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Abstract. The formulation minx,y f(x)+g(y) subject to Ax+By = b, where f and g are extended-value convex functions,

arises in many application areas such as signal processing, imaging and image processing, statistics, and machine learning either

naturally or after variable splitting. In many common problems, one of the two objective functions is strictly convex and

has Lipschitz continuous gradient. On this kind of problem, a very effective approach is the alternating direction method of

multipliers (ADM or ADMM), which solves a sequence of f/g-decoupled subproblems. However, its effectiveness has not been

matched by a provably fast rate of convergence; only sublinear rates such as O(1/k) and O(1/k2) were recently established in the

literature, though these rates do not require strict convexity. This paper shows that global linear convergence can be guaranteed

under the above assumptions on strict convexity and Lipschitz gradient on one of the two functions, along with certain rank

assumptions on A and B. The result applies to the generalized ADM that allows the subproblems to be solved faster and less

exactly in certain manners. The derived rate of convergence also provides some theoretical guidance for optimizing the ADM

parameters. In addition, this paper makes meaningful extensions to the existing global convergence theory of the generalized

ADM.

Key words. alternating direction method of multipliers, ADMM, augmented Lagrangian, global convergence, linear
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1. Introduction. The alternating direction method of multipliers (ADM or ADMM) is very effective

at solving many practical optimization problems and has wide applications in areas such as signal and image

processing, machine learning, statistics, compressive sensing, and operations research. We refer to [1–10]

for a few examples of applications. The ADM is applied to constrained convex optimization problems with

separable objective functions in the following form

min
x,y

f(x) + g(y)

s.t. Ax + By = b,
(1.1)

where x ∈ Rn and y ∈ Rm are unknown variables, A ∈ Rp×n and B ∈ Rp×m are given matrices, and

f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} are closed proper convex functions. Some original problems

are not in the form of (1.1), but after introducing variables and constraints, they become the form of (1.1).

For example, introducing y = Ax, problem minx f(x) + g(Ax) is transformed to (1.1) with B = −I and

b = 0. Constraints x ∈ X and y ∈ Y , where X ⊆ Rn and Y ⊆ Rm are closed convex sets, can be included

as the (extended-value) indicator functions IX (x) and IY(y) in the objective functions f and g. Here the

indicator function of a convex set C is defined by

IC(z) :=

{
0 if z ∈ C,

∞ if z /∈ C.
(1.2)

The main goal of this paper is to show that the ADM applied to (1.1) has global linear convergence

provided that f is strictly convex, ∇f is Lipschitz continuous, and matrices A and B have certain rank con-

ditions. The convergence analysis is performed under a general framework that allows the ADM subproblems

to be solved inexactly and faster.
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1.1. Background. The classic ADM was first introduced in [11, 12]. Consider the augmented La-

grangian function of (1.1):

LA(x, y, λ) = f(x) + g(y) − λT (Ax + By − b) +
β

2
‖Ax + By − b‖2

2, (1.3)

where λ ∈ Rp is the Lagrangian multiplier vector and β > 0 is a penalty parameter. The classic augmented

Lagrangian method (ALM) minimizes LA(x, y, λ) over x and y jointly and then updates λ. However, the

ADM replaces the joint minimization by minimization over x and y, one after another, as described in

Algorithm 1. Compared to the ALM, though the ADM may take more iterations, it often runs faster due

to the easier subproblems.

Algorithm 1: Classic ADM

Initialize x0, λ0, β > 0;1

for k = 0, 1, . . . do2

yk+1 = arg miny LA(xk, y, λk);3

xk+1 = arg minx LA(x, yk+1, λk);4

λk+1 = λk − β(Axk+1 + Byk+1 − b).5

Although there is extensive literature on the ADM and its applications, there are very few results on

its rate of convergence until the very recent past. Work [13] shows that for a Jacobi version of the ADM

applied to smooth functions with Lipschitz continuous gradients, the objective value descends at the rate

of O(1/k) and that of an accelerated version descends at O(1/k2). Then, work [14] establishes the same

rates on a Gauss-Seidel version and requires only one of the two objective functions to be smooth with

Lipschitz continuous gradient. Lately, work [15] shows that ‖uk − uk+1‖, where uk := (xk, yk, λk), of the

ADM converges at O(1/k) assuming at least one of the subproblems is exactly solved. Work [16] proves

that the dual objective value of a modification to the ADM descends at O(1/k2) under the assumption that

the objective functions are strongly convex (one of them being quadratic) and both subproblems are solved

exactly. We show the linear rate of convergence O(1/ck) for some c > 1 under a variety of scenarios in which

at least one of the two objective functions is strictly convex and has Lipschitz continuous gradient. This rate

is stronger than the sublinear rates such as O(1/k) and O(1/k2) and is given in terms of the solution error,

which is stronger than those given in terms of the objective error in [13, 14, 16] and the solution relative

change in [15]. On the other hand, [13–15] do not require any strictly convex functions. The fact that a wide

range of applications give rise to model (1.1) with at least one strictly convex functions has motivated this

work.

During the final polishing of this paper, we learned the work [17] through private communication, which

proves the linear convergence of ADM in a different approach. The linear convergence in [17] requires that

the objective function is smooth and the step size for updating the multipliers is sufficiently small, while no

explicit linear rate is given. On the other hand, it allows more than two blocks of separable variables and

it does not require strict convexity; instead, it requires the objective function to include f(Ex), where f is

strictly convex and E is a possibly rank-deficient matrix.

It is worth mentioning that the ADM applied to linear programming is known to converge at a global

linear rate [18]. For quadratic programming, work [19] presents an analysis leading to a conjecture that the

ADM should converge linearly near the optimal solution. Our analysis in this paper is different from those

in [18, 19].
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Note that when restricted to a compact set, a strictly convex function is strongly convex. So, as long as

an algorithm generates a bounded sequence, strict convexity is effectively strong convexity. For simplicity,

we use “strong convexity” or “strongly convex” in the remaining of the paper.

Variants of Algorithm 1 that allow LA to be inexactly minimized over x or y are very important to the

applications in which it is expensive to exactly solve either the x-subproblem or the y-subproblem, or both

of them. For this reason, we present Algorithm 2 below, which is more general than Algorithm 1 by allowing

easier subproblems. Our results are established for Algorithm 2.

Algorithm 2: Generalized ADM

Choose Q � 0 and a symmetric matrix P . Initialize x0, λ0, β > 0, γ > 0;1

for k = 0, 1, . . . do2

yk+1 = arg miny LA(xk, y, λk) + 1
2 (y − yk)T Q(y − yk);3

xk+1 = arg minx LA(x, yk+1, λk) + 1
2 (x − xk)T P (x − xk);4

λk+1 = λk − γβ(Axk+1 + Byk+1 − b).5

Compared to Algorithm 1, Algorithm 2 adds 1
2‖y − yk‖2

Q and 1
2‖x− xk‖2

P to the y- and x-subproblems,

respectively, and assigns γ as the step size for the update of λ. Here, we use the notion ‖x‖2
M := xT Mx. If

M � 0, ‖x‖M is a norm, but we abuse the notation by allowing any symmetric matrix M . Different choices

of P and Q are overviewed in the next subsection. They can make steps 3 and 4 of Algorithm 2 easier than

those of Algorithm 1.

We do not fix γ = 1 like in most of the ADM literature since γ plays an important role in convergence

and speed. For example, when P = 0 and Q = 0, any γ ∈ (0, (
√

5 + 1)/2) guarantees the convergence of

Algorithm 2 [20], but γ = 1.618 makes it converge noticeably faster than γ = 1. The range of γ depends on

P and Q, as well as β. When P is indefinite, γ must be smaller than 1 or the iteration may diverge.

Let us overview two works very related to Algorithm 2. Work [21] considers (1.3) where the quadratic

penalty term is generalized to ‖Ax + By − b‖2
Hk

for a sequence of bounded positive definite matrices {Hk},

and the work proves the convergence of Algorithm 2 restricted to γ = 1 and differential functions f and g.

