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ABSTRACT

In contrast to prestack migration methods based on data binning, common im-

age gathers produced by shot-geophone migration exhibit the appropriate semblance

property in either offset domain (focussing at zero offset) or angle domain (focussing

at zero slope), when the migration velocity is kinematically correct and when events to

be migrated arrive in the data along non-turning rays. The latter condition is required

for successful implementation via wavefield depth extrapolation (“survey sinking”).

Thus shot-geophone migration may be a particularly appropriate tool for migration

velocity analysis of data exhibiting structural complexity.

INTRODUCTION

The basis of migration velocity analysis is the semblance principle: prestack migrated

data volumes contain flat image gathers, i.e. are at least kinematically independent of

the bin or stacking parameter, when the velocity is correct (Kleyn, 1983; Yilmaz, 1987).

Migration velocity analysis (as opposed to standard NMO-based velocity analysis) is most

urgently needed in areas of strong lateral velocity variation, i.e. “complex” structure such

as salt flanks, chalk tectonics, and overthrust geology. However strong refraction implies

multiple raypaths connecting source and receiver locations with reflection points, and

multiple raypaths in turn imply that the semblance principle is not valid: that is, image

gathers are not in general flat, even when the migration velocity closely approximates the

true propagation velocity (Stolk and Symes, 2004).

The failure of the semblance principle in complex structure afflicts all prestack migra-

tion techniques based on data binning, i.e. for which each data bin creates an independent
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image. This category includes many variants of common shot, common offset and com-

mon scattering angle migration (Nolan and Symes, 1996; Nolan and Symes, 1997; Xu et

al., 2001; Brandsberg-Dahl et al., 2003; Stolk, 2002; Stolk and Symes, 2004).

However one well-known form of prestack image formation does not migrate image

bins independently: this is Claerbout’s survey-sinking migration, or shot-geophone migra-

tion (Claerbout, 1971; Claerbout, 1985), commonly implemented using some variety of

one-way wave equation to extrapolate source and receiver depths. Such depth extrap-

olation implementation presumes that rays carrying significant energy travel essentially

vertically (dubbed the “DSR condition” by Stolk and De Hoop (2001)). Source and

receiver wavefields may be extrapolated separately, and correlated at each depth (shot

profile migration), or simultaneously (DSR migration).

This paper demonstrates that a semblance principle appropriate for shot-geophone

migration holds regardless of velocity field complexity, assuming

• the DSR condition,

• enough data to determine wavefield kinematics (for example, areal or “true 3D”

acquisition in general, or narrow azimuth data plus mild cross-line heterogeneity),

and

• a kinematically correct migration velocity field.

This result was established by Stolk and De Hoop (2001). We give a somewhat simpler

derivation of this property, and a number of 2D illustrations. This semblance princi-

ple takes several roughly equivalent forms, corresponding to several available methods

for forming image gathers. Sherwood and Schultz (1982), Claerbout (1985), and others

defined image gathers depending on (subsurface) offset and depth: in such offset image

gathers, energy is focussed at zero offset when the velocity is kinematically correct. De

Bruin et al (1990) and Prucha et al (1999) gave one definition of angle image gathers,

while Sava and Fomel (2003) suggest another. Such gathers are functions of scattering

angle and depth. In both cases, correct migration velocity focusses energy at zero slope,

i.e. angle image gathers are flattened at correct migration velocity.

As a by-product of our analysis, we observe that the semblance principle is a result of

the mathematical structure of shot-geophone migration, not of any particular approach to

its implementation. In particular, it is not depth extrapolation per se that is at the root of

if the favorable kinematic properties stated in the last paragraph. Indeed, we show that a

shot-geophone variant of two-way reverse time migration (Biondi and Shan, 2002; Symes,

2002) implements the same kinematics hence conforms to the same semblance principle.

We even provide a “Kirchhoff” implementation of shot-geophone migration, which also

satisfies the semblance principle.
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To emphasize the main assertion of this paper: all versions (angle, offset) of the

semblance principle for shot-geophone migration hold regardless of degree of multipathing

and of computational implementation, provided that the assumptions stated above are

valid. In particular, angle imaging via shot-geophone migration, using either method of

angle gather formation mentioned above, is not equivalent, even kinematically, to surface-

oriented common angle imaging (Xu et al., 2001; Brandsberg-Dahl et al., 2003) - indeed,

the latter typically generates kinematic artifacts when multiple ray paths carry important

energy.

The “enough data” condition listed second above is quite as important as the others,

as will be explained below. For arbitrary 3D complexity in the migration velocity field,

validity of the semblance principle requires areal coverage (“true 3D” data). In particular

we cannot guarantee the absence of kinematic artifacts in shot-geophone migration of

narrow azimuth data, unless the velocity model is assumed to have additional properties,

for example mild cross-line heterogeneity, which compensate to some extent for the lack

of azimuths. This issue will be discussed a bit more in the concluding section.

Sherwood and Schultz (1982) observed that the focussing property of shot-geophone

migration might serve as the basis for an approach to velocity estimation. Its freedom from

artifacts suggests that shot-geophone migration may be a particularly appropriate tool for

migration velocity analysis of data acquired over complex structures. Some preliminary

investigations of this idea have been carried out by Shen et al. (2003).

The paper begins with a very general description of shot-geophone migration oper-

ator as adjoint to an extended Born (single-scattering) modeling operator. All prestack

migration methods, including those based on data binning, can be described in this way,

as adjoint to extended modeling of some sort. The basic kinematics of shot-geophone

prestack migration then follow easily from the high-frequency asymptotics of wave prop-

agation. We summarize these kinematic properties, and present the outline of a complete

derivation in appendix A.

When offsets are restricted to be horizontal, as was the case in the original formulation

of shot-geophone migration (Claerbout, 1985; Schultz and Sherwood, 1982), and the DSR

condition is assumed, the artifact-free result of Stolk and De Hoop (2001) follows easily

from the general kinematic properties already described, for both offset image gathers

and angle image gathers in the style of Sava and Fomel (2003).

The basic framework does not restrict the subsurface offset vector to be horizontal,

nor is one-way wave propagation a necessary part of the formulation. We next introduce

the two-way reverse time implementation of horizontal offset shot-geophone migration,

both as an interesting algorithm in itself and as a preliminary to the derivation of depth

extrapolation migration. Both of the widely used “wave equation” migration families,
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shot-profile and double square root migration, follow via replacement of two-way with one-

way propagation, as is permitted by the DSR assumption. Double square root migration

provides the framework for the alternative construction of angle image gathers due to De

Bruin et al. (1990). We show how the semblance property for this form of angle domain

migration follows from the general properties of shot-geophone migration.

Finally we present a number of examples illustrating the semblance property, using 2D

synthetic data of increasing ray path complexity. Each example contrasts the angle image

gathers produced by (Kirchhoff) common scattering angle migration with those produced

by shot-geophone migration. In each case, kinematic artifacts appear in the former but

not the latter.

SHOT-GEOPHONE MIGRATION AS ADJOINT OF EXTENDED BORN
MODELING

We assume that sources and receivers lie on the same depth plane, and adjust the

depth axis so that the source-receiver plane is z = 0. This restriction is can be removed

at the cost of more complicated notation (and numerics): it is not essential. Nothing

about the formulation of the migration method presented below requires that data be

given on the full surface z = 0.

While the examples to be presented later are all 2D, the construction is not: in the

following x (and other bold face letters) will denote either two- or three-dimensional

vectors. Source locations are xs, receiver locations are xr.

Single scattering

The causal acoustic Green’s function G(x, t;xs) for a point source at x = xs is the

solution of
1

v2(x)

∂2G

∂t2
(x, t;xs) −∇2

xG(x, t;xs) = δ(x − xs)δ(t), (1)

with G = 0, t < 0.

In common with all other migration methods, shot-geophone migration is based on the

Born or single scattering approximation. Denote by r(x) = δv(x)/v(x) a relative pertur-

bation of the velocity field. Linearization of the wave equation yields for the corresponding

perturbation of the Green’s function

1

v2(x)

∂2δG

∂t2
(x, t;xs) −∇2

xδG(x, t;xs) =
2r(x)

v2(x)

∂2

∂t2
G(x, t;xs), (2)

whose solution has the integral representation at the source and receiver points xr,xs

δG(xr, t;xs) =
∂2

∂t2

∫

dx

∫

dτ
2r(x)

v2(x)
G(x, t − τ ;xr)G(x, τ ;xs). (3)
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The singly scattered field is the time convolution of δG with a source wavelet (or

the space-time convolution with a radiation pattern operator, for more complex sources).

Since the principal concern of this paper is kinematic relationships between data and

image, we ignore the filtering by the source signature (i.e. replace it with a delta function).

This effective replacement of the source by an impulse does not seem to invalidate the

predictions of the theory, though the matter is certainly worthy of more study.

The Born modeling operator F [v] is

F [v]r(xr, t;xs) = δG(xr, t;xs).

Common Offset Migration

Basic versions of all prestack migration operators result from two further modeling

steps:

1. extend the definition of reflectivity to depend on more spatial degrees of freedom,

insert somehow into the Born modeling formula (equation (2) or (3)) in such a way

that when the extra degrees of freedom are present in some specific way (“physical

reflectivity”), Born modeling is recovered;

2. form the adjoint of the extended modeling operator: this is a prestack migration

operator. The output of the adjoint operator is the prestack image; it depends on

the same degrees of freedom as the input of the modeling operator.

Prestack common offset modeling results from replacing 2r(x)/v2(x) with R(x,h),

where h is vector half-offset: h = 0.5(xr − xs). The additional degrees of freedom men-

tioned in 1. above are the components of source-receiver half-offset. This extended re-

flectivity is inserted into the Born modeling formula to give the extended common offset

modeling operator F̄ [v]:

F̄ [v]R(xr, t;xs) = u(xr, t;xs),

where

u(xm + h, t;xm − h) =
∂2

∂t2

∫

dx

∫

dτ R(x,h)G(x, t − τ ;xm + h)G(x, τ ;xm − h). (4)

If R(x,h) = 2r(x)/v2(x) is actually independent of h, then the output u(xr, t;xs) of

equation (4) is identical to the perturbational Green’s function δG(xr, t;xs) as is clear

from comparing equations (4) and (3). That is, the Born forward modeling operator is

the “spray” operator ,

r(x) 7→ R(x,h) = 2r(x)/v2(x),

followed by the common offset forward modeling operator.

