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Abstract Arterial walls typically have a heterogeneous structure with three dif-
ferent layers (intima, media and adventitia). Each layer can be modeled as a fiber-
reinforced material with two families of relatively stiff collagenous fibers symmet-
rically arranged within an isotropic soft ground matrix. In this paper, we present
two different modeling approaches, the embedded fiber (EF) approach and the
angular integration (AI) approach, to simulate the anisotropic behavior of indi-
vidual arterial wall layers involving layer-specific data. The EF approach directly
incorporates the microscopic arrangement of fibers that are synthetically generated
from a random walk algorithm and captures material anisotropy at the element
level of the finite element (FE) formulation. The AI approach smears fibers in
the ground matrix and treats the material as homogeneous, with material aniso-
tropy introduced at the constitutive level by enhancing the isotropic strain energy
with two anisotropic terms. Both approaches include the influence of fiber disper-
sion introduced by fiber angular distribution (departure of individual fibers from
the mean orientation), and take into consideration the dispersion caused by fiber
waviness, which has not been previously considered. By comparing the numerical
results with the published experimental data of different layers of a human aorta,
we show that by using histological data both approaches can successfully capture
the anisotropic behavior of individual arterial wall layers. Furthermore, through
a comprehensive parametric study, we establish the connections between the AI
phenomenological material parameters and the EF parameters having straightfor-
ward physical or geometrical interpretations. This study provides valuable insight
for the calibration of phenomenological parameters used in the homogenized mod-
eling based on the fiber microscopic arrangement. Moreover, it facilitates a better
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understanding of individual arterial wall layers, which will eventually advance the
study of the structure-function relationship of arterial walls as a whole.

Keywords Arterial walls · Angular integration · Embedded fiber approach

1 Introduction

Understanding the structure-function relationship of individual arterial wall layers
provides insight into the pathophysiology of arterial wall diseases such as arterio-
sclerosis, allows for better predictions for the outcome of interventional treatments
such as balloon angioplasty (Holzapfel et al. 2002), and advances various biomed-
ical applications such as artificial heart valve (Durst et al. 2011; Hasan et al. 2014).
In the thickness direction, arterial walls are typically separated into three layers,
intima, media and adventitia (or externa), with different histology and mechan-
ical properties. The intima is the innermost arterial layer, the pathological change
(thickening and stiffening with age) of which may be associated with arteriosclero-
sis (Holzapfel et al. 2000, 2004). The media is the middle layer consisting of smooth
muscle cells, elastin and collagen fibers. The micro-structural arrangement of this
layer gives it high strength and the ability to resist loads in both the axial and
circumferential directions (Gasser et al. 2006). The adventitia is the outermost
layer and mainly consists of thick bundles of collagen fibrils that contribute sig-
nificantly to the artery stability and strength (Holzapfel et al. 2005). For a more
detailed description of the three layers, see Holzapfel et al. (2000). Although the
three layers of arterial walls have very different mechanical properties, they all
exhibit significant nonlinear and anisotropic behaviors. For example, according to
the experimental data from a human abdominal aorta (Holzapfel 2006), the media
layer is much stiffer in the circumferential direction than in the axial direction.

Uniaxial (in vitro) tension tests are widely used to study the mechanical be-
havior of different arterial wall layers. However, these tests are not sufficient for
the construction of multi-dimensional models to predict the material behavior in
physiological loading states. Conducting experiments that closely mimic the in vivo
loading state would provide more valuable information, but such experiments often
put higher demands on the equipment and human skills. On the other hand, de-
veloping numerical strategies involving layer-specific histological information may
provide an effective and inexpensive choice to study the material behavior of dif-
ferent arterial wall layers under complex loading conditions.

To date, many efforts were devoted to developing constitutive models of arter-
ial wall in the context of continuum mechanics. The pioneer effort came from Fung
and co-workers (Fung 1967; Fung et al. 1979), who proposed an exponential form
for the strain energy function that was widely adopted and further improved to
model the mechanical behavior of arterial walls and other biological tissues (Vaw-
ter et al. 1979; Chuong and Fung 1983; Fung 1983). However, the Fung model does
not include the material intrinsic structure, therefore its predictive capability is
largely limited. Moreover, this type of model is proved to lose convexity for cer-
tain ranges of material parameters (Wilber and Walton 2002). Another well-known
constitutive model for arterial walls was proposed by Holzapfel et al. (2000) and
is known as the Holzapfel-Gasser-Ogden (HGO) model, in which an exponential
strain energy function was also adopted. The HGO model includes the pseudo-
invariants of structural tensors (Spencer 1984) in the anisotropic strain energy to
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consider the influence of fiber orientation on the material mechanical behavior,
and can maintain important mathematical properties such as the polyconvexity
condition (Balzani et al. 2006) as long as the contribution from fibers under com-
pression is switched off. However, the HGO model assumes that all fibers are
concentrated in several orientations and does not capture the influence of fiber
dispersion. To address this limitation, Gasser et al. (2006) adopted the concept
of generalized structural tensor (GST) to consider the statistical distribution of
fibers. Despite the simple formulation and efficiency, it was later pointed out by
Federico and Herzog (2008) that the GST model was only valid when all fibers were
in tension and the angular fiber dispersion was small. Federico and Gasser (2010)
later proposed a more general method based on the angular integration (AI) of a
strain energy function containing the statistical information of fiber distributions.
Although the AI approach is computationally more expensive, it is valid when
the fiber angular dispersion is large and can exclude contributions from fibers un-
der compression. For a detailed comparison between the GST and AI approaches,
see Cortes et al. (2010). All these efforts belong to the homogenized modeling
strategy and possess several advantages: the finite element (FE) formulations are
relatively straightforward, and mathematical requirements such as polyconvexity
are satisfied. However, all the models only consider the dispersion introduced by
fiber angular distribution with respect to the mean orientation and fail to include
the dispersion caused by fiber waviness. Moreover, the phenomenological mater-
ial parameters involved do not have straightforward physical interpretations. To
identify them, an inverse problem that may be ill-posed needs to be solved.

An alternative to homogenization relies on directly incorporating the micro-
scopic arrangement of fibers in the modeling process (Lake et al. 2012; Zhang et al.
2013; Jin and Stanciulescu 2015). The fiber arrangement can either be directly ob-
tained using image processing from real tissues (D’Amore et al. 2014; Carleton
et al. 2015) or synthetically generated (Huisman et al. 2007; Barocas 2007; Sander
et al. 2009; Liu et al. 2013; Heidemann et al. 2015). Although the detailed model-
ing strategy is more complex to implement, puts higher demand on computational
resources, and often requires representative volume elements (RVEs) identification
or mesh refinement analysis to eliminate size effects (Shahsavari and Picu 2013;
Jin and Stanciulescu 2015), the parameters involved have physical or geometrical
interpretations and can often be directly obtained from experiments.