Work [22] replaces γ by a general positive definite matrix C and establishes convergence assuming that A = I

and the smallest eigenvalue of C is no greater than 1, which corresponds to γ ≤ 1 when C = γI. In these

works, both P and Q are restricted to positive semi-definite matrices, and there is no rate of convergence

given.

In addition to deriving linear convergence rates, this paper makes meaningful extensions to the existing

convergence theory of Algorithm 2. Specifically, the step size γ is less restrictive, and P is allowed to be

indefinite. These extensions translate to faster convergence and more options of solving the x-subproblem

efficiently.

1.2. Inexact ADM subproblems. By “inexact”, we mean that the ADM subproblems in Algorithm 1

are replaced by their approximations that are easier to solve. We do not consider the errors in the subproblem

solutions due to finite-precision arithmetics or early-stopping of a subproblem solver.

Let us give a few examples of matrix P in step 4 of Algorithm 2. These examples also apply to Q in

step 3. Note that P and Q can be different.

Prox-linear [23]. Setting

P =
β

τ
I − βAT A
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gives rise to a prox-linear problem at step 4 of Algorithm 2:

min
x

f(x) + β

(

(hk)T (x − xk) +
1
2τ

‖x − xk‖2
2

)

, (1.4)

where τ > 0 is a proximal parameter and hk := AT (Axk + Byk+1 − b− λk/β) is the gradient of the last two

terms of (1.3) at x = xk.

This P makes step 4 much easier to compute in various applications. For example, if f is a separable

function, problem (1.4) reduces to a set of independent one-dimensional problems. In particular, if f is `1

norm, the solution is given in the closed form by so-called soft-thresholding. If f is the matrix nuclear norm,

then singular-value soft-thresholding is used. If f(x) = ‖Φx‖1 where Φ is an orthogonal operator or a tight

frame, (1.4) also has a closed-form solution. If f is total variation, (1.4) can be solved by graph-cut [24,25].

There are a large number of such examples in signal processing, imaging, statistics, machine learning, etc.

Gradient descent. When function f is quadratic, letting

P =
1
α

I − Hf − βAT A, Hf := ∇2f(x) � 0,

gives rise to a gradient descent step for step 4 of Algorithm 2 since the problem becomes

min
x

(gk)T (x − xk) +
1
2α

‖x − xk‖2
2, (1.5)

where gk := ∇f(xk) + βAT (Axk + Byk+1 − b − λk/β) is the gradient of LA(x, yk+1, λk) at x = xk. The

solution is

xk+1 = xk − αgk, (1.6)

where α > 0 is obviously the step size. When step 4 of Algorithm 1 must solve a large, nontrivial linear

system, taking the gradient step has a clear advantage.

Approximating AT A. The term β
2 ‖Ax+By−b‖2

2 in LA(x, y, λ) contains the quadratic term β
2 xT AT Ax.

Sometimes, replacing AT A by a certain D ≈ AT A makes step 4 (much) easier to compute. Then one can let

P = β(D − AT A).

The choice of P effectively turns β
2 xT AT Ax into β

2 xT Dx since

β

2
‖Ax + By − b‖2

2 +
1
2
‖x − xk‖2

P =
β

2
xT Dx + [terms linear in x] + [terms independent of x].

This approach is useful when AT A is nearly diagonal (D is the diagonal matrix), or is an orthogonal matrix

plus error (D is the orthogonal matrix), as well as when an off-the-grid operator A can be approximated

by its on-the-grid counterpart that has very fast implementations (e.g., the discrete Fourier transforms and

FFT). Note that P can be indefinite.

Goals of P and Q. The general goal is to wisely choose P so that step 4 of Algorithm 2 becomes much

easier to carry out and the entire algorithm runs in less time. The same applies to Q of step 3 of Algorithm 2

except we require Q � 0 for provable convergence. In the ADM, the two subproblems can be solved in either

order (but fixed throughout the iterations). However, when one subproblem is solved less exactly than the

other, Algorithm 2 tends to run faster if the less exact one is solved later — assigned as step 4 of Algorithm

2 — because at each iteration, the ADM updates the variables in the Gauss-Seidel fashion. If the less exact

one runs first, its relatively inaccurate solution will then affect the more exact step, making its solution also

inaccurate. Since the less exact subproblem should be assigned as the later step 4, more choices of P are

needed than Q, which is the case in this paper.
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Table 1.1

Four scenarios leading to linear convergence

scenario
strongly Lipschitz full row

remark
convex continuous rank

1 f ∇f A if Q � 0, B has full column rank

2 f, g ∇f A

3 f ∇f,∇g - B has full column rank

4 f, g ∇f,∇g -

Table 1.2

Summary of linear convergence results

case P, P̂ Q
any scenario 1 – 4

Q-linear convergence R-linear convergence∗

1 P = 0 = 0 (Axk, λk)

xk, yk, λk
2 P̂ � 0 = 0 (xk, λk)

3 P = 0 � 0 (Axk, yk, λk)

4 P̂ � 0 � 0 (xk, yk, λk)
∗ In cases 1 and 2, scenario 1, R-linear convergence yk requires full

column rank of B; otherwise, only Byk has R-linear convergence

1.3. Summary of results. Table 1.1 summarizes the four scenarios under which we study the linear

convergence of Algorithm 2, and Table 1.2 specifies the linear convergent quantities for different types of

matrices P̂ , P , and Q, where

P̂ := P + βAT A

is defined for the convenience of convergence analysis. P = 0 and Q = 0 correspond to exactly solving the

x- and y-subproblems, respectively. Although P = 0 and P̂ � 0 are different cases in Table 1.2, they may

happen at the same time if A has full column rank; if so, apply the result under P̂ � 0, which is stronger.

The conclusions in Table 1.2 are the quantities that converge either Q-linearly or R-linearly1. Q-linear

convergent quantities are the entireties of multiple variables whereas R-linear convergent quantities are the

individual variables xk, yk, and λk.

Four scenarios. In scenario 1, only function f needs to be strongly convex and having Lipschitz

continuous gradient; there is no assumption on g besides convexity. On the other hand, matrix A must have

full row rank. Roughly speaking, the full row rank of A makes sure that the error of λk can be bounded

just from the x-side by applying the Lipschitz continuity of ∇f . One cannot remove this condition or relax

it to the full row rank of [A,B] without additional assumptions. Consider the example of A = [1; 0] and

B = [0; 1], where [A,B] = I has full rank. Since λk
2 is not affected by f or {xk} at all, there is no way to

take advantages of the Lipschitz continuity of ∇f to bound the error of λk
2 . In general, without the full row

rank of A, a part of λk needs to be controlled from the y-side using properties of g.

Scenario 2 adds the strong convexity assumption on g. As a result, the remark in case 1 regarding the

full column rank of B is no longer needed.

1Suppose a sequence {uk} converges to u∗. We say the convergence is (in some norm ‖ ∙ ‖)

• Q-linear, if there exists μ ∈ (0, 1) such that
‖uk+1−u∗‖
‖uk−u∗‖

≤ μ;

• R-linear, if there exists a sequence {σk} such that ‖uk − u∗‖ ≤ σk and σk → 0 Q-linearly.
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Both scenarios 3 and 4 assume that g is differentiable and ∇g is Lipschitz continuous. As a result, the

error of λk can be controlled by taking advantages of the Lipschitz continuity of both ∇f and ∇g, and the full

row rank assumption on A is no longer needed. On the other hand, scenarios 3 and 4 exclude the problems

with non-differentiable g. Compared to scenario 3, scenario 4 adds the strong convexity assumption on g

and drops the remark on the full column rank of B.

Under scenario 1 with Q � 0 and scenario 3, the remarks in Table 1.1 are needed essentially because yk

gets coupled with xk and λk in certain inequalities in our convergence analysis. The full column rank of B

helps bound the error of yk by those of xk and λk.

Four cases. When P = 0 (corresponds to exactly solving the ADM x-subproblem), we have P̂ � 0 and

only obtain linear convergence in Ax. However, when P̂ � 0, linear convergence in x is obtained.

