INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or iliustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

RICE UNIVERSITY

Ellipsoidal Approximation to Polytopes and
Computational Study of Lenstra’s Algorithm
by
Liyan Gao

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED. THESIS COMMITTEE:

Yin Zhang, Chairman

Associate Professor of Computational and
Applied Mathematics

Richard A. Tapia
Noah Harding Professor of Computational
and Applied Mathematics

Rebed €. B
Robert E. Bixby e(/
Noah Harding Prof¥ssor Emeritus of

Computational and Applied Mathematics

Lz Wik

Richard A. Stong
Professor of Mathematics

Houston, Texas
December, 2001

UMI Number: 3047307

®

UMI

UMI Microform 3047307

Copyright 2002 by ProQuest Information and Learmning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Ellipsoidal Approximation to Polytopes and
Computational Study of Lenstra’s Algorithm

by

Livan Gao

General integer programming is an important mathematical approach for many
decision-making problems. In this field. a major theoretical breakthrough came in
1983 when H. W. Lenstra. Jr. proposed a polynomial-time algorithm for general
integer programs while the number of variables is fixed. Two key ingredients of
Lenstra’s algorithm are ellipsoidal approximation of polytopes and lattice basis re-
duction. However, the lack of practically efficient algorithms and software for the
ellipsoidal approximation of polytopes has made it difficult to study the computa-
tional properties of Lenstra’s algorithm.

To bridge the gap between theory and computational practice for Lenstra’s algo-
rithm, we study both the ellipsoidal approximation to polytopes and computational
properties of Lenstra’s algorithm in this thesis. We have developed a reliable and
efficient algorithm for computing the maximum volume ellipsoid inscribing a given
polytope. This algorithm effectively exploits the problem-specific structures and uti-
lizes a primal-dual type, interior point method. We show that this algorithm has a
sound theoretical foundation, and demonstrate that it performs considerably better

than a number of other algorithms through extensive numerical experiments.

Using our ellipsoidal approximation algorithm as a subroutine, we have imple-
mented a version of Lenstra’s algorithm for general integer programming feasibility
problems. At each node, the method uses ellipsoidal approximation and lattice basis
reduction to find a “thin” direction of the polytope. and branches on hyperplanes.
rather than on variables as in the traditional branch-and-bound method. In this
procedure. it is guaranteed that the number of branches at each node is bounded
and small. Our numerical results on small- to medium-sized test instances suggest
that Lenstra’s algorithm examine much fewer nodes than the traditional branch-
and-bound method. However. there is a tradeoff between many nodes and fast re-
optimization as in the traditional branch-and-bound method and fewer nodes but
more time-consuming decisions on branching as in Lenstra’s algorithm. Currently,
the main bottle-neck in the performance of the algorithm lies at the step of lattice
basis reduction. If this step is sufficiently improved. then Lenstra’s algorithm. when
combined with other techniques such as cutting planes, promises to be efficient for

certain classes of difficult problems.

Acknowledgments

This thesis would not have been possible without the help of many people. I am
deeply grateful to all of them for sharing their knowledge and spending significant
time and effort to make my stay at Rice fruitful and pleasant.

I am deeply grateful to my advisor Dr. Yin Zhang. Dr. Zhang has shown a
genuine interest in my thesis work from its conception to completion. My research
has benefited greatly from our animated discussions. Dr. Zhang always encourages
me to present my work, and supports me to broaden my scientific knowledge and to
improve myself by attending conferences. I also appreciate his patience and frankness
throughout the years when I met difficulties in research. I thank Dr. Bill Cook
who taught me to take the challenge of difficult research problems and set a high
standard for me. I greatly appreciate his guidance in integer programming. Even
after he left Rice, he still paid attention to my work and went through my draft and
provided constructive comments to improve it. I truly appreciate his encouragement
and enthusiasm on my thesis.

I would like to express my sincere appreciation to all my committee members for
their guidance and support. I thank Dr. David Applegate, Dr. Bill Cook. Dr. Robert
Bixby and Dr. Richard Tapia for their seminars and comments.

I would express my thanks to those who helped me during my research and thesis
writing. Dr. Bixby pointed me to the set of test problems for integer programming.
These test problems were very useful in my research. Dr. Karen Aardal has shared
her interest in lattice basis reduction with me in the beginning of my research. Dr.
Jan Hewitt edited a great deal of my proposal and my thesis. Keith Berrier critically

read my thesis.

v

I would like to thank my officemates Keith Berrier, Maria Cristina Villalobos and
Erica Zimmer Klampfl for sharing their experience with me and for their friendship.
My special thanks go to Genetha Gray for her comments on my presentations. I
thank all my friends and classmates and roommates at Rice for the time we spent
together.

I thank all the faculty and stuff of Computational and Applied Mathematics
Department for providing such a stimulating environment. I thank our department
coordinator Daria Lawrence for taking care of daily details. and Michael Pearlman
and Eric Aune for their smooth work on our computer network.

[am thankful to my supportive family (Mom and Dad. uncles and aunts. and
sisters) for their love. patience and belief in me. Finally. [thank my husband Jibin.

for his love. encouragement and support.

Contents

Abstract
Acknowledgments
List of Illustrations

List of Tables

Introduction

Background

2.1 Linear Programming and Integer Programming Concepts

2.2 Branch-and-Bound Algorithms00
2.3 Cutting Plane Methods
2.4 Interior Point Methods for Linear Programming
2.5 Convex Programming

Ellipsoidal Approximation of Polytopes

3.1 Introduction

3.2 The Maximum Volume Ellipsoid Problem

3.3 Formulations and Primal-Dual Algorithms
3.3.1 Formulations without Matrix Variable
3.3.2 Primal-Dual Algorithmic Framework

3.4 Theoretical Results
3.4.1 Well-Definedness of Algorithms
3.4.2 Uniqueness of Solution

3.4.3 Existence and Convergence of Paths

il
v

Ix

3.4.4 Issues of Algorithmic Convergence
3.5 Khachiyan-Todd Algorithm and Modification
3.5.1 Khachiyan and Todd’s Algorithm
3.5.2 A Modification of the KT Algorithm
3.6 Numerical Results.
3.6.1 Implementation Details
3.6.2 Test Problems
363 TestResults

3.7 Concluding Remarks L

Lenstra’s Algorithm for Integer Programming

4.1 Introduction

4.2 Lenstra’s Algorithm and Improvement

4.3 Lattices and Basis Reduction
4.3.1 Lattices and Dual Lattices
4.3.2 Lattice Basis Reduction

4.4 Generalized Basis Reduction Algorithm

Computational Study of Lenstra’s Algorithm
5.1 Non-full-dimensional Polytopes
5.1.1 Identify Non-full-dimensional Cases and Implicit Equalities . .

.1.2 Hermite Normal Form and Linear Diophantine Equations . . .

o

5.1.3 Projection Into Lower Full-Dimensional Case

5.2 Implementation
5.3 Choices of the Branching Direction

5.3.1 Babai’s Direction Choice in Close Vector Algorithm

Vil

vill

5.3.2 Direction of the Smallest Number of Intersecting Hyperplanes 96

5.3.3 Direction Closest to the Smallest Eigenvector of £ 98
5.4 Results and Discussion 98
54.1 Test Problems 99
5.4.2 Numerical Results00 0000 101
5.4.3 Discussion L 102
Conclusions 106

Bibliography 109

o N
3

o
w

o
—

(91}
(V]

w

w

Illustrations

Branch-and-Bound Tree on Binary IP Problem
LP Based Branch-and-Bound Method For MIP Problems

A Primal-Dual Interior Point Method Framework

A Thin Polytope in 2-D

Search Tree of Branching on Hyperplanes

Flowchart of Lenstra’s Algorithm

Babai’s Choice of Branching Directionin2-D

w (1]
[SV]

Ut
W w

Tables

Summary of Results for Tests land 2 58
Results of Test Set 3: Problems 1-10 59
Results of Test Set 1: Problems 1-47 62
Results of Test Set 2: Problems 1-48 63
Results of Test Set 2: Problems 49-96 64
Results on Test Set 2: Problems 97-143 65
IP Test Problems 100
Computational Time 102
Node Counts 103

A Sample on Time of the Ellipsoidal Approximation and the Lattice

Basis Reduction 105

Chapter 1

Introduction

As suggested by the title, this thesis has two main parts: ellipsoidal approximation
to polytopes and computational study of Lenstra’s algorithm.

Ellipsoidal approximation of convex bodies has long been studied and many theo-
retical results also use it as an analytic tool because ellipsoids have better geometric
and algebraic properties than general convex bodies. Especially with the develop-
ment of interior point methods since the middle of 1980s. several algorithms for
finding the maximum volume ellipsoid (MaxVE) inside a polytope have been pro-
posed [25, 34. 48, 33. 3]. However, those works are mainly concerned with the com-
plexity issues and remain at the theoretical level. One contribution of this thesis is the
design and development of a numerically efficient and stable algorithm and software
for solving the MaxVE problem using the primal-dual interior point algorithm.

One application of ellipsoidal approximation of polytopes is Lenstra’s algorithm 28]
for general integer programming problems, proposed by H. W. Lenstra. Jr. in 1983.
With this algorithm, Lenstra proved the polyvnomial-time solvability for the integer
programming problem with a fixed number of variables. The algorithm is a break-
through in the theory of integer programming . However. Lenstra’s algorithm has
been considered as a theoretical result and no computational results using ellipsoidal
approximation has been previously reported. Therefore, other contributions of this
thesis include the implementation of a version of Lenstra’s algorithm using our re-
sult on ellipsoidal approximation as a subroutine and the insight we have gained on

the computational properties of Lenstra’s algorithm. We were interested in solving

[SV]

small-sized to medium-sized hard problems because of the limited capacity currently
available for lattice basis reduction.

Zoom Out Into A Bigger View

According to the Mathematical Programming Society, optimization or mathe-
matical programming is a branch of applied mathematics concerning the problem
of optimizing a function of many variables. often subject to a set of constraints.
Included, along with the standard topics of linear, nonlinear, integer and stochastic
programming, are computational testing, techniques for formulating and applying
mathematical programming models, unconstrained optimization, convexity and the
theory of polyhedra. and control and game theory viewed from the perspective of
mathematical programming.

Depending on the property of the variables, optimization can be divided into two
categories: continuous optimization versus discrete optimization. The characteristic
feature of discrete, combinatorial or integer optimization (also integer programming
or IP) is that some of the variables are required to belong to a discrete set. most
commonly a subset of integers. The discrete restriction corresponds to economical in-
divisibility. Discrete optimization has widespread applications in reducing inventory
and cost. increasing productivities and enhancing revenue in economics and man-
agement. For example, the scheduling problem. the transportation problem and the
assignment problem are all discrete optimization problems. However, the integer pro-
gramming problem belongs to a class of the most difficult problems, NP-Complete
problems. Two most widely used general solution techniques for solving integer pro-
gramming problems are the linear programming based branch-and-bound method and
the recently developed branch-and-cut method. Even though the branch-and-bound
method works well on most practical problems, it can become inefficient when the

branch-and-bound tree grows extremely large. In 1983. H. W. Lenstra proposed a

new algorithm and proved that the integer programming problem is solvable in poly-
nomial time for a fixed number of variables, a breakthrough in the theory of integer
programming. Grotshel, Lovadsz and Schrijver [14] further developed his algorithm.
What we are interested here is the version of Lenstra's algorithm using ellipsoidal
approximation.

Karmarkar's work reported in 1984 [21] started a golden era for interior point
methods. The development of this methodology was also a celebrated event in the his-
tory of linear programming. Interior point methods. particularly primal-dual interior
point methods, emerged from theoretical beauty to becoming practical competitors
of the simplex method. In the last decade, interior point methods have gained rapid
development and been utilized not only in linear programming but also in convex
programming, semidefinite programming and conic programming.

With the development of interior point methods, the ellipsoidal approximation
problem has received more attention. However, most results obtained so far stay at the
computational complexity level. As early as 1948, F. John [17] proved the existence
of a pair of ellipsoids to approximate a convex body. This ellipsoidal approximation
can be proven to be polynomial-time solvable by applying the ellipsoid method [30].
While the ellipsoid method has nice theoretical complexity, it was not practically
efficient.

Motivations of This Thesis

Since 1984 when Karmarkar's remarkable work was introduced, dramatic progress
has been made in interior point methods. Based on the prima-dual interior point
methodology, we propose to develop and implement a practically efficient interior
point algorithm for the specific convex programming problem: finding the maximum
volume ellipsoid (MaxVE) inside a given polytope. A motivation for studying the

MaxVE problem is that once the problem is solved, it can be utilized in many appli-

cations such as in linear control problems and in optimal design. So far most results
on this problem have stayed at the theoretical level and the lack of practically efficient
algorithms and software has hindered its applications.

Currently, the LP based branch-and-bound method is used in almost all commer-
cial IP codes. It solves IP problems via solving a large number of LP problems. In
the last ten years or so. improvements on the branch-and-bound method. i.e.. cutting
plane methods and the branch-and-cut method, have made it possible to solve IP
and mixed integer programming (MIP) problems much more efficiently. However. the
currently available software have limitations. On the one hand. the size of IP or MIP
problems that can be solved by modern software has become larger and larger; on the
other hand, some small but hard IP problems remain unsolved. Most of the unsolved
problems fall into a category of general IP problems while most progress has been
made on the 0-1 binary integer programming (BIP) problems. One difficulty with the
current techniques on those small but hard problem is that the branch-and-bound
tree grows too large even with the combination of cutting plane methods. As early
as 1983, H. W. Lenstra proposed a different branching strategy that guarantees a
bounded search tree, which is promising to work well on those small but hard general
integer programming problems. He constructed an algorithm to branch on as few
as possible hyperplanes instead of on variables, and proved that the IP problem can
be solved in polynomial time for a fixed number of variables. The distinct feature
of Lenstra’s algorithm resides on the way to branch on hyperplanes. The algorithm
measures the width of the polytope given by the LP relaxation of the original IP
problem and chooses a flat direction that has a bounded number of hyperplanes to
branch on. Thus the number of nodes on the search tree is dramatically reduced.

Lenstra’s algorithm is a breakthrough in IP theory; however, on the computational

side, the techniques involved, lattice basis reduction and ellipsoidal approximation of
polvtopes, were not quite ready.

As an effort toward solving the above problems, my thesis work consists of two
parts: ellipsoidal approximation and computational study of Lenstra’s algorithm for
integer programming. We have developed and implemented a primal-dual interior
point method for the MaxVE problem that takes advantage of the special structure
of this convex programming problem. We have compared the numerical performance
of four algorithms for the MaxVE problem: Khachivan and Todd's algorithm. its
modification and two of our direct primal-dual interior point methods. One of the
direct primal-dual interior point methods for MaxVE outperforms the other three.
On the IP side. I have implemented a version of Lenstra’s algorithm using our results
on ellipsoidal approximation and have tested it on a set of difficult IP problems. Our
computational work on Lenstra’s algorithm has provided insight for its further study.

Organization

In Chapter 2, we give the notation. terminology and other background information
on integer programming, interior point methods and convex programming. In Chapter
3, we analyze the ellipsoidal approximation problem. one of the two interests of this
thesis. We explore the special structure of the MaxVE problem and develop an
numerically efficient and stable algorithm based on the primal-dual interior point
methodology. We modify Khachiyan and Todd's algorithm, implement both the
original and modified algorithms, and compare their numerical performance on 200
test problems.

Chapter 4 makes a connection between ellipsoidal approximation, lattice basis
reduction and integer programming through Lenstra's algorithm and gives a brief

comparison between the generalized basis reduction algorithm and Lenstra's algo-

rithm. In Chapter 5, we present and discuss the computational results obtained by
our implementation of Lenstra’s algorithm, the other interest of this thesis.

Chapter 6 summarizes the contributions we have made in this thesis: analysis and
development of an algorithm for solving the MaxVE problem, and implementation
of a version of Lenstra’s algorithm using ellipsoidal approximation. We also discuss

future directions in this chapter.

=1

Chapter 2

Background

In this chapter, we introduce some notation and terminology in integer program-
ming, including two general algorithms for integer programming (branch-and-bound
method and branch-and-cut method). interior point methods for linear programming
and convex programming. Linear programming is closely related not only to integer

programming but also to interior point methods.

2.1 Linear Programming and Integer Programming Concepts

The linear programming (LP) problem, as a widely used tool in solving practical
models. is one of the fundamental problems in mathematical programming. An LP

problem can be written as

nax CT.ZT

(2.1)
sit. Ar<b

where the polyhedron P := {z € R"™ : Ar < b} is its feasible region. the linear
inequalities in Ar < b are called the constraints and ¢’z is the objective function. If
I satisfies AT < b or 7 is inside the feasible region P, it is called a feasible solution:
if z* is a feasible solution such that ¢Tz* > ¢Tx. for any T € P, then r* is called an

optimal solution.
A closely related problem to (2.1) is its dual problemn defined as min{bTy: ATy =
¢,y > 0}. The original problem is also called the primal problem. The duality theo-

rem, proved by D.Gale, H-W. Kuhn and A.W. Tucker [13], illustrates the connection

between the primal and the dual problem.

Theorem 2.1 (Duality Theorem of Linear programming) Given a ma-
trix A € R™*" , a vector b € R™ and another vector ¢ € R™. If the feasible
regions of the primal problem and the dual problem are both nonempty.
then

max{c'r: Ar < b} = min{dTy: ATy =c.y > 0}.

If one of the primal or dual problems has no feasible solution (i.e. infea-
sible), then the other is infeasible or unbounded. If one of the primal or

dual problem is unbounded. the other must be infeasible.

Duality theory has two-fold importance. On the computational side, it gives the
equivalence between solving the primal problem and solving the dual problem. On the
theoretical side, it establishes a way to prove optimality of LP solutions. Furthermore.
any dual feasible solution provides an upper bound on the optimal value of the primal
problem.

A useful optimality condition for LP problems is the complementary slackness

theorem.

Theorem 2.2 (Complementary Slackness Theorem) Let T be a feasible
solution to the primal problem max{cTr : Az < b} and 7 be a feasible
solution to the dual problem min{d7y : ATy = c,y > 0}. Necessary and
sufficient conditions for the optimality of both and i are
gi > 0 implies Zaiji'j =b;, foreveryi
j=1
and

n
Zaijl_'j < b; implies y; =0, for everyi.
i=1

To look at an LP problem geometrically, we introduce more terms in polyhedra.
For detailed information, readers can refer to Schrijver [42]. The solution set of a
system of linear inequalities is called a polyhedron P = {r € R" : Ar < b}. A
polyhedron P is bounded if there exists r > 0 such that P C S(0,r), where S(0.r)
represents a ball of radius r centered at the origin. A bounded polvhedron is called
a polytope. The polyhedron {r € R" : a’r < 3.a € R*. 3 € R} is called a half space
and the special polyhedron {z € R" : a’z = 3} is called a hyperplane. It is clear that
every polyhedron is the intersection of a finite number of half spaces. An inequality
aTz < 3 is called valid with respect to a polyhedron P if P C {r € R™: alr < J}.
A set F C P is called a face of P if there exists a valid inequality a’r < 3 for P
such that F = {z € P : aTz = 3}. Thus F is called the face induced (or defined) by
aTr < B. A facet of P is the maximum face distinct from P with respect to inclusion.
If a point v € P is a face of P, then v is called the a verter of P. A polyhedron is
called pointed if it has a vertex.

The set of optimal solutions of an LP problem over a polyvhedron P comprises a
face of P. If a polyhedron P is pointed. every face of P contains at least a vertex.
Therefore, under the conditions that P is pointed and the associated LP problem
max{cTz|r € P} is bounded (which by definition means that the optimal value of
the LP is finite). the LP problem has at least one optimum solution r* that is a
vertex of P. In other words, every bounded LP problem over a nonempty polyhedron
has an optimum vertex solution. This argument was applied to the simplex method
by Dantzig [10] for LP, whose iteration moves from one vertex of the corresponding
polytope to another vertex until it finds an optimal vertex point. Based on the duality
theorem, one can apply the simplex method to the dual problem without writing down

the dual problem explicitly, which is the so-called dual simplex method.

10

To analyze the structure of a polyhedron, it is useful to divide the linear inequali-
ties into two groups. An inequality a’z < 3 from Ar < b is called an implicit equality
if a’z = 3 for all r € P = {Ar < b}. Thus the linear system defining the polytope

can be divided into two :

ATr < b the subsystem of implicit equalities in Ax < b;

ATz < b the subsystem of all other inequalites in Arx < b.

Hence P = {z : Az < b} = {z : A%z = b=. A%r < b7 }. A constraint is called
redundant if it is implied by the other constraints in the constraint system. The
dimension of a polytope is equal to n — rank(47). Therefore. P is full-dimensional if
and only if the linear system has no implicit equalities.

With additional requirement that r € R" be an integral vector to an LP problem
max{cTz : Ar < b}, the problem becomes an integer linear programming problem
(in short IP). The corresponding LP without the integer requirement is called the
LP relazation of the IP problem. With the integer restriction. the feasible region
becomes the set of discrete integer points inside the polyhedron instead of the whole
polyhedron corresponding to the LP relaxation problem. The difficulty of solving IP
increases tremendously as the IP problem is NP-complete as proved by Cook [8].

The muired integer programming problem is a common model in practice when

some of the variables are continuous and others are discrete. i.e.,

T

min c‘zx
st. Arx =0
(2.2)
[<zr<u

x; integral, for jeJ

where A € R™*" b€ R™ r € R™ which is between its lower bound [and its upper

bound u, and J C {1,2,---,n}.

11

To solve LP problems, several solution techniques have been developed. including
the simplex method [10], the ellipsoid method [23] and recently interior-point meth-
ods (see [22], for example). From the complexity point of view, the simplex method
is not a polynomial algorithm even though it works quite efficiently in practice. The
dual simplex method has remained the algorithm of choice for re-optimizations in
the branch-and-bound method for solving IP problems. Khachiyan's ellipsoid algo-
rithm [23] was the first polynomial algorithm with O(n*L) iterations for LP. where
L is a measure for the size of an LP problem. However, the algorithm is much
slower than the simplex method. Karmarkar’s polynomial algorithm [22] with O(nL)
iterations and its improvement by Renegar [38] with O(y/nL) iterations have good
complexity and perform much better than Khachiyan's ellipsoid algorithm. Moreover.
later versions of primal-dual interior point methods are computationally competitive
with the simplex method.

