being estimated and

some of the companies are digressing to junk status–and consequently, the

observed prices of their bonds will show low prices–before the ratings of its

bonds change. The details on the mixture prior are as follows.

The multivariate distribution of term structure parameters, p(θi|φ), is

modeled with a mixture of normals with weights wh, locations µh, and common
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covariance matrix S, that is,

θi
iid∼ M(θ) with M(θ) =

∞∑

h=1

whN (µh,S) . (8)

Although the mixture in equation (8) is infinite, the hyperprior that we intro-

duce below implies that most of the weight is assigned to only a few compo-

nents. The use of a normal kernel in the mixture allows for computationally

efficient implementation of the full posterior inference. A common covariance

matrix across the components is assumed, thereby reducing the number of

model parameters.

The mixture in equation (8) is equivalent to

θi ∼ N(µi,S)

µi ∼ G =
∑∞

h=1 whδ (µh) ,
(9)

where the function δ (x) assigns probability 1 to the value of x and 0 elsewhere

and G is a discrete distribution on µ with possible values µh and probabilities

wh, for h = 1, . . . ,∞. With the notation as in (9), the parameters of the prior

mixture are written as {G,S}. Because of the lack of information about the

underlying distribution of θi, we treat the hyperparameters {G,S} as random.

We model G as a random measure generated from a Dirichlet Process (DP)

with base measure G0 and total mass parameter M , that is, G ∼ DP(G0,M).

The mean of the random measure G is given by G0, while M is a scaling

factor that determines the variance of G around G0 (Ferguson 1973). For a

review of models using a DP prior on the random mixing measure see, for

example, West et al. (1994) or Escobar and West (1995). Regarding S, we

adopt the usual conjugate inverse Wishart prior S−1 ∼ Wishart(r, (rR)−1)
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with r degrees of freedom and mean r(rR)−1 = R−1. The mixing measure,

G0, as well as the covariance matrix, S, are common to all the parameters θi.

Thus, the posterior inference will take advantage of the information shared

across the term structures. The hyperprior distribution described above is

similar to that used in Müller and Rosner (1997), where a hierarchical model

for a pharmacokinetic study is discussed.

To complete our model we specify a hyperprior on {M, G0}. Considering

these parameters as random allows us to reduce the chance of impacting the

posterior results due to inappropriate selection fixed values. Unfortunately,

this approach increases the complexity of the model. As a compromise be-

tween flexibility and complexity, we use hyperpriors that allow for an efficient

implementation of the model. Specifically, M is given a gamma distribution

and G0 a multivariate normal: M ∼ Ga(am, bm) and G0 ∼ N(b,B). The

moments b and B are chosen to be conjugate to the kernel of the mixture:

b ∼ N(b0,B0) and B−1 ∼ Wishart (w, (wW)−1). And finally, the precision

τ at the top level of the hierarchical model (see equation 6) is modeled with a

gamma hyperprior: τ ∼ G(aτ , bτ ).

3.3 Bond Weights

The maturity of a bond affects the amount of information available to infer the

term structure. The shorter the maturity the more reliable the bond prices.

Estimation procedures usually incorporate this information by using weights

defined as function of duration. We use such an approach; the weights scale

the variance of the error terms in equation (6) as follows:

Pib ∼ N
(
Ψ(θi,CFib), (τωib)

−1
)
, (10)
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where ωib is the weight of the bond b corresponding to the term structure i.

Under this approach, the effect of the weights is similar to that in equation

(4) because maximizing the induced likelihood is equivalent to minimizing the

weighted non-linear least square criterion. In this paper, we define the bond

weights as

wib =
1

dib∑
b

1
dib

, (11)

where dib is equal to the Macaulay duration of the bond. The duration is a

weighted average of the maturity of a bond using the present value of its cash

flow as weights. Thus, in a set of bonds, the weights will tend to be higher for

those bonds with short time to maturity.

3.4 Posterior Inference

The posterior distribution of the proposed model does not have a closed form.

Thus, we use a Markov chain Monte Carlo (MCMC) scheme to sample from

the posterior distribution. A general description of such a scheme is provided

below.