In this paper, we present two different approaches, the embedded fiber (EF)
approach belonging to the detailed modeling strategy and the angular integration
(AI) approach belonging to the homogenized modeling strategy, to simulate the
anisotropic behavior of individual arterial wall layers using layer-specific histolo-
gical data. Both approaches take into consideration the influence of fiber disper-
sion introduced by fiber angular distribution (departure of individual fibers from
the mean orientation) and fiber waviness. Through a comprehensive parametric
study, we establish relationships between the phenomenological parameters used
in the AI approach and those used in the EF approach that have straightforward
physical meaning. These relationships are helpful to form a better understanding
of the connection between the microscopic structure and the macro-mechanical
functions of different arterial wall layers. First, the EF and AI approaches are
described. Next, the method to extract modeling parameters from layer-specific
histological data is presented. By comparing the numerical results with the pub-
lished experimental data, we demonstrate that both approaches can successfully
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capture the anisotropic behavior of different arterial wall layers. Finally, we carry
out a comprehensive parametric study and establish several relationships between
the material parameters used in the two approaches.

2 Methods

Arterial walls are typically composed of three different layers in the thickness dir-
ection: intima, media and adventitia. Although each layer has different histology,
they all can be modeled as fiber-reinforced materials with two families of colla-
genous fiber bundles symmetrically arranged in an isotropic soft ground matrix
(Holzapfel et al. 2000; Holzapfel 2006). In this section, we first describe the em-
bedded fiber (EF) and the angular integration (AI) modeling approaches both
involving layer-specific histological data to simulate the mechanical behavior of
individual arterial wall layers. Then, we use published data for a human abdom-
inal aorta (Holzapfel 2006) as an example to demonstrate how to obtain material
parameters based on experimental data. Lastly, we propose several relationships
to establish the connections between the material parameters used in the two
modeling approaches.

2.1 Formulations

The embedded fiber (EF) approach and the angular integration (AI) approach are
proposed to simulate the mechanical behavior of different arterial wall layers. The
EF approach directly incorporates the microscopic arrangement of fibers that are
modeled as truss elements in the numerical simulation with the assumption that
fiber stretching is the main deformation mode (Zhang et al. 2013; D’Amore et al.
2014). The fibers are embedded in the surrounding matrix and the two material
components deform together. The material parameters used in this approach have
direct physical or geometrical interpretations. The AI approach smears fibers into
the matrix, thus belonging to the homogenization class of methods. Arterial wall
layers typically contain two families of collagenous fiber bundles that are symmet-
rically arranged and embedded in the ground matrix (Holzapfel et al. 2000). The
two families of fiber bundles make the material anisotropic. To consider this histo-
logy in the AI approach, the material anisotropy is introduced at the constitutive
level by enhancing the isotropic strain energy that describes the contribution from
the matrix component with two anisotropic terms (Gasser et al. 2006; Balzani
et al. 2006), each of which contains several phenomenological material parameters
and represents the contribution from one of the two families of fiber bundles. Both
approaches assume that the two families of fibers are in the plane formed by the
circumferential and axial directions, symmetrically arranged with respect to the
circumferential direction, and have the same mechanical properties.

2.1.1 Embedded fiber approach

In the embedded fiber (EF) approach, a random walk algorithm (Spanos and
Esteva 2009; Jin and Stanciulescu 2015) is implemented to generate the fiber
microscopic arrangement based on the following assumptions:
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1. Each fiber is piecewise linear and formed by a fixed number of segments Nseg,
and each segment has length lseg;
2. For the family of fibers forming the mean orientation φ with respect to the
circumferential direction, the initial angle θ0 of each fiber follows the π-periodic
Von Mises (VM) distribution with the Von Mises parameter b0 (Gasser et al. 2006;
Wang et al. 2012). The probability density function (PDF) ρ(θ, φ, b0) of the VM
distribution is expressed as follows

ρ(θ, φ, b0) =
eb0cos2(θ−φ)

πI0(b0)
, I0(b0) =

1

π

∫ π

0

eb0cosθdθ, (1)

where I0(b0) denotes the modified Bessel function of the first kind of order zero.

Eq. 1 satisfies the normalization condition
∫ π/2
−π/2 ρ(θ, φ, b0)dθ = 1. The influence

of b0 on the Von Mises distribution is shown in Fig. 1;
3. The relative angle θr between two neighboring segments in the same fiber follows
a uniform distribution, θr ∼ unif(−θmax, θmax);
4. The total number of fibers in the material is decided by the fiber volume fraction
µ.
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Fig. 1 Influence of the parameter b0 on the Von Mises distribution with the mean
orientation φ = 0◦

To generate the family of fibers with the mean orientation φ (with respect to
the circumferential direction), the main steps of the algorithm are summarized as
follows:
1. Specify a 2D area with thickness t;
2. Select a random point inside the area as the starting point of a fiber chain;
3. Choose an initial angle θ0 ∼ VM(φ, b0) and from the starting point generate
the first segment with length lseg;
4. Generate the next connected segment with an angle θr ∼ unif(−θmax, θmax)



6 Tao Jin, Ilinca Stanciulescu

relative to the previous segment;
5. Repeat Step 4 until the fiber is out of the area or the fixed number of segments
Nseg is reached;
6. Repeat Steps 2 to 5 until the assigned fiber volume fraction µ is reached. Fol-
lowing the same Steps 2 to 6, the family of fibers with the mean orientation −φ is
generated.