In the following sections, we first summarize two general algorithms for solving
IP, branch-and-bound method and branch-and-cut method. and then give a review

on the basics of interior point methods and convex programming problems.

2.2 Branch-and-Bound Algorithms

Based on the definitions of LP and IP, it is natural to make use of LP solution
techniques to attack IP problems. One of the solution techniques is the LP based
branch-and-bound method. The branch-and-bound method is also termed as implicit
enumeration or divide-and-conquer approach. The idea is to divide the feasible domain
into several subdomains and solve the subproblem on each subdomain and make use
of the optimal value of the subproblem to analyze the upper and lower bounds on the
IP objective function. Once the upper bound equals the lower bound, the optimality

is achieved.

12

A simple case is the LP based branch-and-bound algorithm on binary IP problems,
where z € {0, 1}". Many decision variables can be modeled as binary integer variables.
In the original problem. a variable r; is chosen to branch on and two subproblems
are generated: one with z; fixed to 1 and the other to 0. One then solves the two
subproblems and updates the upper and lower bounds on the original problem. This
process continues until the upper bound equals the lower bound or the whole binary
tree is searched and no integer feasible solution exists. This whole procedure is an
implicit enumeration demonstrated in Figure 2.1. We call different child nodes of

the same parent node stblings on the search tree.

Figure 2.1 Branch-and-Bound Tree on Binary IP Problem

For general integer programming problem, the branch-and-bound tree can grow
much larger than for BIP problems. To be more general. we describe an LP based
branch-and-bound algorithm given by Land and Doig [26] in terms of the MIP in
Figure 2.2. Pure IP problems can be treated as a special case when all variables are
required to be integral. In the Step 3 of the node-selection and the relaxation, different
strategies can be applied. Readers are directed to a recent study by Linderoth and

Savelsbergh [18] for more details.

13

The terminologies and definitions introduced in an MIP problem are explained
as follows. We use P to denote the original MIP problem to minimize the objective
function. z! is the current best objective value and X/ records the integer feasible
solution corresponding to the value of z/. A node associated with an LP relaxation

problem P’ and a lower bound =" of P’ is denoted as (P'.z').

LP Based Branch-and-Bound Method For MIP Problems

Step 1 (Initialization): Let T = {(P.—-oc)}. 2/ = +~. X! in unde-
fined.

Step 2 (Termination): If 7 = 0. STOP. In this case. if z/ < +>. then
X7 is an optimal solution: otherwise, P is infeasible.

Step 3 (Node selection and relazation): Select and delete a pair (node)
(P'.=") from T . Solve the LP relaxation of P’. Let .\ be an optimal
solution. if one exists. and set = = ¢T X" otherwise. set :' = +~.

Step 4 (Fathoming): Execute (a). (b). (¢). in order:

(a) If " > !, go to Step 2.
(b) If X' is not integer feasible for P’ go to Step 5.
(c) Let =/ =3 and X! = X'. Delete from 7 all pairs (P". ") with

=" >z Goto Step 2.

Step 5 (Branching): Let j € J be such that X}isfractz’onal. Let P,
be P’ with the added restriction that z, < L\J'J and let P, be
P'with the added restriction that z; > f\]] Replace 7 by 7 U

{(P;.="),(P,, =)} Go to Step 2.

Figure 2.2 LP Based Branch-and-Bound Method For MIP Problems

14

2.3 Cutting Plane Methods

Geometrically, different polytopes may include the same set of integer points. corre-
sponding to the feasible point set of an IP problem. If all vertices of the polytope
are integers, the solution to the corresponding relaxed LP problem will be integer
by applying the simplex method and it will also be an optimal solution to the IP.
The linear system corresponding to such a polytope is an ideal system. However. for
general integer programming problems. it is almost impossible to find such an ideal
system except for some specific problems.

Some concepts are introduced below to describe the feasible set. Given a nonempty
finite set S € R™, the linear hull of the elements in S is defined as [in(S) = {r € R":
r =3 Nsi.s; € S}. If A > 0 is enforced, then it is called the conic hull. cone(S).
If %, \; =1 is required, then we have affine combination and affine hull. af f(S).
correspondingly. If both A > 0 and Y5_, A; = 1 are required. they are called a conver
combination and conver hull conv(S) accordingly. Hence the ideal formulation we
discussed above is the convex hull of the integer points inside the polytope of the IP
problem, which is also called the integer hull.

While it is difficult to find the integer hull of an IP problem, the integer hull can
be approximated by adding valid inequalities. If an inequality a”x < b is satisfied for
all r € X C R™, then a”z < b is called a valid inequality. Cutting plane methods are
concerned with how to construct valid inequalities (or cutting planes) for IP problems.
A recent book on the advances in IP including cutting plane methods is written by
Wolsey [51].

Cutting plane methods have already been applied in commercial codes such as
CPLEX [36] to work together with the branch-and-bound procedure, which is so

called branch-and-cut procedure. On each node of the branch-and-bound tree, first

solve the LP relaxation problem, then construct multiple cutting planes if the optimal

15

solution is not integral. By adding cutting planes. i.e. valid inequalities. the non-
integral optimal solution to the relaxed LP problems is cut off and the polytope
gets closer to the integer hull step by step. In this way cutting planes can reduce
the size of the feasible region and improve the bounds on the objective function. It
accelerates the process of the branch-and-bound by supplying better bounds to IP or

MIP problems.

2.4 Interior Point Methods for Linear Programming

Interior point methods have been developed for solving linear. semidefinite. and con-
vex programming problems. We are interested in using the interior point methodology
to solve a specific convex programming problem, the MaxVE problem. We first re-
view some basic concepts in interior point methods for linear programming in this
section.

A linear programming problem can be written in the following form:

min cl'r
s.t. Axr=b. (2.3)
r>0

where c€ R*,r € R*", 4 € R™*™ and b € R™. Its dual problem is

max bTy
st. ATy+s=c, (2.4)
s>0

where y € R™ and s € R™.
For general constrained optimization problem, the Karush-Kuhn-Tucker (or KKT)

conditions are the necessary optimization conditions under some constraint qualifica-

16

tions. Specifically, the vector z* is a solution of the primal LP problem if and only if

the following conditions hold at (z*,y*, s*) for some y* € R™ and s* € R":

ATy +s—c
F(zr,y.s) = Az —b = 0.
(2.5)
XSe
(r,5) =0
where X = Diag(z,,zs,---,r,),S = Diag(s;.s2.---,5,) and e € R" is the vector
of all ones. The condition XSe = 0 is called the complementary condition. The

complementary condition is the only nonlinear part in the system (2.5) and the other
two equations are the dual feasibility and primal feasibility conditions. The vector
(r*,y",s") is called a primal-dual solution. The primal-dual feasible set F and strictly

feasible set F° are defined as:
F={(z.y.s)| Ar =b, ATy+s=c.(r.5) >0}

Fo={(r.y,s) | Az =b, ATy +s =c, (z.5) > 0}.
We introduce a new system with respect to a scalar parameter 7 > 0 as follows:

0
F(rTwyfvST) = O
TE

(rr.s,) >0

The central path is defined as C = {(z, yr, s-) |7 > 0}, where (z,, y-.s,) is the
solution to (2.6). It is known that C converges to a primal-dual solution of the linear
program as 7 | 0. In primal-dual interior point methods, the central path plays the
role of guidance for the iterations, keeping the products z;s; strictly positive and

decreasing to zero at the same rate.

17

A centering parameter o € [0.1] is introduced and a duality measure or duality
gap p is defined as p = x7s/n. The linear system associated with applying Newton's

method to (2.6), with 7 = opu, is

0 AT or 0
4 0 o0 Sy | = 0 . (2.7)
S 0 X ds —XSe +ope

We now describe a general framework for primal-dual interior point methods in

Fig. 2.3.

A Primal-Dual (Path-Following) Framework

Step 0 Given (2% > 0. y% s% > 0). set counter & = 0. centering parameter
or € [0,1] and duality measure p; = opz*Ts* /n.

Step 1 If || F(z*, y*, s*)|| < <. stop.

Step 2 Solve the perturbed KKT equations for the direction (dx.dy.ds)

dor 0
F'(zk g% s5) | oy | = 0 — F(z*. gk s*).
ds re

Step 3 Chose a step length o and update

(r.y.s)*™' = (z,y, s)* + ar(dzx.8y, ds).
where the step-length o4 is chosen such that (%71, s*7!) > 0.

Step 4 Update Ak := Ak + 1 and go to Step 1.

Figure 2.3 A Primal-Dual Interior Point Method Framework

18

2.5 Convex Programming

One of the most developed areas of study in nonlinear programming is convex pro-
gramming. which is to find the minimum of a convex function in a convex set. All
linear programming problems fall into this category. The MaxVE problem we are
interested in is a specific convex programming problem with an unknown matrix vari-
able. In this section, we give basic concepts in convex programming and its optimality

condition - KIXT conditions.

Definition 2.1 (conver set) A set S C R" is a conver set if given any

r.ye€ S.then tr + (1 —t)y € S for all £ € [0.1].

Definition 2.2 (convexr and concave functions) Given a function f :
S — R (where S is a convex set). f is convexif r.y € S. then f(tr+ (1 —
t)yy) < tf(x)+ (1 —t)f(y) for all t € [0. 1]. If the inequality is strict when
r # y. the function f is a strictly convez function. A function f is concave

if —f 1s convex.

If the domain of a function f is an open convex set and f is twice continuously
differentiable with a positive semidefinite Hessian on the domain. then f is a convex
function. Moreover. f is strictly convex if its Hessian is positive definite on the
domain. A nice property of the convex programming problem is that it has a unique
optimal value. Therefore any local optimizer of a convex programming problem is
also a global optimizer.

Convez programming problems include a special case of the constrained minimiza-

tion problem which has the following features:

1. the objective function is convex;

2. the equality constraints are linear;

19

3. the inequality constraint functions are convex in the format g;(r) < 0.

The last two conditions are equivalent to the requirement that the feasible region
defined by the constraints is a convex set.

The general convex programming problem can be written as

min f(x)

st gi(r)<0.i=1.2.....m (2.8)

where f(zr) and g; are convex functions and the subset S € R" is a convex set.
Similar to linear programming, f(x) is called the objective function and the function
inequalities g;(z) < 0 are called inequalities constraints for (2.8). If r € S satisfies
all the inequality constraints. r is called a feasible point. The set of all feasible
points of the problem F = {r € S : gi(r) < 0.7 = 1.---.m} consists the feasible
region for (2.8). which is a convex set. If there exists feasible point ro € F such
that g;(zo) < 0,7 = 1.---.m, the convex feasible region F is said to satisfv Slater’s
constraint qualification. If * is a feasible point of (2.8) such that f(r*) < f(r) for
all z € F for (2.8), then z* is called the solution (or minimizer) of (2.8).

The Lagrangian function of a convex program is defined by
L(z. M) = f(r) + Z Aigi(T)
=1

for r € S and A > 0. The vector A\ € R™ is called the Lagrangian multiplier. The
gradient of the Lagrangian function with respect to r is as follows:
V.L(zx,\) =V f(z)+ Z AiVgi(z).
i=1
To solve optimization problem, it is crucial to know how to test whether a point

is an optimal solution or not. The corresponding conditions are so called optimal-

20

ity conditions. For convex programming problem, its optimality conditions are the
Karush-Kuhn-Tucker (KKT) conditions.

Suppose that a convex programming problem satisfies the Slater’s constraint qual-
ification and that its objective function f(r) and inequality constraints g;(r) have
continuous first partial derivatives on the set § for (2.8). If r* is feasible for (2.8)
and is an interior point of the set S, then z* is a minimizer (or solution) of (2.8) if
and only if there exists A* € R™ such that the following first-order necessary and

sufficient conditions, i.e. KKT conditions. hold:

V.L(z.\) = 0.
Ag(z®) = O.

AT > 0.

where A* denotes the diagonal matrix Diag(A*) and g(x) € R™ is a vector whose i-th
element is g;(z). In the next chapter on ellipsoidal approximation, we illustrate how
the KKT conditions for convex programming problems can be applied to help locate

solutions of the problem.

Chapter 3

Ellipsoidal Approximation of Polytopes

3.1 Introduction

The ellipsoidal approximation of polytopes is an important problem in its own right
while it is also a basic subroutine in a number of algorithms for different problems.
One example is that Lenstra’s algorithm for the integer programming feasibility prob-
lem [28. 30] uses the ellipsoidal approximation of polytopes as a subroutine.

Consider a full-dimensional polytope P € R" defined by m linear inequalities. For
brevity, we will call the problem of finding the maximum volume ellipsoid inscribing
P the MaxVE problem. The MaxVE problem has its root in the rounding of convex
bodies in R". One of the earliest studies was done by F. John [17]. In particular.
John's results imply that once the maximum-volume, inscribing ellipsoid £ is found
in P, then £ C P C n€. where n& is the ellipsoid resulting from dilating £ by a
factor n about its center. Such a pair of ellipsoids is also called a Lowner-John pair
of P. That is, £ provides an n-bounding for P. Moreover. if P is centrally symmetric
around the origin. then the rounding factor can be reduced to /n.

Ellipsoids have good geometric and computational properties that make them
much easier to handle. both theoretically and computationally, than polytopes. For
example. the global minimum of any quadratic in an ellipsoid can be located in
polynomial time. while finding such a global minimum in a polytope is generally an
NP-hard problem. For many problems a fruitful and effective approach is to use
ellipsoids to approximate polytopes in various theoretic and algorithmic settings. A

celebrated example is Khachiyan's ellipsoid method [23] - the first polynomial-time

o
o

algorithm for linear programming. Other applications include optimal design [44. 46].
computational geometry (for example, [50]) and algorithm construction (for example.
[14] and [45]).

Recently, several randomized polynomial-time algorithms ({11, 20. 32]. for exam-
ple) have been proposed for approximating the volume of convex bodies (computing
the volume itself is NP-hard). In the case of a polyvtope, these algorithms require
approximating the polytope by an ellipsoid.

It is known that the rounding of a polytope can be accomplished by the (shallow-
cut) ellipsoid method in polynomial time (see, for example. [42. 14]). It is also known.
however. that the ellipsoid method is not a practically efficient algorithm. A number of
interior-point algorithms have been proposed in recent yvears for the maximum volume
ellipsoid problems, for example. by Nesterov and Nemirovskii [34]. Khachiyan and
Todd [25] (also see [24] for a related problem), Nemirovskii [33], and Anstreicher [3].

Nesterov and Nemirovskii [34] constructed a three-stage barrier method for finding
an e—optimal ellipsoid £ such that its volume Vol(&) > Vol(£~)e™¢. where £* is the
maximum volume ellipsoid inscribing P and € € (0, 1). with the complexity estimate
O(m*>3(n*+m) In(22)) where m is the number of constraints and R is a priori known
ratio of radius of the two concentric balls, the larger ball containing the given polytope
P and the smaller one being contained in P. The term1 n? comes from the requirement
of solving linear systems involving an n x n matrix-valued variable.

Khachiyan and Todd [25] proposed an algorithm that attains the complexity es-
timate of O(m33 ln(m;’i) ln(ﬂli‘—R)). The algorithm applies the basic barrier method
to a small number of subproblems and only requires solving linear systems of n + m
equations to compute involved Newton directions. In their formulation the matrix-
valued variable is explicitly treated as dependent on another vector-valued variable

during the solution of Newton linear systems.

23

Nemirovskii [33] showed that the maximum volume ellipsoid problem can be re-
formulated as a saddle-point problem of m + n variables and be solved by a path-
following method for approximating saddle points of a sequence of self-concordant
convex-concave functions as defined in [33]. Nemirovskii proved that the complexity
of the algorithm is O(m** In(2&)).

Most recently, Anstreicher [3] proposed an algorithm that uses key ideas of Khachiyan
and Todd [25] but avoids solving the subproblems required in the Khachiyan and
Todd algorithm. This way, Anstreicher’s algorithm attains the complexity estimate
of O(m*3In(™&)), which is the same as in [33]. Anstreicher also showed that com-
puting an approximate analytic center of the polyvtope can reduce the complexity to
O((mn® + m'®n)In(R) + m*®In(2)).

In addition, Vandenberghe, Boyd and Wu [48] proposed an algorithm for the
class of problems called MAXDET problems to which the MaxVE problem belongs.
However, their algorithm does not take into account the special structure of the
MaxVE problem.

All the aforementioned works on the ellipsoidal approximation are primarily con-
cerned with the complexity issues and the proposed algorithms are theoretical in
nature. On the contrary. the objective of our current study is to construct or iden-
tify a numerically efficient and stable algorithm for solving general MaxVE problems.
Our study is not aimed at solving very large-scale problems. so we will not consider
aspects of exploiting sparsity and other special structures that may be present in the
polytope-defining inequalities.

Since for many convex programs. primal-dual interior-point algorithms have proven
to be superior in practice than either primal or dual algorithms, we will mainly in-
vestigate primal-dual type algorithms, though we will also consider particular primal

algorithms for the purpose of comparison.

24

Two features are common in all the known interior-point algorithms for solving
the MaxVE problem. First, they are iterative in nature. Second. they require solving
a linear system at each iteration to obtain an update. Hence. in judging the practical
efficiency of an algorithm, we must consider two key factors: (i) how many iterations
the algorithm typically requires in practice for obtaining an approximate solution of
a certain quality; and (ii) how expensive it is to solve the relevant linear svstem at
each iteration. Besides efficiency, another important consideration is the robustness
of the algorithm. The robustness of an iterative algorithm is often determined by the
numerical stability of the solution procedure for linear systems that has to be invoked
at every iteration.

In most primal-dual algorithms for linear programming or semidefinite program-
ming, at each iteration one solves a large linear system by reducing it to a smaller
Schur complement system through a block Gaussian elimination. Moreover. the coeffi-
cient matrix in the Schur complement system is often positive definite. This procedure
has proven to be efficient and at the same time adequately stable. Likewise. in this
chapter we will try to identify primal-dual algorithms for which the corresponding
linear systems can be reduced by block Gauss elimination to a well-behaved Schur
complement system.

The chapter is organized as follows. In Section 2 we describe the formulation of
the MaxVE problem. We introduce some primal-dual type interior-point algorithm
in Section 3 and give related theoretical results in Section 4. We summarize the
Khachiyan and Todd algorithm and our modification in Section 5. Numerical com-
parative results on these three algorithms are presented in Section 6. Finally, we offer
some concluding remarks in Section 7.

Notation For This Chapter

[
Ut

We now introduce some notation. For any given vector v € RP. we denote the
p x p diagonal matrix with v on its diagonal either by Diag(v), or by its upper-case
letter V' whenever no confusion can occur. On the other hand. for a square matrix
M, diag(M) is the vector formed by the diagonal of M. The Hadamard product
is represented by the small circle “o”. Unless specified otherwise. superscripts for
vectors and subscripts for scalars, that are not elements of a matrix. are iteration
counts. For a vector v, inequalities of the form v > a are interpreted as component-
wise where a can be a scalar or a vector of the same size. For symmetric matrices.
A > B, or equivalently A — B > 0, means that 4 — B is positive definite. We use
R™ and RT_ to represent the nonnegative and positive orthants in R™. respectively.
The notation S7_ represents the subspace of all symmetric positive definite matrices
in R**". For a set W in R™. we denote its closure by col(W). Finally. by default || - ||

represents the Euclidean norm unless otherwise specified.

3.2 The Maximum Volume Ellipsoid Problem
Consider a polytope P in R" given by
P={veR": Av <b}. (3.1)

where 4 € R™'"* m > n and b € R™. Recall that by definition, a polvtope is a
bounded polyhedron. For convenience of discussion. we will make the following two

assumptions throughout the chapter:
A1l. The matrix 4 has full rank n and contains no zero-rows.

A2. There exists a strictly interior point ¢ € P satisfving Av < b.

26

Given a center r € R" and a nonsingular scaling matrix £ € R**", an ellipsoid in

R™ centered at r can be defined as
E(r.E)={veR":(v-z)T(EET) (v —2) < 1k
or equivalently,
E(x,E)={veR":v=zx+ Esand |s|| <1}, (3.2)

where || - || is the Euclidean norm in R". Clearly. the shape of the ellipsoid is uniquely
determined by the symmetric positive definite matrix £E7. but not uniquely by E
since the same ellipsoid can also be generated by E'Q for any orthogonal matrix
Q € R**". Without loss of generality, we can assume that E itself is symmetric
positive definite. Therefore, the ellipsoid £(x. E') is uniquely determined by the center
r and the scaling matrix £ € S _.

It is easy to see that the ellipsoid £(z, E) is contained in P if and only if

sup al (r + Es) < b;. i=1,---.m

1sil=1

where a7 is the i-th row of A: or equivalently

alz+||Eail| <b;. i=1,---.m.
Introducing the notation
h(E) = (|IEall,- - [Eanl))T € R™, (3.3)
we have
E(r,E)C P <=b— Az — h(E) > 0. (3.4)

Let 1, be the volume of the n-dimensional unit ball, then the volume of the

ellipsoid £(x, E') defined by (3.2) is

Vol(€) = V, det E.

[SV]
=1

It is evident that £(z*, E*) is the maximum-volume ellipsoid contained in P if and

only if (z*, E*) € R™ x ST solves the following optimization problem:

min — logdet £
st. b—Ar —h(E)>0 (3.3)
(E > 0)

where E' > 0 means that E is symmetric positive definite. It is well known that
the optimization problem (3.5) is a convex program with a unique pair of solution
(z*,E*) € R™ x S"_; and this solution is uniquely determined by the first-order
optimality, or Karush-Kuhn-Tucker (IKIKT), conditions for the problem which can be
derived as follows.