When Q = 0 (corresponds to exactly solving the ADM y-subproblem), y is not part of the Q-linear

convergent joint variable. But, when Q � 0, y becomes part of it.

1.4. The penalty parameter β. It is well known that the penalty parameter β can significantly affect

the speed of the ADM. Since the rate of convergence developed in this paper is a function of β, the rate can

be optimized over β. We give some examples in Section 3.2 below, which shows the rate of convergence is

positively related to the strong convexity constant of f and g, while being negatively related to the Lipschitz

constant of ∇f and ∇g as well as the condition number of A, B and [A,B]. More analysis and numerical

simulations are left as future research.

1.5. Notation. We let 〈∙, ∙〉 denote the standard inner product and ‖ ∙ ‖ denote the `2-norm ‖ ∙ ‖2 (the

Euclidean norm of a vector or the spectral norm of a matrix). In addition, we use λmin(M) and λmax(M)

for the smallest and largest eigenvalues of a symmetric matrix M , respectively.

A function f : Rn → R ∪ {+∞} is called strongly convex with constant ν > 0 if for all x1, x2 ∈ Rn and

all t ∈ [0, 1],

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2) −
1
2
νt(1 − t)‖x1 − x2‖

2. (1.7)

The gradient ∇f is called Lipschitz continuous with constant Lf if for all x1, x2 ∈ Rn,

‖∇f(x1) −∇f(x2)‖ ≤ Lf‖x1 − x2‖. (1.8)

1.6. Assumptions. Throughout the paper, we make the following standard assumptions.

Assumption 1. There exists a saddle point u∗ := (x∗, y∗, λ∗) to problem (1.1), namely, x∗, y∗, and λ∗

satisfy the KKT conditions:

BT λ∗ ∈ ∂g(y∗), (1.9)

AT λ∗ ∈ ∂f(x∗), (1.10)

Ax∗ + By∗ − b =0. (1.11)

When assumption 1 fails to hold, the ADM method has either unsolvable or unbounded subproblems or a

diverging sequence of λk. The optimality conditions of the subproblems of Algorithm 2 are

BT λ̂ − βBT A(xk − xk+1) + Q(yk − yk+1) ∈ ∂g(yk+1), (1.12)

AT λ̂ + P (xk − xk+1) ∈ ∂f(xk+1). (1.13)

For notation simplicity, we introduce

λ̂ := λk − β(Axk+1 + Byk+1 − b). (1.14)

6
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If γ = 1, then λ̂ = λk+1; otherwise,

λ̂ − λk+1 = (γ − 1)β(Axk+1 + Byk+1 − b) = (1 −
1
λ

)(λk − λk+1). (1.15)

This relation between λ̂ and λk+1 is used frequently in our analysis.

Assumption 2. Functions f and g are convex. We define scalars νf and νg as the modulus of f and

g, respectively. Following from (1.7), they satisfy

〈s1 − s2, x1 − x2〉 ≥ νf‖x1 − x2‖
2, ∀x1, x2, s1 ∈ ∂f(x1), s2 ∈ ∂f(x2), (1.16)

〈t1 − t2, y1 − y2〉 ≥ νg ‖y1 − y2‖
2, ∀y1, y2, t1 ∈ ∂g(y1), t2 ∈ ∂g(y2). (1.17)

From the convexity of f and g, it follows that νf , νg ≥ 0, which are used throughout Section 2. They are

strictly positive if the functions are strongly convex. To show linear convergence, Section 3 uses νf > 0 and,

for scenarios 3 and 4, νg > 0 as well. Indeed, we only f and g’s properties over the compact sets including

{xk} and {yk}, not globally; in particular, strict convexity can replace strong convexity.

1.7. Organization. The rest of the paper is organized as follows. Section 2 shows the global conver-

gence of the generalized ADM under mild assumptions. Then Section 3, under the assumptions in Table

1.1, further proves the global linear convergence. Section 4 discusses several interesting applications that are

covered by our linear convergence theory. In Section 5, we present some preliminary numerical results to

demonstrate the linear convergence behavior of ADM. Finally, Section 6 concludes the paper.

2. Global convergence. In this section, we show the global convergence of Algorithm 2. The proof

steps are similar to the existing ADM convergence theory in [21,22] but are adapted to Algorithm 2. Several

inequalities in the section are used in the linear convergence analysis in the next section.

2.1. Convergence analysis. For notation simplicity, we introduce

u∗ :=






x∗

y∗

λ∗




 , uk :=






xk

yk

λk




 , û :=






xk+1

yk+1

λ̂




 , for k = 0, 1, . . . ,

where u∗ is a KKT point, uk is the current point, and û is the next point as if γ = 1, and

G0 :=






In

Im

γIp




 , G1 :=






P̂

Q
1
β Ip




 , G := G−1

0 G1 =






P̂

Q
1

βγ Ip




 , (2.1)

where we recall P̂ = P + βAT A. From these definitions it follows

uk+1 = uk − G0(u
k − û). (2.2)

We choose P , Q and β such that P̂ � 0 and Q � 0. Hence G � 0 and ‖ ∙ ‖G is a (semi-)norm. The analysis

is based on bounding the error ‖uk − u∗‖G and estimate its decrease.

Lemma 2.1. Under Assumptions 1 and 2, the sequence {uk} of algorithm 2 obeys

‖uk − u∗‖2
G − ‖uk+1 − u∗‖2

G ≥ h(uk − û) + 2νf‖x
k+1 − x∗‖2 + 2νg‖y

k+1 − y∗‖2, (2.3)

where

h(uk − û) = h(xk − xk+1, yk − yk+1, λk − λ̂)

= ‖xk − xk+1‖2
P̂

+ ‖yk − yk+1‖2
Q +

2 − γ

β
‖λk − λ̂‖2 + 2(λk − λ̂)T A(xk − xk+1).
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Proof. By the convexity of g and the optimality conditions (1.9) and (1.12), it follows that

〈yk+1 − y∗, BT
(
λ̂ − λ∗ − βA(xk − xk+1)

)
+ Q(yk − yk+1)〉 ≥ νg‖y

k+1 − y∗‖2. (2.4)

Similarly, by the convexity of f and the optimality conditions (1.10) and (1.13), we have

〈xk+1 − x∗, AT
(
λ̂ − λ∗ − βA(xk − xk+1)

)
+ P̂ (xk − xk+1)〉 ≥ νf‖x

k+1 − x∗‖2. (2.5)

In addition, it follows from (1.11) and (1.14) that

A(xk+1 − x∗) + B(yk+1 − y∗) =
1
β

(λk − λ̂). (2.6)

Then, adding (2.4) and (2.5) and using (2.6) give

1
β
〈λk − λ̂, λ̂ − λ∗ − βA(xk − xk+1)〉 + 〈xk+1 − x∗, P̂ (xk − xk+1)〉 + 〈yk+1 − y∗, Q(yk − yk+1)〉

≥ νf‖x
k+1 − x∗‖2 + νg‖y

k+1 − y∗‖2,

(2.7)

which can be simplified as

(û − u∗)T G1(u
k − û) ≥ 〈A(xk − xk+1), λk − λ̂〉 + νf‖x

k+1 − x∗‖2 + νg‖y
k+1 − y∗‖2. (2.8)

By rearranging the terms, we have

(uk − u∗)T G1(u
k − û) ≥ ‖uk − û‖2

G1
+ 〈A(xk − xk+1), λk − λ̂〉 + νf‖x

k+1 − x∗‖2 + νg‖y
k+1 − y∗‖2. (2.9)

From the identity ‖a − c‖2
G − ‖b − c‖2

G = 2(a − c)T G(a − b) − ‖a − b‖2
G and (2.2), it follows that

‖uk − u∗‖2
G − ‖uk+1 − u∗‖2

G = 2(uk − u∗)T G1(u
k − û) − ‖G0(u

k − û)‖2
G. (2.10)

By (2.9), we have

‖uk − u∗‖2
G − ‖uk+1 − u∗‖2

G ≥ 2‖uk − û‖2
G1

− ‖uk − û‖2
G1G0

+ 2〈A(xk − xk+1), λk − λ̂〉

+ 2νf‖x
k+1 − x∗‖2 + 2νg‖y

k+1 − y∗‖2, (2.11)

and thus (2.3) follows.