Conditional on currently imputed values for θ, the full conditional distri-

butions on the parameters have closed forms, thus they all can be updated

by a Gibbs sampling algorithm. In particular, since the kernel of the mixture

and the base measure G0 are both normally distributed, updating the para-

meters µi, which follow a DP hyperprior, can be easily accomplished by using

the sampling algorithm for conjugate models described in MacEachern and

Müller (1998). A review of sampling methods for DP in mixture models with

extensions to non-conjugate models is provided in Neal (2000). Resampling

M is done by introducing a latent beta-distributed variable as described in
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Escobar and West (1995).

For updating θi, however, we cannot use a Gibbs sampling scheme because

the full conditional does not have a closed form due to the non-linearity in

the likelihood of the model. An alternative is to use a Metropolis-Hasting

algorithm which requires the specification of a proposal distribution. When

the sample size is small, however, it is difficult to find good approximations

to the posterior which could be used to set the parameters of the proposal

distribution. To overcome this difficulty, we use the adaptive Metropolis (AM)

algorithm introduced by Haario et al. (2001). The proposal distribution in the

AM algorithm is a Gaussian distribution centered on the current state and

with covariance matrix calculated using all the previous states after a given

burning period. The adaptation provided by the AM algorithm allows us

to produce accurate estimators, even though it starts with a rough initial

covariance matrix for the proposal distribution.

The Supplementary Material includes the details about the implementation

of the MCMC algorithm: a complete description of the sampling scheme and

rules for setting both initial values and hyperparameters. It also discusses the

sensitivity of the proposed model to the hyperprior on the precision parameter,

M , of the Dirichlet process. Although, as suggested in (Dorazio 2009), the

hyperprior on M strongly influence the number of components in the mixture,

its effect is far more limited on the shape and performance of the resulting

estimators (for details see the Supplementary Material).
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4 Application of Term Structure Modeling

This section presents the results of applying the proposed methodology to esti-

mate the term structure of corporate bonds. As previously noted, the proposed

model described in Section 3 allows estimation to take place at the individual

company level, where only a handful of bonds may be issued. Approximating

the term structure of corporate bonds with term structures of companies is

an alternative to the popular procedure of using estimators of rating classes.

As we will demonstrate, grouping bonds by firm increases the accuracy of the

estimators due to the fact that the resulting classification is more homoge-

neous than the classification based on credit ratings. This section includes a

comparison of estimators produced under the two alternative criteria, credit

rating and issuer company.

4.1 Data

A sample of U.S. corporate bonds were obtained by combining information

from two databases: the Trade Reporting and Compliance Engine (TRACE)

introduced by the Financial Industry Regulatory Authority, and The Mer-

gent Fixed Income Securities Database (Mergent-FISD) for academia. Both

databases were accessed through the Wharton Research Data Services (http:

//wrds.wharton.upenn.edu/). The database TRACE, introduced in July of

2002, consolidates transaction data on 100 percent of over-the-counter activ-

ity representing over 99 percent of total U.S. corporate bond market activity

in over 30,000 securities. TRACE provides, for a given trading day, a list

of the bonds traded and their prices. However, other characteristics of those

bonds, their time to maturity, coupon, payment frequency, issuer, etc., are
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not available in TRACE. We obtained such information in Mergent-FISD, a

comprehensive database of publicly-offered U.S. bonds that provides details

on debt issues and the issuers on over 140,000 securities.

For illustration, we consider U.S. corporate bonds traded on June 15, 2009.

The characteristics per bond in our data set include issuer company, matu-

rity date, coupon, face value, payment frequency, clean prices, and Moody’s

credit ratings. Our sample includes fixed coupon, non-callable, non-putable,

investment grade bonds (AAA, AA, A, BBB), with maturity between 1 and

20 years. We exclude all bonds with a negative yield, since this may indi-

cate poor liquidity. Our final sample contains 599 bonds. Two criteria will

be considered for splitting those bonds into groups: credit rating and issuer

company. The resulting classification greatly differ in terms of the number of

bonds per group. The classification based on credit ratings includes 4 groups

corresponding to the levels AAA, AA, A, and BBB; each of those groups in-

clude 31, 117, 306 and 145 bonds, respectively. In contrast, the classification

determined by issuer includes 197 groups, 114 (58%) of them have only one

bond (see Table 1).