The Lagrangian function of the convex program (3.3) is
L(r,E.u) = —logdet E — uT(b — Ar — h(E))
where u € R™ is the vector of Lagrange multipliers. The KKT conditions consist

of the equations VL = 0. VgL = 0, feasibility and complementarity. Using the

differentiation formulas

Ea;al + a;al E
v[logdetE] = E_l and Vhl(E) - a;a; + a;a; '

2hi(E)

and introducing the notation U := Diag(u) and

Y = Y(E.u) := Diag(h(F))"'U. (3.6)
we can write the KKT conditions as

ATu = 0. (3.7a)
E'—[EATY)+ (ATY)E)/2 = 0, (3.7b)
:—(b— Az - h(E)) = 0. (3.7¢)
Uz = 0, (3.7d)

where E > 0, and = is a slack variable.

3.3 Formulations and Primal-Dual Algorithms

In this section, we propose formulations and algorithms for effectively solving the
MaxVE problem in practice. In constructing practically efficient algorithms. we con-

sider the following three guidelines:

1. the algorithms should not carry the matrix-valued variable E as a completely

independent variable because it would require too much computation:

o

the algorithms should be primal-dual algorithms because of their proven prac-

tical efficiency in numerous cases;

3. the algorithms should have theoretical guarantees to be well defined and well

behaved.

The first objective above can be achieved by eliminating the matrix variable E.
The elimination may occur either at the beginning of a formulation, or at the time
of solving linear systems during iterations. In this chapter, we will take the former

approach.

3.3.1 Formulations without Matrix Variable

In this subsection, we describe three new formulations. recently proposed by Zhang
in [32], for the MaxVE problem which are free of the matrix variable E. The key idea
of these formulations is to eliminate the matrix-valued variable £ from the system

by solving the equation (3.7b) for E. As can be verified easily, a solution to (3.7b) is

E(y) = (ATY A)712, (3.8)

29

where Y = Diag(y) and Y is defined in (3.6). We will later demonstrate that this
solution is unique in S?,. Upon the substitution of E(y) into the definition of h(y)
(recall that h;(E) = ||Ea;|}). the vector h(E') becomes a function of y that we will

denote, with a slight abuse of notation, as h(y): namely.
h(y) = h(E(y)). (3.9)

After substituting (3.8) and (3.9) into the KKT system, deleting (3.7b) and adding

(3.6) written in a different form, i.e..
u=g(y) :=Yh(y) (3.10)
the author of [52] obtained the following system:
Folr.y.u.z)=0. y.u.z >0, (3.11)

where z € R™. y.u, = € R™. and the function Fp: R*™3™ — R7-3m s

ATy
Ar+h(y)+:z-06 '
Fo(z,y,u.z) = . (3.12)
u—g(y)
U:

Moreover. it was proposed in [52] to eliminate the variable u from the above system

using the equation u = g(y) in (3.10). The resulting system is

Fi(r.y.z)=0. y.z>0. (3.13)
where the function Fj : R*72™ — R#2™ s
ATg(y)
Fi(r,y,z)= | Az +h(y)+z—-0b |- (3.14)

Zg(y)

30

In (3.12) and (3.14), we have used the notation U = Diag(u) and Z = Diag(z).
respectively.

In addition, the complementarity conditions "z = 0 are clearly equivalent to the
conditions Yz = 0 because ' = Y Diag(h(y)) and A(y) > 0 at the solution. Based on

this observation. the third system was proposed as following:
Fr(x,y.z) =0. y.z > 0. (3.13)

where the function F, : R*72™ — R*727 jg

ATg(y)
Fo(r.y.z)=| Ar+h(y)+2z-b |- (3.16)
Y-

The three systems (3.11). (3.13) and (3.15) are all free of the matrix-valued vari-
able E'. which will form the bases for our algorithm constructicn. Other systems.
derived in [52] have been found to be less satisfactory. However, in obtaining them
we have applied nonlinear transformations whose properties need to be investigated.
A most important question is whether or not these transformations preserve the
uniqueness of solutions. We will answer this question and others in a subsequent

sectlion.

3.3.2 Primal-Dual Algorithmic Framework

The primal-dual algorithms to he proposed can be motivated from the view of the
damped Newton method applied to the so-called perturbed complementarity condi-
tions. Another useful perspective is to view them as path-following algorithms. In
this construction, one replaces the zero right-hand-side of relevant complementarity

conditions by pw®, where 4 > 0 and w® € RT_, and applies the Newton method to the

31

resulting “perturbed” system while decreasing the parameter i to zero. Specifically.

the perturbed systems for (3.13) and (3.15) have the form

0
F(r.y.z)=pnft 0 |. y.z>0. (3.17)

w
where F can be either F| or F5, and for some w® € R™_

w=pw®. p>0.

0 = ¢ where e is the vector of all ones.

Normally. one chooses w

We will prove later that each of the perturbed systems have a unique solution for
every £ > 0. and as ¢ — 0 the corresponding solutions will converge to the (same)
solution of the unperturbed systems from which the solution to the MaxVE problem
can be easily constructed.

We now present our primal-dual interior-point algorithmic framework for the sys-
tems (3.13) and (3.15). The framework for the system (3.11) would be the same
except that an extra variable u € R™ is present. In the rest of this chapter. we will
concentrate only on the formulations (3.13) and (3.15) but omit (3.11) because. being
so closely related to (3.13), (3.11) shares almost identical theoretical properties with

(3.13), while in our tests it seems to produce algorithms with inferior performance to

that of their counterparts based on (3.13) and (3.15).

Algorithm 1 (Primal-Dual Interior-Point Algorithm) Given 20 € P,

w y% % € R?,, set k = 0.

Kk

AT .k kT .k
)" =" for F = F) or to o W2
m m

Step 1. Choose g € (0, 1), set u; to oy
for F = F>.

Step 2. Solve for (dz, dy,dz) from

dr 0
Fiiz* " %) L dy | =m | 0 | = F(z*. y*. 25). (3.18)
dz e

Step 3. Choose a step-length a; € (0. 1] and update
(zF=t Rt 2R = (28 R) + ag(de. dy. dz).

such that £¥*! € P, y**! > 0 and z*~! > 0.
Step 4. If ||F(z**!, y*+! %+1)|| < e. stop: else increment A and go to

Step 1.

In addition to the initial guesses. this algorithmic framework has two essential
parameters, 0, and o, that need to be specified at each iteration. The main compu-
tation required is to solve the linear system (3.18) at every iteration.

When F = Fj, the coefficient matrix in the linear system (3.18), i.e.. the Jacobian

matrix of Fi(x,y, =), is of the form

0 AT¢'(y) 0
Flz.y.z)=| 4 hk(y) I : (3.19)
0 Zg'(y) Diag(g(y))
where ¢'(y) and h'(y) are the Jacobian matrices of g(y) and h(y), respectively. A

direct differentiation shows that
g'(y) = Diag(h(y)) + YR'(y), (3.20)

and (see [52})
h'(y) = —Diag(2h(y)) ' [Q(y)° Qy)], (3.21)

33

where

Qy) = A(ATY 4)~tAT. (3.

SV
[§V]
~

It is worth noting that Y'2Q(y)Y'!/? is an orthogonal projection matrix.

On the other hand, when F = F, we have

0 ATg'(y) O
Fyz,y2)=| A Wy I (3.23)
0 Z Y

An efficient way to solve the linear system (3.18) is the following block Gaussian
elimination procedure: first eliminating d= and dy, then solving for dr. finally com-
puting dy and dz by back substitutions. We now formally describe the procedure for

F = F;. To simplify notation, we define three m x m matrices:
H = H(y) := Diag(h(y)), N = N(y) = g'(y). (3.24)

and
My = My(y,2) = —h'(y) + [YH(y)] ' ZN(y). (3.25)
For now we will assume that A/, is nonsingular. and we will prove this fact later.
The aforementioned block Gaussian elimination reduces Fi(r.y.:) into a lower
triangular matrix, which is equivalent to, when F' = F}, pre-multiplying the equation

(3.18) by the upper triangular elimination matrix

I ATNAMTY —ATNMTYYH)!
Tv(y.z)=1]0 I —(YH) !
0 0 I
It is straightforward to verify that
ATNM'4 0 0
Ti\(y,z)Fi(z,y,2) = A M, 0 |, (3.26)
0 ZN YH

34

and
ry ry + .—17'.'\7;\11'1 (ra — (YH) lry)
Ti(y.2) | ry | = ro — (YH) 'rs : (3.27)
rs rs

for any vectors r; € R™ and r,, r3 € R™. Clearly. the linear system

dr r
Flz.y.z) | dy | = | rs
d:z rs

is equivalent to the linear system where the coefficient matrix is the one in (3.26) and

the right-hand side is that of (3.27). The linear system can be formally solved by the

procedure:
dr = [ATNM7UA (ro+ ATNMT (r2 — (YH) 'rg)) (3.28a)
dy = —M{'(ro— (YH) 'rs — Adr). (3.28h)
d= = (YH) Yrs — ZNdy). (3.28¢)

This solution procedure requires @(m?) operations (recall that m > n), with the bulk
of the computation involving the m x m matrix /.
In a similar fashion. the linear system (3.18) corresponding to F' = F, can be

formally solved by the following procedure:

dr = [ATNM7 AN (r + ATNMG (ra = Y iry)) (3.29a)
dy = —M;'(ra—Y7'rs — Adz) (3.29b)
d: = Y Yr; — Zdy), (3.29¢)

where

."\«['_) = .'\'[f_)(y, 3) = —]’/(y) + Y—IZ. (330)

35

This procedure also requires O(m3) operations in terms of the order. but less linear
algebra computation than does the procedure (3.28a)-(3.28¢).

Of course, we still need to establish in theory that the proposed primal-dual algo-
rithms are well-defined. To this end. we need to show that the matrix F/(r.y.z) are
nonsingular for any y. = > 0. and the matrices)/; and AT .VA/! 4 are also nonsingular

for both ¢ = 1 and ¢ = 2. These results will be presented next.

3.4 Theoretical Results

In this section, we give theoretical results regarding the well-definedness of the pro-
posed algorithms, the uniqueness of solution in our formulations. as well as the exis-
tence and convergence of solution paths. We note that the formulations introduced in
the last section are obtained by applying some nonlinear transformations. Therefore
we need to show that these nonlinear transformations preserve the uniqueness of so-
lution. We also mention that when F = F5, the system in (3.17) is not equivalent to
the optimality conditions of a convex program. Hence. it is not evident that solution

paths defined by (3.17) should always exist for FF = F5.

3.4.1 Well-Definedness of Algorithms

We will show in this subsection that the proposed primal-dual algorithmic framework
and the solution procedures (3.28a)-(3.28¢) and (3.29a)-(3.29c)are well-defined for
both FF = F, and F = F5. (Following the same approach. one can also easily verify
similar results for ' = Fp.)

We recall that throughout the chapter we have assumed that - has full rank with

no zero rows. The main results of this subsection is the following theorem.

36

Theorem 3.1 (Non-singularity of Jacobian) For any y.:z > 0. the
Jacobian matrices F](r,y, z) are nonsingular for { = 1.2. Moreover. both

the procedures (3.28a)-(3.28¢) and (3.29a)-(3.29c) are well defined.

Proof The theorem follows directly from Lemma 3.3 below. !

Now we prove the three technical results that will lead to the proof of Theorem

3.1.

Lemma 3.1 Let P € R*"“™ be an orthogonal projection matrix. i.e.. P

satisfies PT = P and P2 = P. Then the symmetric matrix
G. = Diag(diag(P)) — vPo P (3.31)

is positive semidefinite for any vy < 1. Moreover. if diag(P) > 0. then G,

is positive definite for any v < 1.

Proof We note that since P is symmetric positive semidefinite. so is Po P (see for
example [16]). For the first statement, it suffices to only consider v = 1.

Let (A, r) be a pair of the eigenvalue and the associated eigenvector of G, such
that

r; = max|r;| =1,
]

which can always be achieved by a proper scaling. The A-th equation in Gz = Ar is

Pkk-rk — Z P,i,—l‘j = /\’Lk
j=1
Since P> = P and PT = P, implying that Py = >t P,'fj, and rp = 1. we have

A= PL(1-1;) >0,

j=t

37

where the last inequality follows from the fact that |z;| < 1 for all j. Hence we have

proved that G, is positive semidefinite. Together with the identity
G,=G,+(1—-7)PoP.

it implies that G, are positive semidefinite for all v < 1 since both terms in the sum
are positive semidefinite.
To prove the second statement, we assume that diag(P) > 0 and v < 1. Then we
write
G, = (1 - ~)Diag(diag(P)) + 7.
which is clearly positive definite since the first term is positive definite and the second

one is semidefinite. O

Lemma 3.2 For any y > 0. the matrix V(y) = ¢'(y) is similar to a

symmetric positive definite matrix, and thus is nonsingular.
Proof We first note h(y) > 0 whenever y > 0. In view of (3.24), (3.20) and (3.21),

N = H-(2H)'Y[Q(y)oQy)]
= H(HYH - 3Y(Q)e Q)Y)Y

- [H—LQYL/':] ([H},-]—I,QG[},—H]-I,'.Z) [H—lrz},—l 2]—1
where
G:=HYH - %Y[Q(y)o Qy))Y- (3.32)

Therefore, NV is similar to [HY]7'2G[Y H|"!2. which is positive definite if and only
if the matrix G is positive definite since both Y and H are positive diagonal matrices.

Recall that by our notation Q(y) = A(ATY 4) ' AT H = Diag(h(y)) and

h(y) = h(E(y)) = (diag(Q(y))'",

38

where the square root is taken element-wise. We have
HY H = Diag(diag(Q(y))Y" = Diag(diag(¥Y'*Q(y)Y""?)).
In addition, since y,-Q?jyj = (\/ﬁQij \/y_j)z, we have
Y[Q(W)e Q)Y = (Y'2Q(y)Y"?)o (Y'2Q(y)¥"?).

Therefore we can write

G = Diag(diag(P)) — %Po P,

where the matrix
P=YYQy)Y'? = Y'24(ATY A)" 14Ty

is an orthogonal projection matrix. Since the vector y > 0 and the matrix 4 has no
zero rows. we have diag(P) > 0. It follows from Lemma 3.1 with v = 1/2 that G is

indeed positive definite. This completes the proof. O

The relationships

N=H'GY ! and N'=YG'H (3.33)

that were used in the proof of Lemmma 3.2 will be useful later.

Lemma 3.3 For y, = > 0. there hold the following statements:
1. the matrix M, is similar to a symmetric positive definite matrix. and
ATNM[! 4 is symmetric positive definite;

2. the matrix M, is similar to a symmetric positive definite matrix, and

ATNM; ' 4 is nonsingular.

39

Proof To prove the first statement, it suffices to prove that the matrix M;.V !
is symmetric positive definite. Using the definitions of M, NV and the formula for
g', see (3.25). (3.24) and (3.20), respectively. and the relationships (3.33). we have

K =Y-YN — H) and

MNTY = (YH)'ZN -)N
= (YH)'Z-Y {(N-H)N™!
= (YH)'Z-Y '+ Y 'HN!
= (YH)'Z-Y '+ Y 'H(YG 'H)
= (YH)'Z-Y '+ HG'H

= (YH)'Z+H(G™' - (HYH)™")H.

Then it suffices to show that G~! —(HY H)~! is symmetric positive definite since H.}"
and Z are all positive diagonal matrices. While the symmetry is obvious, the positive
definiteness follows from the fact that G equals HY H minus a positive semidefinite
matrix (see (3.32)), hence G < YHY and G~! = (YHY) L.

To prove the second statement, we use the formula for A'(y) in (3.21), to obtain
1
My=Y"'Z-h =H Y HY 'Z+ 5Q0Q).

which is the product of two symmetric positive definite matrices. implying that 1/, is
similar to a symmetric positive definite matrix. Since both A/, and V are nonsingular,

so is ANM; ' 4. This completes the proof. O

3.4.2 Uniqueness of Solution

Since we have utilized nonlinear transformations in the elimination of variables £ =

E(y) and u = g(y) from the KKT system (3.7a)-(3.7d), we need to establish a rigorous

40

equivalence of our formulations (3.13) and (3.13) to the original KKT system. The

main result is the following.

Theorem 3.2 (Uniqueness of Solution) The systems (3.13) and (3.15)
have the same, unique solution {(z*. y". z*) such that y*. == > 0. Moreover.
let u* = g(y")and E* = E(y*). Then (z*. E*. u". z*) is the unique solution

of the KKT conditions (3.7a)-(3.7e).

Proof The conclusions follow directly from Lemmas 3.4 and 3.5. and the uniqueness

of the solution to the MaxVE problem. 0
We now prove the two technical lemmas.
Lemma 3.4 Let ¢ € 87 _. then the matrix equation

X!

[EvVE

(CX + XC) (3.34)

has a unique solution X* = C' =2 in S?_. Moreover. the mapping: C' —
X~ defined implicitly through (3.34) is homeomorphic between S?_. and

itself.

Proof One can easily verify that both .X* and —* are solutions to (3.34). This
implies that the matrix equation (3.34) does not in general have a unique solution in
Rr<n.

Suppose that X € ST . is a solution to the equation (3.34) and V" is an orthogonal

matrix that diagonalizes X,ie., VTXV = T where T is a positive diagonal matrix.
Pre-multiplying both side of the equation (3.34) by V"7 and post-multiplying them

by V. we obtain

41
where D = VTCV. Comparing the elements on both sides. we have

%D,,(S,»,—+S,~,) = T
< 1/, =]

Since diag(X) > 0, we must have (i) D;; = 0 for i # j and (ii) &,; = D,-'il'z. The first
relationship says that D = VTCV is also diagonal. The second relationship says that
Y = D42 thatis, X = C-1/2 = X*. Consequently. X* is the only solution of the
equation (3.34) in ST _.

The last statement of the lemma is evident in view of the explicit relationships

X*=C"Y2and C = (X*)2. O

Lemma 3.5 Let g(y) = Yh(y). Then the mapping g : R?_ — RT_ is

homeomorphic between R™. and the range of g. g(R™”.) C RT..

———

Proof It is straightforward to verify that the function g(y) is continuously dif-

ferentiable in RT_ whose derivative is represented by the matrix ¢'(y) = V(y). By

Lemma 3.2, N(y) is nonsingular in RT_. With these properties, the lemma is a direct

consequence of the inverse function theorem. O

3.4.3 Existence and Convergence of Paths

To justify our algorithms as the path-following type. we need to show that (i) the
perturbed system (3.17) with either FF = F} or I© = F> permits a unique solution

m

-

for any given w® € R™. and each p > 0, hence the solution set forms a path: and
(ii) as ¢ — 0 the path converges to the unique solution of the unperturbed system.
Although it is straightforward to establish these results in the case of F' = Fj, it
is much more involved in the case of FF = Fj5 since the perturbed system (3.17) for

F = F, does not correspond to the optimality conditions of a convex program.

42

Following the conventional terminology in the literature of interior-point methods,
we will refer the collection of solution to the system (3.17) for w® = e and u > 0 as
the central path of the system, where e € R™ is the vector of all ones. Our analysis in
this subsection applies not only to the central path but also to the so-called weighted

paths where w? > 0 is not equal to e.

The existence of a path for F' = F) follows a standard argument as given below.

Proposition 1 (FEzistence and Convergence of Path for F = F;) For

any w® € R™_ and p > 0, the system (3.17) with F = F| have a unique

solution (x(g).y(u), =(x)) such that y(). =(x) > 0. Moreover.

}‘ig},(-r(uly(u), Hp)) = (z".y".27).

where (z*.y", z") is the solution of (3.13).

Proof The proof follows from a standard argument which we will outline as follows.

It is well-known that the system of the “perturbed” KKT (PKKT) conditions:

ATy = 0. (3.35a)

E7'—[EATY) + (ATY H)E)/2 = 0. (3.35b)
:—(b—Ar - h(F)) = O. (3.35¢)

Uz = w. (3.35d)

u.z > 0. (3.35e)

have a unique solution for any w > 0, where Y is defined in (3.6). because they are

equivalent to that the gradient of the following barrier function B, (z. E).
B.(z.E) = —logdet(E) — > w;log (b; — alz — hi(E)) , (3.36)
i=1

equals zero. This barrier function is strongly convex and has a unique stationary

point (z(u), E(i), u(), (1)) corresponding to w = pw® for a fixed w® € R™_ and any

13

p > 0. It is well known that (x(u). E(u), u(u). z(n)) converges to the unique solution
(z*, E*,u", =*) of the (unperturbed) KKT system as z — 0. Due to the homeomorphic
relationships between the PKKT conditions and the conditions in (3.17) with F =
F,, we know that (z(u),y(u).z(un)), where y(u) = Diag(h(E(u))) 'u(n). is also the
unique solution of (3.17) with F = F;. Moreover. the path {(x(x). y(u). z(p) : p > 0}

converges to (r",y".z*) where y* = Diag(h(E")) 'u". O

We now consider the existence of solution to the system (3.17) when F = F5: that

is, the existence of solution to the system

ATg(y) = o0, (3.37a)
Ar+h(y)+:—-b = 0. (3.37h)
Y: = w. (3.37¢)

y.z > 0. (3.37d)

where g(y) is defined as in (3.10). The situation here is more complicated because this
system is no longer equivalent to the PKKT conditions (3.35a)-(3.35e) when w > 0.
even though they are equivalent when w = 0. As such. we can no longer use the
standard argument used in the proof of Proposition 1. in contrary to the case when

F = F,. The question is whether or not the following statement holds:
{0e R} x {0€ R} x RT. C R(F»).

where

R(Fy) = Fa(R" x RT. x RT.)
is the range of the function F, corresponding to the domain R" x RT_ x R7_. In
particular, we want to know if the vectors (0,0.ue) for £ > 0 are in the range of
F,; in other words, whether a central path exists for the system (3.17) in the case of

F=Ff_)_.

44

The answer to the above question is affirmative and given in Theorem 3.3. To
prove the theorem, it is necessary to establish a number of technical results. We start

with the following proposition stating some useful facts.