5
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The common offset migration operator is the adjoint of this integral operator: its

output is the offset-dependent prestack image volume, a function of the same type as the

extended common offset reflectivity:

F̄ ∗[v]d(x,h) = Ico(x,h),

Ico(x,h) =

∫

dxm

∫

dτ

∫

dt
∂2d

∂t2
(xm+h, t;xm−h)G(x, t−τ ;xm+h)G(x, τ ;xm−h). (5)

Therefore the adjoint of Born modeling (migration, per se) is common offset migration

followed by the adjoint of the “spray” operator: this adjoint is the operator of averaging

in h, i.e. stacking.

Actually the operator defined in equation (5) is only one possible common offset mi-

gration operator. Many others follow through application of various weights and filters -

for example, leaving off the second time derivative in equation (5) amounts to filtering the

data before application of F̄ ∗[v]. All of these variations define adjoints to the modeling

operator with respect to apppropriate inner products on domain and range spaces. Most

important for this investigation, all share a common kinematic description. Therefore we

ignore all such variations for the time being, and refer to equation (5) as defining “the”

common offset migration operator.

Replacement of the Green’s functions in equation (5) by the leading terms in their

high frequency asymptotic expansions results in the familiar Kirchhoff common offset

migration operator.

Note that both modeling and migration operators share the property that their output

for a given h depends only on the input for the same value of h - that is, they are block-

diagonal on common offset data bins. This binwise action is responsible for the production

of kinematic artifacts when the velocity field refracts rays sufficiently strongly (Stolk and

Symes, 2004).

Shot-geophone modeling and migration

Shot-geophone modeling results from a different extension of reflectivity: replace

2r(x)/v2(x) by R(x,h) where h is the depth (half)offset mentioned in the introduction.

While this extension has exactly the same degrees of freedom as the common offset ex-

tended reflectivity, the two are conceptually quite different: h here has nothing to do with

the source-receiver half-offset 0.5(xr − xs)!

The shot-geophone modeling operator F̄ [v] is given by

F̄ [v]R(xr, t;xs) = u(xr, t;xs),

where the field u is defined by

u(xr, t;xs) =
∂2

∂t2

∫

dx

∫

dh

∫

dτ R(x,h)G(x + h, t − τ ;xr)G(x − h, τ ;xs). (6)
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Note that here x does play the role of midpoint, though having nothing to do with source-

receiver midpoint.

The field u(x, t;xs) is identical to δG(x, t;xs) when

R(x,h) =
2r(x)

v2(x)
δ(h),

i.e. when the generalized reflectivity is concentrated at offset zero. Therefore Born mod-

eling is shot-geophone modeling following the mapping

r(x) 7→
2r(x)

v2(x)
δ(h). (7)

The shot-geophone migration operator is the adjoint of the shot-geophone modeling

operator: it produces an image volume with the same degrees of freedom as the extended

shot-geophone reflectivity,

F̄ ∗[v]d(x,h) = Is−g(x,h),

Is−g(x,h) =

∫

dxr

∫

dxs

∫

dt

∫

dτ
∂2d

∂t2
(xr, t;xs)G(x + h, t− τ ;xr)G(x− h, τ ;xs). (8)

Note that in both equations (6) and (8), all input variables are integrated to produce the

value at each output vector: the computation is not block diagonal in h, in contrast to

the common offset operators defined in equations (4) and (5).

Born migration is shot-geophone migration followed by the adjoint of the mapping

defined in equation (7), which is

R(x,h) 7→
2R(x, 0)

v2(x)
, (9)

i.e. shot-geophone migration followed by extraction off the zero offset section.

For some purposes it turns out to be convenient to introduce sunken source and receiver

coordinates

x̄r = x + h, x̄s = x − h,

and the source-receiver reflectivity R̄ by

R̄(x̄r, x̄s) = R

(

x̄r + x̄s

2
,
x̄r − x̄s

2

)

, i.e. R̄(x + h,x − h) = R(x,h),

and similarly for the image volume Is−g. Change integration variables in equation (8) to

get the sunken source-receiver variant of shot-geophone migration:

Īs−g(x̄r, x̄s) =

∫

dxr

∫

dxs

∫

dt

∫

dτ
∂2d

∂t2
(xr, t;xs)G(x̄r, t − τ ;xr)G(x̄s, τ ;xs).

Replacement of the Green’s functions in this formula by their high frequency asymp-

totic (ray-theoretic) approximations results in a Kirchhoff-like representation of shot-

geophone migration. See Appendix D for details.
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KINEMATICS OF SHOT-GEOPHONE MIGRATION

An event in the data is characterized by its moveout: locally, by a moveout equation

t = T (xr,xs), and infinitesimally by the source and receiver slownesses

pr = ∇xr
T, ps = ∇xs

T

Significant energy with this moveout implies that locally near (xr,xs, t) the data contains

a plane wave component with wavenumber (ωpr, ωps, ω). These coordinates (position,

wavenumber) give the phase space representation of the event.

Note that for incomplete coverage, notably marine streamer geometry, an event in

the data will not determine its moveout uniquely. For example, in (idealized) marine

streamer geometry, with the streamers oriented along the x axis, the y component of pr

is not determined by the data. In the discussion to follow, ps and pr are assumed to be

compatible with a data event.

Likewise, a reflector (in the source-receiver representation) at (x̄r, x̄s) with wavenum-

ber (kr,ks) is characterized in (image volume) phase space by these coordinates.

Kinematics with general (3D) offset

The kinematical description of shot-geophone migration relates the phase space coor-

dinates of events and reflectors. An event with phase space representation

(xr,xs, T (xr,xs), ωpr, ωps, ω)

is the result of a reflector with (source-receiver) phase space representation (x̄r, x̄s,kr,ks)

exactly when

• there is a ray (Xs,Ps) leaving the source point Xs(0) = xs at time t = 0 with ray

parameter Ps(0) = ps, and arriving at Xs(ts) = x̄s at t = ts with ray parameter

Ps(ts) = −ks/ω;

• there is a ray (Xr,Pr) leaving Xr(ts) = x̄r at t = ts with ray parameter Pr(ts) =

kr/ω and arriving at the receiver point Xr(tr+ts) = xs at time t = T (xr,xs) = tr+ts
with ray parameter Pr(tr + ts) = pr.

Figure 1 illustrates this kinematic relation. Appendix A provides a derivation.

Note that since Pr,Ps are ray slowness vectors, there is necessarily a length relation

between kr,ks: namely,
1

v(x̄r)
= ‖Pr(tr)‖ =

‖kr‖

|ω|
,
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1

v(x̄s)
= ‖Ps(ts)‖ =

‖ks‖

|ω|
,

whence
‖kr‖

‖ks‖
=

v(x̄s)

v(x̄r)
(10)

The kinematics of shot-geophone migration are somewhat strange, so it is reassuring

to see that for physical reflectors (i.e. R̄(x̄r, x̄s) = r(x)δ(h)) the relation just explained

becomes the familiar one of reflection from a reflecting element according to Snell’s law.

A quick calculation shows that such a physical R̄ has a significant local plane wave com-

ponent near (x̄r, x̄s) with wavenumber (kr,ks) only if x̄r = x̄s = x and r has a significant

local plane wave component near x with wavenumber kx = kr + ks. From equation (10),

kr and ks have the same length, therefore their sum kx is also their bisector, which estab-

lishes Snell’s law. Thus a single (physical) reflector at x with wavenumber kx gives rise

to a reflected event at frequency ω exactly when the rays (Xs,Ps) and (Xr,Pr) meet at

x at time ts, and the reflector dip kx = ω(Pr(ts)−Ps(ts)), which is the usual kinematics

of single scattering. See Figure 2.

It is now possible to answer the question: in the shot-geophone model, to what extent

does a data event determine the corresponding reflector? The rules derived above show

that the reflection point (x̄s, x̄r) must lie on the Cartesian product of two rays, (Xs,Ps)

and (Xr,Pr), consistent with the event, and the total time is also determined. If the

coverage is complete, so that the event uniquely determines the source and receiver rays,

then the source-receiver representation of the source-receiver reflector must lie along this

uniquely determined ray pair. This fact contrasts dramatically with the imaging ambigu-

ities prevalent in all forms of prestack depth migration based on data binning (Nolan and

Symes, 1996; Nolan and Symes, 1997; Xu et al., 2001; Prucha et al., 1999; Brandsberg-

Dahl et al., 2003; Stolk, 2002; Stolk and Symes, 2004). Even when coverage is complete,

in these other forms of prestack migration strong refraction leads to multiple ray pairs

connecting data events and reflectors, whence ambiguous imaging of a single event in

more than one location within the prestack image volume.

Nonetheless reflector location is still not uniquely determined by shot-geophone mi-

gration as defined above, for two reasons:

• Only the total traveltime is specified by the event! Thus if x̄s = Xs(ts), x̄r = Xr(ts)

are related as described above to the event determining the ray pair, so is x̄′
s =

Xs(t
′
s), x̄

′
r = Xr(t

′
s) with ts + tr = t′s + t′r = tsr. See Figure 1.

• Incomplete acquisition, for example limited to a narrow azimuth range as is com-

monly the case for streamer surveys, may prevent the event from determining its

full 3D moveout, as mentioned above. Therefore a family of ray pairs, rather than

a unique ray pair, may correspond to the event.
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Kinematics with horizontal offset

One way to view the remaining imaging ambiguity in shot-geophone migration as

defined so far is to recognize that the image point coordinates (x̄r, x̄s) (or (x,h)) are

six-dimensional (in 3D), whereas the data depends on only five coordinates (xr, t,xs) (at

most). Formally, restricting one of the coordinates of the image point to be zero would

at least make the variable counts equal, so that unambiguous imaging would at least

be conceivable. Since physical reflectivities are concentrated at zero (vector) offset, it

is natural to restrict one of the offset coordinates to be zero. The conventional choice,

beginning with Claerbout’s definition of survey-sinking migration (Claerbout, 1985), is

the depth coordinate.

We assume that the shot-geophone reflectivity R(x,h) takes the form

R(x,h) = Rz(x, hx, hy)δ(hz), (11)

leading to the restricted modeling operator:

F̄z[v]Rz(xr, t;xs) =
∂2

∂t2

∫

dx

∫

dhx

∫

dhy

∫

dτ

Rz(x, hx, hy)G(x + (hx, hy, 0), t − τ ;xr)G(x − (hx, hy, 0), τ ;xs). (12)

The kinematics of this restricted operator follows directly from that of the unrestricted

operator, developed in the preceding section.