Number of Bonds
1 2 3 4 5 ≥ 6

# Companies 114 33 17 5 10 18
(58%) (17%) (9%) (3%) (5%) (9%)

Table 1: Distribution of companies by number of bonds. The table refers to
U.S. corporate bonds with information for June 15, 2009. Percentages do not
add up to 100% due to rounding
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4.2 Implementation

The proposed Bayesian model includes an MCMC scheme to produce a sample

from its posterior distribution. The implementation of such a sampling algo-

rithm is written in the programming language C. The parameters of the ith

term structure are estimated as the posterior mean of the vector of parame-

ters θi; the posterior mean is approximated by averaging the posterior sample.

Regarding the single-curve method, it estimates the term structure of credit

rating classes using the DCF principle. The computations are performed using

the package “termstrc,” which is written in the R system for statistical com-

puting (Ferstl and Hayden 2008). The functional form proposed by Nelson

and Siegel (1987) is used as approximating function of the discount function.

The parameters are estimated by minimizing the weighted squared errors in

(4), the weights are defined as in (11), and the optimization problem is solved

numerically with the optimiser nlminb() available in R.

The performance of term structure estimation methods are compared through

both in-sample and out-of-sample metrics. The in-sample goodness of fit is

measured in terms of price residuals, also called price errors, which are equal

to the market price minus the theoretical DCF bond price (see equation 3)

calculated using the estimated discount curve. Comparing price residuals is

appropriate because term structure models should be able to explain market

prices accurately since interest rates are the main determinants of bond prices.

The term structure model with the lowest price errors provides the best fit.

Out-of-sample measures (Bliss 1997) are obtained using cross-validation.

One round of cross-validation starts by partitioning the dataset into comple-

mentary subsets: a training set and a test set. The training set is used to fit

term structures that are used to compute the theoretical DCF price for each
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bond in the test set and residual of the DCF price from the market prices is

obtained. To summarize these residuals, we compute the root mean square

prediction error (RMSPE) and the mean absolute prediction error (MAPE)

for the test set.

4.3 Estimators by Rating Class

Term structures by credit rating class are estimated using both methods: the

proposed Bayesian model and the single-curve approach (see Figure 1). The

yield curves produced with the proposed Bayesian model show the expected re-

lationship between credit risk and yield: the lower the credit rating, the higher

the yield. In contrast, the curves estimated using the single-curve method fail

to show such a pattern for maturities higher than 10 years, even though all

rating classes except the AAA include bonds with time to maturity in the

range (10, 20] (see Table 2).

(1-5] (5-10] (10-15] (15-20] ALL
AAA 31 0 0 0 31

AA 69 44 3 1 117
A 201 83 8 14 306

BBB 93 26 15 11 145
Total 394 153 26 26 599

Table 2: Distribution of bonds by maturity (columns) and rating class (rows).
This table shows that the number of bonds decrease for long maturities. In
particular, there are 394 bonds with maturity between 1 and 5 years that
account for 66% of the bonds in the sample.

The estimated parameters are reported in Table 3. In all rating classes, The

methods produce different parameter estimates, especially in rating class AA.

Since the estimators in the single-curve approach are produced by numerically

solving a minimization problem, the user needs to provide an initial value
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Figure 1: Yield curves by rating class. The estimators produced with the
proposed Bayesian hierarchical model (BHM) are in line with the theory in
terms of their “order.” In contrast, the single-curve estimators (SC) cross each
other.
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to start the search for the minimum. Using alternative initial values, the

estimated parameters were in all cases consistent with those reported in Table

3.