Proposition 2 The following facts hold:

1. Both F; and F, are locally homeomorphic at any point (r.y.z:) €
R x R™”_x R™_.
2. If (z,9, %) is the solutions to the system (3.17) with F = F; and

w = w. then (r. 7. 3) also satisfies (3.17) with F = F5 (i.e.. (3.37a)-

(3.37d)) and w = Diag(h(g)) 'w.

If one were able to choose w such that Diag(h(g)) '« = pe. then he/she would
find the point (0.0. ie) in the range of F>. However. since y is dependent on w. it is
not clear whether or not such a vector w exists. let alone how to find it. Nevertheless.

we do find a form of points (0.0. w) that are in the range of F5.
Lemma 3.6 Let r € R", £ € S?_. and : € RT satisfy the equation
Ar +h(E)+:z=0b. (3.38)
Then there exists a constant v > 0. independent of r. E and =. such that

max(|lz{l. I £l lI=]]) < v

Proof The equation (3.38) implies that £ € P where P is the given polytope
(bounded), hence such z's must be uniformly bounded above. Consequently. b — Ar
for r € P is also uniformly bounded above, which in turn implies that both = and A(E)
are uniformly bounded above because they are both nonnegative and they sum up to

b — Az. Since h;(E) = (al E®a;)!/? and, by our assumption. the set {a;,a>.---.an}

45

spans R", the uniform boundedness of h(E) implies that of E. This completes the

proof.

Proo

there

Lemma 3.7 Let the barrier function B,(z. E') be defined as in (3.36).
let W be a bounded set with its closure col(W) in R”_ U {0}. For any
w € R™_. define

(ry.Ey) := argmin B,.(z, E). (3.39)

and for w = 0 € R™ define (z,. E,) := (r*, E*) as the solution of the

MaxVE problem (3.5). Then

O

Sw = inf {logdet(E,)} > —.
w=colow)
f Since the pair (r,,E,), E. = 0, is the unique minimizer of B,(r.E).
exists some (uy, ;) € RT_ x R™_ such that together they satisfies (3.35a)-

(3.35e). It is well-known that the quadruple (ry, Ey. ty. z) is a continuous function

of w

to O from the interior of R7_.

in R™,

and that (r,. Ey.uy.3,) converges to (z*.E~.u".z") as w converges

Hence, the composite function logdet(E,) of w is a

continuous function of w in R7_ U {0} and must attain its maximum on the compact

set co

(W) € R™_uU {0}. This proves the lemma.

Lemma 3.8 Let R(F3) be the range of the function F» corresponding
to the domain R" x RT”_ x R”_, and W be a bounded set in R™. such

- P

that its closure col(W) C R7_ U {0}. Let
{0eR"} x {0€RT} x WC R(F),

and (r(w), y(w), z(w)) be the solution to (3.37a)-(3.37c) corresponding to

w € W. Then the set {y(w): w € W} is bounded.

n

46

Proof The triple (zr(w), y(w). z(w)) being the solution to (3.37a)-(3.37c) implies

that the quadruple

(T Ewrs . Zur) = (2(w). E(y(w)). g(y(w)). =(w))

is the solution to (3.35a)-(3.35e) with the right-hand side of (3.35d) being replaced
by w' = Diag(h(y(w)))w. It is worth noting that (z,.. E,) also satisfies (3.39) with
w = w'. Evidently, we have

Ey = E(y(w)).

Define the set

W' = {u': w' = Diag(h(y,))w. w € W}.

which is bounded because both W and the set of {h(y(w)) : w € W} are bounded.

It follows from Lemma 3.6 that the set
{Ey :w' e W} ={FE(y(w)): w e W}

is bounded. Hence, the eigenvalues of E(y(w)) are uniformly bounded above. On the

other hand, Lemma 3.7 implies that
det(E(y(w))) = exp(dw) > 0.

As a result, the eigenvalues of E(y(w)) are also uniformly bounded away from zero in
the set WW. Consequently. the components of h(y(w)) are uniformly bounded above
and away from zero in the set W because h,(y(w)) = (a7 E(y(w))a;)!'? and the rows
al of A are all nonzero fori =1,---,m.

We note that the vector Diaglh(y(w))]*y(w) is the diagonal of the orthogonal
projection matrix Y (w)/2 A[ATY (w)A] "' ATY (w)"? and therefore is component-wise
bounded above by the unity; namely,

1
yi(w) < W

t=1,2---,m.

47

Since h(y(w)) is uniformly bounded away from zero for w € W, we conclude that

y(w) is uniformly bounded above for w € W. This completes the proof. O

Lemma 3.9 Let R(F,) be defined as in Lemma 3.8, then

{0eR"} x {0 R} x RT_C R(F»).

Proof From the second statement of Proposition 2. we have known that there
exists a triple (0,0.w?) € R(F3) for some w® € R™_. Now for any given w’ € R™_.
we are to show that (0.0, w?) € R(F).

Let us define the line segment between w® and w?
w(t) = (1 — t)uw® + t w?,
and the number
t =sup{t € [0.1]: {(0.0,w(t")): ¢ € [0.¢]} C R(F2)}.

Since (0,0, w(0)) € R(F>) and F5 is homeomorphic between R™ x RT”_ x R™, and
R(F>), we must have ¢ > 0. If £ = 1, we already have w? € R(F>) and we are done.

Now suppose f < 1. This implies that (0.0, w(f)) € R(F3); otherwise by the local
homeomorphism of F» the number would not have been a supremum. Consider the

set

W= {w(t): t € [0,f)} C R(F),
which is clearly bounded. It follows from Lemmas 3.6 and 3.8, the set
{(z(w), y(w). 2(w)) : w € W}

is also bounded. Let us denote x(w(t)) by z(t), and so on. Then there must exist
a sequence {t;}2, such that ¢, — ¢ and (z(t), y(te), 2(tx)) — (&,9.3) for some

(£,9,2) € R® x RT x RT (otherwise, a convergent subsequence can be selected).

48

Since the function F, is continuous, we have F»(Z.y.3) = (0.0.w(£))T. which
means that (0.0.w(f)) € R(F:). This is a contradiction. Thus the assumption t < 1

is false, and we have proved the lemma. 0

Finally we prove the existence and convergence of solution paths. including the
central path, leading to the solution of the original MaxVE problem in the sense

specified in the following theorem.

Theorem 3.3 (Eristence and Convergence of Path for F = F,)
For any w® € R™_ and u > 0. the system (3.17) with F = Fy and v = pu®

has a unique solution (z(x). y(u), =(x)). Moreover.
‘lligg)(r(u)-,y(u)- (). u(p), E(p)) = (x". 9" 2" " E7).

where (z~.y". :*) satisfies the system (3.13). and (z*. E*. u". =*) satisfies
the KKT system (3.7a)-(3.7e). Consequently, (r°. E*) solves the MaxVE

problem (3.5).

Proof The first statement follows directly from Lemma 3.9 and the fact that F5 is
homeomorphic in R" x R”_ x RT_.

By Lemimas 3.6 and 3.8. the quantities x(u).y(u), =(p). u(p) and E(u) are all
bounded as ¢ — 0. Hence. they must have accumulation points as g — 0. say.
z*,y*,z",u” and E*. Clearly, these accumulation points satisfy the two systems in
the theorem. Since these systems only permit unique solutions. we conclude that
all accumulation points of r(ux) as g — 0 must coincide. and the same is true for
other quantities; namely, accumulation points are actually the limit point. Obviously.
(z*, E*) solves the optimization problem (3.5) because they, together with «* and z*.

satisfy the optimality conditions (3.7a)-(3.7e). This proves the theorem. d

49

3.4.4 Issues of Algorithmic Convergence

So far polynomial convergence theory for primal-dual interior point algorithms has
been established only for convex conic programming in symmetric cones (see [35]. for
example). Given the highly nonlinear formulations upon which we build our primal-
dual interior-point algorithms. it seems unlikely that polynomial convergence could
be proven for our primal-dual interior-point algorithms unless some new paradigm is
discovered.

On the other hand. performing some non-polynomial. global convergence analyvsis
for the proposed algorithmic framework appears to be a worthy task. Given the good
properties we have already established for our formulations, we do not see fundamental
difficulties in proving global and fast local convergence for some parameter choices
in the proposed algorithmic framework. Such an analysis. however. would be rather
lengthy and technical. This issue of algorithmic convergence can be a good topic of

further research.

3.5 Khachiyan-Todd Algorithm and Modification

We will introduce two other algorithms. the Khachivan and Todd algorithm [25] and
a modification of it, and will later compare them with algorithms proposed in Section
3.

Given a set of inequalities Az < b and a strictly interior point x°. using the change
of variable r = v+z°, we can rewrite the inequalities as Av < b— Az% By multiplying

both sides by the positive diagonal matrix Diag(b — .4r°)71.

we obtain the following
polytope

P={veR":Cv<e} (3.40)

50

where C = Diag(b — Az%)"'4 € R™*" and e is the vector of all ones in R™. We will
use this form of polytopes in this section as it was used by Khachiyan and Todd in
[25].

In the formulation (3.5), the matrix-valued variable E appears in the constraints
in a nonlinear manner. In an alternative formulation given below. through the change
of variables B = E? one can have the unknown matrix B to appear linearly in the
constraints. Indeed, after substituting E? by B and using the form (3.40). we can

rewrite the problem (3.5) into

min — logdet B
st. ¢fBe; < (1—-clfx)? i=1..... m (3.41)
(Cxr<e. B»>D0)

While the constraints of (3.41) are linear with respect to the matrix variable B. they

are no longer linear or convex with respect to the vector variable r.

3.5.1 Khachiyan and Todd’s Algorithm

Khachiyan and Todd’s algorithm [25] for the MaxVE problem has a good complexity
bound and also takes the advantage of the special structure of the MaxVE problem.
It is a suitable candidate for the purpose of performance comparison.

To make use of the simplicity of linear constraints, Khachivan and Todd intro-

duced the following subproblem, or auxiliary problem AP(a). from (3.41):

min — logdet B
sit. ¢fBe;<(l—-clr)(1~clfa). i=1..... m (3.42)
(B > 0)

for a fixed a € R" where Ca < e. Note that the constraints are linear in both B

and r. The key idea here is to solve subproblems AP(a) iteratively until r and a

51

become sufficiently close to each other so the subproblem (3.42) becomes a good
approximation of (3.41). Khachiyan and Todd use a primal barrier method to solve
the subproblem AP(a) where the barrier function has the form
Fi(z.Bla) = —logdet B—t > log((1 — cfr)(1 — cla*) - T Bey).
=1
where a is fixed and ¢ is the barrier parameter. The Khachivan and Todd (KT)

Algorithm can be summarized as follows.

Algorithm 2 (Khachiyan and Todd's Algorithm)

Step 1. Let a° be a strictly interior point of P. B® >~ 0. € > 0. and & = 0.

Step 2. Solve the subproblem .4P(a*) by using Newton method to min-
imize the barrier function F,(x.B| a*) for a sequence of ¢ | 0. The
solution of AP(a*) is (&*, B¥).

k k

! *+r*)/2. increment

Step 3. If ||£* —a*|| < €. then stop: else let a*~! = (a

k and go to Step 2.

Khachiyan and Todd prove that to attain a sufficient accuracy only a small number
of subproblems need to be solved. and they derive a linear system of size n + m for
calculating the Newton direction. The updates to the matrix-valued variable B are
not directly calculated as an independent variable. thus reducing the complexity of
the algorithm. However, the drawback of their algorithm is that the barrier method
used to solve the subproblem is not particular efficient in practice. Moreover. as we
can see from the algorithmic framework. three layers of loops are involved in the KT
algorithm: the loop for the subproblem parameter a, the loop for barrier parameter

t, and the iterations for a fixed a and a fixed ¢.

[
o

3.5.2 A Modification of the KT Algorithm

Since primal barrier methods are generally less efficient than primal-dual. interior-
point methods, in order to speed up the KT algorithm we modify it by applying
a primal-dual interior-point method to the subproblems in the Step 2 of the KT
algorithm. while keeping the outer iterations intact.

Following Khachivan and Todd's approach. we transform the subproblem 1P(a)

into the standard form AP(0) :

min —logdet B
st. c¢fBe;+cfr<1, i=1..... m (3.43)
(B > 0)

by the change of variable r < r — a and the change of data ¢; <= ¢;/(1 — cTa) for
i=1.---.m.
The optimality conditions, or the Karush-Kuhn-Tucker (KKKT) conditions. of

problem AP(0) are as follows:

cTy = 0. (3.44a)

B'-CcTyCc = o. (3.44b)

Cr +diag(CBCT)+:-¢ = 0. (3.44c¢)

Y: = 0. (3.44d)

y.z > 0 (3.44e)

where y € R™ is the vector of Lagrangian multipliers, = € R™ consists of slack

variables, and C € R™*" with ¢ as its i-th row.

Following the same strategy used earlier, we eliminate the matrix variable B from
the system using the substitution B(y) = (CTY'C)~! that is the solution to (3.44b).
We also replace the zero right-hand side of (3.44d) by pe. The resulting system that

defines the central path is

CTy 0
F3(z.y.z) = | Cr+diag(Q(y)) +z—-e | =| 0 (3.45)
Y: ue

and y, z > 0 where Q(y) = C(CTYC)~!CT. Clearly, the equation (3.45) is a square.

nonlinear system of n + 2m variables. The Jacobian matrix of F3(r.y.z) is

0 CcT 0
Fir.y.2)=| ¢ —QoQ I
0 Z Y
To solve the Newton linear system
dr ry 0
Fi(r.y. z) dy | =| rs | = 0 — F3(r.y.z).
d: ra ue

we use the following block Gaussian elimination procedure:

dr = (CTM'C)" Y r, +CTM Y (ra — Y 'ry)).
dy = M YCdzx —ro+ Y 'rs),
dz = Y Yr3 - Zdy).

where the matrix M := Q o Q + Y 7! Z is symmetric positive definite.

The primal-dual algorithm for solving the subproblem AP(0) falls into the same

framework of Algorithm 1.

3.6 Numerical Results

In this section. we report our numerical results on the four algorithms: the KT algo-
rithm, the modified KT, or MKT, algorithm, and the two direct primal-dual interior-

point algorithms based on the systems (3.13) and (3.15) which we name F1PD and

o4

F2PD, respectively. The numerical tests were performed on three sets of test prob-
lems with a total of 200 problems. Our implementation of the four algorithms is in
MATLAB. All the experiments were run on an SGI Origin2000 computer with multi-
ple 300-MHZ R12000 processors. However, our programs use only a single processor

at a time.

3.6.1 Implementation Details

In describing the implementation details. we first give some features common to all
the algorithms and then other features specific to individual algorithms.

For all the algorithms. the input data for a polytope include the matrix . the
vector b and a strictly interior point point r° such that Az® < b which will serve
as the starting point for the center of the initial ellipsoid. In our implementation.
the point g is selected to be the solution to an auxiliary linear program max{r :
Az + 7e < b}. Other choices are certainly possible such as the analytic center of the
polytope. However, it was our intention not to use the best possible starting point.

Scaling is an important issue in numerical computation. In our implementations.
we always first transform the inequality Ar < binto the form Cv < e using the change
of variables and the row scaling as is described at the beginning of Section 3.5. After
the transformation, the starting point z® is transformed into the origin. and the
transformed polytope turns out to be better scaled.

In all the algorithms, the stopping tolerance is set to ¢ = 107*. In the case of the
KT and MKT algorithms, we stop the outer iterations whenever the relative change
between the current and previous centers is less than or equal to €. In the case of the
F1PD and F2PD algorithms, we stop whenever the residual norm of F;, : = 1 or 2,
becomes less than or equal to e.

We now describe some algorithm-specific features.

e The KT and MKT algorithms: Both algorithms have the same outer loop with
the center varying. The initial center is the origin and the initial value for the
matrix variable B is BY = pI where I is the identity matrix and p is chosen
such that the corresponding ball, centered at the origin with a radius p. lies
entirely inside the polytope. During the outer iterations. we use a warni-start
strategy in which a later iteration always starts from the solution of the previous

1teration.

e The KT algorithm: In the subproblems. the barrier parameter ¢ is set to 0.5
initially and then decreased by a factor of 10 whenever the subproblem stopping
criterion is met. For a fixed ¢ value, the subproblem stopping criterion is that the
gradient norm of the corresponding barrier function becomes less than or equal
to t. This way. the stopping criterion becomes progressively more stringent as ¢
approaches zero. We found that this adaptive strategy made the algorithm run
significantly faster. To prevent the loss of symmetry during the computation.
we set B = (B + BT)/2 after B is updated at every iteration. We update
an iterate for (z, B) by a damped Newton step to ensure that the updated
ellipsoid remains inside the polytope. Specifically. the step length is 0.75 times

the largest allowable step that keeps the updated ellipsoid inside the polytope.

e The Primal-Dual algorithms: The primal-dual algorithmic framework (i.e.. Algorithm 1)
encompasses the F1PD and F2PD algorithms. and the subproblem solver of the
MKT algorithm. The initial values for the primal-dual algorithms are set as
follows: the initial center is r = 0; the initial multiplier value is y = e; and the
initial slack variable z, say in the equation z — g = 0, is set as z; = max(0.1, g;).
In addition to the initial values, there are two critical parameters in these al-

gorithms: the so-called centering parameter o and the step length o*. In our

26

implementations, we choose ¢ = min{0.5, (y*)7z*/m} and of = min(1, ra)
where 7 € (0,1) and & is the maximum length such that updated iterate for
(z,y, =) reaches the boundary of the set P xRT_xRT_. We use 7 = 0.75 for the
F1PD and F2PD algorithms, and a more aggressive 7 = 0.9 for the subproblem
solver of the MKKT algorithm because the subproblem (3.42) is not as nonlinear

as its counterparts are in the F1PD and F2PD algorithms.

The parameter settings given above are rather generic and unsophisticated. For
example, a line search scheme for determining step length could be a more effective
and theoretically sound strategy. However, given our purpose of identifyving the most
robust and efficient algorithm. we consider our current settings to be appropriate and

sufficient.

3.6.2 Test Problems

Three sets of test problems were used in our numerical experiments, consisting of 47.
143 and 10 problems, respectively. The total number of test problems is 200 and all
the 200 test problems are made available at the web site:

http://www.caam.rice.edu/ zhang/maxvep/.

Test sets 1 and 2 are obtained from two integer programming feasibility problems
through the search trees of an integer programming algorithm - the Lenstra algorithm
for integer programming feasibility problem [28. 30]. This algorithm searches on a
tree of subproblems and applies ellipsoidal approximation on each one of them. The
polytopes in Sets 1 and 2 are taken from some branches of the search trees for two
integer programming feasibility problems, respectively. The problem sizes in Sets 1
and 2 are relatively small with m < 288 and n < 80. Nevertheless, our numerical

experience has indicated that some of the problems are non-trivial to solve.

=1

Ut

In order to test the ability of our algorithms for solving larger problems. we gen-
erated a set of ten random problems that is called Set 3. The largest problem in
this set has m = 1200 and n = 500. For each problem. we first use the MATLAB
function sprandn to generate a sparse random matrix B. and also use the rand func-
tion to generate a right-hand side vector ¢ > 0, a upper-bound vector ub > 0 and a

lower-bound vector {b < 0. Together, they form a polytope
{reR":Bzx<c b<r<ub}

where B € R**™ and ¢ € R* and Ib.ub € R". By construction. the origin r = 0
is strictly interior to the polytope. Then we rewrite the polytope into the standard

form

{r € R" : Az < b}.

where 4 € R™*". b € R™ with m = &k + 2n. The matrix A4 is constructed. in an
obvious manner, from the matrix B and the identity matrix in R”. and the vector b

from the vectors ¢ € R* and b, ub € R™. The problems in Set 3 are sparse.
p

3.6.3 Test Results

Test results on Sets 1 and 2, totaling 190 problems are summarized in Table 3.1.
while detailed results are given in Tables 3.3-3.6. Four rows of numbers are presented
in Table 3.1. In the first two rows, we list the test set number, the number of test
problems in each set, the total number of iterations and the total amount of CPU
time taken by each algorithm for solving the entire set of test problems. In the last
two rows, we gives the algebraic and geometric means for each category over the 190
test problems.

We note that the iteration numbers for the KT and the MKT algorithms are

the numbers of inner-most, Newton iterations that involve solving linear systems of

58

equations. These inner-most iterations are comparable with the iterations of the
direct primal-dual algorithms because for a given problem they all require to solve
linear systems of essentially the same size. The CPU time is given in seconds. In

addition. detailed results on the test sets 1 and 2 are attached as Tables 3.3-3.6.

Table 3.1 Summary of Results for Tests 1 and 2

Prob | # of KT MKT F1PD F2PD
Set Prob Iter | Time | Iter | Time | Iter | Time | Iter | Time
1 17 19416 | 3340 | 2655 240 692 124 694 T
2 143 | 56783 | 3567 | 9720 429 2448 168 | 2058 | 104

Total 190 | 76199 | 6907 | 12375 | 669 | 3140 | 292 | 2752 | 181
alge. | mean | 401.0 | 36.4 | 65.1 3.5 16.5 1.5 145 | 1.0
geom. | mean | 397.7 | 30.5 64.3 3.2 16.2 1.3 143 | 08

From Table 3.1, we observe that on average, the MKT algorithm is about 10 times
faster than the original KT algorithm; F1PD algorithm is about 2 times faster than
the MKT algorithm, and the F2PD algorithm is about 1.5 times faster than the F1PD
algorithm.

We mention that out of the 190 test problems in test sets 1 and 2 the KT algorithm
failed to converge on two: problems 22 and 120 in the set 2. More conservative choices
of parameters would make the KT algorithm converge on these two problems. but
would also adversely affect the overall performance of the algorithmm. We kept the
current choices of parameters for the benefit of the KT algorithm.