Figure 2 is a schematic representation of the geometrical parameters used in
the random walk algorithm. The fiber dispersion has two different causes, de-
parture of individual fibers from the mean orientation measured by the initial
angle θ0 ∼ VM(φ, b0), and the fiber waviness represented by the relative angle
θr ∼ unif(−θmax, θmax). The level of fiber dispersion increases as θmax increases,
indicating larger waviness (Fig. 3), and decreases as b0 increases, indicating that
fibers are more concentrated toward the mean orientation.
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Fig. 2 Geometric interpretations of the variables used in the random walk al-
gorithm

In order to directly incorporate the generated fiber microscopic structure into
the numerical simulation, the embedded fiber approach is adopted. This approach
assumes that fibers are embedded in the ground matrix and the two material
components deform together, thus is essentially equivalent to the affine fiber kin-
ematics (Lanir 1983; MacKintosh et al. 1995; Agoram and Barocas 2001; Storm
et al. 2005). The affine fiber kinematics is shown to be a valid assumption for many
biological tissues including pericardial collagenous tissues (Fan and Sacks 2014)
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Fig. 3 Influence of the relative angle between segments θr ∼ unif(−θmax, θmax)
on the level of fiber dispersion introduced by fiber waviness
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and mitral valve anterior leaflet (Lee et al. 2015). Figure 4 shows a rectangular
arterial wall layer sample with two families of fibers synthetically generated by the
random walk algorithm. After the material sample is meshed, each fiber segment
is either completely inside one element or crosses element boundaries. For the lat-
ter case, the coordinates of the intersection points are calculated and divide the
segment into multiple sub-segments. The Cartesian coordinates of the intersection
points formed by fibers and element boundaries, combined with the two endpoints
of all fiber segments, are recorded in a data list L = {(xi, yi), i = 1, 2, 3, · · · }. In the
isoparametric element, the Cartesian coordinates x and the natural coordinates ξ
have the following relationship

x(ξ) = Na(ξ)x(e)
a , (2)

where subscript a is the element nodal number, x
(e)
a are the nodal coordinates for

the e-th element, andNa is the element interpolation function associated with node
a. Here, the Einstein summation convention is used. Through Newton-Raphson
iterations, the natural coordinates ξ corresponding to the Cartesian coordinates x
in the list L are calculated and stored in a data structure shown in Table 1. The
i-th row of this data structure records the natural coordinates of the start (ξ1, η1)
and the end (ξ2, η2) of each fiber segment contained in the i-th element. Note that
different elements do not necessarily have the same number of fiber segments. This
data structure provides all the geometric information of the microscopic structure
of fibers needed for the finite element simulation.
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Fig. 4 Synthetically generated arterial wall layer sample meshed with four-node
quad element (the mean orientations of the two families of fibers φ = ±30◦, and
the Von Mises parameter b0 = 10.0)

The two symmetrically arranged families of fibers have the same material prop-
erties, and the mechanical property of individual fiber segments is expressed by
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Table 1 Data structure constructed to record the natural coordinates of the fiber
segments contained inside each finite element

Elmt No. (ξ1, η1),(ξ2, η2) (ξ1, η1),(ξ2, η2) · · · (ξ1, η1),(ξ2, η2)
1 1st segment 2nd segment · · · last segment
2 1st segment 2nd segment · · · last segment
3 1st segment 2nd segment · · · last segment

...
...

...
...

...
n 1st segment 2nd segment · · · last segment

an exponential form of strain energy function

Ψf (λ) =


1

2zf
kfL

2
0(ezf (λ

2−1)2 − 1) λ ≥ 1

0 λ < 1,

(3)

where kf is the axial elastic modulus of fiber segment, zf is a dimensionless para-
meter controlling the fiber nonlinearity, L0 is the segment original length, and λ is
the stretch ratio. It can be verified that Ψf (λ)|λ=1 = 0 and ∂Ψf (λ)/∂λ|λ=1 = 0,
indicating the stress-free state when no deformation occurs. This form of fiber
strain energy functions is consistent with the widely accepted assumption that
fibers can only sustain tensile force, but are not able to resist compression (Holza-
pfel et al. 2000; Balzani et al. 2006; Pandolfi and Vasta 2012).

The ground matrix material is typically described by an isotropic constitutive
model such as the Yeoh model (Sarma et al. 2003; Martins et al. 2006; D’Amore
et al. 2014) or the neo-Hookean model (Holzapfel et al. 2000; Gasser et al. 2006;
Balzani et al. 2006; Jin and Stanciulescu 2015). Here, we adopt the modified
neo-Hookean model with the volumetric term serving as a penalty to ensure the
material nearly incompressibility

Ψm(F ) =
1

4
K(J2 − 1− 2lnJ) +

1

2
G(Ī1 − 3), (4)

where K is the bulk modulus, G is the shear modulus, J = detF is the determinant

of the deformation gradient tensor F , and Ī1 = J− 2
3 tr(FTF ) is the modified tensor

invariant.
In the displacement formulation, the primary unknowns are element nodal

displacements u. The total strain energy Π(u) is decoupled into the contributions
from the ground matrix and the fibers. After spatial discretization, Π(u) can be
written as

Π(u) =

Nel∑
e=1

[ ∫
Ω

(e)
0

Ψm(F (u))dΩ +
N(e)∑
i=1

Ψf (λ(i)(u))
]
, (5)

where Ψf is the fiber strain energy and takes the exponential form (Eq. 3), Ψm is

the matrix strain energy (Eq. 4), λ(i) is the stretch ratio of the i-th fiber segment,

Nel is the total number of finite elements in the discretized system, Ω
(e)
0 is the

spatial domain occupied by the e-th element in the reference configuration, and
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N (e) is the number of fiber segments contained inside the e-th element. For an
arbitrary fiber segment with the stretch ratio λ, the component form of its contri-

bution to the element residual R
(e)
f and the stiffness matrix K

(e)
f are derived from

a variational approach and can be written as follows

R
(e)
f,iA = 2kfe

zf (λ
2−1)2(λ2 − 1

)(
x
(2)
i − x

(1)
i

)(
NA(ξ(2))−NA(ξ(1))

)
(6)

and

K
(e)
f,AiBj =2kfe

zf (λ
2−1)2(λ2 − 1)

(NA(ξ(2))−NA(ξ(1)))

(NB(ξ(2))−NB(ξ(1)))δij

+
4kf
L2
0

ezf (λ
2−1)2[1 + 2zf (λ2 − 1)2

]
[
(x

(2)
i − x

(1)
i )(NA(ξ(2))−NA(ξ(1)))

][
(x

(2)
j − x

(1)
j )(NB(ξ(2))−NB(ξ(1)))

]
,

(7)

where the superscripts (1) and (2) represent the two ends of the fiber segment, A,
B are the element nodal numbers, i, j are the Cartesian directions, ξ(1) and ξ(2) are
the natural coordinates of the fiber segment under consideration (available from
Table 1), and NA is the element interpolation function associated with node A.
Notice that in Jin and Stanciulescu (2015), a slightly different fiber strain energy
was used. Therefore, while the variational principles are the same, the counterparts
of Eq. 6 and 7 are different. The total element residual R(e) and the stiffness matrix
K(e) are the sum of the contributions from the ground matrix material and all
fiber segments contained in the corresponding element

R(e) = R(e)
m +

∑
i

R
(e)
fi
, (8)

K(e) = K(e)
m +

∑
i

K
(e)
fi
. (9)

The derivations of R
(e)
m and K

(e)
m , representing the contributions from the ground

matrix, can be found in most nonlinear FEM textbooks (e.g., Bonet and Wood
(2008)).