Denote x̄s = (x̄s, ȳs, z̄s),ks = (ks,x, ks,y, ks,z) etc. For horizontal offset,

R̄(x̄r, x̄s) = R̄z

(

x̄r, x̄s, ȳr, ȳs,
z̄r + z̄s

2

)

δ(z̄r − z̄s).

Fourier transformation shows that R̄ has a significant plane wave component with wavenum-

ber (kr,ks) precisely when R̄z has a significant plane wave component with wavenum-

ber kr,x, kr,y, ks,x, ks,y, (kr,z + ks,z). Thus a ray pair (Xr,Pr), (Xs,Ps) compatible with a

data event with phase space coordinates (xr,xs, T (xr,xs), ωpr, ωps, ω) images at a point

Xr,z(ts) = Xs,z(ts) = z, Pr,z(ts) − Ps,z(ts) = kz/ω, Xs,x(ts) = xs, Ps,x(ts) = ks,x/ω, etc. at

image phase space point

(x̄r, x̄s, ȳr, ȳs, z, kr,x, ks,x, kr,y, ks,y, kz).

The adjoint of the modeling operator defined in equation (12) is the horizontal offset

shot-geophone migration operator:

F̄ ∗
z [v]d(x, hx, hz) = Is−g,z(x, hx, hz),

10
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where

Is−g,z(x, hx, hz) =

∫

dxr

∫

dxs

∫

dt

∫

dτ

∂2

∂t2
d(xr, t;xs)G(x + (hx, hy, 0), t− τ ;xr)G(x − (hx, hy, 0), τ ;xs) (13)

As mentioned before, operators and their adjoints enjoy the same kinematic relations, so

we have already described the kinematics of this migration operator.

Semblance property of horizontal offset image gathers and the DSR condition

As explained by Stolk and De Hoop (2001), Claerbout’s survey sinking migration is

kinematically equivalent to shot-geophone migration as defined here, under two assump-

tions:

• subsurface offsets are restricted to horizontal (hz = 0);

• rays (either source or receiver) carrying significant energy are nowhere horizontal,

i.e. Ps,z > 0, Pr,z < 0 throughout the propagation;

• events in the data determine full (four-dimensional) slowness Pr,Ps.

We call the second condition the “Double Square Root”, or “DSR”, condition, for

reasons explained by Stolk and De Hoop (2001). This reference also offers a proof of the

Claim: Under these restrictions, the imaging operator F̄ ∗
z can image a ray pair at precisely

one location in image volume phase space. When the velocity is correct, the image energy

is therefore concentrated at zero offset in the image volume Is−g,z.

The demonstration presented by Stolk and De Hoop (2001) uses oscillatory integral

representations of the operator F̄z and its adjoint. However, the conclusion also follows

directly from the kinematic analysis above and the DSR condition.

Indeed, note that the DSR condition implies that depth is increasing along the source

ray, and decreasing along the receiver ray - otherwise put, depth is increasing along

both rays, if you traverse the receiver ray backwards. Therefore depth can be used to

parametrize the rays. With depth as the parameter, time is increasing from zero along

the source ray, and decreasing from tsr along the receiver ray (traversed backwards). Thus

the two times can be equal (to ts) at exactly one point.

Since the scattering time ts is uniquely determined, so are all the other phase space

coordinates of the rays. If the ray pair is the incident-reflected ray pair of a reflector,

then the reflector must be the only point at which the rays cross, since there is only one

time ts at which Xs,z(ts) = Xr,z(ts). See Figure 3. Therefore in the infinite frequency

limit the energy of this incident-reflected ray pair is imaged at zero offset, consistent with

Claerbout’s imaging condition.

11
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If furthermore coverage is complete, whence the data event uniquely determines the

full slowness vectors, hence the rays, then it follows that a data event is imaged at precisely

one location, namely the reflector which caused it, and in particular focusses at zero offset.

This is the offset version of the result established by Stolk and De Hoop (2001), for which

we have now given a different (and more elementary) proof.

Remark: Note that the DSR assumption precludes the imaging or near- or post-vertical

reflectors, since in general for such reflectors it will not be possible to satisfy the imaging

conditions without either incident or reflected ray turning horizontal at some point.

Semblance property of angle image gathers via Radon transform in offset and
depth

According to Sava and Fomel (2003), angle image gathers Az may be defined via

Radon transform in offset and depth of the offset image gathers constructed above, i.e.

the migrated data volume Is−g,z(x, hx, hy) (defined in equation (13)) for fixed x, y:

Az(x, y, ζ, px, py) =

∫

dhx

∫

dhy Is−g,z(x, y, ζ + pxhx + pyhy, hx, hy),

in which ζ denotes the z-intercept parameter, and px and py are the x and y components

of offset ray parameter. The ray parameter components may then be converted to angle

(Sava and Fomel, 2003). As is obvious from this formula, if the energy in Is−g,z(x, hx, hy)

is focussed, i.e. localized, on hx = 0, hy = 0, then the Radon transform Az will be

(essentially) independent of px, py. That is, when displayed for fixed x, y with ζ axis

plotted vertically and px and py horizontally, the events in Az will appear flat. The

converse is also true. This is the semblance principle for angle gathers.

WAVE EQUATION MIGRATION

The DSR assumption and the horizontal offset restriction (equation (11)) are assumed

to hold throughout the following discussion.

The preceding sections defined shot-geophone modeling operators and their dual mi-

gration operators via integral representation, using the acoustic Green’s function. In this

section we derive several alternate definitions of these operators based on the solution of

boundary value problems for one- and two-way wave equations. These definitions are the

basis of efficient computational migration algorithms. We show that the imaging opera-

tors defined by solving these problems differ from the shot-geophone migration operator

only by filters and amplitude factors which do not alter kinematic relations. Therefore

these operators inherit the semblance properties of shot-geophone migration established

in the last section. We also establish a similar semblance property for a second definition

of angle image gathers.

12
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Two-way reverse time migration

Migration algorithms based on reverse time wave propagation date back to Whitmore

(1983). The extension to shot-geophone migration appears to be more recent (Biondi and

Shan, 2002; Symes, 2002).

The derivation of reverse time shot-geophone migration begins with the source-receiver

coordinate rewrite of equation (12),

F̄z[v]R̄z(xr, t;xs) =
∂2

∂t2

∫

dx̄r

∫

dȳr

∫

dx̄s

∫

dȳs

∫

dτ

R̄z

(

x̄r, x̄s, ȳr, ȳs,
z̄r + z̄s

2

)

δ(z̄r − z̄s)G(xr, t − τ ; x̄r)G(x̄s, τ ;xs). (14)

The defining property of the acoustic Green’s function shows that

F̄z[v]R̄z(xr, t;xs) = u(xr, t;xs),

where u solves the inhomogeneous wave equation
(

1

v2(x̄r)

∂2

∂t2
−∇2

x̄r

)

u(x̄r, t;xs) = ws(x̄r, t;xs), (15)

and

ws(x̄r, t;xs) =

∫

dx̄s

∫

dȳsR̄z

(

x̄r, x̄s, ȳr, ȳs,
z̄r + z̄s

2

)

δ(z̄r − z̄s)
∂2

∂t2
G(x̄s, t;xs). (16)

Equation (15) is the shot-geophone analogue of the Born forward modeling equation

(2). A standard trick, the so-called adjoint state method, computes the output (image

volume) Is−g,z of the adjoint operator F̄z[v]∗, applied to the data:

Is−g,z(x̄r, x̄s, ȳr, ȳs, z̄) = F̄z[v]∗d(x̄r, x̄s, ȳr, ȳs, z̄)

=

∫

dxs

∫

dtu∗(x̄r, t;xs)
∂2G

∂t2
(x̄s, t;xs)

∣

∣

∣

∣

z̄r=z̄s=z̄

. (17)

The adjoint state field u∗ solves
(

1

v(x̄r)2

∂2

∂t2
−∇2

x̄r

)

u∗(x̄r, t;xs) =

∫

dxrd(xr, t;xs)δ(xr − x̄r), (18)

and u∗ ≡ 0, t >> 0, z > 0. The adjoint state equation (18) backpropagates the time-

reversed data, so the adjoint state field u∗ is sometimes known as the “receiver wave

field”. It is important to note that the field u∗ is not the physical reflected field u, time-

reversed - it is simply a convenient mathematical artifact which plays a key role in an

efficient computation of the adjoint operator F̄z[v]∗.

13
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A reverse time shot-geophone migration algorithm is a computational implementation

of the equations (17), (18).

For future reference, note that the reciprocity principle for acoustic Green’s functions

(Aki and Richards (1980), pp. 24-28) implies that the right hand side of equation (16) is

itself the solution of an inhomogeneous wave equation, with the source location playing

the role of spatial coordinate:

(

1

v2(x̄s)

∂2

∂t2
−∇2

x̄s

)

ws(x̄r, t; x̄s) = q(x̄r, t; x̄s), (19)

in which

q(x̄r, t; x̄s) = R̄z

(

x̄r, x̄s, ȳr, ȳs,
z̄r + z̄s

2

)

δ(z̄r − z̄s)
∂2

∂t2
δ(t).

One can view equation (19) as propagating the “source wave field” (i.e. ws). In the

construction of the image volume (equation (17)) requires only the values of the field

w(x̄r, t; x̄s) at the actual source points x̄s = xs.

Again by reciprocity, one can reverse the roles of source and receiver coordinates

throughout the above derivation. Thus u also solves

(

1

v2(x̄s)

∂2

∂t2
−∇2

x̄s

)

u(xr, t; x̄s) = wr(xr, t; x̄s).. (20)

The field wr is a solution of its own wave equation, analogously to ws:

(

1

v2(x̄r)

∂2

∂t2
−∇2

x̄r

)

wr(x̄r, t; x̄s) = q(x̄r, t; x̄s). (21)

It is important to note that the right-hand sides of the equations (19), (21) are the same.

One-way wave propagation

A solution of the inhomogeneous wave equation

(

1

v2(x)

∂2

∂t2
−∇2

x

)

u(x, t) = f(x, t) (22)

is upgoing if its high frequency components propagate along rays along which depth de-

creases with increasing time. Such wavefields also satisfy a one-way wave equation, an

evolution equation in decreasing z:

∂u

∂z
(x, t) ≃ −i

(

√

−v−2(x)
∂2

∂t2
+ ∇2

x,y

)

u(x, t) + (C−u)(x, t) + (A−f)(x, t). (23)

See (Stolk, 2004) and references cited there for detailed derivations.

