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Abstract

How bacteria are able to maintain its sizes and shapes remains an open fundamental

question. It is believed that cells have very narrow distributions of sizes as a conse-

quence of a homeostasis that allows bacteria to function at the most optimal conditions.

Several deterministic phenomenological approaches to explain these observations have

been presented, but the microscopic origins of the precise cell-size regulation are still

not understood. Here we propose a new stochastic approach to investigate the molecu-

lar mechanisms of maintaining the cell sizes in bacteria. It is argued that the cell-size

regulation is a result of coupling of two stochastic processes, cell growth and cell divi-

sion, which eliminates the need for introducing the thresholds. Dynamic properties of

the system are explicitly evaluated, and it is shown that the model agrees with experi-
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mentally supported adder principle of cell-size regulation. In addition, our theoretical

predictions are tested by analyzing experimental observations on E.coli bacteria.

While for different bacteria the cell sizes might strongly differ, for a given organism cells

have remarkably reproducible shapes and strikingly narrow distributions of sizes.1–6 It has

been suggested that this is a consequence of a homeostasis, a dynamic state of the living

matter at which the most optimal functioning of organisms is achieved.1 It is assumed that to

support the homeostasis the sizes and shapes of bacteria cells of the same type must be very

similar. However, the microscopic mechanisms of how such tight control might be realized

are still not well understood.2,3,5,7,8 Unlike eukaryotes, bacteria lack the so-called cell-cycle

checkpoints, biochemical pathways that regulate the cell division and size. Yet they must

overlap DNA replication with the division machinery. This poses a challenge for the bacterial

cells to coordinate division with growth in the dynamically changing environment. In recent

years some progress has been made to elucidate the details of the correlation between the

cell division and growth in bacteria.3,5,7,8 However, many microscopic aspects of the cell-size

control are still not clarified.2

Several theoretical ideas to explain the uniformity and narrow distribution of cell sizes

have been proposed, and two main directions are dominating the discussions in the field: the

so-called sizer models and adder models.2,8,9 The sizer concept assumes that the constant

cell size is a consequence of the regulation mechanism that selectively restricts the growth

of large cells and promotes the growth of small cells. As a result, the cell size converges to a

specific value. At the same time, the adder concept assumes that all types of cells, small or

large, between the divisions accumulate approximately the same amount of mass, i.e., they

grow by the same length, assuming that the growth is effectively a one-dimensional process,

as frequently observed in real biological systems. After the division, the large cells decrease

their lengths, while the small cells increase their length, and this leads to the limitations in

the cell size variations.

Significant experimental efforts have been devoted to clarifying the mechanisms that
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control the cell sizes.4,8,10 Recent advances in single-cell microfluidic techniques provided

substantial amounts of quantitative data for various bacteria.2,5 These investigations clearly

showed that the cell size in prokaryotic cells follows the adder principle. It was also suggested

that the adder mechanism is a consequence of two general processes: 1) a balanced biosyn-

thesis, which is viewed as always keeping the numbers of protein molecules relevant for the

growth and division to be proportional to the cell volume; and 2) a threshold accumulation

of division initiators and precursors to a fixed number. However, the molecular picture that

leads to the adder mechanism remains undetermined.3,5,7,11 One of the weakest points of all

deterministic phenomenological approaches is the assumption of existence of thresholds that

direct the processes in the desired direction. A specific set of molecular biochemical and

biophysical processes must be responsible for the appearance of such thresholds, but none

of them have been clearly identified so far despite extensive experimental studies.2

In this paper, we present a new theoretical approach to investigate the mechanisms of

the cell-size regulation in bacteria. Our main idea is that it is governed by two stochastic

processes, cell growth and cell division, which are coupled together in a such way that allows

for effective regulation of the cell sizes. Importantly, the stochasticity of involved cellular

processes eliminates the necessity of using the thresholds, which is the weakest point of

existing theoretical approaches. The analysis of our minimal theoretical model allows us to

perform explicit calculations of dynamic features in the system, and theoretical predictions

agree with available experimental observations. It also clarifies the role of stochasticity in

the regulation of cell sizes in bacteria.
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Figure 1: A schematic view of a discrete-state stochastic model of the cell-size regulation.
The cell size is described by a discrete variable n that corresponds to the number of proteins
responsible for growth.
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Let us present a discrete-state stochastic model of the cell-size regulation in bacteria as