In summary, the embedded fiber (EF) approach directly incorporates the mi-
croscopic arrangement of fibers in the finite element formulation at the element
level. The fiber dispersion introduced by departure of individual fibers from the
mean orientation is considered by the initial angle θ0 ∼ VM(±φ, b0) of each fiber
chain, and the dispersion caused by fiber waviness is considered by the relative
angle θr ∼ unif(−θmax, θmax) between neighbouring segments. The influences of

the geometric parameters φ, b0 and θmax are implicitly included in the terms R
(e)
fi

and K
(e)
fi

representing the contribution from the fiber component. The material
parameters adopted in this approach have straightforward geometrical or mech-
anical interpretations.
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2.1.2 Angular integration approach

The angular integration (AI) approach follows a homogenization methodology that
smears the two families of fibers into the ground matrix and treats the material
as homogeneous. In the finite element formulation, the anisotropy introduced by
fibers is considered at the constitutive level. The total strain energy is decoupled
into two parts, the isotropic part representing the contribution from the ground
matrix Ψm enhanced by the anisotropic terms Ψf representing the contributions
from the two families of fibers,

Ψ = Ψm + Ψf (φ) + Ψf (−φ), (10)

where Ψm is described by the modified neo-Hookean model with the strain energy
function as shown in Eq. 4. The contribution from the fiber component Ψf takes
the following angular integration (AI) form

Ψf (±φ) =

∫ π/2

−π/2
ρ(θ,±φ, b)Ψ(I4(θ))H(I4(θ)− 1)dθ. (11)

In Eq. 11, Ψ(I4(θ)) is the strain energy function representing the contribution from
fibers forming an angle θ with respect to the circumferential direction, and adopts
the exponential form (Fung 1967; Holzapfel et al. 2000; Balzani et al. 2006)

Ψ(I4(θ)) =
k1
2k2

[
ek2(I4(θ)−1)2 − 1

]
, (12)

where k1 is a stress-like parameter, k2 is a dimensionless parameter, and I4 is the
pseudo-invariant of the structural tensor A corresponding to the unit direction
N = (cosθ, sinθ, 0) in the reference configuration, defined as

I4 = C : A = C : N ⊗N = n · n, n = FN . (13)

H is the Heaviside function

H(I4(θ)− 1) =

{
1 I4(θ) ≥ 1

0 I4(θ) < 1,
(14)

indicating that only the contribution from fibers under tension (I4 ≥ 1) is in-
cluded in the anisotropic (fiber) strain energy. ρ(θ,±φ, b) is the probability dens-
ity function (PDF) of the π-periodic Von Mises distribution. Here, the Von Mises
parameter b that describes the level of fiber dispersion is decoupled into two parts

b = b0 + bcor, (15)

where b0 measures the dispersion introduced by departure of individual fibers
from the mean orientation ±φ, and bcor measures the dispersion caused by fiber
waviness.

Comment: In the existing methods of the homogenized modeling, all fibers
are assumed to be straight. Therefore, only the dispersion caused by departure
of individual fibers from the mean orientation, measured by b0, is included. Here,
we introduce the correction term bcor that is treated as an extra phenomenological
parameter to describe the dispersion caused by fiber waviness.
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Since the pseudo-invariant I4 depends on the deformation state described by
the deformation gradient F , it is very difficult, if not impossible, to obtain the
analytical expression of the integral shown in Eq. 11. Consequently, a quadrature
rule is needed to numerically evaluate the integral. Here, the trapezoidal rule
is applied. The integration interval [−π/2, π/2] is divided equally into N sub-
intervals. For an arbitrary sub-interval [θi, θi+1], the midpoint θi+ 1

2
is chosen to

evaluate the pseudo-invariant I4. Therefore, the integral in Eq. 11 is approximated
as

Ψf (±φ) ≈
N∑
i=1

ρ(θi+ 1
2
,±φ, b)Ψ(I4(θi+ 1

2
))H(I4(θi+ 1

2
)− 1)∆θi, ∆θi = θi+1 − θi.

(16)
Based on Eq. 16, the 2nd Piola-Kirchhoff stress and the material elasticity tensor
in the reference configuration are derived as follows

Sf (±φ) = 2
∂Ψf (±φ)

∂C

=
∑
j

2k1(I4(θj+ 1
2
)− 1)e

k2(I4(θj+ 1
2
)−1)2

ρ(θj+ 1
2
,±φ, b)∆θjA(θj+ 1

2
)

(17)

and

Cf (±φ) =2
∂Sf (±φ)

∂C

=
∑
j

4k1
[
1 + 2k2(I4(θj+ 1

2
)− 1)2

]
e
k2(I4(θj+ 1

2
)−1)2

ρ(θj+ 1
2
,±φ, b)∆θj

A(θj+ 1
2
)⊗A(θj+ 1

2
),

(18)

where j ∈ {1, . . . , N
∣∣I4(θj+ 1

2
) > 1}.

Comment: From Fig. 1 it can be seen that the probability density ρ(θ) of the
Von Mises distribution decreases rapidly to zero when the fiber angle θ is far away
from the mean value. Therefore, using the full integration interval [−π/2, π/2] to
evaluate Eq. 11 may not be necessary. In the implementation, a threshold value
ε = 10−9 is chosen and the integration interval is reduced to [a, b], so that ρ(a) =
ρ(b) = ε and ∀θ ∈ [a, b], ρ(θ) ≥ ε. Then, a quadrature rule is performed in the
interval [a, b], similar to Federico and Gasser (2010).

For the arterial wall layer in which the mean angles of the two symmetrical
families of fibers are φ and −φ with respect to the circumferential direction, the
total 2nd Piola-Kirchhoff stress and the material elasticity tensor are the sum of
the contributions from the matrix and fibers

S = Sm + Sf (φ) + Sf (−φ) (19)

and

C = Cm + Cf (φ) + Cf (−φ), (20)

where ±φ can be obtained from layer-specific histological images (Holzapfel 2006).
The derivations of the 2nd Piola-Kirchhoff stress Sm and the material elasticity
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tensor Cm from the isotropic (matrix) strain energy can be found in most nonlinear
FEM textbooks, for example, see (Holzapfel 2000; Bonet and Wood 2008).

