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ABSTRACT 

Nonlinear Aeroelastic Analysis of UAVs: Deterministic and Stochastic 

Approaches 

By 

Thomas Woodrow Sukut, 2d Lt USAF 

Aeroelastic aspects of unmanned aerial vehicles (UAVs) is analyzed by 

treatment of a typical section containing geometrical nonlinearities. Equations of 

motion are derived and numerical integration of these equations subject to quasi-

steady aerodynamic forcing is performed.  Model properties are tailored to a high-

altitude long-endurance unmanned aircraft. Harmonic balance approximation is 

employed based on the steady-state oscillatory response of the aerodynamic 

forcing. Comparisons are made between time integration results and harmonic 

balance approximation. Close agreement between forcing and displacement 

oscillatory frequencies is found. Amplitude agreement is off by a considerable 

margin. Additionally, stochastic forcing effects are examined. Turbulent flow 

velocities generated from the von Karman spectrum are applied to the same 

nonlinear structural model. Similar qualitative behavior is found between quasi-

steady and stochastic forcing models illustrating the importance of considering the 

non-steady nature of atmospheric turbulence when operating near critical flutter 

velocity.  
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Chapter 1 

Introduction 

1.1. Motivation 

Aircraft offer seemingly endless technological possibilities, yet in order to 

fully take advantage of them it is necessary to have a complete understanding of 

every process involved. In the century since man’s first flight, understanding the 

mechanisms responsible for such a feat has been a major priority. Basic 

aerodynamics, structural considerations, navigation techniques, and control 

systems have all evolved around the goal of taking advantage of our atmosphere. As 

technology advances more questions have been raised which have continued to fuel 

man’s quest for answers. Modern research is concerned less with how to get an 

aircraft to fly than with how to get it to fly better; how can the boundaries of 

possibility be expanded?  
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One of the major challenges facing aircraft designers today is that of 

aeroelasticity. Complex interactions between dynamics, solid mechanics, and 

aerodynamic forces can create problems if not well understood and analyzed. 

Aircraft structural fatigue, passenger discomfort, decreased performance, and even 

catastrophic failure can result. Early in the history of the airplane this problem was 

minimal due to low flight speeds, large factors of safety, and moderate performance 

requirements. Today’s aircraft, however, are expected to push the physical limits in 

terms of speed, altitude, maneuverability, endurance, range, and cost. Designers are 

turning to lightweight materials for use with high-powered engines to reduce 

weight in order to carry more fuel and payload. These lightweight materials exhibit 

more flexibility than conventional aircraft materials which when used at higher 

speeds and altitudes pose possible aeroelastic concerns. With current 

computational resources it is becoming more feasible to model and correct for 

aeroelastic deficiencies, yet advancements in the theory and practice of aeroelastic 

analysis fail to match the pace of performance requirements. Thus further 

innovation is inhibited until the phenomenon of aeroelasticity can be fully 

understood.  

In the preceding direction, this work aims to break down aeroelastic 

phenomenon into its basic components, apply current techniques to generate a 

detailed structural model, and then use various nonlinear methods to analyze said 

model in the aeroelastic framework. The end goal of this work is to weigh the 

feasibility, effectiveness, and cost of the various analysis methods. Though generally 

applicable to most aircraft designs, for the purposes of this thesis the analysis will 
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be carried out in the context of a typical high-altitude, long-endurance (HALE) 

unmanned aerial vehicle (UAV).  

1.2. Aeroelasticity Explained 

The term aeroelasticity is used to refer to any phenomena in which inertial, 

aerodynamic, and elastic forces interact [1]. These interactions can be as 

inconsequential as a slight vibration, and as catastrophic as a complete structural 

failure. Aeroelastic analysis encompasses the fields of dynamics, structural 

mechanics, and aerodynamics, and they all hold equal importance. Aeroelasticity 

can refer to numerous structural/aerodynamic interactions such as wind 

interactions with power lines, suspension bridges, and buildings. For the purposes 

of this thesis, however, aeroelastic analysis will be focused on the behavior of an 

aircraft wing in an air stream. In aircraft aeroelasticity, aerodynamic forces on 

flexible bodies (wings, control surfaces, etc.) produce displacements that cause the 

body to interact with the air around it. Inertial forces are encountered, as well as 

changes in the aerodynamic forces based on the changing incidence of the body with 

the airflow. These additional forces produce additional displacements which, in 

turn, produce additional changes in the forces. As no structure is completely rigid, 

certain manifestations of this phenomenon is expected in all aircraft. However, the 

rigidity and structural damping of the aircraft wing should be such that this 

phenomenon is minimal or nonexistent during normal operation. For instance, if an 

aircraft wing is disturbed, perhaps through a wind gust, the desired behavior is that 

the wing stiffness and damping along with the aerodynamic and inertial interactions 
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should work to quickly return the wing to a stable equilibrium. If the disturbance is 

instead maintained or amplified through the structural, aerodynamic, and inertial 

interactions, the behavior can possibly result in material fatigue and ultimately 

structural failure. The main design tradeoff which affects aeroelasticity is weight 

versus wing stiffness. Strong stiff wings weigh more, require more fuel, and do not 

permit as much payload, but they are less likely to encounter aeroelastic 

interactions. To prevent the reduced efficiency from heavier wings, stiffness is 

usually sacrificed for lighter weight components which tend to be more flexible and 

therefore more prone to aeroelastic interactions.   

Aeroelasticity can be broken into two main categories: static and dynamic. 

Cases in which the inertial forces play a negligible role are referred to as static. In 

static aeroelasticity, the aerodynamic forces are simply greater than the elastic 

restoring forces [2]. The resulting instability is called divergence and if not detected 

and corrected quickly, can be catastrophic. Dynamic aeroelasticity involves 

influential inertial forces and the associated instabilities are referred to as flutter 

[2]. As Reference [3] describes, when a cantilever wing is disturbed, the wing 

oscillates about its equilibrium until eventually the oscillations damp out. If the 

same wing is subjected to an airflow the damping effect increases as the flow 

velocity increases to a certain point. After this point, however, further increases in 

the flow velocity result in a rapid decrease in the damping. The point at which the 

damping reaches zero and sustained oscillations are possible is called the critical 

flutter velocity. By further increasing the flow velocity the wing enters a phase of 
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negative damping in which even minute disturbances can result in large violent 

oscillations. These oscillations can have both bending and torsional components. 

Flutter is often thought of as a resonance problem. In reality, flutter is a self-

excited phenomenon. Reference [4] describes the mechanism responsible for flutter 

as a coalescence of the natural frequencies of the structure. When the frequencies 

approach each other the airfoil extracts energy from the airstream which results in 

oscillations. This behavior is shown in Figure 1-1. At point A the frequencies are 

distinct, no energy extraction occurs, and the system damping causes the amplitude 

to decrease. At point B the frequencies have approached each other such that 

disturbances result in harmonic oscillations with constant amplitude. Point C 

demonstrates the coalescence of the frequencies and the introduction of flutter [4]. 

In the linear case this behavior will continue to grow in amplitude until wing failure. 

In the nonlinear case various mechanisms can result in limit cycle oscillations (LCO). 

 

Figure 1-1: Coalescence of Vibration Modes [4] 
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From this description one can see that aircraft flutter is generally 

experienced as a high frequency oscillation of the wing. Adequate control systems 

can be developed to correct for this behavior. However, to precisely control the 

aeroelastic behavior for a particular aircraft design the behavior must first be 

modeled accurately for the control system to be effective. The high frequency of the 

oscillations does not permit proper human compensation in most cases [1]. 