The test results on the randomly generated test set 3 are presented in Table 3.2.
Only the F1PD and F2PD algorithms were tested on this set of larger problems be-
cause the other two algorithms, non-competitive in time, would require an excessively

long time to run. Since these test problems are sparse, in addition to the matrix sizes

59

m and n we also include the number of nonzero entries, denoted as nnz, in the matrix

A

Table 3.2 Results of Test Set 3: Problems 1-10

Prob Size F1PD F2PD
No. m n nnz | Iter | Time (sec) | Iter | Time (sec)
1 600 | 100 | 7426 | 31 97 22 30
2 600 | 150 | 8408 | 30 107 23 39
3 600 | 200 ¥669 | 33 203 29 58
4 600 | 250 5022 | 60 249 31 73
3 800 | 100 | 3914 | 34 235 22 63
6 800 | 200 | 8029 | 34 271 24 91
T 800 [300 | 8933 | 58 549 32 165
8 1000 | 300 | 11993 | 40 675 28 245
9 1000 | 400 | 8433 | 60 1134 31 330
10 1200 | 500 | 10518 | 73 2917 37 703
Total — | — — 473 6433 279 1796
alge. mean — — — 47.3 643.3 279 179.6
geonm. mean | — — — 45.1 364.1 27.5 110.3

The results in Table 3.2 indicate that given the current choices of parameters, the
F2PD algorithm clearly outperforms the F1PD algorithm by a considerable margin
on the test set 3. Although the performance of the F1PD algorithm may be somewhat
improved by selecting different parameters. we do not believe that it can in general
outperform the F2PD algorithm because it requires more linear algebra calculation
in each iteration for solving its version of the Newton linear system.

Detailed Data for Sets 1 and 2

The first three columns of the tables 3.3-3.6 give problem number and size where
m is the number of polytope-defining inequalities and n the number of variables. For
the KT and MKT algorithms, the tables give both the number of outer-iterations

(i.e., the number of subproblems solved) and the number of inner-iterations (i.e., the

60

number of Newton iterations), separated by a slash. The time is measured by CPU
seconds. On Problems 22 and 120 of the test set 2, the KT algorithm failed to solve
the first subproblem (i.e., at the zero-th outer iteration). For these two problems.
we set the outer iteration number to 0 and give the number of inner iterations the

algorithm took before it stopped.

3.7 Concluding Remarks

The goal of this study is to find a practically efficient algorithmic framework for solving
general MaxVE problems. Our extensive numerical results show that among the four
tested algorithms, the method of choice is clearly the F2PD algorithm built on the
formulation (3.15). which has been shown to have a sound theoretical foundation.
We have established. among other things. the existence of a central path for this
formulation even though. unlike in the conventional cases. this central path is not
known to be directly connected to the optimality conditions of a barrier function.

The main advantage of the F2PD algorithm over the KT and the MKT algorithms
is that. without the need for solving a number of subproblems either for fixed centers
or fixed barrier parameter values, it requires less iterations (or linear system solutions)
than the other two algorithms. We expect that the same advantage would still hold
against some other untested algorithms like the one given in [3]. On the other hand.
compared to the F1PD algorithm. the F2PD algorithm requires less linear algebra
computation per iteration and seems to be more robust. These features make the
F2PD algorithm particularly attractive.

The algorithms considered in this chapter are all of the general-purpose type.
For really large-scale problems with special structures, one will likely need special-

purpose algorithms that can take full advantage of the problem-specific structures, in

61

particular sparsity, in order to solve the problems efficiently. This should be a topic

of further research.

Table 3.3 Results of Test Set 1: Problems 1-47

Prob Size KT MKT F1PD F2PD
No. m n Iter Time (sec) Iter Time (sec) Iter | Time (sec) Iter | Time (sec)
1 288 | 80 8,369 155.83 8,43 10.14 21 8.82 18 1.40
2 286 | 79 9,416 194.64 9/79 19.18 20 9.00 21 5.80
3 272 | 72 9/375 13747 9/48 9.30 15 5.33 15 3.22
4 260 | 66 10/431 145.55 10/58 9.81 17 5.54 17 3.38
5 256 | 64 10/410 132.96 10/49 8.0 14 4.39 14 2.69
6 246 | 39 10/414 117.01 10/53 T.44 15 4.09 15 2.50
7 244 | 58 10/411 116.80 10/52 7.11 14 3.79 15 2.52
8 236 | 54 10/405 98.98 10,57 7.05 15 3.55 16 2.33
9 234 | 53 10/414 101.27 10/54 6.51 15 3.54 15 2.21
10 232 | 32 10/425 101.98 10/53 6.17 15 3.54 16 237
11 230 | 51 9/386 87.61 9,52 5.98 15 3.31 13 211
12 228 | 350 9/384 85.17 9/54 6.08 15 3.26 15 2.01
13 226 | 49 10/441 96.21 10/56 6.06 15 3.20 16 2.19
14 224 | 48 10/433 88.96 10/58 6.19 16 3.33 16 2.07
15 222 | 47 | 10/439 88.64 10,35 5.57 16 3.18 16 1.95
16 220 | 46 | 10/432 83.21 10/55 5.41 16 3.08 16 1.96
17 218 | 45 10/433 81.07 10/54 5.16 16 2.94 16 1.81
18 216 | 44 10/439 80.37 10/55 5.10 16 2.95 16 1.76
19 212 | 42 9/405 69.66 9/52 1.58 15 2.54 15 1.55
20 210 | 41 9,391 65.11 9,53 4.57 13 2.14 13 1.36
21 208 | 40 10/423 67.76 10/63 5.26 16 2.57 15 1.47
22 206 | 39 10/434 66.50 10/61 1.91 16 2.53 15 1.49
23 206 | 39 10/434 66.50 10/63 5.10 15 2.30 15 1.46
24 204 | 38 10,431 64.24 10/60 4.67 16 2.43 15 1.35
25 202 | 37 9/393 55.93 9,63 4.84 15 211 15 1.31
26 200 | 36 9/393 53.98 10/59 4.29 15 2.04 15 1.26
27 198 | 35 10/429 57.06 10/60 4.24 15 1.99 15 1.22
28 196 | 34 10/428 55.18 10/67 4.64 15 1.92 15 1.20
29 194 | 33 10/430 53.54 10/66 4.45 16 1.99 15 1.16
30 192 | 32 | 10/424 50.88 10/58 3.83 15 1.83 15 1.15
31 192 | 32 | 10/434 52.16 10/61 1.05 15 1.85 14 1.05
32 190 | 31 10/411 46.93 10/56 3.46 15 1.75 135 1.10
33 188 | 30 10/410 44.56 10/57 3.39 15 1.69 15 1.04
34 186 | 29 10/406 42.55 10,56 3.21 14 1.51 14 0.97
35 184 | 28 [10/410 41.42 10,60 3.34 13 1.34 13 0.83
36 184 | 28 10/406 40.98 10,60 3.37 14 1.45 14 0.91
37 182 [27 | 10,417 40.33 10/56 3.03 13 1.29 14 0.86
38 180 | 26 | 10/413 37.95 10/58 3.03 13 1.25 14 0.81
39 180 | 26 | 10/413 37.95 10/57 2.93 14 1.35 14 0.84
40 178 | 25 10/403 35.61 10,56 2.76 13 1.19 13 0.72
41 176 | 24 10/406 34.18 10/51 2.40 13 1.21 13 0.69
42 174 | 23 | 10/418 33.77 10/54 2.46 12 0.99 13 0.68
43 172 22 | 10/404 31.10 10/50 2.17 12 0.95 13 0.66
14 172 | 22 10/405 31.17 10/52 2.28 12 0.97 13 0.66
45 168 | 20 | 10/404 28.50 10/57 2.31 13 0.96 14 0.63
46 164 | 18 | 10/384 24.35 10/56 2.10 13 0.89 12 0.51
47 162 [17 | 10/400 15.91 10/48 1.61 10 0.42 10 0.39

Table 3.4 Results of Test Set 2: Problems 1-48

Prob Size KT MKT F1PD F2PD
No. m n Iter Time (sec) Iter Time (sec) Iter Time (sec) Iter | Time (sec)
1 147 | 50 11/463 34.60 11/73 3.78 21 L.71 16 0.98
2 147 | 49 9/426 32.07 12/88 4.44 20 1.539 16 0.96
3 147 | 48 7/376 27.92 9/67 3.43 18 1.41 14 0.81
4 147 | 49 9/390 29.09 12/83 4.20 25 2.09 18 111
5 147 | 48 7/370 27.43 9/65 3.31 18 1.47 14 0.80
6 147 | 47 7/407 29.87 9,64 3.22 17 1.39 14 0.85
7 147 | 48 9/403 29.54 10/77 3.92 26 2.05 19 1.19
8 147 | 47 8/391 28.61 10,74 3.64 19 1.51 16 0.95
9 147 | 49 9/395 29.52 11,72 3.60 20 1.70 16 0.99
10 147 | 48 7/385 29.59 11/73 3.61 16 1.32 14 0.86
11 147 | 48 9/414 31.41 12/83 4.13 24 2.00 19 1.19
12 147 | 47 8/380 27.81 10,74 3.75 18 144 16 0.92
13 147 | 48 9/398 30.07 12/79 3.91 21 1.79 17 1.05
14 147 | 47 8/383 28.59 10/7 3.66 19 1.58 16 0.94
15 147 | 47 9,389 28.83 10/74 3.66 23 1.84 18 1.06
16 137 | 35 7/513 26.29 7/55 211 20 I.11 15 0.61
17 137 | 35 7/491 25.08 7/49 1.84 14 0.79 13 0.54
18 137 | 35 7/383 19.23 7,50 1.89 16 0.91 13 0.57
19 137 | 34 6,383 19.22 747 1.74 13 0.70 13 0.51
20 137 | 34 7/415 20.74 7/49 1.79 15 0.85 13 0.53
21 132 | 30 6/336 14.67 6/48 1.62 15 0.74 13 0.46
22 134 | 33 0/166 8.36 7/55 1.94 21 1.13 16 0.61
23 137 | 36 7/354 17.94 7/64 2.53 21 1.20 17 0.69
24 137 | 35 7/358 18.02 7/63 2.45 18 1.00 16 0.72
25 137 | 34 7/396 19.95 T/57 2,22 20 1.09 18 0.73
26 137 | 34 8/409 20.60 9,73 2.70 20 1.15 17 0.70
27 136 | 33 6/320 15.61 6/59 2.20 23 1.29 18 0.71
28 136 | 32 7/506 25.15 8,71 2.61 20 1.13 18 0.75
29 137 | 36 7/484 25.32 7/58 2.28 16 0.89 13 0.53
30 137 | 35 8/588 30.33 9/58 2.14 14 0.80 13 0.53
31 137 | 35 6/432 22.19 T/57 2.17 21 1.15 15 0.61
32 137 | 34 7/437 21.98 7/33 1.97 16 0.87 13 0.52
33 137 | 34 7/422 21.24 T/45 1.62 13 0.73 13 0.53
34 137 | 36 7/361 18.32 7,63 2.43 21 1.16 17 0.70
35 137 | 35 7:359 18.19 T7/61 2.36 19 1.08 17 0.71
36 137 | 35 6./299 15.09 6,66 2.67 23 1.34 19 0.84
7 137 | 34 7./366 18.47 8/68 2.56 19 1.05 17 0.69
38 137 | 35 6/299 15.08 6/57 22 20 1.14 17 0.69
39 137 | 34 6/296 14.70 6/57 2.19 20 1.14 18 0.76
40 136 | 33 6/323 15.77 6/59 2.22 24 1.33 19 0.75
41 147 | 48 9/390 29.49 11/74 3.67 21 1.68 17 1.02
42 147 | 47 T/357 26.46 10/85 4.29 15 1.18 13 0.7
43 147 | 46 7/462 34.29 7/59 3.04 19 1.47 15 0.85
44 147 | 47 8/363 26.70 13/75 3.55 17 1.34 14 0.82
45 147 | 46 7/419 30.84 14/88 41.19 15 1.16 13 0.74
46 147 | 46 8/372 26.95 12/80 3.84 15 1.15 13 0.75
47 147 | 45 7/354 24.79 12/79 3.74 14 1.06 13 0.71
48 147 | 44 7/442 30.97 12,82 3.88 17 1.26 14 0.76

63

Table 3.5 Results of Test Set 2: Problems 49-96

Prob Size KT MKT FLPD F2PD
No. m n Iter Time (sec) Iter Time (sec) Iter | Time (sec) Iter | Time (sec)
49 147 46 8,368 26.21 1065 3.14 17 1.30 14 0.79
530 147 45 7/371 26.21 13/82 3.84 15 1.13 13 0.72
51 147 45 8/370 25.95 11,71 3.40 16 1.21 14 0.78
52 147 43 7/370 24.92 12,75 3.44 15 1.08 13 0.68
53 147 16 7/359 25.71 11/72 3.46 15 1.14 12 0.68
54 147 47 11/479 35.21 11/84 4.22 19 1.49 17 0.99
35 147 46 8/401 27.98 12/80 3.83 15 1.12 14 0.76
56 147 46 10/459 31.92 12,/80 3.81 17 1.28 16 0.87
57 147 45 9,430 29.70 13/74 3.40 15 1.12 14 0.75
58 147 45 8/396 26.77 9/67 3.23 13 0.94 12 0.65
59 135 | 39 7/389 20.67 T35 2.16 14 0.81 13 0.56
60 135 38 7/403 21.29 9/61 231 14 0.80 12 0.52
61 135 38 T/461 24.80 8/59 2.30 15 0.87 12 0.51
62 135 38 7/390 20.77 9,61 2.30 14 0.81 12 0.51
63 135 37 8/383 19.70 11,67 2.42 15 0.84 14 0.58
64 135 39 8/381 20.03 11,64 2.32 12 0.70 Il 0.47
65 135 38 7/340 17.95 10/38 2,12 11 0.63 It 0.49
66 135 38 7/350 18.56 10,60 2.20 11 0.63 11 0.48
67 135 38 6/345 18.33 10/70 2.60 14 0.81 12 0.52
68 135 37 T/435 23.12 8/53 1.98 13 0.71 12 0.49
69 135 38 7,381 19.89 9,62 2.34 14 0.80 12 0.50
70 135 36 7/389 19.86 10,65 231 14 0.79 13 0.53
71 135 35 T/472 23.91 7/55 2.07 15 0.82 13 0.52
72 135 35 7/357 17.73 9/55 1.93 11 0.61 11 0.44
73 135 34 7/393 19.29 9,62 2.20 15 0.81 13 0.50
74 135 35 7/399 20.11 11,61 2.12 13 0.71 12 0.49
75 135 35 7/472 23.92 7,55 2.07 15 0.82 13 0.52
T 135 35 7/356 7.67 10,59 2.06 13 0.71 12 0.48
7 135 36 7/459 23.39 9/63 2.30 14 0.76 12 0.49
78 135 37 6/379 19.85 7/55 2.10 13 0.73 12 0.51
79 137 39 7/425 23.02 13/83 3.19 15 0.87 13 0.56
80 137 40 7/415 22.99 10,65 2.63 14 0.84 12 0.53
81 147 45 3/398 26.92 9,66 3.17 13 0.95 12 0.63
82 135 38 7,381 19.86 10’66 2.43 14 0.80 12 0.50
83 134 37 7/365 18.35 10/38 2.07 13 0.72 12 0.50
84 134 37 7/376 19.15 755 2.07 14 Q.77 12 0.51
85 134 37 T/418 21.52 8/58 2.15 14 0.77 12 0.50
86 135 39 7/410 21.69 8/59 2.30 14 0.80 12 0.52
87 137 37 7/373 19.62 9,65 2.45 16 0.92 13 0.54
88 128 36 7/385 17.27 T/57 1.99 16 0.79 13 0.51
89 128 36 7/395 17.23 10/60 1.98 13 0.63 12 0.46
90 137 | 39 7/338 18.27 10/61 2.34 11 0.65 11 0.48
91 128 37 6/316 14.37 11/71 2.40 14 0.72 13 0.50
92 137 38 6/399 21.73 13/79 2.96 13 0.76 12 0.51
93 137 38 8/370 19.65 12,65 2.35 1l 0.6+ 11 0.48
94 137 | 37 7/372 19.61 11/74 2.80 15 0.85 13 0.55
95 137 37 6/384 20.61 11/67 2.48 14 0.81 12 0.51
96 137 | 39 7/389 21.29 10/68 262 13 0.76 12 0.53

64

Table 3.6 Results on Test Set 2: Problems 97-143

Prob Size KT MKT F1PD F2PD
No. m n Iter Time (sec) [ter Time (sec) Iter | Time (sec) Iter | Time (sec)
97 137 | 38 5/346 18.73 8,59 2.35 15 0.86 12 0.51
98 137 | 39 6/364 20.08 10,63 2.47 13 0.78 12 0.52
99 137 | 39 7/425 23.03 13/83 3.15 15 0.87 13 0.56
100 137 | 38 7/394 21.05 11,67 2.52 15 0.86 13 0.56
101 128 | 37 7/350 15.76 11,68 2.30 15 0.76 13 0.50
102 128 | 36 6/306 13.53 11,69 2.29 16 0.79 14 0.54
103 137 | 40 7/416 23.02 10/65 2.58 14 0.84 12 0.53
104 147 | 47 7/353 26.40 10/70 3.4 15 1.18 13 0.76
105 147 | 48 9/401 31.14 12/80 3.96 24 1.94 18 1.07
106 147 | 47 9/428 32.29 12,83 1.07 20 1.58 16 0.93
107 147 | 46 7/419 30.25 10/73 3.59 14 1.06 12 0.68
108 147 | 46 9/446 31.81 12/78 3.73 19 1.43 15 0.83
109 147 | 45 7/359 25.30 9/70 3.43 14 1.05 13 0.75
110 147 | 44 7/552 39.44 7/59 2.98 16 1.18 14 0.76
111 147 | 47 7/396 29.70 8/68 3.46 15 1.17 13 0.77
112 147 | 48 9,/438 33.47 12/82 4.06 16 1.30 14 0.84
113 147 | 48 7/432 33.53 10/70 3.54 14 1.13 12 0.73
114 147 | 49 9/396 29.62 11:71 3.56 20 1.60 16 0.94
115 147 | 48 8/425 31.56 12/80 3.94 17 1.33 14 0.80
116 147 | 47 T/410 30.40 9,66 3.32 18 1.39 14 0.82
117 147 | 48 9/420 30.96 12/83 4.10 24 1.87 19 1.10
118 147 | 47 T/407 30.10 7,54 277 17 1.32 13 0.76
119 147 | 47 9/431 31.60 11,81 3.99 21 1.64 17 0.97
120 147 | 46 0/164 12.65 8/69 3.55 25 1.91 18 1.01
121 147 | 46 8/411 29.85 8/70 3.53 20 1.53 16 0.91
122 147 | 48 9/391 28.62 12,79 3.89 21 1.66 17 0.98
123 147 | 47 9/449 32.80 9/74 3.73 21 1.63 17 0.97
124 147 | 46 8/423 30.63 8,68 3.40 18 1.37 15 0.84
125 147 | 47 9/403 29.17 10/75 3.71 22 1.69 17 0.98
126 147 | 46 8/395 28.53 13/84 4.01 19 1.45 16 0.90
127 147 | 43 7/521 36.15 7/67 3.29 19 1.37 15 0.79
128 147 | 46 9/419 30.14 11/77 3.73 24 1.84 18 1.01
129 147 | 45 9,402 28.43 11/74 3.52 23 1.73 17 0.95
130 147 | 45 7/416 30.03 7/59 3.00 16 1.21 13 0.73
131 147 | 49 9/389 29.05 12,82 4.11 23 1.87 17 1.02
132 147 | 48 7/373 27.86 12/80 3.96 18 1.41 15 0.87
133 147 | 47 T/410 30.43 9,66 3.32 17 1.32 14 0.80
134 147 | 48 9/419 30.81 12/83 4.11 24 1.88 19 1.10
135 147 | 47 7/400 29.58 7/54 2.81 17 1.32 14 0.81
136 147 | 47 9/432 31.51 11/81 3.98 20 1.56 17 0.97
137 147 | 46 8/419 30.38 8/67 3.36 18 1.38 15 0.85
138 147 | 49 9/410 30.74 12/86 4.34 21 1.67 17 1.01
139 147 | 48 8/402 29.83 10/74 3.71 18 1.41 15 0.87
140 147 | 47 8/420 30.66 10/74 3.66 18 1.42 15 0.85
141 147 | 48 6/381 28.65 8/62 3.24 17 1.34 14 0.81
142 147 | 50 | 12/514 38.50 12/86 4.40 27 2. 1: 20 1.18
143 147 | 49 8/415 31.70 8/77 4.11 21 1.6 18 1.06

66

Chapter 4

Lenstra’s Algorithm for Integer Programming

4.1 Introduction

Many practical decision problems can be formulated as integer programming or mixed
integer programming problems, such as transportation scheduling, production plan-
ning and telecommunications. Because integer programming problems have wide
applicability. algorithms for IP are of great interest to researchers. The most com-
mon approach to solving integer programming problems is the branch-and-bound
method. However. there is no guarantee that the branch-and-bound method will
terminate in time polynomial in the size of input. While specially structured 0-1
integer programming problems have attracted a lot of attention in this field. very
few results are reported on general integer programming. Nlany practical general
integer programming solvers rely on heuristic algorithms or random sampling to get
a “good” feasible solution. Still, some hard integer programming problems remain
unsolved. A breakthrough came in 1983 when H. W. Lenstra. Jr. showed that in-
teger programming problems in a fixed dimension can be solved in polynomial time.
However, the computational properties of Lenstra’s algorithm have not been fully ex-
plored [9]. Therefore, this dissertation studies issues involved in building a practical
code based on Lenstra’s algorithm using ellipsoidal approximation to solve general
integer programming problems.

The integer programming problem (IP) can be stated as follows. Let m and n be
positive integers.

Given a rational m x n matriz A and a rational m—vector b, does Ar <b
have an integral solution = ?

67

The integer linear programming problem is NP-complete. essentially due to S. A. Cook [8].
Cook’s result implies that IP belongs to the most difficult problems in the class of
NP. A question under this circumstance is: can the integer programming problem
with a fixed number of variables be solved in polynomial time?