In summary, the AI approach belongs to the homogenization modeling tech-
nique that smears the fiber component into the ground matrix and treats the
whole material as homogeneous (Fung 1967; Holzapfel et al. 2000; Federico and
Gasser 2010). The FE formulation based on this technique is very straightfor-
ward, and the computational cost is relatively low. In the AI approach, the fiber
dispersion caused by departure of individual fibers from the mean orientation is
considered by the Von Mises parameter b0, and the dispersion caused by fiber
waviness is considered in this approach by introducing the correction term bcor.
The FE formulation captures the anisotropy at the constitutive level with several
phenomenological material parameters.

Comment: In the EF approach, the expressions of the element residual R
(e)
f

and the stiffness matrix K
(e)
f depend on the specific form of the strain energy

function. In Jin and Stanciulescu (2015), the fiber strain energy function is

Ψf (λ) =


1

2zf
kfL

2
0(ezf (λ−1)2 − 1) λ ≥ 1

0 λ < 1.

Notice the only difference between the above strain energy function and the one
adopted in this work (Eq. 3) is that the former uses λ in the exponential term,
while the latter uses λ2. The rationale behind this model evolution comes from
the strain energy function Eq. 12 used in the AI approach. Recall that I4 = λ2.
Since we aim to establish the equivalence between the EF and AI approaches, we
decide to adopt λ2 in the exponential term (Eq. 3) that changes the expressions

of R
(e)
f and K

(e)
f .

2.2 Parameter identification

Holzapfel (2006) conducted a comprehensive experimental study on the mechanical
properties of different layers (intima, media and adventitia) of a human abdominal
aorta and obtained the layer-specific histological data of fiber bundles. We use this
experiment as an example to demonstrate how to obtain the material parameters
based on experimental data. In the experiment, from each arterial layer two rectan-
gular samples with the axial and circumferential orientations are cut out (Fig. 5).
The ratio between the length and width of each sample is around six so that the
desired homogeneous stress-strain state could be achieved during the test. Table 2
shows the mean fiber angles and standard deviations (SD) with respect to the
circumferential direction of different layers. For the histological images, interested
readers are referred to Fig. 4 in Holzapfel (2006). Recall that the two families of
fibers in each arterial wall layer are symmetrically arranged and assumed to follow
the π-periodic Von Mises distribution VM(φ, b0) with the parameter b0 capturing
the level of dispersion introduced by the departure of fibers from the mean ori-
entations ±φ. The standard deviation of the Von Mises distribution (SD) and the
parameter b0 are related by

SD(b0) =

∫ π/2

−π/2
ρ(θ, φ, b0)(φ− θ)2dθ =

∫ π/2

−π/2

eb0cos2(θ−φ)

πI0(b0)
(φ− θ)2dθ, (21)
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where φ is the mean fiber angle. According to Eq. 21, a one to one relationship
between SD and b0 is established (Fig. 6), based on which the layer-specfic value b0
(Table 2) is obtained. Notice that because of the π-periodicity, b0 is independent of
the mean fiber angle φ. Consequently, the unit directional vectors presenting the
mean orientations of the two families of fibers n1,2 = (cos(±φ), sin(±φ), 0) and
the PDF of the Von Mises distribution ρ(θ,±φ, b0) followed by the initial angle θ0
of each fiber chain are completely decided by the histological data (Table 2) from
the experiment.
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Fig. 5 Circumferential and axial samples cut from the same material specimen
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Fig. 6 Relationship between the standard deviation (SD) of fiber angles and the
Von Mises parameter b0



14 Tao Jin, Ilinca Stanciulescu

Table 2 Fiber angles (mean ± SD) with respect to the circumferential direction in
different layers of the abdominal aorta and the corresponding Von Mises parameter
b0

Intima Media Adventitia
mean angle (φ) ± SD 18.8◦ ± 8.2◦ 37.8◦ ± 20.6◦ 58.9◦ ± 14.8◦

Von Mises parameter b0 12.732 2.661 4.376

In the embedded fiber approach, the Young’s modulus E of the matrix material,
the material parameters of individual fiber segments kf and zf , and the relative
angle bound θmax reflecting fiber waviness are obtained via an optimization process

(E, kf , zf , θmax) = arg min
E,kf ,zf ,θmax

n∑
i=1

(
||σcirc(λ(i))−σ(λ(i))||2+||σaxia(λ(i))−σ(λ(i))||2

)
,

(22)
where σcirc and σaxia are the Cauchy stresses obtained from the FE simulations
of the circumferential and axial samples under uniaxial tension, σ(λ(i)) is the
corresponding experimental data, λ(i) is the stretch ratio, and n is the number of
experimental data records.

In the angular integration approach, the same value of E obtained from Eq. 22
is used for the isotropic matrix. The phenomenological parameters k1 and k2 in
the anisotropic strain energy and the correction of the Von Mises distribution
bcor reflecting the dispersion caused by fiber waviness are obtained from a similar
optimization process

(k1, k2, b
cor) = arg min

k1,k2,bcor

n∑
i=1

(
||σcirc(λ(i))− σ(λ(i))||2 + ||σaxia(λ(i))− σ(λ(i))||2

)
.

(23)

2.3 Material parameter relationships

Table 3 shows the comparison of the material parameters used in the embedded
fiber (EF) approach and the angular integration (AI) approach. For the fiber mi-
croscopic arrangement, both approaches assume that the initial angle of individual
fibers follows the π-periodic Von Mises distribution VM(±φ, b0), in which the mean
fiber orientations ±φ and the Von Mises parameter b0 reflecting the dispersion in-
troduced by fiber angular distribution are directly obtained from histological data.
In the EF approach, the dispersion caused by fiber waviness is included via the
bound θmax of the relative angle θr between neighboring segments. While in the AI
approach, this type of dispersion is introduced via a correction term bcor. For the
mechanical properties, the EF approach directly includes fibers in the simulation
by modeling them as truss elements with axial stiffness kf and the dimension-
less parameter zf reflecting the nonlinearity. While the AI approach considers the
influence of fibers through the anisotropic strain energy function in terms of the
phenomenological parameters k1 and k2.
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Table 3 Comparison of the material parameters used in the embedded fiber and
the angular integration approaches