Divergence and flutter can both be encountered suddenly and without warning. The 

role of aeroelastic analysis is to predict the operational conditions which might 

permit such behavior, so that these conditions can be avoided entirely either 

through design accommodations or operational limitations. 

 Another aspect of aeroelasticity is that of aileron reversal. This phenomenon 

occurs at certain flight conditions where by increasing the velocity the aileron 

effectiveness decreases to zero and then becomes negative [2]. Though not generally 

catastrophic in itself, consequences of this behavior can lead to failure and 

ineffective aircraft handling. For example, if one attempts to reduce loading on a 

wing, the result may actually be an increased loading on the wing if the ailerons 

have reversed. Overloading the wing can then lead to fatigue and failure. Though 

this thesis does not explicitly address aileron reversal, it is mentioned herein as a 

possible source of excitation that can lead to static and dynamic aeroelastic behavior 

and one that any aircraft operator should be aware of.  
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1.3. Past and Present Research 

Aeroelasticity issues have been encountered since the birth of the airplane. 

Widely known as the “first in flight,” the Wright brothers’ successful airplane was 

actually almost beaten by a competitor. Professor Samuel P. Langley’s first flight was 

only a few days before the Wright brothers’. Langley’s flight, however, was not 

successful and its failure is widely attributed to wing torsional divergence [1]. 

Langley’s monoplane design lacked the necessary torsional rigidity to accommodate 

the applied aerodynamic moment and the plane crashed into the Potomac River 

after the wing failed. The Wright Flyer, on the other hand, used a biplane design that 

employed “wing warping” for lateral control. This enabled the pilot to control the 

craft without drastically altering the wing characteristics [2]. The biplane design 

featured twin wings reinforced with cables between them. The result was much 

higher torsional rigidity than a comparable monoplane before successful “stressed 

skin” designs were later realized in the 1930s [2]. Because of the success of the 

Wright Flyer and failure of Langley’s plane, designers opted for the proven biplane 

design. Had the Wright Flyer not been successful, perhaps early aircraft designers 

might have sooner understood the necessary torsional requirements necessary for 

monoplanes. 

As most early aircraft designs were based on the successful biplane, the first 

major aeroelastic issues encountered involved tail flutter [1]. At the beginning of 

World War I pilots of the Handley Page 0/400 bomber experienced violent 

oscillations of the fuselage and tail. In what is often cited as the first documented 
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investigation into the flutter problem, the investigators found that the aircraft had 

two principal modes of vibration [1]. One mode involved torsional oscillations of the 

fuselage, while the other mode caused the left and right horizontal tail surfaces to 

oscillate 180° out of phase. Coupling between these two modes was possible which 

resulted in the violent oscillations that were experienced. The solution to this was to 

connect the left and right horizontal tail sections to the same torque tube to prevent 

the second mode from occurring [1]. 

The importance of aeroelastic considerations with respect to wings was not 

readily apparent until later during the war with the development of the Fokker D-8 

high performance monoplane. [1]. Static tests showed the wing able to withstand 

adequate design load factors, but it was found that as the aerodynamic load 

increased, the angle of attack at the wing tips increased more than at the wing root 

meaning the wings were experiencing excess tip loading which led to structural 

failure [1]. Other aircraft designs of the time were also beginning to push the limits 

of technology and understanding. Increased flight speeds exerted increased 

aerodynamic loads which the structures were not designed to handle properly in 

dynamic situations. Numerous aircraft losses and the prospect of losing a 

competitive military advantage resulted in the first serious research efforts to 

understand and fix the root causes of aeroelasticity. Unfortunately, designers were 

unable to understand or simply did not trust many of the theories put forth in the 

1920s and 1930s [1]. 
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In analyzing aeroelastic problems, linear techniques can be quite insightful. 

However, their applicability to real-world nonlinear problems is limited. Linear 

analysis techniques can help predict the speed at which flutter or divergence might 

occur, but may not be useful for determining the speeds at which a real-world 

nonlinear system might develop self-excited oscillations [2]. Linear analysis 

techniques also cannot predict the effects of small perturbations which might result 

in an oscillatory response. These self-excited or perturbed oscillations can lead to 

what is called limit cycle oscillations (LCO). LCO are steady-state oscillations which 

pose long-term fatigue problems and can affect passenger comfort and pilot 

endurance [2]. Cyclical loading and unloading can cause material deterioration and 

the formation of small cracks. While the loading may not exceed the failure limits of 

the material, repeated cyclic loading can eventually lead to failure due to fatigue [5]. 

With modern computational capabilities, nonlinear analysis techniques are able to 

address these problems, though they are still quite expensive in terms of both 

computational resources and time.  

In order to understand the complex interactions, researchers have broken 

aeroelasticity down into several subsets. Figure 1-2 shows the three major subsets 

as well as their interactions to form intermediate fields of study which are also 

pertinent to the subject at hand. The aeroelastician must be well versed in the fields 

of dynamics, solid mechanics, and unsteady aerodynamics. Several well known texts 

are available detailing the progress in aeroelastic analysis. For additional 

information the reader is referred to References [1], [2], [3], and [6], among others. 
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Figure 1-2: Components of Aeroelastic Analysis [6] 

 

The research community has made great strides in modeling and 

understanding aeroelastic phenomena, yet no complete grasp of the complexities 

involved has been achieved. A great deal of aeroelastic analysis is reactive in that it 

focuses on analyzing preliminary aircraft designs for any potential problems. To this 

end many researchers are focused on accurately modeling the aerodynamic 

environment and structural components of the design while maintaining 

computational efficiency. Reference [7] presents a detailed computational 

aeroelastic analysis of an aircraft using a finite element structural model coupled to 

an aeroelastic analysis code. Computational analysis models are very common in 
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recent literature. References [8], [9], [10], [11], and [12] are just a sample of all the 

various papers available. From these references, it is apparent that there are many 

ways to model and analyze aeroelastic phenomena. Models range from simple linear 

single degree of freedom structural models excited by simple linear aerodynamic 

models, to fully nonlinear finite element models coupled to complete unsteady 

aerodynamic codes. Each approach has advantages and disadvantages, and each 

offers insights into the mechanism of aeroelasticity. The broader perspective is that 

although aeroelasticity is not completely understood. The problem can be modeled 

and analyzed for use in aircraft design and operations by making various 

assumptions. One ultimate goal is to make aeroelastic considerations proactive, 

where certain performance characteristics can be incorporated that take advantage 

of the aeroelastic interactions. 

1.4. Application to UAVs 

UAVs are aerial vehicles designed to perform tasks which traditionally 

require a manned vehicle. Typical UAV configurations are either fixed wing or 

rotary wing and can range from several inches to hundreds of feet long [13]. Their 

missions are as varied as their configurations as well. UAVs have been designed for 

weather and atmospheric research, reconnaissance and surveillance, conventional 

combat, remote sensing, mapping, traffic monitoring, and search and rescue to name 

a few [13], [14]. Though no universal UAV classification exists, by convention UAVs 

are grouped according to size, weight, and capabilities. The vast majority of UAVs 

fall into one of three different categories. The first category covers most UAVs which 
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consist of conventional aircraft designs used for low altitudes and relatively short 

durations. The second category covers high altitude and long duration missions. The 

third category includes unconventional designs and those with special launch and 

recovery modes [15]. Table 1-1 shows some general UAV classifications and 

characteristics. 