In the next theorem, we bound h(uk − û) from zero by applying the Cauchy-Schwarz inequality to its

cross term 2(λk − λ̂)T A(xk − xk+1). If P = 0, a more refined bound is obtained to give γ a wider range of

convergence.

Theorem 2.2. Assume Assumptions 1 and 2. (1) When P 6= 0, if γ obeys

(2 − γ)P � (γ − 1)βAT A (2.12)

then there exists η > 0 such that

‖uk − u∗‖2
G − ‖uk+1 − u∗‖2

G ≥ η‖uk − uk+1‖2
G + 2νf‖x

k+1 − x∗‖2 + 2νg‖y
k+1 − y∗‖2. (2.13)

(2) When P = 0, if

γ ∈ (0,
1
2
(1 +

√
5)), (2.14)
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then there exist η > 0 such that
(

‖uk − u∗‖2
G +

β

ρ
‖rk‖2

)

−

(

‖uk+1 − u∗‖2
G +

β

ρ
‖rk+1‖2

)

≥ η‖uk − uk+1‖2
G + 2νf‖xk − xk+1‖2 + 2νf‖xk+1 − x∗‖2 + 2νg‖yk+1 − y∗‖2,

(2.15)

where

rk := Axk + Byk − b

is the residual at iteration k.

If we set γ = 1, then we have

‖uk−u∗‖2
G−‖uk+1−u∗‖2

G ≥ η‖uk−uk+1‖2
G +2νf‖x

k−xk+1‖2 +2νf‖x
k+1−x∗‖2 +2νg‖y

k+1−y∗‖2, (2.16)

where η = 1.

Proof.

(1) By the Cauchy-Schwarz inequality, we have

2(λk − λ̂)T A(xk − xk+1) ≥ −
1
ρ
‖A(xk − xk+1)‖2 − ρ‖λk − λ̂‖2, ∀ρ > 0. (2.17)

Substituting (2.17) into (2.3) and using 1
γ (λk − λk+1) = λk − λ̂, we have

‖uk − u∗‖2
G − ‖uk+1 − u∗‖2

G

≥ ‖xk − xk+1‖2
P̂− 1

ρ AT A
+ ‖yk − yk+1‖2

Q +

(
2 − γ

β
− ρ

)
1
γ2

‖λk − λk+1‖2

+ 2νf‖x
k+1 − x∗‖2 + 2νg‖y

k+1 − y∗‖2, ∀ρ > 0.

(2.18)

To show that (2.13) holds for a certain η > 0, we only need P̂ − 1
ρAT A � 0 and 2−γ

β −ρ > 0 for a certain

ρ > 0, which is true if and only if we have P̂ � β
2−γ AT A or, equivalently, (2.12).

(2) For P = 0, we first derive a lower bound for the cross term (λk − λ̂)T A(xk − xk+1). Applying (1.13) at

two consecutive iterations with P = 0 and in light of the definition of λ̂, we have
{

AT [λk−1 − β(Axk + Byk − b)] ∈ ∂f(xk),

AT λ̂ ∈ ∂f(xk+1).
(2.19)

The difference of the two terms on the left in (2.19) is

AT [λk−1 − β(Axk + Byk − b) − λ̂] = AT (λk − λ̂) − (1 − γ)βAT (Axk + Byk − b). (2.20)

By (2.19), (2.20) and (1.16), we get

〈AT (λk − λ̂), xk − xk+1〉 − 〈(1 − γ)βAT (Axk + Byk − b), xk − xk+1〉 ≥ νf‖x
k − xk+1‖2, (2.21)

to which applying the Cauchy-Schwarz inequality gives

(λk − λ̂)T A(xk − xk+1)

≥〈
√

β(Axk + Byk − b), (1 − γ)
√

βA(xk − xk+1)〉 + νf‖x
k − xk+1‖2

≥−
β

2ρ
‖Axk + Byk − b‖2 −

(1 − γ)2βρ

2
‖A(xk − xk+1)‖2 + νf‖x

k − xk+1‖2, ∀ρ > 0. (2.22)
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Substituting (2.22) into (2.3) and using P̂ = P + βAT A = βAT A and the definition of λ̂, we have

‖uk − u∗‖2
G +

β

ρ
‖Axk + Byk − b‖2

≥ ‖uk+1 − u∗‖2
G +

β

ρ
‖Axk+1 + Byk+1 − b‖2

+ β

(

2 − γ −
1
ρ

)

‖Axk+1 + Byk+1 − b‖2 + β
(
1 − (1 − γ)2ρ

)
‖A(xk − xk+1)‖2

+ ‖yk − yk+1‖2
Q + 2νf‖x

k − xk+1‖2 + 2νf‖x
k+1 − x∗‖2 + 2νg‖y

k+1 − y∗‖2.

(2.23)

To prove such η > 0 exists for (2.15), we only need the existence of ρ > 0 such that 2 − γ − 1
ρ > 0 and

1 − (1 − γ)2ρ > 0, which holds if and only if 2 − γ > (1 − γ)2 or, equivalently, γ ∈ (0, 1+
√

5
2 ).

In this case of P = 0, if we set γ = 1, (2.22) reduces to (λk − λ̂)T A(xk −xk+1) ≥ νf‖xk −xk+1‖2, which

substituting into (2.3) gives (2.16) with η = 1.

Now the bounds in Theorem 2.2 are used to give the global convergence of Algorithm 2.

Theorem 2.3 (Global Convergence). Consider the sequence {uk} generated by Algorithm 2. Under

Assumptions 1 and 2 and the additional assumption that {uk} is bounded, for any γ satisfying its conditions

given in Theorem 2.2, {uk} converges to a KKT point u∗ of (1.1) in the G-norm, namely, ‖uk −u∗‖G → 0.

Proof. Being bounded, {uk} has a converging subsequence {ukj}. Let ū = limj→∞ ukj . Next, we will

show ū is a KKT point. Let u∗ denote an arbitrary KKT point.

Consider P 6= 0 first. From (2.13) we conclude that ‖uk − u∗‖2
G is monotonically nonincreasing and

thus converging, and due to η > 0, ‖uk − uk+1‖2
G → 0. In light of (2.1) where P̂ � 0 and Q � 0, we obtain

λk − λk+1 → 0 or equivalently,

rk = (Axk+1 + Byk+1 − b) → 0, as k → ∞. (2.24)

Now consider P = 0. From (2.15) we conclude that ‖uk −u∗‖2
G + β

ρ ‖r
k‖2 is monotonically nonincreasing

and thus converging. Due to η > 0, ‖uk − uk+1‖2
G → 0, so λk − λk+1 → 0 and (2.24) holds as well.

Consequently, ‖uk − u∗‖2
G also converges.

Therefore, by passing limit on (2.24) over the subsequence, we have for P = 0 or not:

Ax̄ + Bȳ − b = 0. (2.25)

Recall the optimality conditions (1.12) and (1.13):

BT λ̂ − βBT A(xk − xk+1) + Q(yk − yk+1) ∈ ∂g(yk+1),

AT λ̂ + P (xk − xk+1) ∈ ∂f(xk+1).

Since ‖uk − uk+1‖2
G → 0, in light of the definition of G (2.1), we have the following:

• when P = 0, A(xk − xk+1) → 0;

• when P 6= 0, the condition (2.12) guarantees P̂ � 0 and thus xk − xk+1 → 0;

• since Q � 0, we obtain Q(yk − yk+1) → 0.

In summary, βBT A(xk − xk+1), Q(yk − yk+1), and P (xk − xk+1) are either 0 or converging to 0 in k, no

matter P = 0 or not.