14
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Downgoing wavefields solve a similar equation with a plus sign on the RHS.

It is also necessary to impose an initial condition at either large positive or large

negative z, as equation (23) defines an evolution in z. If the solution is required to vanish

for large positive z, then it carries energy upwards and forward in time. Vanishing for

large negative z implies energy transport downwards and backward in time.

The approximation sign in equation (23) is present because the two sides differ by a

smoother error, lower in frequency content than the terms displayed, like the error in a

ray-theoretic approximation.

For various reasons, the square root operator −i
√

−v−2(x) ∂2

∂t2
+ ∇2

x,y can only be

defined approximately. The square root operator and the operators A− and C− appearing

in the one-way equation (23) for the two-way solution are quite special in that they do

not modify the location or orientation of high-frequency components of the functions to

which they are applied. These operators are a combination of (stationary) filters and

amplitude factors. The precise nature of the square root operator and the operators A−

and C− is discussed a bit further in Appendix C.

The square root operator is real, i.e. a real input function results in a real output

function. The same is true of the operators C±, A±. This somewhat non-obvious assertion

is justified in Appendix C. The main consequence of reality is that with real data (value

of u for fixed z, right hand side f), the solution of the evolution problem (23) is real -

a comforting conclusion, as these fields are supposed to represent physical time-domain

quantities. The square root operator is also skew-adjoint, i.e. its adjoint is its negative.

Computationally efficient approximation of the square root operator is the subject

of a large literature, especially for the case of laterally varying velocity fields v - see

(Le Rousseau and De Hoop, 2001) for a variant of one approach and many references. In

particular, computationally useful approximations must suppress wavefield components

with near-horizontal ray velocities (near-evanescent waves), both order to keep the ex-

trapolation stable and to avoid gross phase inaccuracy. Thus only part of the one-way

wavefield is computed in practice.

In the remainder of this section we will derive two major families of widely used mi-

gration algorithms by simply replacing the wave equation by its one-way analogue, i.e.

dropping the operators C±, A± from equation (23) and related equations. This simpli-

fication is possible if one demands only that migration reproduce the structure of the

shot-geophone reflectivity R̄z, i.e. the locations and orientations of its high frequency

components. Migration and modeling operators are adjoint to each other, and share the

same reflector - to - reflection - event relation. Therefore any modification of the modeling

equations that preserves this relation also preserves the critical imaging property of the

corresponding migration.

We will use several times the following two observations:

15
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i. Assuming that u is an upgoing solution of the inhomogeneous wave equation (22),

the solution ũ of

∂ũ

∂z
(x, t) ≃ −i

(

√

−v−2(x)
∂2

∂t2
+ ∇2

x,y

)

ũ(x, t) + f(x, t). (24)

has high frequency components in the same locations in space-time and with the

same orientations as does u.

ii. if f and f̃ share locations and orientations of high frequency components, then the

locations and orientations of high frequency components of the solution ũ of (24)

does not change if f is replaced by f̃ .

Appendix C gives a sketch of the asymptotic analysis leading to these observations.

Note that if one demands more than structural fidelity of migration, then the operators

appearing in equation (23) must be taken more seriously. For example, so-called true

amplitude migration algorithms based on one-way propagation involve approximations to

the operators C± and A± in addition to approximation of the square root operator. See

Stolk (2004) for a detailed treatment of this point.

Shot profile migration

The DSR hypothesis implies that the wavefields appearing in reverse time migration

(17) are downgoing (G) or upgoing (u∗). Claerbout (Claerbout, 1971) suggested that

these may be expressed as solutions of one-way equations, and identified the appropriate

imaging condition. From equation (23),

∂u∗

∂z̄r

(x̄r, t;xs) ≃ −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r,ȳr

)

u∗(x̄r, t : xs)

+(C−u∗)(x̄r, t;xs) + (A−ds)(x̄r, t;xs), u∗ ≡ 0, z̄r < 0 (25)

ds(x̄r, t;xs) =

∫

dxrd(xr, t;xs)δ(x̄r − xr)

∂G

∂z̄s

(x̄s, t;xs) ≃ i

(

√

−v−2(x̄s)
∂2

∂t2
+ ∇2

x̄s,ȳs

)

G(x̄s, t : xs)

+(C+G)(x̄s, t;xs) + (A+es)(x̄s, t;xs), G ≡ 0, z̄s < 0 (26)

es(x̄s, t;xs) = δ(x̄s − xs)δ(t)

Note that only the downgoing part of the acoustic Green’s function is produced by solving

the initial value problem (26) - but this is fine, as all heterogeneity in the earth is assumed

to lie in z > 0!
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In view of the remarks at the end of the last section, we replace u∗ and G by the

solutions R and S of the simplified one-way equations

∂R

∂z̄r

(x̄r, t;xs) ≃ −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r,ȳr

)

R(x̄r, t : xs)

+ds(x̄r, t;xs), R ≡ 0, z̄r < 0 (27)

∂S

∂z̄s

(x̄s, t;xs) ≃ i

(

√

−v−2(x̄s)
∂2

∂t2
+ ∇2

x̄s,ȳs

)

S(x̄s, t : xs)

+es(x̄s, t;xs), R ≡ 0, z̄s < 0 (28)

The “downward continued source field” S and the “downward continued receiver field” R

have the same high frequency geometry as do the adjoint field u∗ and the Green’s function

G respectively. Therefore the cross-correlation at zero time lag

ISR(x̄r, x̄s, ȳr, ȳs, z̄) =

∫

dxs

∫

dtR(x̄r, t;xs)S(x̄s, t;xs)

∣

∣

∣

∣

z̄r=z̄s=z̄

(29)

has the same high-frequency components, i.e. exposes the same structure, as does the

output of the migration operator F̄z[v]∗ represented by equation (17). This is the imaging

condition identified by Claerbout (1971).

A shot profile migration algorithm, i.e. computational implementation of equations

(27), (28), and (29), typically takes the form of an accumulation loop for (29) over shot

position xs, as both (27) and (28) are solvable independently for each xs.

In practice, the inhomogeneous evolution problem (27) is replaced by the homogenous

problem with inhomogeneous initial conditions,

∂R

∂z̄r

(x̄r, t;xs) ≃ −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r ,ȳr

)

R(x̄r, t : xs) = 0,

R(x̄r, t; x̄s)|z̄r=0 = d(x̄r, t;xs). (30)

In view of Duhamel’s principle, the solutions of equations (27), (30) are exactly the same

for z̄r > 0. A similar modification is usually made to the problem (28).

Double-square-root migration

The DSR hypothesis implies that the acoustic wavefield u appearing in the shot-

geophone forward modeling equation (15) is upgoing. Therefore u also satisfies the one-

way wave equation

∂u

∂z̄r

(x̄r, t; x̄s) ≃ −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r,ȳr

)

u(x̄r, t : x̄s)

17
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+(C−,ru)(x̄r, t; x̄s) + (A−,rws)(x̄r, t; x̄s). (31)

The additional subscript on the operators A−, C− indicates that they act on the x̄r, t

variables.

Since the wavefield ws defined by equation (16) is required only for x̄s ∼ xs, i.e. for

z̄s > z̄r, DSR also implies that ws is an upgoing solution of its wave equation, whence

∂ws

∂z̄s

(x̄r, t; x̄s) ≃ −i

(

√

−v−2(x̄s)
∂2

∂t2
+ ∇2

x̄s,ȳs

)

ws(x̄r, t : x̄s)

+(C−,sws)(x̄r, t; x̄s) + (A−,sq)(x̄r, t; x̄s) (32)

with ws ≡ 0 for large z̄s.

The DSR assumption also implies one-way versions of equations (20) and (19):

∂u

∂z̄s

(x̄r, t; x̄s) ≃ −i

(

√

−v−2(x̄s)
∂2

∂t2
+ ∇2

x̄s,ȳs

)

u(x̄r, t : x̄s)

+(C−,su)(x̄r, t; x̄s) + (A−,swr)(x̄r, t; x̄s). (33)

∂wr

∂z̄r

(x̄r, t; x̄s) ≃ −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r,ȳr

)

wr(x̄r, t : x̄s)

+(C−,rwr)(x̄r, t; x̄s) + (A−,rq)(x̄r, t; x̄s) (34)

and wr ≡ 0 for large z̄r.

Equations (31)-(34) imply a dynamical law for the horizontal offset wavefield

ūDSR(x̄r, x̄s, ȳr, ȳs, z̄, t) ≡ u(x̄r, t; x̄s)|z̄r=z̄s=z̄

namely

∂

∂z̄
ūDSR(x̄r, x̄s, ȳr, ȳs, z̄, t) =

∂u

∂z̄r

(x̄r, t; x̄s)

∣

∣

∣

∣

z̄r=z̄s=z̄

+
∂u

∂z̄s

(x̄r, t; x̄s)

∣

∣

∣

∣

z̄r=z̄s=z̄

≃ −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r,ȳr
+

√

−v−2(x̄s)
∂2

∂t2
+ ∇2

x̄s,ȳs

)

ūDSR(x̄r, x̄s, ȳr, ȳs, z̄, t) (35)

+ [((C−,r + C−,s)u)(x̄r, t; x̄s) + (A−,rws)(x̄r, t; x̄s) + (A−,swr)(x̄r, t; x̄s)]z̄r=z̄s=z̄
.

This equation can be simplified by systematic use of the observations (i) and (ii) on

the relation between acoustic and one-way fields. Note that the second time derivative can

be dropped from the definition of q,without altering the geometry of the high frequency

wavefields.
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With these modifications, equations (32), (34) are ordinary differential equations in

z̄r, z̄s respectively (with operator coefficients), with a factor of δ(z̄r − z̄s) in each right

hand side. Further, the fields wr, ws vanish for z̄r > z̄s, z̄s > z̄r respectively. It is easy to

see that the solution to such a problem has a jump at the location of the delta function, of

magnitude equal to the coefficient of δ(z̄r − z̄s). Therefore the sum of the values of wr, ws

at z̄r = z̄s = z̄ appearing in equation (35) is exactly 2R̄z. For our final modification not

changing any of the structural relations, drop the factor of 2.