Table 1-1: General UAV Classifications and Characteristics [16] 

 

Low-altitude tactical systems are highly desirable because of their ability to 

perform dangerous tasks without the risk of losing the pilot. Because the design 

does not require a pilot, the aircraft can be smaller and more robust than 

conventional manned platforms with similar performance [15]. Additionally, 

because of the operating limits imposed on the aircraft by the physical limitations of 

the human body, pilotless aircraft can have higher performance and larger flight 

envelopes. Removing the pilot can also result in larger payload capacity or even 

longer range due to increased fuel capacity. However, the increased capabilities, 

such as larger flight envelopes, are predicated on adequate aeroelastic performance 

which may be difficult to achieve. 
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High-altitude long-duration missions are well-suited to UAVs because of the 

complex challenges of manning such missions. Special equipment and crew 

rotations necessary for this mission result in large and heavy aircraft. Again, by 

eliminating the operators the crafts are much smaller, less-detectable, and able to 

carry more payload and fuel to perform the same mission as their traditionally 

manned counterparts [15]. High-altitude missions are also desirable for UAVs from 

a safety perspective. Few aircraft operate at higher altitudes so issues of traffic 

management and airspace impingement are reduced. Furthermore, challenges of 

communication and wind uncertainty are also reduced at higher altitudes. HALE 

UAVs are also of note for their increased range due to further line-of-sight 

capability. 

Traditionally, robots have been designed to complete “dull, dirty, or 

dangerous” tasks. In the UAV world—at least thus far—the same holds true. Modern 

UAVs are designed to collect intelligence, monitor weather, track targets, etc. [14]. 

The rationale here is that it is less-expensive and less manpower-intensive to 

operate UAVs in “dull and dirty” situations, and less damaging to a unit to lose a UAV 

than to lose an aircraft and its pilot in “dangerous” situations. The combination of 

decreased risk to the pilot and fewer aircraft restrictions leads to the development 

of faster, lighter, and less-expensive aircraft able to perform traditional manned 

missions [14]. However, with this comes the fact that smaller militaries and 

combatants could be able to acquire and develop fleets with similar capabilities to 

traditionally larger manned fleets. The advantage here lies in the superior UAV 



14 

 

design and performance, part of which includes the aircraft’s aeroelastic 

performance.  

The calculation and modeling of aerodynamic vehicle properties is essential 

to ensure proper flight characteristics. With the proliferation of computers and 

improvements in processing power, developers are turning more toward 

computational methods for determining aerodynamic properties [17]. Software 

based on numerical methods gives designers the ability to reduce the time required 

to analyze different designs. Similarly, analysis techniques that have not previously 

been applied to the aeroelastic problem provide new insight and opportunities for 

more robust designs.  

Effective modeling of dynamic systems is one of the most important parts of 

understanding how they operate. However, dynamic models are often quite complex 

and difficult to create and implement. Dynamic systems with flexible components 

further complicate this process and, as with most aircraft, UAVs employ lightweight 

flexible materials in their construction. While it may be possible to model the UAV as 

if it were a rigid structure, the real world flexing structure can have drastic effects 

on the dynamics. This can lead to large discrepancies between the modeled 

performance and the actual performance. Researchers are thus faced with making 

very complex models which can take very long and be very expensive. However, by 

invoking certain assumptions various aspects of the performance can be predicted 

within an accepted level of accuracy.  
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1.5. Scope 

This thesis aims to apply numerical integration and harmonic balance 

analysis methods to a typical binary aeroelastic model to gauge their effectiveness 

and costs. Two models are developed: one with deterministic forcing and one with 

stochastic forcing. Both models are analyzed via numerical integration while only 

the deterministic model is also analyzed with a harmonic balance approach. A basic 

background in aerodynamic and structural analysis is assumed, while relevant 

sources are included for reference. An applicable structural model is developed in 

Chapter 2 after which the relevant parameters are defined in the context of a HALE 

UAV. Chapter 3 provides background information on the aerodynamic model and 

simplifying assumptions used. Background information on the numerical 

integration scheme employed for the nonlinear system at hand is given in Chapter 4. 

The method of harmonic balance is developed in Chapter 5. Chapter 6 presents 

some stochastic analysis methodology including the basis of the stochastic 

parameters used. A discussion of the results is included in Chapter 7, and Chapter 8 

incorporates some concluding remarks and potential future research areas. 
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Chapter 2 

Structural Model 

The model used herein is a simple two-degree-of-freedom (2DOF) airfoil 

model that accommodates motion in pitch and plunge. The model is referred to in 

the literature as the typical section and shown in Figure 2-1. The airfoil can pitch 

about an elastic axis which is defined as being perpendicular to the shear center of 

the airfoil. The structural stiffness in pitch and plunge is modeled with linear 

springs. Noteworthy points on the airfoil include the center of gravity, elastic axis, 

and aerodynamic center. The force model used herein will be discussed in depth in a 

later chapter. 
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Figure 2-1: Structural  Model [18] 

2.1. Equations of Motion 

Using the above system model from Reference [18] with slight modification, 

the two-degree-of-freedom equations of motion for pitch     and plunge     can be 

derived through the use of Lagrange’s Equations by calculating the potential and 

kinetic energies of the system. The sign convention for both   and   is shown in 

Figure 2-1 with the arrow pointing in the positive sense. The    frame is fixed 

inertially, while the    frame is fixed to the airfoil with its origin at the center of 

gravity and oriented as shown above with the     axis towards the leading edge. An 

energy formulation is used to create the equations of motion [2]. The potential 
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energy consists entirely of the energy stored in the springs and can be modeled with 

the equation  

  
 

 
   

  
 

 
   

  (1) 

         

where    and    are the linear plunging and pitching stiffness coefficients, 

respectively. 

To calculate the kinetic energy, the velocity of the center of mass—point c.g. 

in the figure above—is required. 

                    (2) 

 

Here,     is the velocity of the elastic axis, and    is the distance between the 

elastic axis and the center of gravity which has been non-dimensionalized by the 

semi-chord. The variable    is taken to be positive if the center of gravity lies 

further towards the trailing edge than the elastic axis does. The symbol     denotes 

the first time derivative whereas the symbol     denotes the second time 

derivative. Based on the definitions introduced and the coordinate systems chosen, 

           (3) 

and thus 

                    . (4) 
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The kinetic energy is then given by  

  
 

 
         

 

 
     

  (5) 

where     is the moment of inertia about the center of mass. Using the relationship 

between the inertial and body frames, the kinetic energy can be rewritten as  

  
 

 
        

                            
 

 
     

  (6) 

  
 

 
                      

 

 
     

 , (7) 

 

where     is the moment of inertia about the elastic axis. It is given by the equation 

            
        . (8) 

 

The next step is to find the generalized forces acting on the system. This is 

done by using the method of virtual work where the work done by a virtual 

displacement due to the external forces is calculated [2]. The external forces in this 

case are the aerodynamic lift and moment. It is assumed that the aerodynamic 

forces act at the center of pressure. To calculate the virtual displacement due to the 

lift, the velocity of the aerodynamic center is required. That is, 

                  . (9) 

 

Then, the virtual displacement due to the lift is 

                   . (10) 



20 

 

The angular velocity of the wing is       which gives the virtual rotation due to the 

moment as 

           . (11) 

 

The total virtual work done by the aerodynamic forces is thus, 

                       . (12) 

 

From this, the generalized forces become 

       

and         , 
(13) 

  

where   and   are the aerodynamic lift force and moment, respectively, and    is 

the distance between the elastic axis and the aerodynamic center. The variable    is 

taken to be positive if the elastic axis lies further towards the trailing edge than the 

aerodynamic center does. From thin airfoil theory, the aerodynamic center is 

located at the quarter chord  
 

 
  of a symmetric airfoil. Now the equations of motion 

can be derived by combining all the pieces through the use of Lagrange’s Equations 

as follows [2]. Specifically,  

 
 

  
 
      

   
  

      

  
    

and 
 

  
 
      

   
  

      

  
   , 

(14) 

  



21 

 

Substituting Equations (1), (7), and (13), into Equations (14) the 

resulting nonlinear undamped, coupled, two degree of freedom aeroelastic 

equations of motion can be cast in the form 

 

                                    

                           . 
DisplayText cannot span more than one line! 