illustrated in Fig. 1. Because the bacterial cells mostly change their lengths while the widths

are kept almost constant,2,8 a one-dimensional description of the cell growth is justified

as a first approach. We introduce a discrete variable n, which corresponds to a number

of proteins responsible for the growth and for the division, as a measure of the length

of the cell. At typical proliferating conditions, when the nutrients are well available, it

is reasonable to assume that the proteins responsible for cell growth and for division are

formed much faster than the growth and division rates. Thus, the number of division and

growth protein precursors are always proportional to the cell size, which is consistent with

experimental findings pointing to the balanced biosynthesis in bacteria.5 For this reason, as

a first approximation, we can use a single discrete parameter n to quantify the length of the

cell. It is a discrete variable because the changes in the amounts of proteins responsible for

growth and division are obviously also quantized. For example, we can associate the variable

n with the number of FtsZ proteins, which is a primary component of membrane constriction

during the cell division.12–17

In our minimal theoretical model, only two processes might happen: growth and division.

For the cell of size n, it is assumed that the growth rate is equal to λn where λ is a rate

constant for the growth: see Fig. 1. This reflects the fact that the cell growth is proportional

to the number of proteins that support the increase in the cell size. Similarly, we assume

that the division can happen at any cell size with the rate proportional to the cell size. This

means that the cell of the size n can divide with a rate kn (where k is a rate constant for

the division), as shown in Fig. 1. In our approach, the growth and division processes are

viewed as effective chemical “reactions” (although real processes, of course, are much more

complex). This allows us to naturally introduce the stochasticity in the system while keeping

theoretical calculations of dynamic properties relatively simple. The main advantage of our

theoretical method is the assumption that the division can take place for the cells of any size.

But because of the coupling with the growth the division happens preferably at relatively
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narrow range of the cell sizes. This eliminates the need for introducing and explaining the

appearance of the thresholds, which is the weakest point in the current phenomenological

approaches.5

If the number of proteins responsible for growth and division are very high (n � 1),

we can present simple mean-field arguments to describe the dynamics of the cell size using

an effectively continuous time approach. At these conditions, the temporal evolution of the

average cell length 〈n(t)〉 can be written as

d〈n〉
dt

= λ〈n〉 − 2k〈n〉〈n〉
2
. (1)

In this equation, the first term on the right side describes the increase in the cell length due

to the growth, while the second term corresponds to the shortening due to the cell division.

In this shortening process, every division removes 〈n〉/2 length from the original average cell

length, and it happens with the rate k〈n〉. The coefficient 2 in the rate reflects the fact that

for every single cell of the size n two shorter cells of the size n/2 are created after division.

Eq. (1 can be solved at all times with an initial condition 〈n(t = 0)〉 = n0, yielding,

〈n(t)〉 =
cλeλt

1 + kceλt
, (2)

where c = n0

λ−kn0
. At the steady state (t→∞), we obtain nst = λ

k
, which is the average cell

size in the population. Then Eq. (2) can be rewritten in the dimensionless form as

〈n(t)〉
nst

=
eλt

nst

n0
− 1 + eλt

. (3)

The results of our theoretical calculations and comparisons with experimental data for E.coli

bacteria2 are presented in Fig. 2. The model predicts that the average cell size reaches a

homeostasis value, and this fully agrees with experimental observations. One can see that for

typical conditions in E.coli bacteria2 4-5 divisions is enough to reach the stationary length
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even when the original cell lengths deviate as much as ∼ 50%.
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Figure 2: The normalized cell length as a function of the time in units of inter-division
generation time. Solid lines are theoretical predictions from Eq. (3) and symbols are from
experimental observations for E.coli bacteria as given in Ref.2

Now let us consider now the growth and division dynamics in bacterial cells without

mean-field assumptions, but only for the stationary-state regime. Because two processes

(growth and division) are independent of each other, the probability to divide at the length

n is given by

pn = p =
kn

kn+ λn
=

1

1 + λ
k

. (4)

This is an important result since it shows that in our stochastic model the probability of

division is always constant and independent of the cell size. Now let us assume that we have

a cell with the size n0 at some initial time. The probability that the cell will divide after

increasing its size by exactly n units can be written as

Qn = p(1− p)n (5)

The physical meaning of this expression is simple: there are no divisions after n events (only

cell growth), but the (n + 1)-th event leads to the division. In Fig. 3, the probabilities to

divide as a function of the cell size n for two different cases λ > k (growth is faster) and
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λ < k (division is faster) are presented. One can see that for fast growth rates the probability

to divide is slowly decreasing with n, while for the situation when the division rates are fast

the probability is decreasing much faster with n. This can be explained by the fact that for

λ > k (growth is faster) the cells of various sizes might exist, while for λ < k (division is

faster) only relatively short length cells might exist.
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Figure 3: The probability to divide Qn as a function of cell size n for: (a) λ/k = 2 (b)
λ/k = 0.5.