Denote what has become of ūDSR after all of these changes by uDSR. We have shown

that uDSR

i. has the same positions and orientations of high-frequency components as does ūDSR,

hence expresses the same reflector - to - reflection event relationship, and

ii. solves the double square root modeling equation

∂

∂z̄
uDSR(x̄r, x̄s, ȳr, ȳs, z̄, t)

≃ −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r,ȳr
+

√

−v−2(x̄s)
∂2

∂t2
+ ∇2

x̄s,ȳs

)

uDSR(x̄r, x̄s, ȳr, ȳs, z̄, t) (36)

+R̄z(x̄r, x̄s, ȳr, ȳs, z̄)δ(t)

The double square root modeling operator F̄DSR[v] maps R̄z to the values of the field uDSR

at the source/receiver locations (and z = 0):

F̄DSR[v]R̄z(xr, xs, yr, ys, t) = uDSR(xr, xs, yr, ys, 0, t).

Note that the modeling operator factors: F̄DSR[v] = HT , where T is the time injection

operator

(TR̄z)(x̄r, x̄s, ȳr, ȳs, z̄, t) = R̄z(x̄r, x̄s, ȳr, ȳs, z̄)δ(t),

and H is the solution operator of the double square root wave equation: for a source field

f(x̄r, x̄s, ȳr, ȳs, z̄, t),

Hf(xr, xs, yr, ys, t) = u(xr, xs, yr, ys, 0, t)

where
∂

∂z̄
u(x̄r, x̄s, ȳr, ȳs, z̄, t)

≃ −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r ,ȳr
+

√

−v−2(x̄s)
∂2

∂t2
+ ∇2

x̄s,ȳs

)

u(x̄r, x̄s, ȳr, ȳs, z̄, t) (37)

+f(x̄r, x̄s, ȳr, ȳs, z̄, t)

and u ≡ 0, z̄ >> 0 (i.e. initial value problem in decreasing z̄).
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The double square root migration operator F̄DSR[v]∗, adjoint to the modeling operator,

also factors:

F̄DSR[v]∗ = T ∗H∗. (38)

The adjoint of the time injection operator T ∗ is easily seen to be restriction to t = 0. The

adjoint of the double square root solution operator H∗, applied to data d, turns out to be

the solution of the initial value problem in increasing z̄:

∂

∂z̄
u∗

DSR(x̄r, x̄s, ȳr, ȳs, z̄, t)

≃ −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r,ȳr
+

√

−v−2(x̄s)
∂2

∂t2
+ ∇2

x̄s,ȳs

)

u∗
DSR(x̄r, x̄s, ȳr, ȳs, z̄, t),

(39)

u∗
DSR(xr, xs, yr, ys, 0, t) = d(xr, xs, yr, ys, t)

[This representation is another application of the adjoint state idea, and is explained in

Appendix B.]

Thus the factorization (38) reveals the usual description of double square root migra-

tion (Claerbout, 1985):

• simultaneously downward continue sources and receivers (d 7→ H∗d);

• extract t = 0 section IDSR (H∗d 7→ T ∗H∗d = IDSR).

Explicitly, the DSR image volume IDSR = F̄DSR[v]d is defined by

IDSR(x̄r, x̄s, ȳr, ȳs, z̄) = u∗
DSR(x̄r, x̄s, ȳr, ȳs, z̄, 0) (40)

Semblance property of angle gathers via Radon transform in offset and time

Denote by D the downward continued data field u∗
DSR, expressed in midpoint-offset

coordinates:

D(x, hx, hy, t) ≡ u∗
DSR(x + hx, x − hx, y + hy, y − hy, z, t)

Angle gathers obtained via Radon transform in offset and time of D(x, hx, hy, t) were

introduced by (de Bruin et al., 1990), and discussed further in (Prucha et al., 1999). We

denote these gathers by

Bz(x, px, py) =

∫

dhx

∫

dhy D(x, hx, hy, pxhx + pyhy). (41)

The purpose of this section is to establish the semblance property of the angle gathers

Bz.
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Note that the Radon transform in definition (41) is evaluated at zero (time) intercept.

The dependence on z is carried by the coordinate plane in which the Radon transform

is performed, rather than by the (z−) intercept as was the case with the Sava-Fomel

angle gathers Az defined previously. Also note that Bz requires the double square root

field D (or u∗), whereas Az may be constructed with the image output by any version of

shot-geophone migration.

We first need to establish at which points (x, hx, hy, t) significant energy of D is located.

The argument for D̄ is slightly different from the argument for Īz, since D̄ depends also

on the time. For Īz there was a kinematic relation (xs,xr, tsr, ωps, ωpr, ω) to a point in

phase space (xs, xr, ys, yr, z, ks,x, kr,x, ks,y, kr,y, kz) where the energy in Īz is located. The

restriction of D̄ to time τ is the same as the restriction to time 0, but using time-shifted

data d(..., t− τ). Therefore we can follow almost the same argument as for the kinematic

relation of Īz. We find that for an event at (xs,xr, tsr, ωps, ωpr, ω) to contribute at

D̄, restricted to time τ , we must have that (xs, ys, z) is on the ray Xs, say at time

(t′s), i.e. (xs, ys, z) = Xs(t
′
s). Then (xr, yr, z) must be on the ray Xr say at time t′′s ,

i.e. (xr, yr, z) = Xr(t
′′
s). The situation is displayed in Figure 4, using midpoint-offset

coordinates. Furthermore, the sum of the traveltimes from xs to (xs, ys, z) and from xr

to (xr, yr, z) must be equal to tsr − τ . It follows that t′′s − t′s = τ .

Now consider an event from a physical reflection at Xs(ts) = Xr(ts) = (xscat, yscat, zscat).

We use the previous reasoning to find where the energy in D is located (in midpoint-offset

coordinates). We will denote by (vs,x(t), vs,y(t), vs,z(t)) the ray velocity for the source ray
dXs

dt
. The horizontal “sunken source” coordinates (x − hx, y − hy) then satisfy

xscat − (x − hx) =

∫ ts

t′
s

dt vs,x(t), yscat − (y − hy) =

∫ ts

t′
s

dt vs,y(t), (42)

For the “sunken receiver” coordinates we find

(x + hx) − xscat =

∫ t′′
s

ts

dt vr,x(t), (y + hy) − yscat =

∫ t′′
s

ts

dt vr,y(t). (43)

Adding up the x components of these equations, and separately the y components of these

equations gives that

2hx =

∫ t′′
s

t′
s

vx(t)dt, 2hy =

∫ t′′
s

t′
s

vy(t)dt,

where now the velocity (vx, vy) is from the source ray for t < ts, and from the receiver ray

for t > ts. Let us denote by v‖,max the maximal horizontal velocity along the rays between

(xscat, yscat, zscat) and the points (xs, ys, z) and (xr, yr, z), then we have

2‖(hx, hy)‖ ≤ |t′′s − t′s|v‖,max = |τ |v‖,max. (44)
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When we plot the locations of the energy in D̄ in the (‖(hx, hy)‖, τ) plane, we find the

shaded region in Figure 5.

The angle transform in equation (41) is an integral of D over a plane in the (hx, hy, τ)

volume given by

τ = pxhx + pyhy.

Suppose now that
√

p2
x + p2

y <
2

v‖,max

, (45)

Then we have

|τ | = |pxhx + pyhy| <
2

v‖,max

‖(hx, hy)‖.

In other words the planes of integration are not in the shaded region of the (‖(hx, hy)‖, τ)

plane. The only points where these planes of integration intersect the set of (hx, hy, t)

where energy of D is located, are points with τ = 0, hx = hy = 0. It follows that the

energy in the angle transform of equation (41) is located only at the true scattering point

independent of (px, py). We conclude that the semblance property also holds for the angle

transform via Radon transform in the offset time domain, provided that (45) holds.

The bound v‖,max need not be a global bound on the horizontal component of the ray

velocity. The integral in equation (41) is over some finite range of offsets, hence on some

finite range of times, so that the distance between say the midpoint x in equation (41),

and the physical scattering point is bounded. Therefore v‖,max should be a bound on the

horizontal component of the ray velocity on some sufficiently large region around x.

EXAMPLES

In three 2D synthetic data examples we illustrate the semblance property established

in the preceding pages for shot-geophone migration. These examples expose the dramatic

contrast between image (or common-image-point) gathers produced by shot-geophone

migration and those produced by other forms of prestack depth migration. In all three

examples, the formation of caustics leads to failure of the semblance principle for Kirchhoff

(or Generalized Radon Transform) common scattering angle migration (Xu et al., 2001;

Brandsberg-Dahl et al., 2003). In all three examples the DSR assumption is satisfied for

the acquisition offsets considered For the shot-geophone migration we employ the double

square root approach, using a generalized screen propagator (GSP) approximation of the

square root operator (Le Rousseau and De Hoop, 2001). We form angle image gathers by

Radon transform in offset and time, following (de Bruin et al., 1990; Prucha et al., 1999).

Conversion of ‘slope’ to scattering angle follows the method described in (De Hoop et al.,

2003, (88)-(89)).
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Lens model

This example is used in (Stolk, 2002; Stolk and Symes, 2004) to show that common

offset and Kirchhoff (or generalized Radon transform) common scattering-angle migration

produce strong kinematic artifacts in strongly refracting velocity models. The velocity

model lens embedded in a constant background. This model is strongly refracting through

the formation of triplications in the rayfields. Below the lens, at a depth of 2 km, we

placed a flat, horizontal reflector. We synthesized data using a (4, 10, 20, 40) Hz zero

phase bandpass filter as (isotropic) source wavelet, and a finite difference scheme with

adequate sampling. A typical shot gather over the lens (Figure 8, shot position indicated

by a vertical arrow in Figure 6) shows a complex pattern of reflections from the flat

reflector that have propagated through the lens.

We migrated the data with the above mentioned depth-extrapolation approach. Fig-

ure 7 shows the image, which clearly reproduces the reflector. An angle image gather

(at horizontal location indicated by a vertical line in Figure ?? (left)) is shown in Fig-

ure 10; for comparison we show the Kirchhoff common scattering angle image gather in

FIgure 9) at the same location (left) reproduced from (Stolk and Symes, 2004), each trace

of which is obtained by Kirchhoff migration restricted to common angle. The Kirchhoff

image gather is clearly contaminated by numerous energetic non-flat events, while the

wave equation image gather is not. Artifacts in the Kirchhoff image gather must be non

flat and can be removed by ‘dip’ filtering in depth and angle, but only if the velocity

model is perfectly well known. In the wave equation image gather we observe a hint of

residual moveout, which we attribute to reduced accuracy of the DSR propagator at large

propagation angles. The image gathers have an increase in amplitude with increase in

scattering angle in common.