 

(15) 

  

From this system one can see the coupling is the result of the inertial forces 

and the pitch angle. The offset distance    between the center of mass and the 

elastic axis results in a mass imbalance that causes the bending and torsion modes 

to become coupled. One can see that if this term were to become zero, as in the case 

where the center of mass was coincident with the elastic axis, and the pitch 

displacements were taken to be small such that          and         , the 

bending and torsion modes would be completely uncoupled and the inertia and 

stiffness matrices would be diagonal.  

To model the effects of viscous damping, the Rayleigh Dissipation Function is 

calculated and included in the Lagrange equations. Specifically, 

  
 

 
    

  
 

 
    

 . (16) 

 

Here,    and    are the linear plunge and pitch damping coefficients, respectively.  
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This relationship is incorporated into Lagrange’s Equations as 
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(17) 

  

Substituting Equations (1), (7), (13) and (16), into Equations (17), the nonlinear 

damped, coupled, two degree of freedom aeroelastic equations of motion for pitch 

and plunge become 

                                              

                                     . 
(18) 

  

 It is important to note here the assumptions inherent in this model as they 

may be the source of future accuracy and/or cost considerations. Specifically, linear 

springs have been assumed to model the stiffness in both the pitch and plunge 

degrees of freedom. This assumption is warranted because most materials exhibit a 

linear elastic region for small deflections. However, if simulations require larger 

deflections that exceed this linear region, then the accuracy of the computations will 

be reduced. Furthermore, viscous damping has been assumed. This assumes that the 

energy dissipated within the system is proportional to the velocity. This is also 

assumed to be a linear relationship, which tends to hold fairly accurately for small 

deflections but will introduce inaccuracies at larger ones.  
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2.2. UAV-Specific Parameters 

Once the general structural model has been derived, the necessary 

parameters must be defined. Parameters such as the airfoil dimensions, mass 

properties, and structural stiffness and damping must be tailored to the particular 

aircraft and structural model. All of these properties can vary greatly among 

different aircraft designed for different missions; parameters of HALE UAVs are 

likely to be much different than those of a supersonic fighter jet. As the aircraft of 

interest is a HALE UAV, it is useful to examine the properties of existing HALE 

aircraft. 

The first prominent American military HALE UAV was the Predator which 

was followed by the Reaper and the Global Hawk [19]. Characteristics of these three 

UAVs are contained within Table 2-1. One can see a large variance in the primary 

missions and operational capabilities. However, these three UAVs all have similar 

structural designs to enable high-altitude long-endurance operations as shown in 

Figure 2-2. By examining the similarities a representative airfoil model can be 

created for a generic HALE UAV. 
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Table 2-1: Typical UAV parameters in standard units. Metric units given in 
parenthesis. 

 Predator [20] Reaper [21] Global Hawk [22] 

Primary Mission Armed 
reconnaissance, 

airborne 
surveillance, and 
target acquisition 

Remotely 
piloted 

hunter/killer 
weapon system 

High-altitude, 
long-endurance 

intelligence, 
surveillance, and 
reconnaissance 

Thrust  115 hp 900 hp 7600 lbs 

Wingspan [ft] (m) 55 (16.75) 66 (20.12) 116 (35.36) 

Length [ft] (m) 27 (8.23) 36 (10.97) 44 (13.41) 

Height [ft] (m) 6.9 (2.1) 12.5 (3.81) 15.2 (4.63) 

Weight/mass [lbs] (kg) 1130 (512.56) 4900 (2222.6) 11,350 (5148.3) 

Max Takeoff Weight/mass 

[lbs] (kg) 

2250 (1020.6) 10,500 (4762.7) 26,750 (12,133.6) 

Speed [mph] (m/s) 135 (60.35) 230 (102.82)  391 (174.80)  

Ceiling [ft] (m) 25,000 (7620) 50,000 (15,240) 60,000 (18,288) 
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Figure 2-2: Representative HALE UAV Designs. (a) Predator, (b) Reaper,         
(c) Global Hawk. Note: Not to scale [23] 

(a) 

(b) 

(c) 
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From Figure 2-2 one can see all three designs contain high aspect ratio wings, 

the aspect ratio is defined as the ratio of the square of the span to the planform area. 

Long skinny wings have a high aspect ratio whereas short fat wings have a low 

aspect ratio. The importance of this design feature is that it reduces the induced 

drag [5]. This allows the aircraft longer endurance as it requires less fuel to 

maintain its velocity as a similar aircraft with a lower aspect ratio. One of the 

drawbacks of high aspect ratio wings is reduced stiffness. Long, lightweight, skinny 

wings tend to be more flexible than shorter fatter wings. As Reference [13] explains, 

large span, high aspect ratio wings pose difficulties with respect to aeroelastic 

phenomena. These difficulties are rooted in the low structural weight fraction 

necessary for successful HALE designs. Reference [13] continues on to explain the 

limited understanding of the behavior of HALE designs in the unsteady 

aerodynamics inherent in aeroelasticity; most work in this area aims to avoid 

aeroelastic interactions rather than incorporate design features that take advantage 

of them.  

Another similarity among the HALE aircraft designs is the inclusion of 

cambered wings. Cambered wings produce lift at zero angle of attack. This feature 

also results in less induced drag than a symmetric wing producing the same amount 

of lift [5]. The benefit is the same as before: increased endurance. Some other 

common wing features are sweep, dihedral, and taper. Wing sweep is often used to 

increase the aircraft’s critical Mach number so as to avoid the detrimental effects of 

supersonic flow and the associated increase in drag when traveling at high subsonic 

speeds. However, with HALE aircraft, speed is typically not a major design 
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consideration. Accordingly, the wing sweep used in the three HALE UAVs 

considered is very small if included at all. Dihedral is mainly used in increasing an 

aircraft’s stability. As dihedral can also increase drag and decrease lift, the HALE 

designs being considered do not incorporate this feature. Wing taper is often 

employed to reduce the effects of downwash from tip vortices [5]. Downwash 

increases induced drag which can decrease endurance. However, in the three 

designs considered, the taper ratio is very small and as likely the result of weight 

reduction as the result of induced drag reduction. Taper also contributes to the 

aspect ratio by reducing the planform area.  

Taking into account the various design parameters discussed, a 

representative model would have a high aspect ratio, a cambered airfoil, and a 

flexible wing with little to no taper or sweep and no dihedral. Due to the two-

dimensional nature of the structural model being studied the flexibility resulting 

from the high aspect ratio and taper can be evaluated in the stiffness of the springs. 

Airfoil shape can be chosen so as to incorporate camber. As there is no dihedral and 

only minimum sweep, the binary nature of the model should capture the full scale 

dynamics to an acceptable level of accuracy. 