In special cases, the answer to the above question is ves. Consider the integer
linear programming problem with a fixed number of variables n. In the case n = 1.
the solution of the problem is trivial. For n = 2. Scarf [39. 40] gave a complete
treatment after Hirschberg and Wong [15] and Kannan [19] had given polynomial
algorithms in special cases.

In general cases, a breakthrough came when H. W. Lenstra. Jr. [28] proved that
for a fixed number of variables n, there is a polynomial algorithm for integer linear
programming problems. The proof consists of two main techniques: the rounding
of polvtopes and basis reduction on lattices. Lenstra’s algorithm introduced the
geometry of numbers concept into integer programming and proposed the strategy
of branching on hyperplanes instead of on variables as in traditional branch and
bound methods. Later, Grotschel, Lovdsz, and Schrijver {14] further proved that the
rounding problem can be solved in polynomial time even for varying n.

Lovasz and Scarf [31] applied the same idea. branching on hyperplanes with re-
spect to a flat direction, to the body of the polytope and developed the generalized
basis reduction algorithm to solve the problem without ellipsoidal approximations.
W. Cook et al [9] implemented the generalized basis reduction algorithm and solved
some difficult integer network design instances. Wang [49] solved a set of linear and
nonlinear integer programming test problems using the generalized basis reduction
algorithm as a subroutine. Recently Aardal, Hurkens, and Lenstra 1] developed an
algorithm for solving a system of Diophantine equations with lower and upper bounds

on the variables, based on the lattice basis reduction algorithm.

68

Since some small but hard problems still remain unsolved, it is worthwhile to build
an efficient implementation of Lenstra’s algorithm and compare its performance with
the generalized basis reduction algorithm. The generalized basis reduction algorithm
requires the solution of many linear programming problems. and there are tradeoffs
between using an ellipsoidal approximation to the polytope. or working directly with
the polytope itself. In this dissertation, we concentrate on building a version of
Lenstra’s algorithm using ellipsoidal approximations.

To this end, we have developed a practical primal-dual interior point method to
solve this problem. which is discussed in Chapter 3. The other ingredient is the lattice
basis reduction method, which has been implemented in LiDIA library [29]. We use
CPLEX [36] to solve the linear programming problems involved. We give insights
on the computational properties of Lenstra’s algorithm based on our implementation
and test experiments.

An efficient implementation of Lenstra’s algorithm will supply a new tool to attack
some small but hard general integer programming problems. To get a feasible integer
solution is a crucial step in solving integer programming problems. Once a good
feasible solution is found. the branch-and-bound method may terminate more quickly.
Therefore, Lenstra’s algorithm can be used when the traditional branch-and-bound
method tends to go very deep into its search tree and is deemed inefficient on those
cases.

The structure of this chapter is as follows. Section 2 describes the framework
of Lenstra’s algorithm and its improvement. In Section 3. we summarize the main
results in lattices and basis reduction applied in integer programming. We briefly
compare the properties of Lenstra’s algorithm and the generalized basis reduction

algorithm in Section 4.

69

4.2 Lenstra’s Algorithm and Improvement

Assume that 1 is a real m x n matrix and b € R™. then Ar < b is called a system of
linear inequalities. The solution set {r € R"|Ax < b} of a system of linear inequalities
is called a polyhedron. A bounded polyhedron P is called a polytope. An inequality
a;Tr < b; from Az < b is called an implicit equality if a,"z = b; for all r satisfving
Ar < b. Let A=r < b~ denote the system of implicit equalities in Ar < b. The
dimension of a polyhedron P is equal to n minus the rank of the matrix A%. P is
full-dimensional if its dimension is n. Therefore. P is full-dimensional if and only
if there are no implicit equalities [42]. From a geometric point of view. the integer
feasibility problem is to find an integer point inside the polytope given by the system
of linear inequalities.

We give two useful definitions for Lenstra’s algorithm first. The width of a polyvtope

P € R" in a nonzero direction c is defined as
F(c) = max{c'r:r € P} - min{CTr cr € P}

If F(c) is bounded, we call the direction ¢ a thin direction of the polyvtope. Note that
the width of a polytope P = {Ar < b} in a given direction ¢ can be computed by
solving two associated LP problems.

The intuition of Lenstra’s algorithm is the observation that when a polytope is
“thin” and extends arbitrarily far in some directions as in Figure 4.1. the traditional
branch-and-bound search tree will grow exceedingly deep in order to find out whether
there is a feasible solution or not. The problem can be fixed if a thin direction can
be identified.

Assume that P = {zr € R" : Az < b}, with A € Q™*" and b € Q™, is bounded

and full-dimensional. The key idea of Lenstra’s algorithm is to find either an integral

~
e ° ° T ° ™ ® ®) - -®
L7
L
) ® ° ° ® ® °®) e.".’® ®
/'/’
L.
o ° ° ° e ° °® L T ° e
r’/’
L.
° ® ® ® e ® e ®) ° ®
7.
P
° ° ® ° ° e..®) ° ° °
r’/’
L.
° ° °) e . -® ° 3 ® ° ®
/"’
L7
® e ™ . -® e e °) ° ™
-
L.
L.
°® ® e.°.°® ™ e °)) ° °®
gt
L7
° - -@ ° ° ° ® ° ° °)
bug
L
o, . -o ° ® ® ® °® ° ® ™ °
° e ° ° ™ ™ ®) ° ° ®

Figure 4.1 A Thin Polytope in 2-D

vector a € PN 2" or a nonzero integral vector (or a flat direction) ¢ such that
max{c’r:r € P} —min{c’r:z € P} < c(n)

in polynomial time where c¢(n) depends only on n. Babai [4] and Lovasz [30] improved
Lenstra’s algorithm and obtained an improved bound ¢(n) = 2(n + 1)y/n(3/v/2)" on
the right-hand side. The structure of Lenstra’s algorithm is a search tree branching
on hyperplanes derived from lattice basis reduction.

H. W. Lenstra. Jr. constructively proved that for any fixed dimension n. the
integer linear programming problem can be solved in time polynomial in the size of
A and b. The procedure goes as follows. Start the procedure by finding an ellipsoidal
approximation £ of the full-dimensional polyhedron P and apply a nonsingular linear
transformation 7 to £ to transform £ into a unit ball. Next use the basis reduction
method to find either an integral feasible vector or a specific nonzero direction ¢ € Z".
In the later case, for each integer k such that [min{c’r:z € P}] <k < |max{c’z:

z € P}].search if PN{z : cTz = k} contains an integral vector. Work on subproblems

71

with dimension at least one less than the dimension of its predecessor by branching on
these hyperplanes, and the number of hyperplanes is bounded. In this way a search
tree, at most n deep, is built. For fixed n. this is a polynomial-time algorithm.

A framework of the Lovasz version {30] of the Lenstra algorithm is described as

follows.

Step 1. Find a maximum volume ellipsoid £(s°. E') inscribed in the full-dimensional

polytope P. where s° is the center of £ and E is a positive definite matrix.

Construct a nonsingular linear transformation 7 of the vector space R". such that
7€ is a unit ball, i.e. 7 = E~!. Let L = 7(Z") be the image of the standard lattice

Z™ under the nonsingular transformation 7. and let s = 7(s°).

Step 2. Use an algorithm of lattice basis reduction to construct a lattice point
p € L “near” s and a dual-basis direction d such that the distance of s from the two
lattice hyperplanes d7z = |dTs| and d7z = [d7s] is at least (v/2/3)"||p — s||. Let

a=r71"'pand c=77d.

Step 3. consider two cases:

case 1. a € P. then a € PN 2™ and exit. We have found the integral vector a in
P.

case 2. a € P, ie. ||p — s|| > 1. then consider the polytopes PN{z : ¢Tr = k}
in R"~! for all k € Z such that [min{cTr : z € P}} < k < |mar{c’c: 1 € P}|.
Reset n accordingly and repeat the whole procedure on the new polytopes in lower

dimension.

=l
o

Three problems need to be solved in this algorithm. On each node of the search
tree, ellipsoid approximation and lattice basis reduction are the two main steps.
Another issue in Step 3 case 2 is how to derive a full-dimensional polvhedron af-
ter hyperplanes are added.

The framework gives only a big picture of the algorithm. How to obtain an
ellipsoid approximation in Step 1 is discussed in Chapter 3. In case 2 of Step 3. the
question how to derive a full-dimensional polytope from a non-full-dimensional one
will be addressed in Chapter 5. Assume that the maximum volume ellipsoid inscribed
in a polytope can be found, we first explain how the lattice basis reduction algorithm

finds a flat direction of the ellipsoid in the next section.

4.3 Lattices and Basis Reduction

In this section, we summarize the main results on lattice basis reduction applied in
integer programming including the concepts of lattice and dual lattice. the reduced
basis and its properties, and the relation between the lattice basis reduction and

Lenstra’s algorithm for integer programming.

4.3.1 Lattices and Dual Lattices

H. W. Lenstra. Jr. [28] introduced the concept of the geometry of numbers into
the theory of integer programming and made a connection between these two in-
dependently developed fields. The concept of lattice comes from the geometry of
numbers [7] developed by Minkowski, which investigates the intersections of lattice
points with convex sets. The standard lattice is Z", i.e. all of the integer points in
R"™. Two branches of mathematics dealing with lattice points in convex bodies are

integer linear programming and the geometry of numbers. The lattice representation

73
adds geometric insights into solving I/ LP problems. The integer feasibility problem

becomes the problem of deciding whether or not a polytope contains a lattice point.

Definition 4.1 (lattice basis) A subset £ C R" is called a lattice if there

exist linearly independent vectors by. ba,---.b; in R" such that
!
L={>mb meZ1<i<l}
i=1
The set of vectors b;,b>,....b; is called a lattice basis. The lattice L is

also denoted by L(by,-- -, b;).

Definition 4.2 (unimodular matriz) A nonsingular matrix {7 is called

unimodular if U is integral and has determinant *1.
Three operations on a matrix are called elementary column operations:
e exchanging two columns:
e multiplying a column by -1:
e adding an integral multiple of one column to another column

Theorem 4.1 ([{2]) The following are equivalent for a nonsingular ra-

tional matrix U of order n:

1. [is unimodular;

o

. U~! is unimodular;
3. the lattice generated by the columns of U7 is Z™;

4. U comes from the identity matrix by elementary column operations.

Corollary 4.1 ([{2]) Let M and A’ be nonsingular matrices. The

following are equivalent:

1. the columns of M and those of M’ generate the same lattice:

(8]

. M' comes from M by elementary column operations:

3. M’ = MU for some unimodular matrix U (i.e. M =1’ is unimodu-

lar).
Let B be a nonsingular matrix with column vectors b;.---.b;. The number [is
called the rank of the lattice £(by.---.b;). If b,.b,.---.b, is another basis for £. then
b, = 25:1 u;;b; for some x {—unimodular matrix U = (u;;)1-i < with integral coef-

ficients and |det(L7)] = 1. It follows that the positive real number |det(b,.b,. - --.b;)l
depends only on L instead of on the choice of its basis. The determinant of L is
defined as

det(L) = |det(by.ba.---.b1)].

where the b; is written as column vectors. Geometrically. the determinant of a lattice
is the common volume of those parallelohedra spanned by basis vectors. This leads
to Hadamard's inequality

det(L) < [[byll -~ - [lbdll,

where ||b;|| denotes the Euclidean norm of the vector b; and the equality holds if and
only if the basis b;.b,.---.b; is orthogonal. It is obvious that not every lattice has an
orthogonal basis.

A closely related concept is dual lattice corresponding to a lattice. The dual lattice

basis vector d; gives the normal direction of the subspace {3;.; a;b;.a; € R}.

Definition 4.3 (dual lattice) For every full-rank n lattice L. its dual

lattice. denoted by L*, is defined by

L' ={zx€R":y"re Z,for every y € L}.

Lemma 4.1 (dual basis [7]) If (by..... b,) is a basis of L. then the

vectors ¢y, ..., c, defined by
1 if:=
CiT bj =
0 ifi#
form a basis for the dual lattice £* = L(c,..... ¢n). called the dual basis
of (by...., bn)

If a lattice £ is generated by the columns of a nonsingular matrix B, then L* is
the lattice generated by the rows of B~!. The dual of the standard lattice Z" is itself.
and the dual of a rational lattice is rational. The determinant of the dual lattice is

det(L*) = 1/det(L).

4.3.2 Lattice Basis Reduction

While a lattice has different bases. some are nicer or simpler than others. The basis
whose elements are relatively short (for the corresponding norm) is so-called reduced.
A reduced basis is not too far from being orthogonal because the bases of a lattice
have the same determinant. The notion of a reduced basis is quite old, but no really
satisfactory algorithm was known to find such a basis in a reasonable time. Lenstra.
Lenstra, and Lovdsz [27] proposed a polynomial-time lattice basis reduction algo-
rithm (LLL-algorithm) and made it possible to find a reduced basis algorithmically.
Thereafter lattice basis reduction has played an important role in the theory of inte-
ger programming. Lattice basis reduction has also been used in other fields such as
computational algebra and number theory.

Given a basis B, it is well known how to obtain orthogonal vectors by applying
Gram-Schmidt orthogonalization. However, the Gram-Schmidt vectors do not neces-

sarily belong to the lattice generated by B while they do span the same real vector

76

space as B. Therefore, Gram-Schmidt orthogonalization is used as a “reference” for
the LLL basis reduction algorithm. The Gram-Schmidt orthogonalization process
gives an orthonormal basis in a Euclidean vector space. For an orthogonal basis. the

same procedure works, except there is no need to normalize the vectors.

Proposition 3 (Gram-Schmidt) Let b, bs.---.b, be linearly indepen-

dent vectors. Define by induction:
1—1
by =b;— > pi;b;. (1<i<n).
j=1

where

pi; =bl b3 /BT b (1< j<i<n).

then the b form an orthogonal basis of the space Span{b;.b,.---.b,} =
{371 ajb; : aj € R}: b is the projection of b; on the orthogonal comple-
ment of Span{by,b>.---,b;i_1} = Span{b;, b5.---.b;_,}: the matrix (u,,)
whose columns gives the coordinates of the b in terms of the b; is an upper
triangular matrix with diagonal terms equal to 1. In particular. if det(£)
is the determinant of the lattice £(b],65.---.8}). det(L) = [T1<;<, |16}l
Hermite proved that every lattice £ has a basis b,.b2.---.b; such that
H [|6:]| < cons(l)det(L),
1<i<
while cons(l) is a constant depending only on the rank [of the lattice £. Such a
basis is called reduced in terms of the geometry of numbers and may be viewed as an
approximation of an orthogonal basis.
The idea of the LLL basis reduction algorithm is to find a basis which consists

of relatively short vectors and whose Gram-Schmidt orthogonalization consists of

reasonably long vectors.

Definition 4.4 (reduced basis) Let by, ba, ... b, be a basis of a lattice L.

Find an orthogonal basis 67.55. b;, using the Gram-Schmidt orthogo-
nalization process. The basis b,,b,,....b, is called a LLL reduced basis
if
1 . .
[/J.,'JlSs for 1<j<i<n

and

- = - 3 = 2 N
167 + prii-abi_y I 2 Lol for 1<i<n

Notice that the vectors b; + u;;-1b;_, and b;_; are the projections of b; and b,_;
on the orthogonal complement of Span{b;,---.b;—»}. The constant % in the definition
is arbitrarily chosen and may be replaced by any fixed real number in the interval

[1/4,1]. The following theorem [27] describes the properties of such a reduced basis.

Theorem 4.2 (LLL reduced basis properties) Let by.by.---.b, be an

LLL reduced basis of a lattice £. then

(==

. det(£) < TI, flbill < 27=D4det (L),

8]

111 < 207D2)b7|l, for 1< j<i<n.
3. [|bal] < 202704 det (L)',

4. for every r € £ with z # 0,
lor] < 2712),
5. generally, for any linearly independent vectors r,,---,z, € L,
16,11 < 22 max(|[a [, - - - |lzll) for 1< j<t.

The vector b; in a reduced basis is an approximation of the shortest nonzero vector

(i.e. the nonzero lattice point with the shortest norm) in £ . Recently, Ajtai [2] proved

8

that the shortest lattice vector problem with L, norm is NP-hard from randomized
reductions. It was already known to be NP-hard if the Euclidean norm is replaced
by the maximum norm [47].

A brief outline of the LLL basis reduction algorithms is as follows. For precise
details, please refer to [27]. First compute the Gram-Schmidt vectors b;.1<j<n
and the coefficient of pjr. 1 < & < j < m. Initialize the counter : = 2. Check
the first condition of a reduced basis. If the first condition is violated. replace b;
by b; — [pii—1]bi—1. where [p; ;1] = [pii—1 — 1/2]. Such a step is also called size
reduction to obtain pu;;_; < 1/2. Update g, ;_;. Then check the second condition
of a reduced basis for j = . If the second condition is not satisfied. exchange b;
and b,_;, and update the corresponding Gram-Schmidt vectors and coefficients p¢;.
Ifi > 2 leti:= -1 and do necessary size reductions to satisfy |g;,| < 1/2 for
m=1:—2i-3,---.1. If i = n, stop. Finally, set { := { + 1. The running time
of LLL basis reduction algorithm is O(n®(log3)?). where 3 € R. 3 > 2 such that
161> < B for1 < j<n

LLL basis reduction algorithm performs a series of elementary column operations
on an initial basis B for a given lattice and produces a so-called reduced basis B such
that the reduced basis vectors 51, - - 51 are short and nearly orthogonal., and such
that b, is an approximation of the shortest vector in the lattice. From Corollary 4.1.
B = BU for some unimodular matrix U.

Making use of LLL reduced basis, Babai [4] proved that a rounding-off procedure
can find a lattice point p “close” to a given vector s, and find a vector d € £* such
that d(Z,d"s)/||d|| is “big" as a lower bound of the minimum distance of s from the
vectors in L, where d(Z,d”s) = min{d"s — |d7s|, [d"s] — d¥s}. An application of

Babai’s following theorem improves Lenstra’s algorithm.

Theorem 4.3 (Babai. 1985) Given a lattice L(by,....b,) € Q"*" and a
vector s € Q™, we can find in polynomial time a vector p € L(b;..... bn)

and another vector d € L*(b;,...,b,) such that

lp - sll < (3/V2)"d(Z.d"s)/||d]|.

Hence also

lp = sll < (3/V2)"d(L, s).

with d(L, s) denoting the minimum distance of s from the vectors in L.

Remark: The vector d € £L* = L(d;.---.d,) can be chosen to be the d; in the
dual basis such that d; = argmax, {d(Z.d!s)/||d;]|}. From the theorem. f|d|| <
(3/v2)™lp — s||" holds. which is useful to prove a flat direction.

The lattice concept. LLL reduced basis reduction and Babai's algorithm together
serve for the key idea of Lenstra's algorithm: either an integral vector a is found or

a nonzero integral vector c¢ is found such that
max{cTr:z € P} —min{cTz:zr € P} < 2(n + 1)y/n(3/V2)"

in polynomial time. It is enough to show that a flat direction is found in the second
case ||p — s|| > 1 to see the connection between lattice basis reduction and the flat
direction of the polytope.

Léwner and John [17] proved that for any convex body A" € R™ there exist a pair
of ellipsoids (£,&’) such that £ C K C &', £ and &' are concentric, and £ arises from
&' by shrinking a factor 1/n. If £ is the maximum volume ellipsoid inscribing A’. or
&' is the minimum volume ellipsoid circumscribing A’, such a pair, which is called a
Lowner-John pair for K, can be obtained. When the shrinking factoris 1/((n+1)/n).

the pair is called a weak Lowner-John pair for K. Lovdsz [30] proved that a weak

80

Lowner-John pair for a convex body A can be computed in polynomial time. These
results have become the classic on the ellipsoidal approximation problem.

Let £(sg, E) be the maximum volume ellipsoid inside the polytope P and ¢ = 77d
where d is chosen as in Babai’s theorem. Denote S(y,r) as the n—dimensional ball
with center y and radius r. An upper bound on the width of the polytope P in the

direction ¢ is proved as follows:

max{c’r: z € P} — min{cTz : z € P}

IN

max{cTr:re &} —min{c’z:r &'}

2max{cT(r — so) : x € E'.59 € £'}

2max{dT(y — s) : y € 7(£') = S(s.(n + 1)y/n)}
2||d}{{(n + 1)v/n

2(n + 1)/n(3/v2)".

IA

A

where the last inequality follows from Theorem 4.3.

The third equation holds because the linear transformation transform the ellipsoid
into a ball. Thus the direction constructed in Lenstra’s algorithm is a flat direction.

Recently several new variants of the LLL basis reduction algorithm have been de-
veloped and a number of implementation variants have been suggested. The paper by
Schnorr and Euchner [41] gives a detailed overview. So far the available implemen-
tations of LLL lattice basis reduction and improved practical algorithms can solve
problems up to dimension 125. A bottleneck for the LLL-reduction algorithm is the
required exact arithmetic on large integers. This limitation has been transfered to
our implementation since we have used the LLL-reduction algorithm as a subroutine
on each node of the search tree.

Some useful libraries of LLL basis reduction algorithm are available on the inter-

net. Two of them are LiDIA - a C++ library for computational number theory [29].

81

developed at TH Darmstadt, and NTL - a library for doing number theory [43]. de-
veloped by V. Shoup, University of Wisconsin-Madison. The LiDIA library is used

to do the lattice basis reduction in my implementation of Lenstra’s algorithm.

4.4 Generalized Basis Reduction Algorithm

As we mentioned in the introduction. based on Lenstra’s idea of branching on hy-
perplanes. Lovdsz and Scarf [31] proposed the so-called generalized basis reduction
algorithm for solving the general integer programming feasibility problem. W. Cook
et al [9] implemented the generalized basis reduction algorithm and solved some in-
teger network design instances. In this section we describe the concepts behind the
generalized basis reduction algorithm and offer a brief comparison between Lenstra’s
algorithm and the generalized basis reduction algorithm.

Asin Lenstra’s algorithm. the focus of the generalized basis reduction algorithm is
on constructing a thin direction of the polytope to branch on. We already explained
the construction of a thin direction for Lenstra’s algorithm in previous sections. We
now review how a thin direction is constructed in the generalized basis reduction
algorithm.