Now on both sides of (1.12) and (1.13) taking limit over the subsequence and applying Theorem 24.4

of [26], we obtain:

BT λ̄ ∈ ∂g(ȳ), (2.26)

AT λ̄ ∈ ∂f(x̄). (2.27)
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Therefore, together with (2.25), ū satisfies the KKT condition of (1.1).

Since ū is a KKT point, we can now let u∗ = ū. From ukj → ū in j and the convergence of ‖uk − u∗‖2
G

it follows ‖uk − u∗‖2
G → 0 in k.

Remark 1. By the definition of G, the convergence ‖uk − u∗‖2
G → 0 implies the following:

(a) λk → λ∗, regardless of the choice of P and Q;

(b) when P 6= 0, condition (2.12) guarantees P̂ � 0 and thus xk → x∗; when P = 0, Axk → Ax∗;

(c) when Q � 0, yk → y∗; otherwise, Byk → By∗ following from (2.24) and (2.25).

Remark 2. Let us discuss the conditions on γ. If P � 0, the condition (2.12) is always be satisfied

for 0 < γ ≤ 1. However, in this case, γ can go greater than 1, which often leads to faster convergence in

practice. If P 6� 0, the condition (2.12) requires γ to lie in (0, γ̄) where 0 < γ̄ < 1 depends on β, P , and

AT A. A larger β would allow a larger γ̄.

In particular, when the x-subproblem is solved using prox-linear (P = β
τ I − βAT A), condition (2.12) is

guaranteed by

τ‖A‖2 + γ < 2. (2.28)

When the x-subproblem is solved by one-step gradient descent (P = 1
αI −Hf −βAT A, where Hf = ∇2f and

f is quadratic), a sufficient condition for (2.12) is

β‖A‖2

1
α − ‖Hf‖

+ γ < 2. (2.29)

Remark 3. The assumption on the boundedness of the sequence {uk} can be guaranteed by various

conditions. Since (2.13) and (2.15) imply that ‖uk − u∗‖2
G is bounded, {uk} must be bounded if P̂ � 0 and

Q � 0. Furthermore, if P = 0 and Q = 0, we have the boundedness of {(Axk, λk)} (since ‖uk − u∗‖2
G is

bounded) and that of {Byk} by (2.6), so in this case, {uk} is bounded if

(i) matrix A has full column rank whenever P = 0; and

(ii) matrix B has full column rank whenever Q = 0.

In addition, the boundedness of {uk} is guaranteed if the objective functions are coercive.

3. Global linear convergence. In this section, we establish the global linear convergence results for

Algorithm 2 that are described in Tables 1.1 and 1.2. We take three steps. First, using (2.13) for P 6= 0 and

(2.15) for P = 0, as well as the assumptions in Table 1.1, we show that there exists δ > 0 such that

‖uk − u∗‖2
G ≥ (1 + δ)‖uk+1 − u∗‖2

G, (3.1)

where u∗ = limk→∞ uk is given by Theorem 2.3. We call (3.1) the Q-linear convergence of {uk} in G-

(semi)norm. Next, using (3.1) and the definition of G, we obtain the Q-linear convergent quantities in Table

1.2. Finally, the R-linear convergence in Table 2 is established.

3.1. Linear convergence in G-(semi)norm. We first assume γ = 1, which allows us to simplify the

proof presentation. At the end of this subsection, we explain why the results for γ = 1 can be extended to

γ 6= 1 that satisfies the conditions of Theorem 2.2. Note that for γ = 1, we have (2.16) instead of (2.15).

Hence, no matter P = 0 or P 6= 0, both inequalities (2.13) and (2.16) have the form

‖uk − u∗‖2
G − ‖uk+1 − u∗‖2

G ≥ C,

where C stands for their right-hand sides. To show (3.1), it is sufficient to establish

C ≥ δ‖uk+1 − u∗‖2
G. (3.2)
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The challenge is that ‖uk+1 − u∗‖2
G is the sum of ‖xk+1 − x∗‖2

P̂
, ‖yk+1 − y∗‖2

Q, and 1
βγ ‖λ

k+1 − λ∗‖2, but C

does not contain terms like ‖yk+1 − y∗‖2 and ‖λk+1 − λ∗‖2. Therefore, we shall bound ‖λk+1 − λ∗‖2 and

‖yk+1 − y∗‖2
Q from the existing terms in C or using the strong convexity assumptions. This is done in a

series of lemmas below.

Lemma 3.1 (For scenario 1, cases 3 and 4, and scenario 3). Suppose that B has full column rank. For

any μ1 > 0, we have

‖yk+1 − y∗‖2 ≤ c1‖x
k+1 − x∗‖2 + c2‖λ

k − λk+1‖2, (3.3)

where c1 := (1 + 1
μ1

)‖A‖2 ∙ λ−1
min(BT B) > 0 and c2 := (1 + μ1)(βγ)−2 ∙ λ−1

min(BT B) > 0.

Proof. By (2.6), we have ‖B(yk+1−y∗)‖2 = ‖A(xk+1−x∗)− 1
βγ (λk −λk+1)‖2. Then apply the following

inequality

‖u + v‖2 ≤

(

1 +
1
μ1

)

‖u‖2 + (1 + μ1)‖v‖
2, ∀μ2 > 0, (3.4)

to its right hand side.

Lemma 3.2 (For scenarios 1 and 2). Suppose that ∇f is Lipschitz continuous with constant Lf and A

has full row rank. For any μ2 > 1, we have

‖λ̂ − λ∗‖2 ≤ c3‖x
k+1 − x∗‖2 + c4‖x

k − xk+1‖2, (3.5)

where c3 := L2
f (1 − 1

μ2
)−1λ−1

min(AAT ) > 0 and c4 := μ2‖P‖2λ−1
min(AAT ) > 0.

Proof. By the optimality conditions (1.10) and (1.13) together with the Lipschitz continuity of ∇f , we

have

‖AT (λ̂ − λ∗) + P (xk − xk+1)‖2 = ‖∇f(xk+1) −∇f(x∗)‖2 ≤ L2
f‖x

k+1 − x∗‖2. (3.6)

Then apply the following basic inequality:

‖u + v‖2 ≥

(

1 −
1
μ2

)

‖u‖2 + (1 − μ2)‖v‖
2, ∀μ2 > 0, (3.7)

to the left hand side of (3.6). We require μ2 > 1 so that (1 − 1
μ2

) > 0.

Lemma 3.3 (For scenarios 3 and 4). Suppose ∇f and ∇g are Lipschitz continuous and [A,B] has full

row rank. Let c̄ := λ−1
min([A, B][A,B]T ) > 0. For any μ3 > 1 and μ4 > 0, we have

‖λ̂ − λ∗‖2 ≤ c5‖x
k − xk+1‖2 + c6‖y

k − yk+1‖2
Q + c7‖x

k+1 − x∗‖2 + c8‖y
k+1 − y∗‖2, (3.8)

where c5 = μ3(1 + 1
μ4

)‖[PT ,−βAT B]‖2c̄ > 0, c6 = μ3(1 + μ4)‖Q‖2c̄ ≥ 0, c7 = (1 − 1
μ3

)−1L2
f c̄ > 0, and

c8 = (1 − 1
μ3

)−1L2
g c̄ > 0.

Proof. Combining the optimality conditions (1.9), (1.10), (1.13), and (1.12) together with the Lipschitz

continuity of ∇f and ∇g, we have
∥
∥
∥
∥
∥

[
AT

BT

]

(λ̂ − λ∗) +

[
P

−βBT A

]

(xk − xk+1) +

[
0

Q

]

(yk − yk+1)

∥
∥
∥
∥
∥

2

=‖∇f(xk+1) −∇f(x∗)‖2 + ‖∇g(yk+1) −∇g(y∗)‖2

≤L2
f‖x

k+1 − x∗‖2 + L2
g‖y

k+1 − y∗‖2.

(3.9)

Similarly, we apply the basic inequalities (3.4) and (3.7) to its left hand side.