The airfoil chosen is the NACA        . The NACA 6-series airfoils were 

developed to maintain laminar flow over a large part of the chord which results in a 

decreased minimum drag value [24]. The numeric designation of the 6-series 

contains several important pieces of information about the airfoil. The first number 

is always 6; this tells the series designation. Chord wise position of maximum 
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pressure in tenths is represented by the second digit. The third digit denotes the 

ideal lift coefficient in tenths. Finally, thickness-to-chord ratio is represented by the 

final two digits. If the designation contains a subscript, it indicates the lift coefficient 

range in tenths above and below the value of ideal lift coefficient in which favorable 

pressure gradient and low drag exist [24]. Knowing this information and the shape 

of the NACA         airfoil depicted in Figure 2-3 one can say it meets the desired 

camber characteristics with an adequate lift coefficient for a HALE mission. All of the 

relevant aerodynamic properties necessary for the modeling herein were obtained 

from the lift and drag curves in Reference [25]. This airfoil has also been used in 

several published works in various applications and in several production aircraft 

[26], [27], [28], [29]. 

 

Figure 2-3: NACA         airfoil [25] 

 

Although the bending and torsional stiffness in a three-dimensional wing are 

dependent on the three-dimensional wing shape and the material of which it is 

comprised, the model at hand is a rigid two-dimensional airfoil section. Therefore, 

the bending and torsional stiffness represented by the linear springs in Equations 

(18) should be chosen to be representative of the three-dimensional wing bending 

and torsional stiffness. One way to do this is by applying the assumed modes 
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method [30]. The assumed modes method extends the principle of virtual 

displacements to produce a generalized parameter model of a continuous system 

that approximates the flexible behavior of the system [30]. Also referred to as the 

Ritz method, the advantage is the ability to reduce an infinite degree of freedom 

problem to one with n manageable degrees of freedom while maintaining 

reasonable accuracy. The n degrees of freedom result from the n assumed modes. By 

increasing the number of assumed modes, the reduced order approximation 

converges to the original infinite degree of freedom system [2]. Following the 

derivations in either Reference [2], [30], [31], or [32], if the wing is approximated as 

a beam, the potential bending strain energy can be calculated as follows: 

  
 

 
    

   

   
 

 

 

 

   (19) 

 

Here,   is taken to be the transverse deflection based on an assumed bending shape, 

  is the span-wise coordinate along the wing,   is the wing span, and    is the 

flexural rigidity. The bending deformation can be described by the expression 

                 
 

 
 
 

     (20) 

 

containing an assumed deformation shape,  . Here   is taken to be the coordinate of 

interest, and   is the span of the finite wing. Note the chosen quadratic assumed 

shape. Substituting Equation (20) into Equation (19) and solving yields the potential 

bending strain energy of the finite wing. That is, 
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  . (21) 

 

As done before in Equation (1), the potential energy of a spring is found using the 

equation 

  
 

 
   

 . (22) 

 

Combining Equation (21) and Equation (22), the expression for the equivalent 

bending stiffness  

   
   

  
 (23) 

 

can be expressed in terms of the flexural rigidity.  

An analogous method can be applied to the torsional component resulting in 

the following expression for the equivalent torsional stiffness in terms of the 

torsional rigidity, GJ. Here a linear displacement shape is assumed yielding 

   
  

 
. (24) 

 

The only other remaming  step for obtaining    and    involves choosing 

torsional and flexural rigidity values representative of a HALE UAV. While this 

method is not exact, it is a very good engineering approximation to capture the finite 

wing structural parameters with only a 2DOF airfoil model. Increasing the number 

of assumed mode shapes will result in a better approximation. To base the selection 
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of the flexural and torsional rigidities on common engineering practice, the values 

used in the Goland wing model of Reference [33] are used. However, the Goland 

wing has an aspect ratio less than 5. In order to match the HALE UAV aspect ratios of 

approximately 15-20, the span used in equating the finite wing stiffness to the 

equivalent spring stiffness in Equations (23) and (24) is scaled up. The effect of this 

scaling is to sufficiently model the stiffness of the high aspect ratio wing as modeled 

by the chosen 2DOF model. The final flexural and torsional rigidity values are 

provided in Table 2-2 below. 

In the final model the chord length is chosen based on the three HALE UAVs 

studied earlier. Reference [23] gives the root chord dimensions as being between 

roughly 3.5 ft and 6 ft. The value of 6 feet is chosen to be representative of the three 

HALE UAVs and also applicable to the Goland wing structural values. Wing density is 

taken from the Goland model. The remaining parameters are calculated based on 

the chord length, span length, density, and flexural and torsional rigidity vales. Small 

viscous damping terms are included based on the assertions made in Reference [3]. 

The damping is taken to be proportional to the stiffness. The resulting values for the 

various design parameters are given in Table 2-2. 
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Table 2-2: Structural Model Parameters 

Mass            

Moment of Inertia about Elastic Axis                 

Chord length          

Finite wing span length           

2DOF airfoil span length       

Distance between elastic axis and 
center of gravity non-dimensionalized 

by the semi-chord 

        

Distance between the elastic axis and 
the aerodynamic center 

            

Flexural rigidity                  

Torsional rigidity                  

Linear plunge stiffness coefficient                  

Linear pitch stiffness coefficient    
        

  

   
 

Proportional damping value        

Linear plunge damping coefficient    
    

 

 
 

Linear pitch damping coefficient    
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In the simulations, the aircraft is assumed to be traveling at 30,000 ft altitude 

which is representative of HALE UAV operations as shown in Table 2-1. The airfoil 

model is given a prescribed initial deflection in both the pitch and plunge degrees of 

freedom of                           . The initial pitch and plunge rates 

are taken to be zero. These initial conditions represent the aircraft flying at a small 

angle of attack and experiencing small static wing bending under the applied lift 

force or perhaps the initial deflections produced by a disturbance such as a wind 

gust. A similar scenario would be seen in a real world flight of a similar aircraft with 

flexible wings. Additional model details specific to the various analysis methods will 

be included in their respective ensuing chapters.  
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Chapter 3 

Aerodynamic Modeling 

In order to accurately model the forces experienced by an airfoil, one must 

understand the basics of aerodynamic theory. The continuity equation and 

Bernoulli’s equation provide a basis for understanding the generation of 

aerodynamic lift. As airflow encounters an airfoil it splits into two different flows: 

one above the airfoil and one below it. With a cambered airfoil or a symmetric airfoil 

at an angle of attack, the flow over the top of the airfoil is constricted more than the 

flow underneath the airfoil. This causes the flow over the top to increase in velocity 

to satisfy the continuity equation. Any increase in the fluid velocity must also be met 

with a decrease in the fluid pressure to satisfy Bernoulli’s equation. Lift results from 

the difference in the low pressure above the airfoil and the higher pressure below 

the airfoil [5].  
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From aerodynamic theory one knows that the lift force, L, exerted on an 

airfoil by the airflow around it is given by the equation 

  
 

 
      

  , (25) 

 DisplayText cannot span more than one line! 

where   is the air density, V is the free stream air velocity,    
 is the lift curve slope, 

  is the angle of attack, and S is a characteristic area. The resulting force acts at the 

center of pressure. The expression of the aerodynamic moment is similar but 

includes a necessary moment arm 

  
 

 
       , (27) 

 

where    is the moment coefficient and c is the chord length. The resulting moment 

is centered at the aerodynamic center of the airfoil and remains relatively constant 

for varying angles of attack [34]. According to thin airfoil theory, the aerodynamic 

center is located at the quarter-chord for symmetric airfoils [35]. As Figure 2-3 

shows, the chosen airfoil is not symmetric. However, even with cambered airfoils, 

the aerodynamic center is close to the quarter-chord for subsonic speeds [34]. The 

expressions in Equations (25) and (27) are valid for steady airflow where the 

density and velocity are constant and the airfoil is steady.   