By definition. the width of a polytope P in a given direction c is

F(¢) = max{c’r:r <€ P} —min{c"r:zx € P}

= max{c(r—y):r € P.yec P}

To construct a nonzero integral direction with a small F'(.) value, Lovasz and Scarf

defined a family of distance functions Fi(.).---.F,(.) with respect to the polytope
P = {z: Az < b} and a given basis b,,---, b, for the integral lattice Z" as
Fi(c)= min F(c+a;by +---+a;_1bi_).

ay, Q-

82

Applying the duality theorem for linear programming to the definition of distance

functions F;(.). we have
Fi(c) = max{c’(z — y): Ar < b, Ay < b. bJT(J, —y)=0.=1.---.i—1}.

Therefore the function F;(.) can be evaluated by solving a linear program.

A basis by.---.b, is called a generalized reduced basis with respect to distance
functions Fi(.) if the following two conditions are satisfied for: =1.---.n -1

Fi(b;.y + b)) > F;(b;i.;) for all integers pu. (4.1)

Fi(bic1) = (1 —e€)Fi(by). (4.2)

where € € (0,1/2) is a fixed constant. For the detailed procedure of the generalized
basis reduction. please refer to Lovdsz and Scarf [31] and W. Cook et al {9]. The
nice property of a generalized reduced basis is that the first vector b; in such a basis
is an approximation to the shortest nonzero lattice point. This is the way that the
generalized basis reduction algorithm constructs a thin direction to approximate the
minimum width of the polytope. The term “generalized” indicates that this algorithm
generalizes the basis reduction algorithm by Lenstra. Lenstra and Lovdsz [27].

Instead of using ellipsoidal approximations. the generalized basis reduction algo-
rithm constructs a thin direction directly from the polvtope. Because of the distance
function evaluations involved in the generalized basis reduction procedure. a large
number of linear programming problems need to be solved. Solving so many LP
problems causes considerably more computation than the basis reduction algorithm
working directly on the basis vectors.

The difference between Lenstra's algorithm and the generalized basis reduction
algorithm lies in the different methods to capture a thin direction to branch on.

Lenstra’s algorithm applies ellipsoidal approximations to the polytope and uses the

33

information of the ellipsoids to approximate the shortest lattice vector(i.e. a thin
direction) through a lattice basis reduction procedure. While the ellipsoidal approxi-
mation of a polytope is generally considered to be good, the quality of the approxi-
mation may not always be as high as we wish (after all. some information about the
original polytope is lost). Therefore, the tradeoff between Lenstra’s algorithm and the
generalized basis reduction procedure is the uncertainty in the quality of ellipsoidal
approximation on one hand and the high cost of a large number of distance function
evaluations (i.e. linear programs) on the other hand. A computational comparison of
the two algorithms appears to be of value but is bevond the scope of the thesis.

The common feature of Lenstra’s algorithm and the generalized basis reduction
is that both are polynomial algorithms for integer programming feasibility problems
with a fixed number of variables. In contrast. the LP-based branch-and-bound algo-
rithm for integer programming is not a polynomial algorithm. The idea of Lenstra’'s
algorithm is to construct a thin direction of the polytope and to branch on all possi-
ble hyperplanes intersecting the polytope. The generalized basis reduction algorithm
shares the same idea. A thin direction is crucial here because it guarantees that only
a finite number of lattice hyperplanes exist in the thin direction that intersect the
polytopes. Thus there is only a finite number of nodes are generated on the search
tree. (Since we are searching for integer points. only lattice hyperplanes need to be

branched on.)

84

Chapter 5

Computational Study of Lenstra’s Algorithm

Lenstra’s algorithm [28] is a polynomial-time algorithm for integer programming fea-
sibility problems when the number of variables is fixed. Utilizing our results on
maximum volume ellipsoidal algorithms described in Chapter 3 and the availability
of lattice basis reduction software. we have implemented a Lovdsz version [30] of
Lenstra’s algorithm. We used our code in solving some medium-sized integer pro-
gramming feasibility problems. In this chapter. we will focus on implementation

issues and computational properties of Lenstra’s algorithm.

5.1 Non-full-dimensional Polytopes

The two assumptions of Lenstra’s algorithm are

1. The polyhedra given by linear inequalities Ar < b is bounded:

2. The polytope is full-dimensional (i.e. has a positive volume).

The first requirement is easy to meet by adding proper bounds. When the second
condition is not satisfied, how to derive a full-dimensional polytope from a non-full-
dimensional case becomes an issue to address in our implementation.

In Lenstra’s paper [28]. the assumption that the polytope is full-dimensional is
justified by constructing vertices of the polytope and employving the Hermite normal
form algorithm. We would like to avoid constructing vertices in our implementation
since it is computationally complicated and unnecessary for our purpose.

In a more general setting, the problem becomes much harder when the poly-

tope is given by a strong oracle or a strong violation oracle. Grotschel, Lovdsz and

85

Schrijver [14] discussed this question of full-dimensionality. However. they consid-
ered polytopes given by a strong oracle and assumed that ail of the vertices of the
polytope are 0,1-vectors. Their method consists of a combination of the ellipsoid
method with Diophantine approximation to determine the affine hull of the polytope.
Edmonds, Lovasz and Pulleyblank [12] proposed an algorithm to get around non-
full-dimensionality by maintaining one list of affinely independent vectors inside the
polytope and another list of linearly independent hyperplanes containing the polytope
under the assumption that the polytope is given by a strong violation oracle.

While we consider a polytope given by a system of linear inequalities. the above
methods are not efficient for our purpose. Our solution to the non-full-dimension
problem consists of the following three steps while more details will be given in the

next three subsections.
Step 1. Identify a non-full-dimensional case and implicit equalities:
Step 2. Reduce implicit equalities to its Hermite normal form;

Step 3. Project the non-full-dimensional polytope into a lower full-dimensional poly-

tope.

5.1.1 Identify Non-full-dimensional Cases and Implicit Equalities

The necessary and sufficient condition that a polytope given by Ar < b is not full-
dimensional is that the system of linear inequalities Ax < b must have implicit equal-
ities. Therefore, we need only to identify implicit equalities in the linear system to
determine whether the given polytope is full-dimensional or not.

We are using a property of barrier algorithms in our method to determine the
implicit equalities. For the purpose of identifying implicit equalities, we construct

an auxiliary problem max{t: Az + te < b.t > 0} with m-vector e of all ones and

86

solve it by the CPLEX barrier method for LP problems. If the maximum value
t* > 0. then the corresponding polytope is full-dimensional and the optimal solution
r® is an interior point such that 4z* < 6. If ¢* = 0, then the polytope is non-full-
dimensional and we can identify the implicit equalities. In our implementation. we
consider the i-th inequality in the linear system Az < b to be an implicit equality if
b; — (Az~); < 1.0e — 12.

A full-dimensional polytope in lower dimensional space can be obtained by a
projection onto the orthogonal complement of the subspace defined by the implicit
equalities. However, a direct projection doesn't work here because we need to keep

the property that an integer point corresponds to an integer point after the projection.

This is why Hermite normal form plays a role in the projection.

5.1.2 Hermite Normal Form and Linear Diophantine Equations

Once the implicit equalities are identified. we can focus on the subsystem of linear
equalities, which are also called linear Diophantine equations when the variables are
required to be integers. We give the definition and related results on the Hermite

normal form [42] in this section.

Definition 5.1 (Hermite normal form) A matrix of full row rank is
said to be in Hermite normal form if it has the form [0 V], where .V is a
nonsingular, lower triangular. nonnegative matrix. in which each row has

a unique maximum entry, which is located on the main diagonal of V.

A rational matrix of full row rank can be reduced into Hermite normal form by a
series of elementary column operations.
The uniqueness of the Hermite normal form of a rational full-rank matrix is given

in the following theorem, which is followed by a corollary.

Theorem 5.1 ([42/) The Hermite normal form [0 :V] of a rational ma-
trix A of full row rank has size polynomially bounded by the size of A.
Moreover, there exists a unimodular matrix " with A0 = [0 .V]. such

that the size of U is polynomially bounded by the size of A.

In the theory, the size of a matrix is measured by the number of bits necessary for

storing the whole matrix.

Corollary 5.1 (/42/) Given a system of rational linear equations. we can
determine if it has an integral solution. and if so. find one. in polynomial

time.

The LiDIA library [29] has six different implementations of the Hermite normal
form reduction. We called one of its functions to convert a full row rank matrix
into its Hermite normal form and to return the unimodular transformation matrix.
One drawback of Hermite normal form is that the elements in the unimodular matrix
may become excessively large. though have not encountered this difficulty on our test
problems.

Recall that our question is whether the linear system Adr < b has an integer
feasible solution or not. The question remains the same for the subsystem of all
implicit equalities, denoted by A~z = b~. Based on the corollary. if the subsystem or
the linear Diophantine equations have no integer solution, the whole linear system has
no integer feasible solution. If the subsystem has an integer solution. we can use the
unimodular transformation matrix U to do a projection with integral requirements.
The reason that the Hermite normal form plays a role in keeping the integrality is
because of the nice properties of the unimodular transformation matrix. We will

explain how to do the projection in the next section.

38

5.1.3 Projection Into Lower Full-Dimensional Case

Consider the linear system of inequalities Ar < b. With the help of the solution to
the auxiliary problem mentioned earlier, the system can be rewritten as {4 r <
b7, A%r = b=}

Let us denote the linearly independent rows of 4= as 4. and the corresponding
right hand side as b.. Apply the Hermite normal form transformation on the subsvstem
A, r = b, and we obtain 4,U = [0 B] and A,z = A, UUtr = b,. We also
check whether the left linear dependent rows and the associated right hand sides are
consistent with A, r = b,.

Let y = U~!x. the system A, r = b, becomes [0 B}y = b.. Partition the variable
y into

Yo
y =
YB
corresponding to the partition [0 B]. Then solve yg from B yg = b, to obtain yg.

We do the same transformation on the subsystem A~r < b~ to obtain A7y <
b~ . Denote the block of A" U corresponding to yo as A5 and the block of A~ U
corresponding to yg as Ag. The subsystem becomes Ag yo + A5 ys < b™. Substitute

yp from the above step and obtain a full dimensional system
Ag yo <67 — Aguys

with a new unknown variable yq.

To recover the solution, we compute z = 7 y for a given yqg.

With the three steps above, we can solve the problem of non-full-dimensional
polytopes. Based on our work on the ellipsoidal approximation and the basis reduction
functions from the LiDIA library, we have built a version of Lenstra’s algorithm. The

implementation details are discussed in the next section.

89

5.2 Implementation

Our implementation of Lenstra’s algorithm aims at solving the integer programming
feasibility problem using the ellipsoidal approximation of polytopes and the lattice
basis reduction. The input is a linear inequality system Ar < b. which defines a
bounded polvhedron (or a polytope). The output is either that an integer feasible
solution is found or that there is no integer feasible solution for the given system.

The input data are read through a CPLEX function from an LP or MPS file.
A Different Search Tree

The overall picture of the search procedure is a depth-first search (DFS) tree
shown as in Figure 5.1. We use a stack to store the nodes on the tree. The root of the
search tree is the original polytope. This search tree is different from the branch-and-
bound tree for feasibility problems in two ways: one is that this search tree grows
only as deep as n while the branch-and-bound tree for feasibility can grow much
deeper depending on the input data; the other is that it branches on hyperplanes
instead of on variables as in the branch-and-bound tree. This novel way of searching
makes Lenstra’s algorithm polynomial for a fixed number of variables n whereas the
branch-and-bound method is not a polynomial algorithm even for a fixed number of

variables.

On Each Node of the Search Tree

We construct a structure node to store its related information for each node on the
search tree. The structure node includes components for the matrix .4 and the vector
b, branching bounds klo and kup, a transformation matrix 7T to bring the solution

from the transformed space into the original space. The path from the root node to

90

P={Ax<b}

Pi={cTx=k™}NP
1 {Clt l}ﬂ Pn={cf.’c=k"’l“}ﬂP

k"““‘=l—miﬂ{CT-‘?-‘EP}-' kT=LmM{CT-'5-‘EP}J

P:={c x=k""}NP: Pr={cTx=k™}N P

Py={cTx=k™}P:

Figure 5.1 Search Tree of Branching on Hyperplanes

the current node is recorded in a vector variable ypath and another vector yswap is

used to remember the associated swap operations.

For each node of the tree, the first step is to determine whether the polytope is
full-dimensional by solving an auxiliary LP problem max{¢ : Azr+te < b} through the
CPLEX barrier method. If the polytope is not full-dimensional. we use the Hermite
normal form to project it onto a lower but full-dimensional polytope without affecting
the integrality (the correspondence from integers to integers). If the polytope is full-
dimensional, the optimal solution to the auxiliary problem gives a starting strictly
interior point for the primal-dual interior point algorithm. Once a polytope is found
or made to be full-dimensional, a procedure to delete redundant constraints from

the linear system defining the polytope, which is called a preprocessing, will reduce

91

the cost of solving the subproblem. Currently we have built a simple version of

preprocessing and we expect it to be further strengthened in the future.

The algorithm is a recursive search through the nodes. Either an integer feasible
solution is found on some node and the algorithm stops, or the entire tree is searched

to ensure that there exists no feasible solution for the problem. The main subroutine
Lennode(curnode, stack, topi. ypath, yswap. found. nodes. branopti)

is a subroutine to do operations on the current node and to record its path. The
subroutine Lennode classifies all nodes as four cases. In the first case. if the current
node is a leaf node (i.e. 1-dimensional). solve all of its leaf siblings and pop up the
top of the stack as the current node. In the second case. if all of the children of the
current node are searched, check whether the current node has siblings. In the third
case, if it has other siblings, move to its immediate sibling and update the current

node; otherwise pop up its parent node from the stack as the updated current node.

In the fourth case, if the current node hasn't been explored, major steps are
taken on it. First, do preprocessing to eliminate redundant inequalities in the linear
system and solve an auxiliary LP problem max{t : Az + te < b.t > 0} to determine
whether the polytope is full dimensional. If the polytope is not full-dimensional. apply
a Hermite normal form to project the polytope onto a lower but full-dimensional
polytope, and remember the transformation matrix {" as explained in section 1. If
the polytope P = {x : Ax < b} associated with the current node is already full

dimensional, proceed with the following four steps.

92

Step 1. Ellipsoidal Approximation and Linear Transformation. Find an ap-
proximation to the maximum-volume, inscribing ellipsoid £(z. E) = {y € R" :
y = r+FEs and ||s|| < 1}, construct a nonsingular linear transformation 7 = E~!
based on the ellipsoid matrix E, and the center of the ellipsoid is transformed

into a vector s = 7(z). The standard lattice Z" is transformed into the lattice

L=1(2").

Step 2. Lattice Basis Reduction and Close Lattice Point Procedure. Find a
reduced basis B of lattice L and round the transformed center s to a close lattice

point p € L using the reduced basis B.

Step 3. If an Integer Point is Found, Stop. If the lattice point p is inside the
transformed polytope 7(P). restore the the original point corresponding to p.

which is an integer feasible point in the original polytope. the procedure stops.

Step 4. If the Lattice Point p ¢ 7(P) , Branch on Hyperplanes. If the point
p is not inside, choose some normal direction d from the dual basis of L. de-
noted by L*, which corresponds to fewer number of hyperplanes intersecting the
polytope. Then it is easy to construct an integral branching direction ¢ = 77d
for the polytope P = {Az < b}. After the branching direction ¢ is chosen. solve
two associated LP problems max{c’r : r € P} and min{c’z : r € P} to get
the bounds A™" and ™% on all of the possible hyper-planes intersecting the
polytope. The last step is to add the hyperplane ¢’ = k. k € Z N [A™" kmer],
derive a polytope in at least one dimension less and generate a new current
node for the new polytope. Only if the current node has children (or needs
to branch), push it into the stack and update the current node with its first
children and mark in the structure of its parent node. Therefore the top of the

stack is always the parent node of the current one.

93

The flowchart of our implementation of Lenstra’s algorithm in Figure 5.2 gives a
concise picture of the algorithm. We then explain how to generate child nodes and

how to keep the integrality of the whole algorithm in this section.

»_i'P={xeR":Ax$b}

" No - IfPis

Project onto -9 _- e
lower dimension ﬁlll dlmenSlonal T Tt/ T T T
i 7

\/Yes

T Elhpsmd Approxunétlon €
Linear Transfonnatlon ‘t

- a=E Y s=1(x)

Basis Reduction on L = t(Z ")
Close Lattlce Vector Procedure

Yes
Found an int = pr 1S 1n ‘L'(P)
pomt in P

No c= td

Branchmg on Hyperplanes
k™ =[min{c” x: x € P}]
k™ =| max{c"x:xeP}
Update A,band n

Figure 5.2 Flowchart of Lenstra’s Algorithm

94

Generate child nodes at least one dimension less than the parent node

We generate a child node from the polytope

{r:Ar< b.clr = k}

as follows. Notice that the branching direction ¢ = 77(d) and the hyperplane ¢'r =

d'r(r) = k while y := 7(r) is a vector on the transformed space. M\laking use of
the relation between a lattice basis and its dual basis, we have that the component
of y corresponding to dual vector d has a coordinate & on the lattice basis B since
dTy = k. Thus we can apply the same transformation to Az < b and fix the relevant
component of y to k. which corresponding to a hyperplane in the original space. For
computational convenience, we do a swap operation to exchange the fixed component
and the last component and record the information in the variable yswap accordingly.
After fixing one component of y and eliminating the equality ¢’z = k. the resulting
polytope is one dimension less. In the non-full-dimensional case. the dimension of its
child node decreases more than 1.

In this algorithm. there is a strong similarity between sibling nodes. From one

Tr = k needs to be

node to its sibling, only the right hand & in the hyperplane c
updated. Therefore we only need to store one child node for each parent node since
it is easy to modify the child node to its siblings once it has been searched. Only
the path and the transformation matrix need to be remembered. Compared with the

traditional branch-and-bound method for feasibility problems. Lenstra’s algorithm

requires more computation on branching.

Integrality
Even though the floating point computation is applied in the computation of
ellipsoidal approximation and lattice basis reduction, the construction of Lenstra's

algorithm has the nice property of preserving the integrality.

95

It is well-known that a rational unimodular matrix. as a linear transformation.
maps integer vectors to integer vectors. When the polytope is non-full-dimensional.
the projection matrix U in Hermite normal form is unimodular. The transformation
matrix 7 = E = B is unimodular since the transformation matrix T from E~! to B
should be a unimodular matrix where E~! is a basis of the transformed lattice and
B is a reduced basis of the same lattice. Also the branch direction ¢ is an integral
vector. One observation is that the accumulation of floating point computation error
can be avoided by rounding off all the elements in the matrix T = E x B at each step
because of the above integrality arguments.

So far we have discussed several implementation issues of Lenstra’s algorithm
except the branching policy. How to choose a good direction to branch on is a key
issue in the algorithm and it is also the reason why ellipsoidal approximation and
lattice basis reduction can work together here. We will leave the details of different

choices of branching directions in the next section.

5.3 Choices of the Branching Direction

The key idea of Lenstra’s algorithm is to choose a direction such that there are only a
bounded number of hyperplanes intersecting the polytope at each level of the search
tree. Such a direction, also called a flat direction. is chosen among the candidates in
the dual basis of a reduced basis of the lattice. A direct computation on the number of
hyperplanes intersecting the polytope corresponding to all the candidates in the dual
basis involves solving 2n linear programming problems on each node of dimension n.
which is too expensive. Therefore we want to avoid a direct computation and use
an easy-to-compute approximation to serve this purpose. In this section we discuss
three different choices on branching directions: Babai’s direction, the choice of the

smallest number of intersecting hyperplanes, and the choice of the direction closest

96

to the smallest eigenvector of matrix £ of the maximum volume ellipsoid inside the

polytope.

5.3.1 Babai’s Direction Choice in Close Vector Algorithm

_ d(Z.wT
Notice that a measure —(Z—:’-l—s) is the shorter distance from a given point s to two
i “

Tr = [wTr] and wTz = [wTr|. which also provides a lower

adjacent hyperplanes w
bound on the the distance from s to the closest lattice point in a lattice £. Another
observation is that the vectors in the dual basis of a lattice give the normal directions
of the lattice hyperplanes. In Babai's close lattice point procedure. the direction
in the dual basis D = (d;.d».---.d,) with the largest shorter distance from the
given point s to two adjacent hyperplanes d,"z = [d,"r] and d,"r = Ld,‘Tl‘J. ie.
d; = arg maxi{%}. is chosen. The idea behind this choice is to choose the
direction in which the distance between two adjacent lattice hvperplanes from the
point s is the largest among the candidates in the dual basis. Since the ellipsoidal
approximation of the original polytope is transformed into a unit ball centered at
the point s, this choice picks an approximation of the direction that has fewer lattice
hyperplanes intersecting the transformed unit ball. Figure 5.3 gives an example on

2—dimensional case. This choice of branching direction outperforms the other on our

test problems.

5.3.2 Direction of the Smallest Number of Intersecting Hyperplanes

With the maximum ellipsoid approximation of the polyvtope and the reduced basis of
the lattice generated by the matrix of the ellipsoid at hand. why do we not approx-
imate the number of intersecting hyperplanes on each candidate direction directly?
This idea motivates our following choice of branching direction. which is to choose

the direction with the smallest number of intersecting hyperplanes.

/ /A

7 /
VA A
77 7

Figure 5.3 Babai's Choice of Branching Direction in 2-D

Consider the situation: the maximum inscribed ellipsoid £(r. E') is transformed
into a unit ball. The ellipsoid which contains the polytope and is concentric to & is
transformed into a ball of radius R. The reduced basis of the lattice generated by the
matrix of the ellipsoid is B and its dual basis is D.

Let R be the transformed ball including the transformed polyvtope and s be the
center of the transformed center of the maximum ellipsoid inscribing the polytope.