Estimated Parameters
Method Rating β0 β1 β2 τ

SC
AAA 0.03 -0.06 0.00 0.6

AA 53.28 -53.25 -50.87 378.17
A 0.09 -0.03 -0.09 1.10

BBB 0.08 -22.43 23.27 0.19
BHM

AAA 0.06 -0.05 0.06 11.79
(0.04,0.08) (-0.07, -0.03) (-0.02, 0.15) (8.24, 18.12)

AA 0.07 -0.06 0.08 5.2
(0.04, 0.1) (-0.08, -0.04) (0.00, 0.15) (3.98,7.02)

A 0.07 -0.06 0.08 3.46
(0.05,0.10) (-0.08,-0.05) (-0.01,0.15) (2.66,4.47)

BBB 0.07 -0.07 0.21 0.49
(0.07,0.08) (-0.08,-0.07) (0.16,0.27) (0.25,0.73)

Table 3: Estimated parameters for term structures of rating classes by method.
To allow comparison, the estimators are expressed in term of the original
parameterization introduced by Nelson and Siegel (1987). For estimators ob-
tained with the proposed Bayesian hierarchical model (BHM), 90% probability
intervals are reported in parenthesis.

The hierarchical Bayesian model and the single curve estimator demons-

trate similar performance of in-sample metrics as seen in the boxplots of figure

2 and the summary statistics in Table 4. A key advantage of the hierarchical

Bayesian method applied at the level of rating class is that the yield curves

produced via the hierarchical Bayesian method are in line with economic the-

ory. The single curve estimators can be improved by removing outliers; a bond

is considered to be an outlier based on the size of its pricing error. Filter rules

reported in the literature include single thresholds and iterative algorithms
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that continue until no outliers are identified. An example of the former is

Elton et al. (2004) who removed all bonds having a price error greater than

5 dollars, while (Schwartz 1998) illustrate iterative rules. In our case study,

removing bonds from the sample improves the shape of the single curve esti-

mators: it eliminates the hump in the estimated BBB yield curve (for details,

see the Supplementary Material). The hierarchical Bayesian method is not

overly influenced by the presence of the outliers: its DP prior allows the out-

liers to have their own cluster and, thereby, leave the central mass alone. By

keeping all bonds in the sample, we avoid introducing bias.

Method Statistic ALL AAA AA A BBB
SC-rating

Median 2.80 0.18 1.52 2.63 9.31
IQR 5.63 0.20 2.41 4.65 9.47

BHM-rating
Median 2.98 0.45 1.20 2.70 8.89

IQR 6.08 0.41 2.44 4.19 7.02
BHM-firm

Median 0.56 0.15 0.66 0.57 0.53
IQR 1.22 0.12 1.37 1.10 1.54

Table 4: Summary statistics of absolute price errors. Statistics are reported
by method (rows) and rating level (columns). “SC-rating” corresponds to the
single-curve approach producing estimators by rating class. “BHM-rating” and
“BHM-firm” refers to the estimators produced with the Bayesian hierarchical
model by rating and by firm, respectively. The median absolute price residuals
of estimators by firm are smaller than those obtained by rating class. Both
median and interquartile range (IQR) increase for low credit rating classes.

4.4 Estimators by Company

The primary reason for introducing the hierarchical Bayesian model to this

problem is to capitalize on the ability to estimate the term structure at the

issuer level by borrowing strength from similarities across issuers. In this
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Figure 2: Boxplots for in-sample absolute price errors by method and ra-
ting. The labels “AAA”, “AA”,“A” ,“BBB” refer to credit rating levels while
“ALL” indicates that all the residuals are being considered. The estimation
approaches considered are: the single-curve approach that produces estima-
tors by rating class (SC-rating), and the proposed Bayesian hierarchical model
with estimators by rating class (BHM-rating) and firm (BHM-firm)

25



section we demonstrate the superior performance obtained through estimation

at the issuer level, justifying the large increase in number of model parameters

necessary for this approach.

The Bayesian hierarchical model is used to jointly estimate the term struc-

ture of 197 individual firms. The estimated yield curves are smooth and reflect

the inherent heterogeneity among companies whose outstanding bonds have a

low credit rating (see Figure 3). The median in-sample absolute price residual

of estimators by firm and those produced with the single-curve approach are

0.56 and 2.80, respectively. A relative difference of −80% (see Table 4).