AI EF
FEM strategy Constitutive level Element level

Mean orientation ±φ ±φ
Dispersion (angular distribution) b0 b0

Dispersion (waviness) bcor θmax
Von Mises distribution ρ(θ,±φ, b0) ρ(θ,±φ, b0)
Fiber volume fraction

k1
µ

Fiber stiffness kf
Dimensionless parameter k2 zf

Notice that the fiber strain energy (Eq. 3) used in the EF approach and the
anisotropic strain energy (Eq. 12) used in the AI approach adopt the same expo-
nential form. Also, taking into consideration the underlying affine fiber kinematics,
the following relationships between the phenomenological parameters adopted in
the AI approach and those with direct physical or geometrical meaning in the EF
approach are proposed

k1 = Ckfµ (24)

k2 = zf , (25)

and

bcor = bcor(b0, θmax), bcor|θmax=0 = 0. (26)

Eq. 24 suggests that the stress-like parameter k1 in the AI approach is propor-
tional to the fiber axial stiffness kf and the fiber volume fraction µ in the EF
approach with a constant coefficient C, and is independent of the rest of the ma-
terial parameters such as zf , θmax and φ. Eq. 25 indicates that the dimensionless
parameters k2 and zf take exactly the same value, since I4 = λ2. Eq. 26 implies
that the correction bcor in the AI approach is a function of b0 representing the
dispersion introduced by fiber angular distribution and θmax representing fiber
waviness, and is independent of the rest of the material parameters such as kf
and φ. When θmax = 0◦, all fibers are straight and no correction bcor on the Von
Mises parameter is needed.

In order to verify the proposed relationships between the material parameters
shown in Eq. 24 to 26, a comprehensive parametric study is conducted. In the
parametric study, the ratio of the length and width of the material sample under
uniaxial tension is six, and the clamped-clamped boundary condition is used. The
simulation results obtained via the EF approach are considered as the reference
solution, and the phenomenological parameters used in the AI approach are cal-
ibrated to match it. For example, the following optimization process is applied to
obtain the relationship between bcor and θmax for a fixed value of b0

bcor = arg min
bcor

(
||σcirc(bcor)− σ∗(θmax)||2 + ||σaxia(bcor)− σ∗(θmax)||2

)
, (27)

where σcirc and σaxia are obtained from the AI approach, and σ∗ is the corres-
ponding value from the EF approach.
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3 Results

The embedded fiber (EF) approach and the angular integration (AI) approach
in Sect. 2 follow two different finite element (FE) formulation strategies. The
first approach captures the anisotropic behavior of arterial wall at the element
level, while the second approach captures the material anisotropy directly at the
constitutive level. Correspondingly, a user element subroutine based on Eqs. 6 to
9 and a user material subroutine based on Eqs. 17 to 20 are implemented in an
open-source finite element analysis package FEAP (Taylor 2011).

3.1 Comparison to published experimental data

In order to demonstrate the accuracy and predictive capability of the proposed
EF and AI approaches, the numerical results obtained via the finite element sim-
ulations are compared with the published experimental data of different layers
(intima, media and adventitia) of a human abdominal aorta under uniaxial ten-
sion (Holzapfel 2006). In the finite element (FE) simulation, all three arterial layers
are treated as nearly incompressible material with Poisson’s ratio ν = 0.499. The
4-node mixed finite element Q1/P0 (Taylor 2011) is used throughout the invest-
igation to ensure that the FE formulation is free from locking due to the mater-
ial nearly incompressibility. The clamped-clamped boundary condition is used to
mimic the experimental setup. The experimental data in the original paper were
reported in the form of the uniaxial components of the Green-Lagrange strain
(E11 or E22) and the 2nd Piola-Kirchhoff stress (S11 or S22). According to the
relationship λ =

√
2E + 1 and σ = λ2S, the E − S curve is converted into the

σ − λ curve.
Since the fiber volume fraction µ and the length of individual fiber chain are not

reported from the experiment, in the embedded fiber approach, the fiber volume
fraction µ is assumed equal to 1%, and each fiber chain is formed by 10 segments
(Nseg = 10) with the segment length lseg = 50 µm that falls in the range (1 ∼ 500
µm) reported in the literature (Annovazzi and Genna 2010). According to Eqs. 22
and 23, the material parameters used in the EF and AI approaches are calibrated
and reported in Table 4. Notice that the same group of material parameters are
used to fit the experimental data in the circumferential and axial directions.

Figure 7 shows the comparison between the experimental data and the sim-
ulation results based on the AI approach. The simulation results match the ex-
perimental data well except for the axial sample of the intima layer, in which
the two families of fibers are almost aligned with the circumferential direction
(φ = ±18.8◦). When the axial sample is stretched, initially all fiber chains are
under compression (because of the sample transverse contraction) and do not con-
tribute to the material stiffness. At this time the only contribution is from the
isotropic matrix component. As the sample stretch increases, fibers are reoriented
and transit from the compressive state into the tensile state. Because of the homo-
genization used in the numerical formulation, this transition happens at the same
moment for many fibers, which is manifested by the sudden increase of the slope
of the intima σ − λ curve in Fig. 7b.

In the embedded fiber approach, the random walk algorithm is used to gener-
ate the two families of fibers. The relative angle θr between neighboring segments
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Table 4 Material parameters used in the FE simulations to fit the experimental
data of different layers of the abdominal aorta

Intima
AI E = 0.30 (MPa) k1 = 0.1 (MPa) k2 = 260 bcor = −1.62
EF E = 0.30 (MPa) kf = 4.0 × 10−3 (Nmm−1) zf = 260 θmax = 20◦

Media
AI E = 0.05 (MPa) k1 = 2.0 × 10−2 (MPa) k2 = 5 bcor = −0.5
EF E = 0.05 (MPa) kf = 5.5 × 10−4 (Nmm−1) zf = 5 θmax = 20◦

Adventitia
AI E = 0.05 (MPa) k1 = 0.9 × 10−6 (MPa) k2 = 15 bcor = 0.6
EF E = 0.05 (MPa) kf = 2.5 × 10−8 (Nmm−1) zf = 15 θmax = 10◦
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Fig. 7 Comparison of the numerical results obtained via the angular integration
(AI) approach with the experimental data (Exp) of different arterial layers