The number of hyperplanes intersecting the transformed big ball on the direction w

is
d(Z.uTs) 1-d(Z.wTs)
R~ Jwn] R - fw:|
[——— 1+l T J
Hwi| Hury

= L||w||R —d(Z,wTs)| + |||wllR — 1 +d(Z.w"s)|

Choose the direction d in the dual basis D such that the above number is the simallest
among all of the dual basis vector. Note that with this choice, we obtain a direction
has the smallest number of hyperplanes intersecting with the ball R. which is concen-

tric to the unit ball transformed from the maximum volume ellipsoid inscribing the

polytope.

98

5.3.3 Direction Closest to the Smallest Eigenvector of E

Ellipsoids have good geometric and computational properties, which is the reason why
they are chosen to approximate general convex bodies, specifically to approximate a

polytope here. Recall that the ellipsoid can be formulated as

E(z.E)={yeR":y=x+ Es and

sif < 1}

The width of the ellipsoid is the length of the shortest axis. denoted by 2A. while A
is the smallest eigenvalue of matrix E. The direction of the shortest axis of £ is the
eigenvector v corresponding to the smallest eigenvalue A.

In our implementation, we have computed the maximum volume ellipsoid inside
the polytope to approximate the shape of the polytope. We use the the width of
the ellipsoid. which is twice of the smallest eigenvalue of matrix E. to approximate
the width of the polvtope. And the corresponding eigenvector is the thin or flat
direction of the approximation ellipsoid. We choose the direction closest to the flat
direction of the ellipsoid among the candidates(i.e. the vectors in the dual basis of
the reduced basis (d;.d»,---,d,)) by comparing the angle between them. i.e. d; =

vTd
arg max; { ;om3 }-

5.4 Results and Discussion

In this section we present some numerical results on our implementation. We de-
scribe the set of test problems and point out our comments on the algorithm and our
implementation.

The code of Lenstra’s algorithm is written in the C and C++ computational lan-
guage. The ellipsoidal approximation subroutine makes use of CLAPACK/CBLAS [6]

linear algebra library. For lattice basis reduction and Hermite normal form. we choose

99

the LiDIA [29] library for computational number theory. We use the linear program-
ming optimizer of CPLEX [36] for solving LP problems involved by calling the CPLEX
callable library. All the experiments were run on Sun ULTRAG60 workstation with
two 450-MHz UltraSPARC-II modules. We use only a single processor at a time.
Because of the computational complexity. this code is not supposed to solve integer
programming feasibility problems with more than a couple of hundred variables. The
advantage of this algorithm is to deal with extremely skew polytopes. Therefore
it 1s recommended to be used when the traditional branch-and-bound method has

difficulty i.e. when the branch-and-bound tree grows too large.

5.4.1 Test Problems

Three of my test problems come from the MIPLIB [37] library and the other three
are from Dr. Robert Bixby's collection of difficult problems for CPLEX. The original
problems are IP optimization problems. For each optimization problem. we created
two feasibility problems. one feasible and another infeasible. by moving the objective
function into the constraints and making use of the known bounds on the original
problem.

The original IP problem is given in the format:

min cl'r
st. Ar<b (5.1)
l<r<u
rezn
with the minimal solution r* and the minimum c¢¥z*.

100

The feasible and infeasible I[P problems created from (5.1) can be written as an

optimization problem of the form:

min oTr

with some scalar 4. The problem 5.2 becomes a feasible IP problem when the § > 0.
and it corresponds to an infeasible I[P problem when § < 0 .

The problem statistics are given in Table 5.1. The problem in this table are all pure
IP minimization problems. The first three problem are binary integer programming
problems. The fourth and the sixth problem are pure general integer programiing
problems. The fifth problem has 64 binary variables and 17 general integer variables.
The last column of the table gives the values we used to create the two versions of the
feasibility problems. where a slash separates the value for the infeasible problem and

that for the feasible problem. These values corresponds to ¢/ r* + 4 in the format 5.2.

Table 5.1 IP Test Problems

Problem Rows Variables Min LP Max LP Min IP cTr+46
steinld 36 15 7.00 15.00 9 8/9
bm?23 20 27 20.57 97.03 34 21/40
p0033 16 33 2520.57 5299.70 3089 2996/3090
afix 44 51 1295.00 470672.00 2136 2135/2140
dpS8rint 128 81 8929.00 43239.00 12360 12350/34023
small 24 96 189.65 217.63 191 190/195

101

5.4.2 Numerical Results

We tested on the three choices of branching direction among the n candidates in
the (dual basis of) reduced lattice basis. Table 5.2 shows the time with different
choices, and the number of nodes using different choices is shown in Table 5.3. The
first six instances are IP infeasible and the last six instances are IP feasible. We use
double horizontal line to divide the two groups: the first is infeasible and the second
is feasible. Another Table 5.4 gives 40 nodes on two search trees. We compare the
time-consumption of the ellipsoidal approximation and the lattice basis reduction on
each node. Based on those data, we give our comments and discussion. We use “+"
to denote the situation where by the given time or the number of nodes the problem
is unsolved and we stopped the procedure.

In the last column of the tables. we also include computational results. i.e.. CPU
time and number of nodes visited. obtained by running the CPLEX MIP solver version
6.5.2 on the test problems with the default setting. CPLEX is a recognized leading
commercial software for solving MIP problems. While as most MIP solvers it uses
the branch-and-bound method as the basic tool. the CPLEX MIP solver utilizes a
number of cutting plane techniques.

We stress that our inclusion of CPLEX results is for the purpose of providing a
reference point. There is little comparability between the performance of our still
rather rudimentary implementation of Lenstra’s algorithm and that of the CPLEX
MIP solver which, as a leading commercial code, has been under continued research
and development for many years. The purpose of our experiments is to test the
concepts and viability of Lenstra’s algorithm. not to compare its practical performance
with a well-established and comprehensive commercial solver.

We also stress that (i) the computational results for CPLEX were obtained under

the CPLEX version 6.5.2 default setting which is not necessarily the optimal for

102

any given individual problem; and (ii) the newer version of CPLEX performs better
on some of the test problems. In particular. we mention that CPLEX version 7.0
can solve the problem smallm in a very short amount of time under a well-chosen

parameter setting [3].

Table 5.2 Computational Time

Problem Babai Hyperplane Ellipsoid CPLEX v.6.5.2
steinldm 11 31 37 0.05
bm23m 25 52 125 0.13
p0033m 384.41 483.35 676.09 0.06
afixm 51213 41927 50000+ 500.81
dp8rintm 50000+ 50000+ 50000+ 189793+
smallm 2246.77 10488.54 10473.33 286867+
steinldm?2 13 14.84 29.41 0.01
bm23m2 49.13 84.52 351.99 0.74
p0033m2 112 340 140 0.02
afixmb?2 TT41.57 50000+ 50000+ 131.09
dp8rintm?2 40196 44473 41438 0.09
smallm?2 60000+ 59205 60000+ 0.12

5.4.3 Discussion

Based on our computational experience with Lenstra’s algorithm. we have the follow-
ing observations for this algorithm.

1. Lenstra’s algorithm takes fewer nodes. Our numerical results indicate
that the search tree for Lenstra’s algorithm may contain much fewer nodes than a
branch-and-bound search tree does. One good example that shows the benefits of
hyperplane branching directions is the problem smallm2.lp. For this problem. one
version of Lenstra’s algorithm took only one node to detect the infeasibility while

CPLEX v 6.5.2 took tens of thousand nodes to draw the same conclusion. This

103

Table 5.3 Node Counts
Problem Babai Hyperplane Ellipsoid CPLEX 6.5.2

steinldm 56 138 181 112
bm23m 4 23 35 58
p0033m 96 234 165 6 (12 cuts)
afixmb 665 336 700+ 979.236
dp8rintm 500+ 500+ 500+ 306.148.430+
smallm 1 3 3 734.100.288+
steinldm2 84 97 193 0
bm23m?2 35 137 398 49 (22 cuts)
p0033m?2 33 82 32 8 (3 cuits)
afixmb?2 56 100+ 100+ 248.296
dp8rintm?2 73 67 68 43 (59 cuts)
smallm?2 178+ 174 200+ 132

example suggests that Lenstra’s algorithm can be extremely effective in some cases
where the branch-and-bound approach encounters great difficulties.

ii. Lattice basis reduction is the bottle neck. In terms of timing. the
current implementation of Lenstra’s algorithm is still in general non-competitive with
good commercial codes like CPLEX. As is mentioned earlier, the limitation lies in
the lattice basis reduction part which is too slow when the number of inequality
constraints exceeds 120. On our test problem set, the ratio between the time spent
on ellipsoidal approximation and that on lattice basis reduction is approximately 1 to
10 on average. In the extreme instance of smallm2.lp, where m = 121 and n = 96. the
ratio between the ellipsoidal approximation time and basis reduction time is 1 to 147,
and the lattice basis reduction time took more than 99% of the total computation
time. This clearly indicates that lattice basis reduction subroutine dominates the
computational cost in the current implementation of Lenstra’s algorithm. Therefore,
a speedup on the lattice basis reduction procedure is crucial to the applicability of

Lenstra’s algorithm in practice.

104

iii. Babai’s is the best among the three branching policies. Branching
policies have a significant impact on the number of nodes of the search trees. In
the 11 test problems listed in table 5.3 (problem dp8mintm2 does not count because
it is incomplete)., Babai’s choice led to fewer nodes in 9 problems. Our choice of
the lease number of hyperplanes intersecting the circumscribing ball performs better
than the other two in the problems afizmb and dp8rintm2. Even though for this set
of problems, the closest direction to the smallest eigenvector of the maximum-volume
ellipsoid has provided no advantage. we include it in our study for there may exist
problem instances where that branching direction may be favored.

iv. Lenstra’s algorithm is promising in combination with other tech-
niques. In advanced codes for integer programming, the traditional branch-and-
bound method is often combined with other techniques. To be more effective. Lenstra’s
algorithm also need to be combined with other techniques. Those techniques include.
for example. the warm-start techniques. cutting-plane methods and preprocessing
techniques.

In algorithms for integer programming, there is a tradeoff between the number of
nodes searched and the cost of searching a node. As mentioned earlier. in the current
implementation of Lenstra’s algorithm, lattice basis reduction generally takes 90%
of the total computational time. Once a breakthrough is made in reducing the cost
of lattice basis reduction, Lenstra’s algorithm should be very promising for solving

certain classes of general IP problems.

105

Table 5.4 A Sample on Time of the Ellipsoidal
Approximation and the Lattice Basis Reduction

Problem Index Constraints Variables Ellipsoidal Appr. Time Basis Reduction Time

1 282 T 56.27 2084.40
2 280 76 54.76 1890.06
3 278 75 53.61 1710.66
4 276 74 52.49 1623.96
3 274 73 17.29 1507.25
6 272 T2 16.43 1377.78
0 270 71 18.97 1313.96
8 268 70 13.82 1165.54
9 266 69 46.35 1110.90
10 264 68 19.97 1031.70
11 262 67 45.54 943.33
12 260 66 13.77 884.03
13 258 65 42.46 T42.97
14 256 64 11.86 660.12
15 254 63 13.95 622.03
16 252 62 69.78 569.17
7 250 61 71.25 522.26
18 248 60 72.50 470.91
19 250 61 T1.12 535.74
20 248 60 67.31 451.50
21 147 51 10.90 198.66
22 147 50 10.02 192.50
23 147 19 9.79 177.02
24 147 50 11.37 186.18
25 147 49 9.80 174.89
26 147 49 11.16 167.58
27 147 18 9.60 148.03
28 147 50 11.42 182.11
29 147 49 11.16 196.64
30 147 49 9.78 169.53
31 147 48 9.65 164.16
32 147 49 11.16 165.99
33 147 48 9.6 154.77
34 147 48 10.99 143.78
35 147 47 11.48 156.83
36 147 47 9.52 138.16
7 147 46 9.30 128.55
38 147 50 11.37 181.25
39 147 49 11.13 196.29
40 147 49 9.81 172.30

106

Chapter 6

Conclusions

I have conducted two studies in my thesis research: the development of a practically

efficient. primal-dual algorithm for ellipsoidal approximation of polytopes. and the

implementation of Lenstra’s algorithm along with computational experiments. Main

contributions made in this thesis are listed as follows.

A. Ellipsoidal approximation to polytopes.

1.

V)

We have developed two primal-dual interior point algorithms for the MaxVE
problem. To our knowledge. they are the first algorithms using primal-dual
methodology for the MaxVE problem. These two algorithms outperform both
the original Khachiyan and Todd algorithm and a modification of it on 200 test
problems. One of the two primal-dual interior point algorithms. i.e. the F2PD

algorithm, is more robust and efficient than the other.

We have proved the well-definedness of the two primal-dual interior-point algo-
rithms for the MaxVE problem, the uniqueness of solution for our formulations,

and the existence of paths leading to the solution of the MaxVE problem.

B. Computational study of Lenstra’s algorithm.

1.

2.

We have implemented a Lovasz version of Lenstra’s algorithm using our primal-
dual algorithm for the MaxVE problem as a subroutine. We have resolved a

number of difficult issues in our implementation.

We have studied the computational properties of Lenstra’s algorithm. We have

identified the lattice basis reduction procedure as the main limiting factor af-

107

fecting the practical performance of Lenstra’s algorithm. Our data indicate
that Lenstra’s algorithm does hold promises for solving certain general integer

programming infeasibility problems.

At present. our implementation of Lenstra’s algorithm should not be considered as

a competitor to the more mature methods such as branch-and-bound and branch-and-

cut for solving commonplace integer programming problems. However. we believe that

Lenstra’s algorithm can be a useful alternative, especially when combined with other

available techniques, for solving some small but hard general integer programming

problems for which the traditional branch-and-bound algorithms have difficulties.

We suggest the following three points for further study:

1.

o

Warm-start. One advantage of the LP-based branch-and-bound method is that
one can solve the LP problem corresponding to the child node by making use
of the information of the solution of its parent nodes. The same idea. called
the warm-start, can be in principle applied to the ellipsoidal approximation and

lattice basis reduction procedures.

Combination with other techniques. Lenstra's algorithm should be combined
with other integer programming techniques to become computationally power-
ful. For example. a stronger preprocessing may have the potential to reduce the
computational costs on each node in both ellipsoidal approximation and lattice

basis reduction procedures.

Feasibility and Optimization. Lenstra’s algorithm aims at solving the integer
programming feasibility problem. The feasibility problem is equivalent to the
optimization problem in theory; however, the optimization problem is usually

the more common model in practice. How to use the algorithm for feasibility

108

problem to solve optimization problems efficiently (other than a direct binary

search) is another interesting topic.

[1]

109

Bibliography

K. Aardal, C. Hurkens. and A. K. Lenstra. Solving a linear diophantine equation
with lower and upper bounds on the variables. In R.E. Bixby. E.A. Bovd. and
R.Z. Rios-Mercado, editors. Integer Programming and Combinatorial Optimiza-
tion, 6th International IPCO Conference. Lecture Notes in Computer Science

1412, pages 229-242. Berlin. Heidelberg. 1998. Springer-Verlag.

M. Ajtai. The shortest vector problem in [, is np-hard for randomized reductions.
Proceedings of 30th ACM Symposium on the Theory of Computing. pages 10-19.
1998.

K. M. Anstreicher. Improved Complezity for Marimum Volume Inscribed Ellip-

soids, June 2001.

L. Babai. On Lovasz’ lattice reduction and nearest lattice point problem. Com-

binatorica, 6(1):1-13. 1986.
R. E. Bixby. Personal communication. Rice University, 2001.

CBLAS. http://www.netlib.org/clapack/cblas. lapack 2.0 edition.

] J. W. S. Cassels. An Introduction to the Geometry of Numbers. Springer-Verlag,

Berlin, 1959.

S.A. Cook. The complexity of theorem-proving procedures. Proceedings of Third

Annual ACM Symposium on Theory of Computing, pages 151-158, 1971.

[9]

[10]

[11]

[12]

[13]

110

W. Cook, T. Rutherford, H. E. Scarf. and D. Schallcross. An implementation of
the generalized basis reduction algorithm for integer programming. Operations

Research Society of America Journal on Computing, 5:206-212. 1993.

G.B. Dantzig. Linear Programming and Extensions. Princeton University Press.

1963.

M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for
estimating volumes of convex bodies. Journal of the Association for Computing

Machinery, 38:1-17. 1991.

J. Edmonds. L. Lovdsz, and W. R. Pulleyblank. Brick decompositions and the

matching rank of graphs. Combinatorica. 2:247-274. 1982.

D. Gale. HW. Kuhn. and A.W. Tucker. Actwvity Analysis of Production and
Allocation (T.C. Koopmans. ed.). chapter Linear Programming and the Theory

of Games, pages 317-329. John Wiley and Sons. New York. 1951.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combina-

torial Optimaization. Springer. Berlin. 1988.

D. S. Hirschberg and C. K Wong. A polynomial-time algorithm for the knapsack
problem with two variables. Journal of the Association for Computing Machin-

ery, 23:147-154. 1976.

R.A. Horn and C.R. Johnson. Topics in Matriz Analysis. Cambridge University

Press, 1991.

F. John. Extreme problems with inequalities as subsidiary conditions. Studies

and Essays, presented to R. Courant on his 60th Birthday, pages 187-204. 1948.

18]

111

Linderoth J.T. and M.W. Savelsbergh. A computational study of search
strategies for mixed integer programming. INFORMS Journal on Computing.

11(2):173-187. 1999.

R. Kannan. A polynomial algorithm for the two-variable integer programming

problems. Journal of the Association of Computing Machinery. 27:118-122. 1980.

R. Kannan and L. Lovasz. Random walks and an O*(n®) volume algorithm for
convex bodies. Technical Report No. 1092. Dept. of Computer Science. Yale

University. New Haven. CT. 1996.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-

binatorica. 4:373-395. 1984.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-

binatorica. 4:373-395. 1984.

L. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii

Nauk SSSR, 244:1093-1096. 1979.

L. Khachiyan. Rounding of polytopes in the real number model of computation.

Mathematics of Operations Research. 21:307-320. 1996.

L. Khachiyan and M. Todd. On the complexity of approximating the maximal

inscribed ellipsoid for a polytope. Mathematical Programming. 61:137-159. 1993.

A.H. Land and A.G. Doig. An automatic method for solving discrete program-

ming problems. Econometrica. 28:497-520, 1960.

A. K. Lenstra, H. W. Lenstra, Jr, and L. Lovasz. Factoring polynomials with

rational coefficients. Mathematische Annalen, 261:515-534, 1982.

28]

[29]

[33]

[34]

112

H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Math-

ematics of Operations Research, 8:538-548. 1983.

LiDIA. LiDIA - A Library for Computational Number Theory. TH Darmstadt
Universitidt des Saarlandes. Fachbereich Informatik. Institute fuir Theoretische
Informatik. http://www.informatik.th-darmstadt.de/pub/TI/LiDIA. 1.3.4 edi-

tion, 1999.

L. Lovdsz. An Algorithmic Theory of Numbers. Graphs and Converxity. The

Society for Industrial and Applied Mathematics. Philadelphia. 1986.

L. Lovasz and H.E. Scarf. The generalized basis reduction algorithm. Mathe-

matics of Operations Research. 17:751-764, 1992.

L. Lovasz and M. Simonovits. On the randomized complexity of volumes and
diameters. In Proceedings of the 33rd Annual Symposium on Foundation of Com-

puter Science. pages 482-491, 1992.

A. Nemirovski. On self-concordant convex-concave functions. Technical report.

Technion - Israel Institute of Technology, Technion. Israel. 1997.

Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convez
Programmang. The Society for Industrial and Applied Mathematics. Philadel-

phia, 1994.

Y. Nesterov and M. Todd. Primal-dual interior-point methods for selfscaled

cones. SIAM Journal on Optimaization, 8:324-364, 1998.

CPLEX Optimization. Using the CPLEX Callable Library. Incline Village, NV,

http://www.cplex.com, 6.0.1 edition, 1998.

[37]

[38]

[39]

[43]

[44]

113

MIPLIB. http://www.caam.rice.edu/ bixby/miplib/miplib.html. 3.0 edition.
1996.

J. Renegar. A polynomial-time algorithm, based on newton’s method. for linear

programming. Mathematical Programming. 40:59-93. 1988.

H.E. Scarf. Production sets with indivisibilities— part I: Generalities. Economet-

rica, 49:1-32, 1981.

H.E. Scarf. Production sets with indivisibilities— part II: the case of two activities.

Econometrica, 49:395-423. 1981.

C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical al-
gorithms and solving subset sum problems. Mathematical Programming. 66:181-

199, 1994.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons

Ltd, Chichester, 1986.

V. Shoup. NTL: A Library for Doing Number Theory. Department of Computer

Science, University of Wisconsin-Madison, http://www.shoup.net.

S. Silvey and D. Titterington. A geometric approach to optimal design theory.

Biometrika, 60:21-32, 1973.

S. Tarasov, L. Khachiyan, and I. Erlich. The method of inscribed ellipsoid. Soviet

Mathematics Doklady, 37:226-230, 1988.

D. Titteringto. Optimal design: Some geometric aspects of d-optimality.

Biometrika, 62:313-320, 1975.

114

[47] P. van Emde Boas. Another np-complete partition problem and the complexity of
computing short vectors in a lattice. Technical Report No. 81-04. Mathematical

Institute. University of Amsterdam, Amsterdam. 1981.

[48] L. Vandenberghe, S. Boyd. and S. Wu. Determinant maximization with matrix

inequality constraints. Technical report. EE Dept. Stanford University. 1996.

[49] X. Wang. A New Implementation of the Generalized Basis Reduction Algorithm

for Conver Integer Programming. PhD thesis, Yale University, 1997.

[50] E. Welzl. Smallest enclosing disks, balls and ellipsoids. In H. Maurer. editor.
New Results and New Trends in Computer Sciences, volume 555, pages 359-370.

Springer Lecture Notes in Computer Science, New York. 1991.
[51] L.A. Wolsey. Integer Programming. John Wiley & Sons. Inc. 1998.

[52] Y. Zhang. An interior-point algorithm for the maximum-volume ellipsoid prob-

lem. Technical report, CAAM Dept. Rice University, 1998.