Remark 4. Lemma 3.3 makes a nonessential assumption that [A,B] has full row rank, since otherwise

certain rows of [A,B] can be eliminated without changing the solution, assuming that Ax + By = b is
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consistent. Indeed, if [A,B] does not have full row rank and the initial multiplier λ0 is in the range space of

[A,B] (letting λ0 = 0 suffices), then λk, k = 1, 2, . . ., always stay in the range space of [A,B], so do λ̂ and

λ∗.

Suppose rank([A,B]) = r < p. Without loss of generality, assuming the first r rows of [A,B] (denoted

by [Ar, Br]) are linearly independent, we have

[A,B] =

[
I

L

]

[Ar, Br],

where I ∈ Rr×r is the identity matrix and L ∈ R(p−r)×r. It follows that

λk =

[
I

L

]

λk
r , λ̂ =

[
I

L

]

λ̂r, λ∗ =

[
I

L

]

λ∗
r .

and thus
[
AT

BT

]

(λ̂ − λ∗) =

[
AT

r

BT
r

]

(I + LT L)(λ̂r − λ∗
r).

Then we have

‖λ̂ − λ∗‖2 ≤ c̄′ ∙

∥
∥
∥
∥
∥

[
AT

BT

]

(λ̂ − λ∗)

∥
∥
∥
∥
∥

2

,

where c̄′ = λ−1
min(EET )‖I + LT L‖ > 0 since E := (I + LT L)[Ar, Br] has full row rank. Following the same

proof procedure, we obtain Lemma 3.3 immediately.

With the above lemmas, we now prove the following main theorem of this subsection.

Theorem 3.4 (Q-linear convergence of uk in G-(semi)norm). Under the same assumptions of Theorem

2.3 and γ = 1, for all scenarios in Table 1.1, there exists δ > 0 such that (3.1) holds.

Proof. Consider the case of P = 0 and the corresponding inequality (2.16). In this case P̂ = βAT A � 0.

Let C denote the right-hand side of (2.16).

Scenarios 1 and 2 (recall in both scenarios, f is strongly convex, ∇f is Lipschitz continuous, and A has

full row rank). Note that C contains the terms on the right side of (3.5) with strictly positive coefficients.

Hence, applying Lemma 3.2 to C, we can obtain

C ≥ (c9‖x
k+1 − x∗‖2 + c10‖y

k+1 − y∗‖2 + c11‖λ
k+1 − λ∗‖2) + (c12‖y

k − yk+1‖2
Q + c13‖λ

k − λk+1‖2) (3.10)

with c9, c11 > 0, c10 = 2νg ≥ 0, c12 = η > 0, and c13 = η/(βγ) > 0. We have c9 > 0 because only a fraction

of 2νf‖xk+1 − x∗‖2 is used with Lemma 3.2; c9‖xk+1 − x∗‖2 is unused so it stays. The same principle is

applied below to get strictly positive coefficients, and we do not re-state it. For proof brevity, we do not

necessarily specify the values of ci.

For scenario 1 with Q = 0, ‖uk+1 − u∗‖2
G = ‖xk+1 − x∗‖2

P̂
+ 1

βγ ‖λ
k+1 − λ∗‖2. Since ‖xk+1 − x∗‖2 ≥

λmax(P̂ )−1‖xk+1 − x∗‖2
P̂

, (3.2) follows from (3.10) with δ = min{c9λ
−1
max(P̂ ), c11βγ} > 0.

For scenario 1 with Q � 0, ‖uk+1 − u∗‖2
G = ‖xk+1 − x∗‖2

P̂
+ ‖yk+1 − x∗‖2

Q + 1
βγ ‖λ

k+1 − λ∗‖2. Since c10

is not necessarily strictly positive, we shall apply Lemma 3.1 to (3.10) and obtain

C ≥ (c14‖x
k+1 − x∗‖2 + c15‖y

k+1 − y∗‖2 + c11‖λ
k+1 − λ∗‖2) + c12‖y

k − yk+1‖2
Q (3.11)

where c14, c15, c11, c12 > 0. So, it leads to (3.1) with δ = min{c14λ
−1
max(P̂ ), c15λ

−1
max(Q), c11βγ} > 0.
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Scenario 2 (recall it is scenario 1 plus that g is strongly convex). We have c10 = 2νg > 0 in (3.10), which

gives (3.1) with δ = min{c9λ
−1
max(P̂ ), c10λ

−1
max(Q), c11βγ} > 0. Note that we have used the convention that if

Q = 0, then λ−1
max(Q) = ∞.

Scenario 3 (recall f is strongly convex, both ∇f and ∇g are Lipschitz continuous). We apply Lemma

3.1 to get ‖yk+1 − y∗‖2 with which we then apply Lemma 3.3 (or Remark 4) to obtain

C ≥ c16‖x
k+1 − x∗‖2 + c17‖y

k+1 − y∗‖2 + c18‖λ
k+1 − λ∗‖2, (3.12)

where c16, c17, c18 > 0 and the terms ‖xk − xk+1‖2, ‖yk − yk+1‖2, and ‖λk − λk+1‖2 with nonnegative

coefficients have been dropped from the right-hand side of (3.12). From (3.12), we obtain (3.1) with δ =

min{c16λ
−1
max(P̂ ), c17λ

−1
max(Q), c18βγ} > 0.

Scenario 4 (recall it is scenario 3 plus that g is strongly convex). Since c11 = 2νg > 0 in (3.10), we can

directly apply Lemma 3.3 to get (3.1) with δ > 0 in a way similar to scenario 3.

Now consider the case of P 6= 0 and the corresponding inequality (2.11). Inequalities (2.11) and (2.16)

are similar except (2.16) has the extra term ‖xk −xk+1‖2 with a strictly positive coefficient in its right-hand

side. This term is needed when Lemma 3.2 is applied. However, the assumptions of the theorem ensure

P̂ � 0 whenever P 6= 0. Therefore, in (2.11), the term ‖uk − uk+1‖2
G, which contains ‖xk − xk+1‖2

P̂
, can

spare out a term c19‖xk − xk+1‖2 with c19 > 0. Therefore, following the same arguments for the case of

P = 0, we get (3.1) with certain δ > 0.

Now we extend the result in Theorem 3.4 (for γ = 1) to γ 6= 1 in the following theorem.

Theorem 3.5. Under the same assumptions of Theorem 2.3 and γ 6= 1, for all scenarios in Table 1.1,

1. if P 6= 0, there exists δ > 0 such that (3.1) holds;

2. if P = 0, there exists δ > 0 such that

‖uk − u∗‖2
G +

β

ρ
‖rk‖2 ≥ (1 + δ)

(

‖uk+1 − u∗‖2
G +

β

ρ
‖rk+1‖2

)

. (3.13)

Proof. When γ 6= 1, which causes λk+1 6= λ̂. We shall bound ‖λk+1 −λ∗‖2 but Lemmas 3.2 and 3.3 only

give bounds on ‖λ̂ − λ∗‖2. Noticing that (λ̂ − λ∗) − (λk+1 − λ∗) = λ̂ − λk+1 = (γ − 1)rk+1 and C contains

a strictly positive term in ‖λk − λk+1‖2 = γ2‖rk+1‖2, we can bound ‖λk+1 − λ∗‖2 by a positively weighted

sum of ‖λ̂ − λ∗‖2 and ‖λk − λk+1‖2.

If P 6= 0, the rest of the proof follows from that of Theorem 3.4.

If P = 0, γ 6= 1 leads to (2.15), which extends ‖ui−u∗‖2
G in (2.16) to ‖ui−u∗‖2

G+ β
ρ ‖r

i‖2, for i = k, k+1.

Since C contains ‖λk − λk+1‖2 = γ2‖rk+1‖2 with a strictly positive coefficient, one obtains (3.13) by using

this term and following the proof of Theorem 3.4.

3.2. Explicit formulas of the linear rate. To keep the proof of Theorem 3.4 easy to follow, we

have avoided giving the explicit formulas of ci’s and thus also those of δ. To give the reader an idea what

quantities affect δ, we discuss the value of δ for case 1 of different scenarios with γ = 1.