follows the uniform distribution, and the initial angle of each fiber chain θ0 fol-
lows the Von Mises distribution with a random starting position. To consider the
influence of the stochastic nature of the synthetically generated fiber arrangement
on the numerical results, Monte Carlo (MC) simulations are combined with the
embedded fiber approach to capture the material behavior in an average sense.
Figure 8 shows the distribution of the generated initial angle θ0 of fibers in the in-
tima layer and the resulted geometry of the two families of fibers generated by the
random walk algorithm. In the FE simulation, the mesh size h = lseg = 50 µm is
used so that the embedded fiber approach provides accurate results. For a detailed
discussion about the influence of mesh size on the performance of the embedded
fiber approach, the interested reader is referred to Jin and Stanciulescu (2015).
From the comparison between the experimental data and the numerical results
(mean ± SD) obtained from 500 MC simulations (Fig. 9), it can be seen that
the numerical results match the experimental data well in all cases. For the axial
sample of the intima layer, since fibers are directly incorporated in the simulation,
the transition of fibers from the compressive state into the tensile state happens
gradually, thus leading to the smooth increase of the slope of the adventitia σ− λ
curve in Fig. 9b that better captures the behavior observed in experiments.
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Fig. 8 Distribution of the initial angle θ0 of fibers in the intima layer and the
resulted geometry of the two families of fibers generated by the random walk
algorithm (µ = 1%, θmax = 20◦, b = 12.732). For visualization purpose only part
of the fibers are shown
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Fig. 9 Comparison of the numerical results obtained via the embedded fiber (EF)
approach with the experimental data (Exp) of different arterial layers, 500 MC
simulations are carried out to obtain the mean and standard deviation

3.2 Parametric study

The relationships between bcor and θmax for different values of b0 are obtained
according to Eq. 27 and shown in Fig. 10. These relationships are further verified
to be independent of the rest of the material parameters including µ, kf , zf and
φ. When θmax = 0◦, bcor = 0, which is consistent with the fact that when all
fibers are straight, no correction on the Von Mises parameter b caused by fiber
waviness is needed. Furthermore, it can be seen that as θmax increases, the level
of material anisotropy decreases because fibers become wavier. Consequently, a
larger correction bcor (absolute value) is needed to properly reflect the influence
of fiber waviness on the fiber dispersion (Fig. 10a). When θmax becomes large
enough (> 45◦), the material anisotropy is so low that the material behaves almost
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identically in the circumferential and axial directions. Correspondingly, the total
value of b = b0 + bcor becomes constant (around 0.5) regardless of the value of b0
(Fig. 10b), indicating that the material is almost homogeneous.
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Fig. 10 Relationships between bcor and θmax for different values of b0

The relationship between the stress-like parameter k1 in the AI approach, and
the fiber volume fraction µ and axial stiffness kf in the EF approach is obtained
from a similar optimization process as shown in Eq. 27. From Fig. 11 it can be
seen that k1 is strictly proportional to µ and kf with the constant coefficient
C = 3.63 × 103 mm−1 (again, this relationship is verified to be independent of
the rest of the material parameters including φ, b0, zf and θmax). The linear
relationship between k1 and (kf , µ) is expected because of the underlying affine
fiber kinematics adopted by the embedded fiber approach, which indicates that the
total contribution of fibers is the sum of the contribution from individual fibers.

Based on Eqs 24, 25 and 26, the phenomenological parameters used in the AI
approach can be directly obtained from the material parameters used in the EF
approach and no optimization is needed. To further verify the accuracy of these
relationships, several arbitrary combinations of φ, b0, µ, kf , zf and θmax that
cover large value ranges are tested. In all cases, the numerical results from the
two approaches match well in both the circumferential and axial directions under
uniaxial tension. Here, only three representative cases are provided for demon-
stration purposes. The material parameters used are shown in Table 5, and the
predicted σ-λ curves of the AI approach in the circumferential and axial directions
are compared with the curves of the EF approach as shown in Fig. 12.

Table 5 Material parameters used in the AI (predicted) and EF approaches based on Eqs 24, 25 and 26

Case 1 Case 2 Case 3

φ = 10◦, b0 = 10 φ = 37.8◦, b0 = 2.661 φ = 37.8◦, b0 = 2.661
AI (predicted) EF AI (predicted) EF AI (predicted) EF

k1 = 3.63 × 10−4 kf = 1.0 × 10−5

k1 = 3.99 × 10−2 kf = 5.5 × 10−4

k1 = 1.45 × 10−1 kf = 1.0 × 10−3

µ = 1% µ = 2% µ = 4%
k2 = 4 zf = 4 k2 = 5 zf = 5 k2 = 1.7 zf = 1.7

bcor = −8.29 θmax = 25◦ bcor = −1.50 θmax = 30◦ bcor = −0.50 θmax = 10◦

† k1 – MPa; kf – Nmm−1
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Fig. 11 Linear relationship between k1 in the AI approach and (kf , µ) in the EF
approach

4 Discussions

In this paper we present two different modeling approaches, the embedded fiber
(EF) approach and the angular integration (AI) approach, to simulate the aniso-
tropic behavior of individual arterial wall layers using layer-specific histological
data. Both approaches include the influence of fiber dispersion caused by fiber an-
gular distribution (departure of individual fibers from the mean orientation), and
take into consideration the dispersion caused by fiber waviness, which has not been
previously considered. By comparing the numerical results with the published ex-
perimental data of different layers of a human abdominal aorta, we show that both
approaches can successfully capture the material nonlinearity and anisotropy. Fur-
thermore, we establish the relationships between the AI phenomenological para-
meters and the EF parameters having straightforward geometrical or mechanical
interpretations. Through a comprehensive parametric study, we demonstrate the
validity and accuracy of these relationships. This study provides valuable insight
for the calibration of phenomenological parameters used in the homogenized mod-
eling taking into account the material microscopic arrangement. Moreover, it can
facilitate a better understanding of individual arterial wall layers, which will even-
tually advance the study of the structure-function relationship of the whole arterial
wall.

The EF and AI approaches presented in this paper are general in the sense
that unlike the generalized structural tensor (GST) method that is only valid
for small angular dispersion, they both are valid for any level of fiber angular
dispersion. Moreover, both approaches can exclude the contributions from fibers
under compression. In the EF approach, this is achieved at each individual fiber
via the piecewise fiber strain energy function (Eq. 3). While in the AI approach,
the same consideration is adopted by introducing the Heaviside function in the
angular integration of the anisotropic strain energy function. Therefore, the two
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Fig. 12 Comparisons of the predicted σ-λ curves of the AI approach and the
curves of the EF approach using the material parameter relationships based on
Eqs 24, 25 and 26

approaches can avoid the problem of non-tensile fiber loading present in the GST
method.