Valhall lens model

This example is used in (Brandsberg-Dahl et al., 2003). The compressional-wave ve-

locity model (Figure 11) is a simplication of the geological setting of the Valhall field. The

model is in fact isotropic elastic, but the main heterogeneity appears in the compressional

wave velocity. It consists of a slow Gaussian lens (gas); below the lens, at a depth of 1.5

km, we placed a reflector that is partly horizontal (a reservoir) and partly dipping to the

left. One can view the dipping part of the reflector as a model fault plane. Above the

reflector, the Gaussian lens is embedded in a constant gradient (0.45 s−1) background;

below the reflector the velocity is constant. Again, this model is strongly refracting.

We synthesized multi-component elastic-wave data using a bandpass filter with dom-

inant frequency 35 Hz as (isotropic, explosive) source wavelet, and a finite difference

scheme with close to adequate sampling. (Some numerical dispersion is present, but the

sampling would have been unrealistically fine to remove all dispersive effects associated
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with relatively low shear-wave velocities.) We extract the vertical component to suppress

the shear-wave contributions. A typical shot gather over the lens (Figure 13, vertical

component, shot position indicated by a vertical arrow in Figure 11) shows a complex

pattern of reflections from the reflector propagated through the lens; we note the weak,

remaining contributions from mode coverted waves at later times that will not be treated

properly by our acoustic-wave migration scheme here.

We migrated the data with the above mentioned depth-extrapolation approach. Fig-

ure 12 shows the image. An angle image gather (at horizontal location indicated by a

vertical line in Figure 11) is shown in Figure 14 (right); for comparison we show the angle

image gather at the same location (left) reproduced from (Brandsberg-Dahl et al., 2003),

which is obtained by generalized Radon transform migration (without focussing in dip or

the application of isochron filters). The left image gather is, again, clearly contaminated

by energetic non-flat events, while the right image gather is not.

Marmousi derived model

To establish the absence of artifacts in a geologically yet more realistic model, we

adopt a model derived from the Marmousi model (Xu et al., 2001). It is based on a

smoothing of the Marmousi velocity model and superimposing a layer of thickness 100 m

and contrast 10 m/s at depth 2400 m (Figure 15 (top)). The smoothing was carried out

with a low-pass filter, Gaussian shaped of half-power radius 150 m.

The data were generated, using an appropriately sampled finite difference scheme, as

the difference between the data in the smooth, reference, model (without the layer) and

the data in the model with the layer. The source was isotropic and dilational; the source

wavelet was obtained as a (5, 13, 40, 55) Hz bandpass filter – with a time delay of 56 ms.

Multi-pathing is prevalent in the right part of the model. A typical shot gather is shown

in Figure 16 with shot position indicated by a vertical arrow in Figure 15 (top)); it shows,

again, a very complex pattern of reflections.

We migrated the data with the above mentioned depth-extrapolation approach. Fig-

ure 15 (right) shows the image, in which the two reflectors are clearly resolved. An angle

image gather (at horizontal location indicated by a vertical line in Figure 15 (top)) is

shown in Figure 17 (right); for comparison we show the angle image gather at the same

location (left) reproduced from (Stolk and Symes, 2004), each trace of which is obtained

by Kirchhoff migration restricted to common scattering angle. The left image gather is,

again, contaminated by energetic non-flat events; one artifact is indicated by a curve. The

right image gather does not contain artifacts, as expected.
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CONCLUSION

We have demonstrated, mathematically and by example, that shot-geophone migration

produces artifact-free image volumes, assuming (i) kinematically correct and relatively

smooth velocity model, (ii) incident energy traveling downwards, reflected energy traveling

upwards, and (iii) enough data to uniquely determine rays corresponding to events in the

data. The examples compared shot-geophone migration with Kirchhoff common scattering

angle migration. While the latter technique bins data only implicitly, it is like other

binwise migration schemes, such as common offset migration, in generating kinematic

image artifacts in prestack data when the velocity model is sufficiently complex to strongly

refract waves.

The recent literature contains a number of comparisons of Kirchhoff and wave equa-

tion migration (for example, (Albertin et al., 2002; Fliedner et al., 2002)). Performance

differences identified in these reports have been ascribed to a wide variety of factors,

such as differences in anti-aliasing and decimation strategies, choice of time fields used

in Kirchhoff imaging, and “fidelity” to the wave equation. These factors surely affect

performance, but reflect mainly implementation decisions. The difference identified and

demonstrated in this paper, on the other hand, is fundamental: it flows from the differing

formulations of prestack imaging (and modeling) underlying the two classes of methods.

No implementation variations can mask it.

In fact, we have shown that implementation has at most a secondary impact on kine-

matic accuracy of shot-geophone imaging. Its basic kinematics is shared not just by the

two common depth extrapolation implementations - shot profile, double square root - but

also by a variant of reverse time imaging and even by a Kirchhoff or Generalized Radon

Transform operator of appropriate construction. Naturally these various options differ in

numerous ways, in their demands on data quality and sampling and in their sensitivity

to various types of numerical artifacts. However in the ideal limit of continuous data and

discretization-free computation, all share an underlying kinematic structure and offer the

potential of artifact-free data volumes when the assumptions of our theory are satisfied,

even in the presence of strong refraction and multiple arrivals at reflecting horizons.

It remains to address three shortcomings of the theory. The first is its reliance on the

“DSR” assumption, i.e. no turning rays. The numerical investigations of Biondi and Shan

(2002) suggested that reverse time (two-way) wave equation migration, as presented here,

could be modified by inclusion of nonhorizontal offsets to permit the use of turning energy,

and indeed to image reflectors of arbitrary dip. This latter possibility has been understood

in the context of (stacked) images for some time (Yoon et al., 2003). Biondi and Shan

(2002) present prestack image gathers for horizontal and vertical offsets which suggest

that a similar flexibility may be available for the shot-geophone extension. Biondi and

Symes (2004) give a local analysis of shot-geophone image formation using nonhorizontal
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offsets, whereas Symes (2002) studied globally the formation of kinematic artifacts in

a horizontal / vertical offset image volume. In contrast to the horizontal offset / DSR

setting, such artifacts in general offset shot-geophone image volumes cannot be entirely

ruled out. However kinematic artifacts cannot occur at arbitrarily small offset, in contrast

to the formation of artifacts at all offsets in binwise migration.

A second limitation of our main result is its assumption that ray kinematics are com-

pletely determined by the data. Of course this is no limitation for the 2D synthetic

examples presented above. “True 3D” acquisition is not unknown (Brandsberg-Dahl et

al., 2003), but is uncommon - most contemporary data is acquired with narrow-azimuth

streamer equipment. For such data, we cannot in general rule out the appearance of arti-

facts due to multiple ray pairs satisfying the shot-geophone kinematic imaging conditions.

However two observations suggest that all is not lost. First, for ideal “2.5D” structure

(independent of crossline coordinate) and perfect linear survey geometry (no feathering),

all energetic rays remain in the vertical planes through the sail line, and our analysis ap-

plies without alteration to guarantee imaging fidelity. Second, the conditions that ensure

absence of artifacts are open, i.e. small perturbations of velocity and source and receiver

locations cannot affect the conclusion. Therefore shot-geophone imaging fidelity is robust

against mild crossline heterogeneity and small amounts of cable feathering. Note that

nothing about the formulation of our modeling or (adjoint) migration operators requires

areal geometry - the operators are perfectly well-defined for narrow azimuth data.

A very intriguing and so far theoretically untouched area concerns the potential of

multiple narrow azimuth surveys, with distinct central azimuths, to resolve the remaining

ambiguities of single azimuth imaging.

A third, and much more fundamental, limitation pertains to migration itself. Migra-

tion operators are essentially adjoints to linearized modeling operators. The kinematic

theory of migration requires that the velocity model be slowly varying on the wavelength

scale, or at best be slowly varying except for a discrete set of fixed, regular interfaces.

The most challenging contemporary imaging problems, for example subsalt prospect as-

sessment, transgress this limitation, in many cases violently. Salt-sediment interfaces are

amongst the unknowns, especially bottom salt, are quite irregular, and are perhaps not

even truly interfaces. Very clever solutions have been and are being devised for these

difficult imaging problems, but the theory lags far, far behind the practice.
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APPENDIX A

In this appendix we establish the relation between the appearance of events in the

data and the presence of reflectors in the migrated image. This relation is the same for

the forward modeling operator and for its adjoint, the migration operator.

The reasoning presented here shares with (Stolk and De Hoop, 2001) the identification

of events, respectively reflectors, by high frequency asymptotics in phase space, but differs

in that it does not explicitly use oscillatory integral representations of F [v]. Instead, this

argument follows the pattern of Rakesh’s analysis of shot profile migration kinematics

(Rakesh, 1988). It can be made mathematically rigorous, by means of the so-called

Gabor calculus in the harmonic analysis of singularities (see (Duistermaat, 1973) Ch. 1).

Our analysis is based on the recognition that the shot-geophone predicted data field

u(xr, t;xs), defined by equation (6), is the value at x̄ = xr of the space-time field

u(x̄, t;xs), which solves

1

v2(x̄)

∂2u

∂t2
(x̄, t;xs) −∇2

x̄u(x̄, t;xs) =

∫

dh R(x̄ − h,h)
∂2

∂t2
G(x̄ − 2h, t;xs) (46)

This equation follows directly by applying the wave operator to both sides of equation

(6).

The appearance of an event at a point (xs,xr, tsr) in the data volume is equivalent to

the presence of a sizeable Fourier coefficient for a plane wave component

eiω(t−ps ·x̄s−pr ·x̄r)

29

-------



Stolk, de Hoop, Symes Kinematics of shot-geophone migration

in the acoustic field for frequencies ω within the bandwidth of the data, even after muting

out all events at a small distance from (xs,xr, tsr).

Note that the data does not necessarily fully determine this plane wave component, i.e.

the full 3D event slownesses ps,pr. In this appendix, ps,pr are assumed to be compatible

with the data, in the sense just explained.

Assume that these frequencies are high enough relative to the length scales in the ve-

locity that such local plane wave components propagate according to geometric acoustics.

This assumption tacitly underlies much of reflection processing, and in particular is vital

to the success of migration.