Another important aspect of aerodynamic modeling is compressibility. The 

expressions in Equations (25) and (27) assume incompressible flow. This 

assumption is warranted for free stream velocities under approximately 100 m/s. 

When the free stream velocity exceeds this speed the large pressure changes 
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experienced by the airflow can result in large density changes. Density fluctuations 

affect the magnitudes of the lift and drag produced by the airflow over the airfoil [5]. 

To account for compressibility effects the Prandtl-Glauert correction is used. This 

correction is based on the linearized velocity potential equation and is applicable for 

Mach numbers approximately between 0.3 and 0.7. Mach numbers higher than 0.7 

produce transonic effects which must be addressed through other means. 

Compressibility is neglected for flows below Mach 0.3.  

 The interdependency of the airfoil motion and aerodynamic forces poses a 

challenge to aeroelasticians. Most classical aerodynamic theory is based on steady 

flow or steady motion, but aeroelastic problems often involve time-dependent fluid 

motion [6]. Airfoils undergoing aeroelastic interactions oscillate in the flow which 

alters the circulation about the airfoil. The study of this time-dependent fluid motion 

is called unsteady aerodynamics. Aerodynamic forces acting on a body oscillating in 

an unsteady flow are generated by vorticity (or circulation) and apparent mass (or 

inertial) contributions [3]. These two categories are referred to as circulatory and 

non-circulatory, respectively. Due to the Helmholtz theorem, the total circulation 

must be zero. When the circulation about the airfoil changes vortices are shed into 

the wake to balance the overall circulation [2]. Shed vortices affect the flow field by 

imparting unsteady flow back to the airfoil. This influence decreases as the vortex 

travels away from the airfoil. Based on this complex interaction, completely 

modeling unsteady aerodynamics is very involved and not well-understood. 

Theodorsen [36] and Wagner [37] have both put forth unsteady aerodynamic 

models, and complex computational fluid dynamics (CFD) software can model these 
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effects, but all of them must be formulated in such a way as to interface with the 

necessary structural model. The computational resources required for these models 

are also very costly.  

 As stated in Reference [38], a complete understanding of unsteady airfoil 

behavior has not been attained. However, by studying experimental data some 

qualitative models have been produced which encompass the essential physics 

involved [38]. One of the biggest challenges of unsteady aerodynamic modeling is 

dynamic stall. An oscillating airfoil may experience large angle of attack variations 

which result in flow separation, stall, and reattachment. This sequence generates 

large variations in the lift as compared to those predicted by simpler quasi-steady 

models. However, the quasi-steady models can still produce insightful results [38].  

The quasi-steady assumption states that the aerodynamic characteristics of a 

moving airfoil can be equated to the aerodynamic characteristics of the same airfoil 

when sampled instantaneously at discrete points in time [3]. In other words, the 

aerodynamic characteristics of a moving airfoil are taken to be a function of only the 

instantaneous properties of the airfoil. Rather than the current aerodynamic forces 

being influenced by shed vortices and other unsteady effects, the instantaneous lift 

and moment are calculated using only the instantaneous angle of attack, free stream 

velocity, and pitch and plunge rates. It follows that when calculating the forces using 

such a model, increasingly smaller time steps will better approximate the forcing of 

the complete system. Even so, it is important to note that the unsteady effects may 
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have important influence on the results. Equations for calculating the quasi-steady 

lift and moment coefficients are as [3]: 

    
    

   
  

 
   

 

 
   

  

 
   

and     
  

  

  
  , 

(28) 

 

where   is the semi-chord and   is a nondimensional parameter denoting the 

location of the elastic axis as shown in Figure 2-1. These equations take into account 

motion of the airfoil through the pitch and plunge rates. The advantage of the quasi-

steady assumption over full unsteady aerodynamics is that computational 

requirements are reduced while still achieving reasonably accurate qualitative 

behavior. Further, depending on how the model is set up, the effects of structural 

nonlinearities can be distinguished from those of the unsteady aerodynamics. As 

mentioned above, both circulatory and non-circulatory forces are encountered in 

aeroelasticity. However, as Reference [3] points out, the non-circulatory terms are 

neglected in the quasi-steady assumption as their contributions to the simple 

bending-torsion airfoil flutter of a cantilever wing are negligible. For the purposes of 

gaining initial insight into the aeroelastic problem the quasi-steady assumption is 

used in the aerodynamic modeling of this paper.  

Using the quasi-steady assumption along with the linear lift curve slope are 

likely sources of error. For the airfoil used, the linear region of the lift curve slope is 

valid for angles of attack between approximately ±12° as shown in Figure 3-1. As 
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dynamic stall behavior has not been included in this model, angles of attack larger 

than ±12° are likely to give results that are incorrect.   

 

Figure 3-1: Lift Curve for the NACA         Airfoil [25] 
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Chapter 4 

Numerical Integration 

Once the nonlinear equations of motion have been determined and an 

applicable aerodynamic model has been chosen, the next step is to adopt an 

appropriate method of analysis. The complex nature of nonlinear equations has 

resulted in many different analytical techniques including numerical integration, 

equivalent linearization, perturbation methods, and harmonic balance [39]. One of 

the methods chosen for comparison herein is direct numerical integration. Several 

algorithms exist which provide this capability, although as with other methods, 

there are advantages and disadvantages. The advantages include limited initial 

effort and some algorithms display unconditional stability. Most algorithms require 

only the equations of motion, initial conditions, time step, and desired tolerance. 

One of the biggest drawbacks is cost; most numerical integration algorithms require 

very small step sizes for precise convergence which results in lengthy computation 
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time. If the goal of solving the equations is to determine the steady state response, 

this may result in quite lengthy time spans that, when combined with very small 

step sizes, can be computationally prohibitive. However, with the use of today’s 

computing power most simple equations can be numerically integrated to 

reasonable accuracy within an acceptable amount of time.  

4.1. Application 

The numerical integration scheme used herein is contained within the Matlab 

command ODE45. This algorithm is based on the explicit Runge-Kutta (4, 5) formula 

defined by the Dormand-Prince pair [40]. This pair is a 4th and 5th order 

approximation which has the benefits of extended regions of absolute stability and 

small principle truncation terms. ODE45 is a one-step solver in that it requires only 

the solution of the previous time step to compute the solution at the subsequent 

time step. This numerical integration scheme is chosen for its accurate results and 

simple implementation. Implementation of this scheme requires that the 2nd order 

nonlinear equations given by Equations (18) be recast as a 1st order system 
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(29) 

where                  and      . 
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The ODE45 command also requires initial conditions as well as the desired 

error tolerances and time span of integration. The error tolerances specify the 

desired accuracy of each iteration in order to reduce any error propagation within 

the calculations. The time step need not be specified as the algorithm chooses its 

own step size at each iteration to achieve the desired accuracy [41]. However, to 

increase accuracy—at the cost of computation time—one can specify an initial time 

step as well as a maximum time step. The values used in the computations herein 

are given in Table 4-1 below along with the initial conditions presented earlier in 

section 2.2. 