The finite element (FE) formulations of the EF and AI approaches adopt dif-
ferent ways to capture the material anisotropy. In the EF approach, the anisotropy
is captured at the element level by directly incorporating the microscopic arrange-
ment of fibers in the FE mesh. The influence of the material microscopic paramet-
ers is implicitly reflected in the element residual and stiffness matrix. Comparing
with a standard FE formulation, this approach requires two preprocessing steps,
generation of fiber microscopic arrangement via the random walk algorithm and
evaluations of element interpolation functions at every fiber segment endpoint. On
the other hand, the AI approach directly considers the material anisotropy at the
constitutive level by introducing two anisotropic terms in the total strain energy
function. Therefore, the FE formulation of this approach is very straightforward.
Since the strain energy function is expressed in the integral form, a quadrature
rule is needed to calculate the 2nd P-K stress and the material elasticity tensor.

The layer-specific histological data obtained from the experiment include the
mean fiber orientations of the two families of fibers ±φ and the standard deviations
(SD). The EF and AI approaches both use this information, therefore improving
the accuracy and predictive capabilities of the numerical modeling. Comparing
with existing methods, the two approaches can further take into consideration
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the dispersion caused by fiber waviness, which has not been achieved previously.
In the EF approach, fiber waviness is included by introducing the relative angle
θr between neighbouring segments. While in the AI approach, fiber waviness is
considered via the correction term bcor.

Through the comprehensive parametric study, three relationships between the
material parameters used in the AI and EF approaches are established:
(1) the relationship between the stress-like parameter k1 with the fiber axial stiff-
ness kf and the fiber volume fraction µ;
(2) the relationship between the dimensionless parameters k2 and zf ;
(3) the relationship between the correction term bcor and the bound of the relative
angle θmax.
Although no rigorous mathematical proof is provided due to the complexity of
the problem, these relationships are verified to be true in a large range of random
combinations of material parameters. The linear relationship between k1 and (kf ,
µ) is expected, since the EF and AI approaches are both based on the affine fiber
kinematics in which the superpostion principle is valid. Due to the same expo-
nential form of the anisotropic strain energy (Eq. 12) in the AI approach and the
fiber strain energy (Eq. 3) in the EF approach, the dimensionless k2 and zf always
take the same value. The relationship between bcor and θmax implies that as θmax
increases, fibers become wavier and the total level of fiber dispersion increases. Ac-
cordingly, the value of b decreases and the material isotropy increases. Especially,
when θmax = 0, all fibers are straight and no correction bcor due to fiber waviness
is needed. This is consistent with the original assumption of the structure-based
constitutive model (Gasser et al. 2006; Federico and Gasser 2010), in which only
the dispersion introduced by departure of fiber from mean orientation (angular
distribution) is considered.

In the EF approach, only part of the needed geometric information is provided
by the histological images from the experiment, including the mean fiber orienta-
tion φ and standard deviation SD that is equivalent to b0. The rest of the material
parameters related to the fiber arrangement and mechanical properties are either
chosen from the range reported in literature or determined via an optimization
process. Recently, many efforts have been devoted to study the mechanical beha-
vior of a single collagen fiber (Annovazzi and Genna 2010; Holzapfel and Ogden
2011, 2013). Also, more detailed geometric information regarding the fiber micro-
scopic arrangement can be acquired via advanced image processing technologies
such as confocal reflection imaging (Roeder et al. 2002; Arganda-Carreras et al.
2010) or scanning electron microscopy (SEM) (D’Amore et al. 2010). All these
advances make it possible to obtain the material parameters completely from ex-
periments. Based on these material parameters that have straightforward geomet-
rical or physical meaning, phenomenological parameters used in the homogenized
modeling can be further decided according to the relationships similar to Eqs 24,
25 and 26. Therefore, the relatively simple formulation of the homogenized mod-
eling can be maintained. Meanwhile, the difficulties of phenomenological material
calibrations typically encountered in the homogenized modeling can be avoided.

In the EF approach, fibers are modeled as truss elements due to two reasons,
fiber deformation modes and computational cost. According to Zhang et al. (2013)
and D’Amore et al. (2014), fiber stretching is one of the dominant deformation
modes and truss elements are very effective in capturing it. Moreover, the primary
unknowns of truss elements are the coordinates of the two endpoints that can be
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expressed by the finite element nodal displacements and interpolation functions
via the isoparametric relationship (Eq. 2). Thus, the degrees of freedom (DOFs) of
the discretized system remain unchanged when fibers are directly included in the
FE simulation, and the computational cost is not significantly increased, while the
physics is captured well. However, recent studies show that fiber bending may also
occur in certain circumstances, for example, see (Holzapfel and Ogden 2011, 2013)
for the study of individual biopolymer filament. Fiber bending is not included in
the models discussed here and further investigation is needed to accomplish this
without significantly increasing the computational cost.

Depending on the different assumptions of the load transfer mechanism in-
side the material, the affine or nonaffine fiber kinematics can be used. The affine
fiber kinematics assumes that the primary load transfer happens between the
fiber and the matrix, and the fiber deformation is completely decided by the mac-
roscopic strain field (Lanir 1983; MacKintosh et al. 1995; Agoram and Barocas
2001; Storm et al. 2005). In contrast, the nonaffine fiber kinematics assumes that
the primary load transfer happens among fiber chains and each fiber chain de-
forms independently of the matrix (Chandran and Barocas 2006; Stylianopoulos
and Barocas 2007). One of the fundamental assumptions of the EF and AI ap-
proaches presented in this paper is the affine fiber kinematics, which is shown to
be a valid assumption for pericardial collagenous tissues (Fan and Sacks 2014) and
mitral valve anterior leaflet (Lee et al. 2015). On the other hand, there is evidence
suggesting that the nonaffine fiber kinematics may be a more realistic assump-
tion for other types of fibrous biomaterial such as bovine annulus fibrous tissue
(Head et al. 2003; Chandran and Barocas 2006; Huyghe and Jongeneelen 2012;
Lake et al. 2012). How to fully consider the fiber-matrix interaction while adopting
the nonaffine fiber kinematics with a reasonable computational cost remains very
challenging.

The EF approach uses a random walk algorithm to generate the fiber mi-
croscopic arrangement. One of the inputs for this algorithm is that each fiber is
formed by a fixed number of segments with the same length. This assumption is a
temporary compromise due to lack of reliable information about the fiber length
at the microscale. When more accurate fiber topology will become available from
experiments via advanced image processing techniques, this assumption can be
easily replaced by providing as input the real fiber length.

Lastly, it is worth emphasizing that the relationships between the material
parameters used in the EF and AI approaches are only verified for the tensile
loading in the circumferential and axial directions. For other loading cases such
as shear and bending, whether these relationships are valid still needs further
investigation. Also, this paper only focuses on the behavior of individual arterial
wall layers. In the next step, we will extend the 2D formulations presented in this
paper into 3D and study the structure-function relationship of arterial walls as a
whole.
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