Scenario 1 and 2 :

δ = 2νf

/(

β‖A‖2 +
L2

f

βλmin(AAT )

)

. (3.14)

Since it is better to have larger δ, we can choose β = Lf

‖A‖
√

λmin(AAT )
and obtain

δmax =
1

κAκf
, (3.15)
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where κA :=
√

λmax(AAT )/λmin(AAT ) is the condition number of matrix A, and κf = Lf/νf is the condition

number of function f . Not surprisingly, the convergence rate is negatively affected by the condition numbers

of A and f .

Scenario 3 :

δ = min

{
2βνf

β2‖A‖2 + c7 + c1c8
,
β2λmin(AT A) + 2βνf

c5
,

1
c2c8

}

. (3.16)

The formulas of ci’s are given in the previous subsection, which involve some arbitrary constants μ1 > 0 and

μ3 > 1 (μ4 = ∞ here since Q = 0). Therefore, we can maximize δ over μ1 > 0 and μ3 > 1 as well as the

parameter β > 0 to get better rate.

Scenario 4 :

δ = min

{
2βνf

β2‖A‖2 + c7
,
β2λmin(AT A) + 2βνf

c5
,

2βνg

c8

}

. (3.17)

Similarly, the value of δ can be optimized over μ1 > 0 and β > 0.

The formulas of δ for scenarios 3 and 4 appear to be more complicated than the nice formula (3.15) for

scenarios 1 and 2. However, a close look at these formulas reveals that the convergence rate is negatively

affected by the condition numbers of the constraint matrices A, B and [A,B], as well as the condition

numbers of the objective functions f and g.

Due to page limit, we leave other cases and further analysis to future research.

3.3. Q-linear convergent quantities. From the definition of G, which depends on P and Q, it is

easy to see that the Q-linear convergence of uk = (xk; yk; λk) translates to the Q-linear convergence results

in Table 1.2. For example, in case 1 (P = 0 and Q = 0), ‖uk+1 − u∗‖2
G = ‖xk+1 − x∗‖2

P̂
+ 1

βγ ‖λ
k+1 − λ∗‖2,

where P̂ = P + βAAT = βAT A. Hence, (Axk, λk) converges Q-linearly. Examining ‖uk+1 − u∗‖2
G gives the

results for cases 2, 3, 4.

3.4. R-linear convergent quantities. By the definition of R-linear convergence, any part of a Q-

linear convergent quantity converges R-linearly. For example, in case 1 (P = 0 and Q = 0), the Q-linear

convergence of (Axk, λk) in Table 1.2 gives the R-linear convergence of Axk and λk. Therefore, to establish

Table 1.2, it remains to show the R-linear convergence of xk in cases 1 and 3 and that of yk in cases 1 and

2. Our approach is to bound their errors by existing R-linear convergent quantities.

Theorem 3.6 (R-linear convergence). The following statements hold.

1. In cases 1 and 3, if λk converges R-linearly, then xk converges R-linearly.

2. In cases 1 and 2, scenario 1, if λk and xk both converge R-linearly, then Byk converges R-linearly.

In addition, if B has full column rank, then yk converges R-linearly.

3. In cases 1 and 2, scenarios 2–4, if λk and xk both converge R-linearly, then yk converges R-linearly.

Proof. We only show the result for γ = 1 (thus λ̂ = λk+1); for γ 6= 1 (thus λ̂ 6= λk+1), the results follow

from those for γ = 1 and the R-linear convergence of ‖λ̂ − λk+1‖2, which itself follows from (1.15) and the

R-linear convergence of λk (thus that of λk − λk+1).

1. By (2.5) and P̂ = βAT A, we have νf‖xk+1 − x∗‖2 ≤ ‖A‖‖xk+1 − x∗‖‖λk+1 − λ∗‖, which implies

‖xk+1 − x∗‖2 ≤
‖A‖2

ν2
f

‖λk+1 − λ∗‖2. (3.18)

2. The result follows from (2.6).

3. Scenario 3 assumes the full column rank of B, so the result follows from (2.6). In scenarios 2 and 4, g is

strongly convex. Recall (2.4) with λ̂ = λk+1:

〈yk+1 − y∗, BT
(
λk+1 − λ∗ − βA(xk − xk+1)

)
+ Q(yk − yk+1)〉 ≥ νg‖y

k+1 − y∗‖2. (3.19)
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By the Cauchy-Schwarz inequality and Q = 0, we have

νg‖y
k+1 − y∗‖ ≤ ‖B‖‖λk+1 − λ∗ − βA(xk − xk+1)‖. (3.20)

Therefore, the result follows from the R-linear convergence of xk and λk.

4. Applications. This section describes several well-known optimization models on which Algorithm

2 not only enjoys global linear convergence but also often has easy-to-solve subproblems.

4.1. Convex regularization. The following convex regularization model has been widely used in

various applications:

min
y

f(By − b) + g(y) (4.1)

where f is often a strongly convex function with Lipschitz continuous gradient, and g is a convex function

which is very versatile across different applications. In particular g can be nonsmooth (e.g., projection to

a convex set, `1-norm). Here, f and g are often referred to as the loss (or data fidelity) function and the

regularization function, respectively. Model (4.1) can be reformulated to

min
x,y

f(x) + g(y), s.t. x + By = b (4.2)

and be solved by Algorithm 2. With many popular choices of f and g and also with proper P and Q, the

x- and y-subproblems are easy to solve. If B has full column rank or g is strongly convex, then Algorithm 2

converges at a global linear rate.

4.2. Sparse optimization. In recent years, the problem of recovering sparse vectors and low-rank

matrices has received tremendous attention from researchers and engineers, particularly those in the areas

of compressive sensing, machine learning, and statistics.

Elastic net (augmented `1) model. To recover a sparse vector y0 ∈ Rn from linear measurements

b = By0 ∈ Rm, the elastic net model solves

min
y

‖y‖1 + α‖y‖2 +
1
2μ

‖Ay − b‖2, (4.3)

where A ∈ Rm×n, α > 0 and μ > 0 are parameters, and the `1 norm ‖y‖1 :=
∑n

i=1 |yi| is known to promote

sparsity in the solution. It has been shown that the elastic model can effectively recover sparse vectors and

outperform Lasso (α = 0) on reported real-world regression problems [27]. With the constraint x = y, (4.3)

can be reformulated as:

min
x,y

‖y‖1 + α‖x‖2 +
1
2μ

‖Ax − b‖2

s.t. x − y = 0.

(4.4)

Augmented nuclear-norm model. Similarly, the elastic net model can be extended for recovering

low-rank matrices. To recover a low-rank matrix Y 0 ∈ Rn1×n2 from linear measurements b = B(Y 0) ∈ Rm,

the augmented nuclear-norm model solves

min
Y

‖Y ‖∗ + α‖Y ‖2
F +

1
2μ

‖A(Y ) − b‖2, (4.5)

where α > 0 and μ > 0 are parameters, A : Rn1×n2 → Rm is a linear operator, ‖ ∙ ‖F denotes the Frobenius

norm, and the nuclear norm ‖Y ‖∗ denotes the sum of singular values of Y which is known to promote
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low-rankness in the solution. By variable splitting X = Y , (4.5) can be reformulated as:

min
X,Y

‖Y ‖∗ + α‖X‖2
F +

1
2μ

‖A(X) − b‖2

s.t. X − Y = 0.

(4.6)

In (4.4) and (4.6), the functions f(x) = α‖x‖2 + 1
2μ‖Ax− b‖2 and f(X) = α‖X‖2

F + 1
2μ‖A(X)− b‖2 are

strongly convex and have Lipschitz continuous gradient; the functions g(y) := ‖y‖1 and g(Y ) := ‖Y ‖∗ are

convex and nonsmooth. In fact, ‖ ∙ ‖2 and ‖ ∙ ‖2
F can also be replaced by many other choices of functions

that are strongly convex and have Lipschitz continuous gradient, or become so when restricted to a bounded

set. Note that if α = 0 then the functions f may not be strongly convex if the matrix A and the linear

operator A do not have full column rank. In many applications, this is indeed the case since the number of

observations of y and Y is usually smaller than their dimensions (i.e., m < n and m < n1 ∙n2). However, the

parameter α > 0 guarantees the strong convexity of f , and hence the global linear convergence of Algorithm

2 when applied to (4.4) and (4.6). In addition, it has been shown in [28] that for most compressive sensing

problems, with a moderately small α, problems (4.4) and (4.6) return solutions as if α = 0.