The average length l added between consecutive divisions can now be explicitly calculated

as

< n >= l =
∞∑
n=0

nQn =
1− p
p

= λ/k. (6)

This is another important result because it shows that, independently of the initial cell size,

at average the same length is added to the growing cells between two divisions. The ratio of
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the growth and division rate constants specify this length. This result fully agrees with the

adder principle, and it shows that our stochastic model is consistent with major experimental

observations in bacteria.2,5

While the average length added to the cell between two consecutive divisions is the same,

due to stochasticity of the growth and division processes there is a distribution of added

lengths. In our model, we can quantify these fluctuations by calculating (as shown in the

Supporting Information) the normalized variance [also known as the coefficient of variance

(CV)] of the added size,

σ̄ =

√
< n2 > − < n >2

< n >
=

√
1 + λ/k

λ/k
. (7)

The results of theoretical calculations are presented in Fig. 4, and they suggest that increas-

ing the added length between the divisions should lower the fluctuations around the average

added cell length. For typical cellular conditions in bacteria we could estimate that λ/k � 1,

and our model predicts σ̄ ≡ CV ∼ 1. However, experimental observations on E.coli bacteria

at variable growth conditions reported CV ∼ 0.2−0.3.2 The distribution of added lengths is

more narrow than predicted in our theoretical approach. This indicates that more detailed

biochemical description of the growth and division processes might be required to explain

smaller fluctuations for the added length in the cell-size regulation in bacteria. However,

our minimal theoretical model is already capable to capture and to explain some important

physical observations.

The presented discrete-state stochastic approach allows us also to understand better

the microscopic details of bacterial cell division. It can be done by utilizing a method of

first-passage processes, which is a powerful theoretical tool that was successfully used in

analyzing various problems in chemistry, physics and biology.18,19 Our goal is to evaluate the

distribution of the cell division times for the system that starts from the cell size n0, and

with the added size before the next division to be equal exactly l =< n > [see Eq. 6]. The
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Figure 4: Normalized variance σ̄ of the added average cell size as a function of λ/k.

cell growth in the system is proceeding and the process is stopped immediately as soon as

the division happens exactly at the location n0 + l. There could be other situations when the

division happens earlier (n < n0 + l) or later (n > n0 + l), but we consider such events to

be unsuccessful. One can define a function Fn(t) as the probability density of dissociating

exactly at the size n0 + l (see Fig. 1) for the first time at time t if at t = 0 the cell size was

equal to n. The temporal evolution of such first-passage probability functions is governed

by a set of backward master equations,18,19

dFn(t)

dt
= nλFn+1(t)− n(k + λ)Fn(t) (8)

for n0 ≤ n < n0 + l; and

dFn0+l(t)

dt
= k(n0 + l)Fd(t)− (λ+ k)(n0 + l)Fn0+l(t) (9)

for n = n0 + l. In this equation, Fd(t) is the probability to be found in the state immediately

after the division at n0 + l, and we can assume that Fd(t) = δ(t). This means that if the

system is in this state at t = 0 the process is immediately accomplished.
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These master equations can be solved analytically using Laplace transformations (see

Supporting Information), producing explicit expressions for F̃no(s) ≡
∫∞
0
e−stFn0(t)dt. This

allows us to obtain explicitly all dynamic properties in the system. For example, the overall

probability that the cell that starts with the size n0 will divide at the size n0 + l is given by

Πn0 ≡
∫ ∞
0

e−stFn0(t)dt = F̃no(s = 0) = p(1− p)l, (10)

in agreement with Eq. (5) obtained using different arguments. Similarly, we can estimate

the mean inter-division time, which is a conditional mean-first-passage time for the system

to divide at exactly the size n0 + l,

Tn0 ≡ −
1

Πn0

∂F̃n0

∂s
(s = 0) =

1

k + λ

l∑
j=0

1

n0 + j
(11)