That is, solutions of wave equations such as (46) carry energy in local plane wave com-

ponents along rays. Let (Xr(t),Pr(t)) denote such a ray, so that Xr(tsr) = xr,Pr(tsr) =

pr. Then at some point the ray must pass through a point in phase space at which the

source term (right hand side) of equation (46) has significant energy - otherwise the ray

would never pick up any energy at all, and there would be no event at time tsr, receiver

position xr, and receiver slowness pr. [Supplemented with proper mathematical boiler-

plate, this statement is the celebrated Propagation of Singularities theorem of Hörmander,

(Hormander, 1983; Taylor, 1981).]

The source term involves (i) a product, and (ii) an integral in some of the variables.

The Green’s function G(x̄s, t,xs) has high frequency components along rays from the

source, i.e. at points of the form (Xs(ts),Ps(ts)) where Xs(0) = xs and ts ≥ 0. [Of course

this is just another instance of Propagation of Singularities, as the source term in the

wave equation for G(x̄s, ts,xs) is singular only at (xs, 0).] That is, viewed as a function

of x̄s and ts, G(·, ·;xs) will have significant Fourier coefficients for plane waves

eiω(Ps(ts)·x̄s+ts)

We characterize reflectors in the same way: that is, there is a (double) reflector at

(x̄s, x̄r) if R̄ has significant Fourier coefficients of a plane wave

ei(ks·x̄′

s
+kr·x̄′

r
)

for some pair of wavenumbers ks,kr, and for generic points (x̄′
s, x̄

′
r) near (x̄s, x̄r). Pre-

sumably then the product R(x̄′
s,x)G(x̄′

s, ts;xs) has a significant coefficient of the plane

wave component

ei((ks+ωPs(ts))·x̄′

s
+kr ·x+ωts)

for x̄′
s near x̄s, x near x̄r; note that implicitly we have assumed that x̄s (the argument of

G) is located on a ray from the source with time ts. The right-hand side of equation (46)

integrates this product over x̄s. This integral will be negligible unless the phase in x̄s is
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stationary: that is, to produce a substantial contribution to the RHS of equation (46), it

is necessary that

x̄s = Xs(ts), ks + ωPs(ts) = 0 (47)

Supposing that this is so, the remaining exponential suggests that the RHS of equation

(46) has a sizeable passband component of the form

ei(kr ·x+ωts)

for x near x̄r. As was argued above, this RHS will give rise to a significant plane wave

component in the solution u arriving at xr at time tsr = ts+tr exactly when a ray arriving

at xr at time tsr starts from a position in space-time with the location and wavenumber

of this plane wave, at time ts = tsr − tr: that is,

Xr(ts) = x̄r, ωPr(ts) = kr (48)

We end this appendix with a remark about the case of complete coverage, i.e. sources

and receivers densely sample a fully 2D area on or near the surface. Assuming that the

effect of the free surface has been removed, so that all events may be viewed as samplings

of an upcoming wavefield, the data (2D) event slowness uniquely determines the wavefield

(3D) slowness through the eikonal equation. Thus an event in the data is characterized

by its (3D) moveout: locally, by a moveout equation t = T (xs,xr), and infinitesimally by

the source and receiver slownesses

ps = ∇xs
T, pr = ∇xr

T

In this case, the data event uniquely determines the source and receiver rays.

APPENDIX B

This appendix gives a quick derivation of equations (17), (18), and (39), which give

prescriptions for computing the adjoints of the horizontal-offset shot-geophone modeling

operator and of its double square root approximation, respectively. These are examples of

the adjoint state method for computing the adjoints of operators defined by simulations.

Tarantola (1987) gives more examples of this type of computation.

Defining the adjoint implies specifying an innter product on both the input and output

spaces of the operator. The computation given here presumes the standard (“L2”) inner

product for both, given by

〈f, g〉 =

∫

f̄ g,

where the integration takes place over all variables on which the functions f, g depend, and

the complex conjugation is included to permit complex valued functions when necessary.
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Reverse time shot-geophone migration with horizontal offsets

Recall that the horizontal offset shot-geophone modeling operator is defined by

F̄z[v]R̄z(xr, t;xs) = u(xr, t;xs),

where u solves the inhomogeneous wave equation
(

1

v2(x̄r)

∂2

∂t2
−∇2

x̄r

)

u(x̄r, t;xs) = ws(x̄r, t;xs), (49)

and

ws(x̄r, t;xs) =

∫

dx̄s

∫

dȳsR̄z

(

x̄r, x̄s, ȳr, ȳs,
z̄r + z̄s

2

)

δ(z̄r − z̄s)
∂2

∂t2
G(x̄s, t;xs). (50)

According to the standard definition, the adjoint Fz[v]∗ must satisfy for all possible

data d and horizontal offset reflectivity R̄z

〈F̄z[v]∗d, R̄z〉 = 〈d, F̄ [v]R̄z〉 =

∫ ∫

dxs dxr

∫ T

0

dt d(xr, t;xs)u(xr, t;xs)

=

∫

dxs

∫

dx

∫ T

0

dt

{
∫

dxr d(xr, t;xs)δ(x − xr)

}

u(x, t;xs),

=

∫

dxs

∫

dx

∫ T

0

dt

[(

1

v2

∂2

∂t2
−∇2

)

u∗(x, t;xs)

]

u(x, t;xs), (51)

provided that the adjoint field u∗ satisfies
(

1

v(x)2

∂2

∂t2
−∇2

)

u∗(x, t;xs) =

∫

dxd(xr, t;xs)δ(xr − x), (52)

and u∗ ≡ 0, t >> 0, z > 0. Notice that equation (52) is identical to equation (18).

Integration by parts on the right hand side of equation (51) shows that

〈d, F̄ [v]R̄z〉 =

∫

dxs

∫

dx

∫ T

0

dt

[(

1

v2

∂2

∂t2
−∇2

)

u(x, t;xs)

]

u∗(x, t;xs)

(boundary terms in integration by parts vanish because (i) u ≡ 0, t << 0; (ii) u∗ ≡

0, t >> 0; (iii) both vanish for large x, at each t)

=

∫

dxs

∫

dx

∫ T

0

dt ws(x, t;xs)u
∗(x, t;xs).

Referring to the definition (50) of ws, one sees that this integral is

= 〈R̄z, F̄z[v]∗d〉,

when F̄z[v]∗ is given by equation (17).
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Double square root migration

As explained above, computing the adjoint of the double square root modeling operator

(defined in equation (36)) boils down to computing the adjoint of the operator H : f 7→

u|z=0 where f and u are linked by

∂

∂z̄
u(x̄r, x̄s, ȳr, ȳs, z̄, t) = BDSRu(x̄r, x̄s, ȳr, ȳs, z̄, t) + f(x̄r, x̄s, ȳr, ȳs, z̄, t), u ≡ 0, z >> 0,

(53)

in which BDSR is the double square root operator,

BDSR = −i

(

√

−v−2(x̄r)
∂2

∂t2
+ ∇2

x̄r ,ȳr
+

√

−v−2(x̄s)
∂2

∂t2
+ ∇2

x̄s,ȳs

)

.

Let d(xr, xs, yr, ys, t) be a data-like field, and observe that

〈d, Hf〉 =

∫

dxr

∫

dxs

∫

dyr

∫

dys

∫

dt d(xr, xs, yr, ys, t)u(xr, xs, yr, ys, 0, t)

=

∫

dxr

∫

dxs

∫

dyr

∫

dys

∫

dz

∫

dt (d(xr, xs, yr, ys, t)δ(z))u(xr, xs, yr, ys, z, t)

=

∫

dxr

∫

dxs

∫

dyr

∫

dys

∫

dz

∫

dt

[

¯(

−
∂u∗

∂z
+ BDSRu∗

)

u

]

(xr, xs, yr, ys, z, t),

provided that u∗ solves

(

−
∂u∗

∂z
+ BDSRu∗

)

(xr, xs, yr, ys, z, t) = d(xr, xs, yr, ys, t)δ(z), u∗ ≡ 0, z << 0.

Because the single square root operators are skew-adjoint, so is the operator BDSR is

skew-adjoint: its adjoint (with respect to the Hermitian L2 inner product) is its negative.

Integrating by parts in z, one obtains

〈d, Hf〉 =

=

∫

dxr

∫

dxs

∫

dyr

∫

dys

∫

dz

∫

dt̄

[

u∗

(

∂u

∂z
− BDSRu

)]

(xr, xs, yr, ys, z, t)

= 〈u∗, f〉,

whence H∗d = u∗, as claimed in equation (39).
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APPENDIX C

The square root

−i

√

−v−2(x, y)
∂2

∂t2
+ ∇2

x,y,

is (relatively) easy to understand as an operator via the Fourier transform, if the veloc-

ity field v is laterally homogeneous (constant in x, y - we suppress for the moment the

depenence of v on z). A different approach is required if v is laterally heterogeneous,

certainly the case of interest in our work. The theory of pseudodifferential operators gives

a framework within which to understand and even compute with such expressions. This

formidable-sounding phrase connotes a quite simple and natural idea: if the variation of

v is slow on the scale of a wavelength, then to good approximation the wave will see a

locally constant velocity. So it should still be possible to define the action of this operator

through the Fourier transform. The words “slow” and “approximation” hint that a log-

ically consistent realization of this idea must be a variant of high frequency asymptotics,

and that is the case. A good account of the general theory is Taylor’s book (Taylor, 1981).

This appendix presents a very skeletal treatment of the square root operator from this

point of view. For careful application of the theory to one-way wave propagation, see

(Stolk, 2004).

In order to stay close to the intended application, we use ω, kx, ky as Fourier variables,

despite some resulting awkwardness in notation. A pseudodifferential operator is one that

can be represented as an oscillatory integral of the type

Au(x, y, t) =

∫

dkx

∫

dky

∫

dωa(x, y, t, kx, ky, ω)ei(kxx+kyy+ωtû(kx, ky, ω), (54)

in which û denotes the Fourier transform of u.

The kernel a(...) is called the symbol of the operator. Symbols are not permitted to

be arbitrary functions in this theory, but must obey various restrictions. The (sub)class

of operators of interest to us are defined by symbols which have these properties:

• polynomial growth at infinity in the Fourier variables:

a(x, y, t, kx, ky, ω) = O((k2
x + k2

y + ω2)
m

2 ),

in which m is the order of the operator, which may be fractional.