Table 4-1: Numerical Integration Parameters 

Absolute Tolerance abstol      

Relative Tolerance reltol      

Initial Step Size InitialStep      

Maximum Step Size MaxStep      

 

As a basis for the accuracy of the numerical integration method used—and 

due to the lack of experimental data for the nonlinear system model being 

analyzed—a generic linear problem is solved both numerically and analytically. The 

example system had the following form: 

            , (30) 

 

where    , and   are 2x2 mass, damping, and stiffness matrices, respectively;   is a 
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2x1 state vector; and   is a 2x1 forcing vector. The values and theory used in this 

problem are from Reference [42]. The pertinent numerical values are 

   
  
  

     
       
       

     
    
    

     
  

  
     

        
         

 . (31) 

 

As shown in Figure 4-1, the system was numerically integrated and compared to the 

exact analytical steady-state solution from classical vibration theory. The error 

between the two methods using the numerical algorithm described above with the 

parameters in Table 4-1 is negligible. Based on this data one can reasonably say the 

numerical integration procedure gives accurate results. 

Once the numerical integration scheme is validated, it is coupled with the 

quasi-steady aerodynamic model. As shown in Figure 4-2, the process is rather 

simple. The initial set up for this algorithm is quite straight forward and consists of 

casting the equations of motion in the form given in Equation (29) and defining all 

the relevant parameters for the simulation (mass, chord, stiffness, time step, etc.). 
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Figure 4-1: Comparison of Numerical Results with Exact Steady-State Solution 

 

Figure 4-2: Coupled Aerodynamic Model and Numerical Integration Algorithm 
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Chapter 5 

Harmonic Balance 

Another nonlinear analytical method applied to the problem at hand is 

harmonic balance. Herein, harmonic balance is chosen as one way to predict the 

steady-state behavior of the system subjected to harmonic forcing. This method, 

though limited to cases of harmonic excitation, is deemed applicable to aeroelastic 

analysis as the lift and moment forces present during aeroelastic interactions can 

often excite steady state oscillatory responses (LCO) in both pitch and plunge. LCO 

are more common in transonic flight conditions than subsonic conditions. For this 

reason, some researchers have attributed LCO mostly to the nonlinear aerodynamic 

forcing [43]. However, the understanding of nonlinear systems and LCO—especially 

in the context of aeroelasticity—is incomplete and thus no definitive correlations 

can be made. Reference [43] examines the effects of nonlinear transonic 
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aerodynamics on the production of LCO using a harmonic balance approach building 

on Reference [44].   

The method of harmonic balancing is employed through the use of a Fourier 

series expansion. The forcing terms are modeled as an nth-order Fourier series 

expansion of which all the necessary coefficients can be computed from the known 

forcing function. The steady-state response of the system is also assumed to be an 

nth-order Fourier series expansion. The excitation and the assumed response are 

then substituted into the equations of motion and harmonic terms of the same 

frequency are grouped together. This results in a system of 2n linear equations for 

each degree of freedom which are solved for the 2n unknown coefficients of the 

assumed Fourier series expansion of the steady-state response [45]. Often it is 

found that only a single fundamental frequency is required for accurate results, 

although additional higher-order components can be added for better accuracy at 

the cost of increased computation time [39]. The author of Reference [45] has found 

this method applicable even for problems in which the nonlinear terms are large. 

5.1. Application 

To apply the method to the problem at hand, the lift and moment terms are 

assumed to be nth-order purely harmonic terms of the form:  

                                                , 

and                                                  
(32) 
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where     . Note here that the Fourier series expansions are taken to have zero-

mean. This has been done to reflect the zero-mean behavior of the response of the 

actual system. The plunge and pitch responses are also assumed to be zero-mean 

nth-order harmonic terms of the form 

                                             , 

and                                               
(33) 

  

If n is taken to equal 1, Equations (32) and (33) reduce to 

                      , 

                      , 

                   , 

and                    . 

(34) 

 

Plugging Equations (34) into Equations (18) yields 

                                                            

                                    

        
                          

    

     
   

                           
    

     
                                          

                                              

                    

(35) 

 

 
(36) 
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and 

     
              

         

     
                               

                                                 

                                  

                    

 

The complex nonlinear nature of these equations makes generating and 

solving the system of 2n linear equations for the unknown coefficients 

computationally prohibitive. To solve this problem, the original equations of 

motion—Equations (18)—are linearized and analyzed with the harmonic balance 

method to derive an initial estimate of the coefficients of the nonlinear problem. To 

solve the nonlinear equations—Equations (35) and (36) —orthogonality is enforced 

and the equations are averaged over an interval as in Reference [46] resulting in 2n 

equations for each degree of freedom. Specifically, 



 49 
 

 

 
 

 
      

 

 
      

 

 
    

                                          

  
 

 

                                         

  
 

 

   
                                        

  
 

 

   
                                 

  
 

 

                                            

  
 

 

   
 

 
   

(37) 

 
 

 
      

 

 
      

 

 
    

                                               

  
 

 

                                   

  
 

 

   
                                 

  
 

 

   
                                        

  
 

 

                                           

  
 

 

   
 

 
   

(38) 

 
 

 
    

                                           

  
 

 

                                              

  
 

 

 
 

 
      

 

 
     

 

 
   

(39) 



 50 
 

 

 
 

 
    

                                                 

  
 

 

                                        

  
 

 

 
 

 
     

 
 

 
     

 

 
    

(40) 

 

The resulting expressions—Equations (37)-(40)—contain nonlinear integral terms. 

Using    and    from the linear approximation as an initial estimate, the nonlinear 

integrals are determined numerically and the result is then substituted back into 

Equations (37)-(40) resulting in a system of 2n linear equations of the unknown 

coefficients for each degree of freedom. The system is solved for new values of the 

coefficients which are used to re-evaluate the nonlinear integrals and generate new 

values of the unknown coefficients. This iterative process is continued and 

coefficient values at each iteration are compared to the values at the previous 

iteration. Once a specified tolerance between successive iterations is reached, the 

final coefficients are then taken to be the correct ones as assumed in Equations (34). 

A flow chart describing the computational process is included blow in Figure 5-1.  

In mechanizing this method, the initial set up is rather involved. The 

equations—Equations (37)-(40)—must be derived in addition to the linear 

harmonic balance equations. The complexity of these equations is dependent on the 

order of the Fourier series used. Once the method is implemented, however, the 

computations only require several seconds to run depending on the tolerance used. 

Using a tolerance of      requires only 2-3 iterations and less than five seconds. 
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Figure 5-1 details the process of the harmonic balance solver. Once the coefficients 

are solved for using this algorithm the assumed responses given in Equations (34) 

can be plotted and compared against the time integration results. 

 

Figure 5-1: Harmonic Balance Solver Algorithm 
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Chapter 6 

Stochastic Modeling 

Once the structural equations of motion, aerodynamic modeling, and time 

integration pieces have been completed, another relevant behavior to investigate is 

that due to stochastic excitation. The use of stochastic excitation within the 

construct of aeroelasticity is of use based on the source of the excitations. 

Aerodynamic lift and moment forces are generated through the interaction of 

airflow over an airfoil. Often, the airflow is laminar and smooth resulting in a 

constant force. However, anyone who has ridden in an airplane knows that aircraft 

often experience turbulence. Turbulence can cause a number of changes within the 

production of aerodynamic forces. Varying air velocities can cause the resulting 

force to vary as the relationship between the force and the air velocity is of the 

order of velocity squared (see Equation (25)). Further, turbulent airflow over an 

airfoil can result in separation which reduces the magnitude of lift and moment 
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while producing additional drag. These issues are apparent for any airfoil traveling 

through the atmosphere, but become especially important to consider for airfoils 

experiencing aeroelastic interactions which can result in motion of the airfoil as well 

as phenomena such as vortex shedding and stall. The model herein does not 

explicitly account for separation effects, but does account for changes in lift and 

moment based on a stochastic velocity input. 