We can define also a rescaled dimensionless generation time by multiplying both sides of

this expression by the rate λ, yielding

Tn0 = λTn0 =
1

1 + k
λ

l∑
j=0

1

n0 + j
=

1

1 + 1
l

l∑
j=0

1

n0 + j
. (12)

To compare our theoretical predictions with experimental data, we must also rescale the

newborn size, n0. To do so we divide n0 by 〈n0〉, where

〈n0〉 =
1

l − l0

l∑
i=l0

n
(i)
0 (13)

Here we assumed that l0 ≤ n0 ≤ l. Thus, the rescaled generation time as function of the

rescaled newborn size reads as

Tn0 =
1

1 + 1
l

l∑
j=0

1
n0

〈n0〉 + j
(14)
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Fig. 5 shows theoretical calculated Tn0 as a function n0

〈n0〉 along with experimental data on

E.coli bacteria adapted from Ref.2 We are predicting that the generation time decreases with

newborn length of the cell, and this fully agrees with experimental observations. This can

be easily explained using our theoretical method. Increasing the starting length n0 leads to

faster growth and division rates, and this means that the same average length l between two

consecutive divisions can be added faster at these conditions than for the smaller starting

lengths n0. Excellent agreement with experimental data is giving a more support to our

theoretical model based only on the stochastic mechanisms.
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Figure 5: Rescaled mean generation times between consecutive divisions as a function of the
rescaled starting cell size. The details of calculations are presented in the text and data are
from Ref.2

Since the cell division involves multiple biochemical and biophysical processes, it raises a

question on the level of stochastic noise in the system and how it might affect the generation

times. Our theoretical method allows us to evaluate the level of noise in the cell division

because exact analytical calculations for all dynamic properties in the system, including the

variance of inter-division times, can be performed. As shown in the Supporting Information,
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the variance is given by

σTn0 =
1

k + λ

√√√√ l∑
j=0

1

(n0 + j)2
(15)

The normalized variance of the inter-division times as a function of initial size n0 is presented

in Fig. 6. We predict the stochastic noise during the cell division is almost constant and

independent from the initial cell size. This trend agrees with experimental observations

on E.coli bacteria (see Table S3 in Ref.2), although the observed noise is slightly higher

(CV ∼ 0.1− 0.2.

The advantage of our stochastic approach is that we can explain many aspects of the cell-

size regulation mechanisms. The narrow distribution of cell sizes is a result of simultaneous

action of two independent stochastic processes: growth and division. For short cell sizes, the

division rates are slow and mostly the growth processes are observed. For long cell sizes, the

division rates are fast, eliminating the long cells. This leads to the narrow distribution of

cell sizes where the growth and and division balance each other. Similar arguments can be

presented to explain the robustness of inter-division times.
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Figure 6: The normalized variance of inter-division times as a function of the initial cell size
n0. Te calculations are done using the same parameters as in Fig. 5
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Stimulated by experimental observations of narrow size distributions and robust division

dynamics in bacteria, a new theoretical method to evaluate cellular growth dynamics is de-

veloped. It argues that the cell-size regulation is governed only by two stochastic processes,

growth and division. The reliance on stochastic mechanisms allows us to avoid the use of

thresholds, which is the weakest point of existing theoretical methods. The proposed discrete-

state stochastic model provides explicit calculations for dynamic properties in the system,

which allows us to compare theoretical predictions with available experimental observations.

The narrow distributions of cell sizes and low stochastic noise in the division dynamics are

explained as a result of joint action of two stochastic processes that ”cancel” the random-

ness of each separate process. Excellent agreements with experimental data suggest that

our simple stochastic model is probably able to capture some important physical-chemical

processes taking place during the cell growth in bacteria, and thus it can be used to extract

more information on microscopic mechanisms of these processes.

Although our theoretical approach compares favorably with available experimental ob-

servations, it should be important to emphasize its limitations. We proposed a minimal

theoretical model that coarse-grained complex biochemical and biophysical phenomena dur-

ing the cell growth and division into two stochastic processes. While it can describe the

experimental data, the observations are still quite limited and some aspects of the data are

not fully captured our approach (see, e.g., our discussions on the degree of fluctuations in

the added cell size length). It will be important to extend our theoretical approach by taking

into account more chemical details of the underlying processes. This will allow us to test

recent experimental observations on reprogramming cell-size homeostasis and on the effect

of dynamic fluctuations of protein precursors.5
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