As expected, the out-of-sample metrics also demonstrate improved perfor-

mance for the Bayesian hierarchical model applied at the issuer level. In this

comparison, the test set is defined by randomly selecting one bond from any

company having more than one outstanding bond, while the training set in-

cludes the rest of the bonds in the sample. Consequently, any company with x

number of bonds in the original sample, where x > 1, will become a company

with x− 1 bonds in the training set. Since 83 of the companies in the original

sample have more than one outstanding bond, then the test set includes 83

bonds. We generate 30 random partitions of test and training sets. For each

partition, we compute the out-of-sample measures of the estimators by firm

obtained with the proposed Bayesian model, and the estimators by rating class

produced with the single-curve approach. That is, the bonds in the training

set are grouped based on the appropriate criterion (issuer company or credit

rating), term structures are estimated for each group, and finally, the RMSPE

and MAPE are computed based on the prediction errors of the bonds in the

test set. The average RMSPE and MAPE over the 30 partitions are reported

in Table 5. The estimators by firm show the best performance; their RMSPE
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Figure 3: Yield curves by company obtained with the Bayesian hierarchical
model. Each panel includes the yield curve of companies that have at least one
outstanding bond with a given rating level. Since four companies in our data
set include bonds with different rating levels, four yield curves appear more
than once. The number of curves in each panel is indicated in parenthesis. For
each company, a segment of its yield curve is displayed with a solid line, the
right extreme in the x-axis of such a segment is equal to the longest time to
maturity of the bonds issued by the given company. Thus, the solid segment
reflects the range in which bond data is available.
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and MAPE are, respectively, 62% and 61% smaller than those of estimators

by rating class.

RMSPE MAPE
BHM-firm 3.20 2.14
SC-rating 8.34 5.46

Relative Difference -62% -61%

Table 5: Average of the root mean squared predition error (RMSPE) and
mean absolute prediction error (MAPE) over 30 partitions by method. The
out-of-sample statistics of the Bayesian hierarchical model (BHM-firm) that
estimates term structures by firm are 60% smaller than those by rating class
obtained with the single-curve approach (SC-rating).

5 Discussion

We introduced a Bayesian hierarchical model for jointly estimating, across all

firms in our sample, the term structures of interest rates for corporate bonds.

A hierarchical approach provides the opportunity to produce reliable estima-

tors based on small samples of bonds, a necessary feature for estimating term

structures of firms. Due to the heterogeneous nature of term structure at

the credit rating level, we see significant improvements from term structure

estimation at the issuer level. In addition, the hierarchical Bayesian method-

ology applied at the level of credit rating resulted in term structure estimators

demonstrating improved consistency with economic theory than estimating a

single discount curve function through non-linear weighted least squares to

each credit rating class.

The methodology developed provides additional advantages of estimation

of term structures. The methodology is easily adapted to fit term structures

of corporate bonds grouped by other criteria, and even consider other types of
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bonds. For example, combinations of corporate and/or government bonds and

estimation of credit spreads, i.e., the difference between government and corpo-

rate yield curves, can be implemented through this methodology. Computing

credit spreads based on the estimators produced with our model are likely to

be accurate because of the good performance of our model in identifying the

underlying term structure of corporate bonds, along with the fact that there

are usually enough government bonds to accurately estimate the risk-free term

structure. Another possible application is the estimation of spreads between

bonds from different countries. In this case we would consider each country

as a subject, jointly estimate their term structures, and take the difference of

the estimated curves by pairs to obtain the spreads.

Regarding the practical implementation of the proposed model, our expe-

rience suggests that it does not require excessive tuning. Sensible results have

always been obtained by using the formulas described in the Supplementary

Material for defining initial values and setting fixed hyperparameters.

In summary, the term structure estimation model described in this paper is

able to produce accurate estimators of the term structure when only a handful

of bonds are available. Furthermore, it is a flexible model that is not restricted

to a specific type of bond and it can be easily implemented in practice since

no excessive tuning of its parameters is required.

6 Appendix

Supplementary Material - includes: a complete description of the MCMC,

rules for setting initial values and hyperparameters, a sensitivity analysis

on the hyperprior for the precision parameter of the Dirichlet process,
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and a discussion on the shape of the term structure estimators corres-

ponding to the BBB rating class.
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