4.3. Consensus and sharing optimization. Consider in a network of N nodes, the problem of

minimizing the sum of N functions, one from each node, over a common variable x. This problem can be

written as

min
x∈Rn

N∑

i=1

fi(x). (4.7)

Let each node i keep vector xi ∈ Rn as its copy of x. To reach a consensus among xi, i = 1, . . . , N , a common

approach is to introduce a global common variable y and get

min
{xi},y

N∑

i=1

fi(xi), s.t. xi − y = 0, i = 1, . . . , N. (4.8)

This is the well-known global consensus problem; see [7] for a review. With an objective function g on the

global variable y, we have the global variable consensus problem with regularization:

min
{xi},y

N∑

i=1

fi(xi) + g(y), s.t. xi − y = 0, i = 1, . . . , N, (4.9)

where g(y) is a convex function,

The following sharing problem is also nicely reviewed in [7]:

min
{xi},y

N∑

i=1

fi(xi) + g

(
N∑

i=1

yi

)

, s.t. xi − yi = 0, i = 1, . . . , N, (4.10)

where fi’s are local cost functions and g is the shared cost function by all the nodes i.

Algorithm 2 applied to the problems (4.8), (4.9) and (4.10) converges linearly if each function fi is

strongly convex and has Lipschitz continuous gradient. The resulting ADM is particularly suitable for

distributed implementation, since the x-subproblem can be decomposed into N independent xi-subproblems,

and the update to the multiplier λ can also be done at each node i.

5. Numerical demonstration. We present the results of some simple numerical tests to demonstrate

the linear convergence of Algorithm 2. The numerical performance is not the focus of this paper and will be

investigated more thoroughly in future research.
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5.1. Elastic net. We apply Algorithm 2 with P = 0 and Q = 0 to a small elastic net problem (4.4),

where the feature matrix A has m = 250 examples and n = 1000 features. We first generated the matrix

A from the standard Gaussian distribution N (0, 1) and then orthonormalized its rows. A sparse vector

x0 ∈ Rn was generated with 25 nonzero entries, each sampled from the standard Gaussian distribution. The

observation vector b ∈ Rm was then computed by b = Ax0 + ε, where ε ∼ N (0, 10−3I). We chose the model

parameters α = 0.1 and μ = 10−2, which we found to yield reasonable accuracy for recovering the sparse

solution. We initialized all the variables at zero and set the algorithm parameters β = 100 and γ = 1. We

ran the algorithm for 200 iterations and recorded the errors at each iteration with respect to a precomputed

reference solution u∗.

Figure 5.1(a) shows the decreasing behavior of ‖uk − u∗‖2
G(:= β‖xk − x∗‖2 + ‖λk − λ∗‖2/β) as the

algorithm progresses. Since variable y is not contained in the G-norm, we also plot the convergence curve of

‖yk − y∗‖2 in Figure 5.1(b). We observe that both uk and yk converge at similar linear rates. In addition,

the convergence appears to have different stages. The later stage exhibits faster convergence rate than the

earlier stage. This can be clearly seen in Figure 5.2 which depicts the Q-linear rate ‖uk+1−u∗‖2
G/‖uk−u∗‖2

G.
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Fig. 5.1. Convergence curves of ADM for the elastic net problem.

Here, the strong convexity constant of f is νf = 2α + λmin(AT A)/μ = 2α and the Lipschitz constant of

∇f is Lf = 2α+λmax(AT A)/μ = 2α+1/μ. By (3.14), our bound for the global linear rate is (1+δ)−1 = 0.998,

which roughly matches the early-stage rate shown in the figure. However, our theoretical bound is rather

conservative, since it is a global worst-case bound and it does not take into account the properties of the

`1 norm and the solution. In fact, the optimal solution x∗ is very sparse and xk will also become sparse

after a number of iterations. Let S be an index set of the nonzero support of (xk − x∗), and AS be a

submatrix composed of those columns of A indexed by S. Then, the constants νf and Lf in our bound can

be effectively replaced by ν̄f = 2α + λmin(AT
SAS)/μ and L̄f = 2α + λmax(AT

SAS)/μ, thereby accounting for

the faster convergence rate in the later stage. For example, letting S be the nonzero support of the optimal

solution x∗, we obtain an estimate of the (asymptotic) linear rate (1 + δ)−1 = 0.817, which well matches the

later-stage rate.
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Fig. 5.2. Q-linear convergence rate of ADM for the elastic net problem.

5.2. Distributed Lasso. We consider solving the Lasso problem in a distributed way [29]:

min
{xi},y

N∑

i=1

1
2μ

‖Aixi − bi‖
2 + ‖y‖1

s.t. xi − y = 0, i = 1, . . . , N,

(5.1)

which is an instance of the global consensus problem with regularization (4.9).

We apply Algorithm 2 with P = 0 and Q = 0 to a small distributed Lasso problem (5.1) with N = 5,

where each Ai has m = 600 examples and n = 500 features. Each Ai is a tall matrix and has full column

rank, yielding a strongly convex objective function in xi. Therefore, Algorithm 2 is guaranteed to converge

linearly.

We generated the data similarly as in the elastic net test. We randomly generated each Ai from the

standard Gaussian distribution N (0, 1), and then simply scaled its columns to have a unit length. We

generated a sparse vector x0 ∈ Rn with 250 nonzero entries, each sampled from the N (0, 1) distribution.

Each bi ∈ Rm was then computed by bi = Aix
0 + εi, where εi ∼ N (0, 10−3I). We chose the model parameter

μ = 0.1, which we found to yield reasonably good recovery quality. From the initial point at zero, we ran

the algorithm with parameters β = 10 and γ = 1 for 50 iterations and computed the iterative errors.

Figure 5.3 demonstrates the clear linear convergence behavior of ‖uk − u∗‖2
G and ‖yk − y∗‖2. In Figure

5.4, the Q-linear convergence rate of ‖uk −u∗‖2
G is depicted. For this problem, the strong convexity constant

is νf = mini{λmin(AT
i Ai)/μ} and the Lipschitz constant is Lf = maxi{λmax(AT

i Ai)/μ}. However, the

condition number νf/Lf in this test is relatively big, and hence the theoretical linear rate specified by (3.15)

is not a very tight bound for the observed fast rate. Note that all xi’s tend to be equal and become sparse

after a number of iterations. Similar to our previous discussion in Section 5.1, we can estimate the asymptotic

linear rate by letting ν̄f = λmin(AT
SAS)/(μN) and L̄f = λmax(AT

SAS)/(μN), where A ∈ RNm×n is formed

by stacking all the matrices Ai (i = 1, . . . , N ), and S is an index set of the nonzero support of x∗. We

obtained the asymptotic linear rate to be (1 + δ)−1 = 0.779, which appears to be a much tighter bound.
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Fig. 5.3. Convergence curves of ADM for the distributed Lasso problem.
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Fig. 5.4. Q-linear convergence rate of ADM for the distributed Lasso problem.

6. Conclusions. In this paper, we provide sufficient conditions for the global linear convergence of a

general class of ADMs which solve subproblems either exactly or approximately in a certain manner. Among

the conditions is a function that is strongly convex and has Lipschitz continuous gradient. These sufficient

conditions cover a wide range of applications. We also extend the existing convergence theory to allow more

generality on the step size γ for updating the multipliers.

In practice, how to choose the penalty parameter β is always an important issue. Our convergence

rate analysis provides more insights on how the penalty parameter β affects the convergence speed, thereby

providing some theoretical guidance for choosing β.
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