• a is infinitely often differentiable in all of its variables, and the derivatives are

symbols of the same class; each partial derivative in the Fourier variables lowers the

order by one;
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• a has an asymptotic expansion

a(x, y, t, kx, ky, ω) ∼
∞
∑

j=0

am−j(x, y, t, kx, ky, ω),

with each term aj homogeneous in the Fourier variables of degree j. The expansion

is asymptotic, in the sense that truncating it at j leaves a difference between left

and right sides which is of order m − j − 1 in the Fourier variables. The leading

order term am is homogenous of order m and is called the principal symbol of the

operator.

Note that the theory is not at all restricted to three space-time variables, but can

accomodate any number of independent variables of any (or no) physical significance.

Also the class of symbols defined by the above requirements is fairly special; see Tayler

(1981) for a description of much more general classes of symbols and insight into the role

of this special but important subclass.

The horizontal wave operator can be represented as such an oscillatory integral, via

the basic properties of the Fourier transform:
(

−v−2(x, y)
∂2

∂t2
+ ∇2

x,y

)

u(x, y, t) =

1

(2π)3

∫

dkx

∫

dky

∫

dω(v2(x, y)ω2 − k2
x − k2

y)e
i(kxx+kyy+ωtû(kx, ky, ω).

Note that in this case the symbol is a homogenous function of the Fourier variables of

degree 2, so satisfies all of the conditions stated above (provided that the velocity is a

smooth positive function, which we assume). The order is 2, which is consistent with the

usual notion of order for the wave operator.

It is natural to think that the square root of the horizontal wave operator would be

represented by the same sort of oscillatory integral, say B, with symbol equal to the

square root of the wave operator’s symbol. This is precisely correct for constant v. The

theory of pseudodifferential operators shows that it is also true for (smoothly varying)

nonconstant v, to leading order in the Fourier variables:

Bu(x, y, t) ≡

∫

dkx

∫

dky

∫

dωb(x, y, t, kx, ky, ω)ei(kxx+kyy+ωtû(kx, ky, ω) (55)

satisfies

B2u(x, y, t) = B(Bu)(x, y, t) =

(

−v−2(x, y)
∂2

∂t2
+ ∇2

x,y

)

u(x, y, t)

The symbol b is of order 1,

b ∼ b1 + b0 + b−1 + ....,
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and

b1(x, y, t, kx, ky, ω) = (2π)−
3

2 sgnω
√

v−2(x, y)ω2 − k2
x − k2

y

= (2π)−
3

2 ω
√

v−2(x, y) − ω−2(k2
x + k2

y).

A standard recursion computes the remaining terms b0, b−1, ..., which do not in general

vanish - see (Taylor, 1981), Lemma 6.2, p. 50 for a similar computation.

Clearly this construction fails at points in phase space where |ω| = v(x, y)
√

k2
x + k2

y ,

as the square root becomes singular there so cannot define a principal symbol. Physically,

this condition marks the onset of nonpropagating or evanescent waves. See (Stolk, 2004)

for a careful treatment of this problem. A resolution does not obviate the construction

presented here, but merely requires that the symbol construction be modified near the

singularity in the square root.

A crude approximation to the careful fix presented in (Stolk, 2004) is to restrict the

integration in equation (55) to the region defined by |ω| > (1+ǫ)v(x, y)
√

k2
x + k2

y for some

choice of ǫ > 0. This approximation will suffice for the remainder of the discussion. Its

meaning: the operator defined by this limited range of integration will approximate the

square root, i.e. its square will approximate the action of the horizontal wave operator,

for functions whose localized Fourier transforms have significant high frequency energy

only at (kx, ky, ω) satisfying the constraints. Localized Fourier transform means: multiply

by a function vanishing outside of a small region, then Fourier transform. The notion of

localized Fourier transform permits us to view the energy of a function as distributed in

phase space - the position coordinates being the point of localization, the wavenumber

coordinates being the Fourier variables used to describe the transform of the localized

function. The uncertainty principle limits the precision with which we can associate

energy to points in phase space.

Note that the b1 is real and odd in the Fourier variables; the other terms in the

asymptotic expansion inherit these properties also, and so to all finite orders in frequency

is the total symbol b. It follows that −iB is real, i.e. maps real-valued functions to real

valued functions. Indeed,

(−iBu(x, y, t)) = i

∫

dkx

∫

dky

∫

dωb(x, y, t, kx, ky, ω)e−i(kxx+kyy+ωt ¯̂u(kx, ky, ω)

= i

∫

dkx

∫

dky

∫

dωb(x, y, t,−kx,−ky,−ω)ei(kxx+kyy+ωt ¯̂u(−kx,−ky,−ω).

in which the last step results from the changes of variable kx → −kx, ky → −ky, ω → −ω.

Since u is real, ¯̂u(−kx,−ky,−ω) = û(kx, ky, ω). Since b is odd in the Fourier variables,

(−iBu(x, y, t)) = −i

∫

dkx

∫

dky

∫

dωb(x, y, t, kx, ky, ω)ei(kxx+kyy+ωtû(kx, ky, ω)
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= −iBu(x, y, t).

That is, −iBu is real-valued if u is real-valued, as was to be shown.

We can now derive the square-root equation (36) satisfied by an upgoing solution

of the wave equation (22). For the remainder of the discussion, we re-introduce the z

dependence of the various fields. We need several more properties of pseudodifferential

operators, the first two of which generalize well-known properties of differential operators:

• if Ai has order mi (i.e. its symbol does), i = 1, 2 then A1A2 is also a pseudodiffer-

ential operator and has order m1 + m2;

• (scalar) pseudodifferential operators commute to highest order: in the notation of

the previous bullet, [A1, A2] ≡ A1A2 − A2A1 has order m1 + m2 − 1;

• For any such operator A of order m, there exists an operator A† of order −m for

which A†Au ≃ u when u has no significant high frequency energy at points in phase

space where the symbol of A vanishes;

• pseudodifferential operators do not change the locations in phase space of high

frequency components: if B is such an operator, and localized Fourier components

of u vanish to arbitrarily high order near a given direction in wavenumber space,

then Bu has the same behaviour (this is sometimes called the “microlocal” property

of pseudodifferential operators).

A short computation shows that (B denoting again the square root operator as above)

(

∂

∂z
− iB

)(

∂

∂z
+ iB

)

+

[

∂

∂z
, iB

]

=
1

v(x)2

∂2

∂t2
−∇2

The symbol of the z partial derivative is −ikz, whereas the symbol of −iB is −iω(. . .) in

which the elided term is real and positive. “Upgoing” means: for the Fourier transform

localized near x, y, z, t, significant energy is found only at wavenumbers satisfying the

dispersion relation of the wave equation with ω, kz having the same sign. Thus the symbol

of the first factor cannot vanish where u (or the second factor acting on u, according to

the last bullet above) has significant high frequency components. Thus according to the

third bullet above, the wave equation (22) implies the double square root equation (36)

for the upcoming solution, in which

C− =

(

∂

∂z
− iB

)† [
∂

∂z
, iB

]

and

A− =

(

∂

∂z
− iB

)†
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The first three bullets above imply that A− has order −1, and C− has order zero. Therefore

the operator −iB + C− appearing in equation (36) has the same principal symbol as

−iB. Arguing further along these lines, one sees that the operators C− and A− can be

dropped as suggested above without changing the location or orientation of high frequency

components in the solution.

Some technical difficulty arises from the fact that B is actually a family of pseudodif-

ferential operators in x, y, t parametrized by z, which in general is not a pseudodifferential

operator in x, y, z, t. See (Stolk, 2004) and references cited there.

APPENDIX D

An integral or “Kirchhoff” representation of the shot-geophone migration operator is

also possible. We mention this here to emphasize that the computational representation of

the shot-geophone migrated field is not the determinant of its favorable kinematic proper-

ties: the Kirchhoff representation described here is in principle kinematically equivalent to

two-way reverse migration, and to shot profile and double square root migrations within

their domains of validity.

Application of standard high frequency asymptotics and stationary phase arguments

to the integral representation of the shot-geophone field (3) gives

F [v]R(xr, t;xs) =
∂2

∂t2

∑

i,j

∫ ∫

dx dh A(i,j)(x,h,xs,xr) δ(t − T (i,j)(x,h,xs,xr))R(x,h)

(56)

in which T (i,j)(x,h,xs,xr) is the sum of the ith branch of the (one-way) traveltime from

the source point xs to the source-ray scattering point x − h, and the jth branch of the

traveltime from the receiver-ray scattering point x + h to the receiver point xr, and

A(i,j)(...) is an amplitude involving spreading factors, velocity, etc. (Stolk and Symes,

2004). The Kirchhoff shot-geophone migration formula is then

F ∗[v]d(x,h) ≃

∫ ∫

dxsdxr

∑

i,j

A(i,j)(x,h,xs,xr)
∂2d

∂t2
(xs,xr, T

(i,j)(x,h,xs,xr)) (57)

Stolk and De Hoop (2001) derived these formulas in a different way for the special

case h3 = 0, i.e. horizontal depth-offset.
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Fig. 1. Ray theoretic relation between data event and double reflector.
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Fig. 2. Ray theoretic relation between data event and physical (single) reflector.
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Fig. 3. Ray geometry for double reflector with horizontal offset only
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Fig. 4. Ray geometry for offset-time angle gather construction.
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Fig. 5. Cone in phase space for energy admitted to angle gather construction.
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Fig. 6. Lens velocity model over flat reflector.
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Fig. 7. DSR image of data lens velocity model, flat reflector.
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Fig. 8. Lens model, shot record at shot location −500 m.
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Fig. 9. Lens model, common image point gather obtained with the Kirchhoff angle
transform at xm = 300 m.
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Fig. 10. Lens model, common image point gather obtained with the wave-equation
angle transform (right) at xm = 300 m.
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Fig. 11. Valhall velocity model.
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Fig. 12. Valhall DSR image.
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Fig. 13. Valhall lens model, shot record at shot location 4884 m.

50



Stolk, de Hoop, Symes Kinematics of shot-geophone migration

0

0.5

1.0

1.5

2.0

20 40 60
0

0.5

1.0

1.5

2.0

0 20 40 60

Fig. 14. Valhall lens model, common image point gathers obtained with the Kirchhoff
angle transform (left) and the wave-equation angle transform (right) at 4680 m.
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Fig. 15. Marmousi derived model (top) and DSR image (bottom).
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Fig. 16. Marmousi derived model, shot record at shot location 7500 m.
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Fig. 17. Marmousi derived model, common image point gathers obtained with the
Kirchhoff angle transform (left) and the wave-equation angle transform (right) at 6200

m.
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