6.1. Turbulence Modeling 

Wind turbulence has been studied for many decades. Interactions between 

wind and structures are important to understand as history has shown through 

catastrophes like the Tacoma-Narrows bridge collapse. Over the years researchers 

have developed models of wind turbulence based on theory and empirical data. One 

of the most widely used models is the von Karman spectrum attributed to its 

developer, Theodore von Karman. It was later adapted for use in wind engineering 

[47]. The von Karman spectrum represents the gust velocity power spectral density 

and has different forms for the vertical/lateral components and the longitudinal 

component. Herein the longitudinal component of the gust is considered. The 

pertinent expression is  

      
   

   

  

 

           
 
  

 

 

 
  
  

(41) 
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where    represents the standard deviation of the gust velocity,    is the scale height,   

is the mean wind velocity, and   is the circular frequency in rad/s [48].  

From the spectrum in Equation (41), time histories can be generated that 

encompass the necessary statistical characteristics. To generate time histories, the 

von Karman Continuous Wind Turbulence Model within the Simulink Aerospace 

Blockset was used. This block passes white noise through a filter designed to 

produce velocity spectra consistent with the von Karman spectrum [49]. The white 

noise used is band-limited with a unit variance. Several input parameters are 

required, including low altitude intensity defined by the wind speed at 20 ft, wind 

direction at 20 ft, turbulence intensity, scale height, time step, wingspan, altitude, 

and seed numbers for the white noise generation [49]. As described in Military 

Specification MIL-F-8785C [50] and Military Handbook MIL-HDBK-1797 [51], the 

turbulence scale height and intensity has been divided into two distinct regions, 

each a function of the altitude. For low altitudes—below 1000 ft—the intensity is a 

function of the wind velocity at 20 ft      . Typically, for light, moderate, and severe 

turbulence     is taken to be 15, 30, and 45 knots, respectively. The equation for 

the intensity,   , then is as [49]  

         , 

  

  
 

 

                    
  

(42) 
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where h is the altitude in feet. The scale height for low altitude turbulence is similar. 

Specifically, 

   
 

                    
  (43) 

 

Altitudes above 2000 ft have a constant scale length           . Turbulence 

intensity for this region is generated from a lookup table based on the altitude and 

probability of the turbulence intensity being exceeded. For altitudes between the 

1000 and 2000 ft, the values are linearly interpolated [49]. The Simulink block 

diagram of the turbulence model is included below in Figure 6-1. 

 

Figure 6-1: Simulink Block Diagram of Turbulence Generation 

 

6.2. Application 

Using the numerical integration framework from Chapter 4, a similar model 

was developed. The process is exactly the same as in Figure 4-2, except the velocity 



 56 
 

 

used in the calculation of the aerodynamic forces is sampled from a stochastic time 

history generated by the Simulink turbulence model previously described.  
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Chapter 7 

Results and Discussion 

By coupling the quasi-steady aerodynamic model and structural model 

derived above, numerical analysis was performed within Matlab. The computations 

were run on an Intel Core2 2.40GHz processor with 3GB RAM. The time step chosen 

for updating the aerodynamic forces was chosen to be     
 

    
. This was done 

based on the step size chosen in Reference [27]. In that paper the authors chose a 

step size of     
 

    
. No qualifications were given for this expression, but based on 

the results presented in their paper was found to be adequate. The removal of the 

velocity dependency was done to remove any potential variations in the data due to 

different sampling times at different velocities. The structural equations of motion 

were integrated in time while the aerodynamic forces were updated at each 

iteration using this time step. Using this time step the simulations for the constant 

velocity case took roughly 30 minutes to compute 60 seconds of data. With the 
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added complexity of generating the stochastic velocity time history the stochastic 

simulations averaged roughly four hours and 20 minutes to compute 60 seconds of 

data. The large difference between the two methods results from having to compute 

the stochastic velocity time history, save it to a file, and then read in values at every 

iteration. Accessing data in other files is very time consuming. 

7.1. Quasi-steady Aerodynamics with Constant Velocity 

A range of flow velocities was used to determine the velocity at which the 

oscillations might become detrimental to the craft. Figure 7-1 and Figure 7-2, below, 

show the pitch and plunge displacement as a function of time. Note the different 

time scales on the two figures. As the velocity is increased, the aerodynamic effects 

cause the damping to decrease resulting in a longer settling time. In Figure 7-1 the 

displacements have both settled after only a little more than 4 seconds whereas in 

Figure 7-2 it takes nearly a minute.  

As the velocity increases past 87 m/s the behavior becomes very lightly 

damped until at 89 m/s the behavior depicted in Figure 7-3 is seen. It was found 

that air velocities below approximately 89.2 m/s either damped out or were 

sustained at constant amplitude. 
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Figure 7-1: Pitch and Plunge vs. Time, V = 50 m/s 

 

Figure 7-2: Pitch and Plunge vs. Time, V = 87 m/s 
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Figure 7-3: Pitch and Plunge vs. Time, V = 89 m/s 

 

For velocities larger than 89.2 m/s, the oscillations increased to a bounded 

steady state limit cycle oscillation. Again the settling time was dependent on the 

velocity however in the opposite sense it had before; higher velocities reached 

steady-state oscillations faster than those closer to the critical velocity. This 

behavior can be seen in Figure 7-4 and Figure 7-5. Both figures have the same time 

scale. Figure 7-4 does not approach steady-state amplitude until approximately 60 

seconds whereas Figure 7-5 takes just over 10 seconds. 
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Figure 7-4: Pitch and Plunge vs. Time, V = 90 m/s 

 

Figure 7-5: Pitch and Plunge vs. Time, V = 95 m/s 
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Note that the amplitude of the angle of attack oscillations is beyond the linear 

region for which the analysis scheme used applies. However, this behavior cannot 

be corrected for without an appropriate dynamic stall model.  

From Table 2-1, the cruise velocities for the HALE UAVs ranged from 

approximately 60-175 m/s. While the representative model analyzed herein was 

not meant to match any of the HALE UAVs in Table 2-1, the model did incorporate 

various aspects common among them. The critical velocity of approx. 89.2 m/s is 

encompassed by the range given in Table 2-1. From this one might argue that the 

analysis holds some realism even given the numerous simplifying assumptions.  

As the velocity increases past the onset of LCO, the amplitude of the LCO also 

increases. Figure 7-6 shows how the amplitude changes with the velocity. A trend 

between the lift force amplitude and plunge amplitude is evident, and the same can 

be said for the moment and the angle of attack. The data also appear to have an 

asymptotic relationship with the critical velocity which is noted by the red dashed 

line. Further, the amplitudes appear to change linearly as the velocity increases past 

approximately 95 m/s.  
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Figure 7-6: Aerodynamic Force and Displacement Amplitude as a 
Function of the Velocity 

 

Figure 7-7 presents the frequency of oscillation as a function of the velocity. 

A red dashed line represents the critical velocity found earlier. Although the 

frequency variation in the figure is quite small (less than one rad/s variation) there 

is a distinct corner located at the critical velocity. Further, note how similar the 

frequencies of the aerodynamic forces and structural displacements are. This is not 

too surprising as the aerodynamic forces are directly dependent on the angle of 

attack, and the angle of attack is also dependent on the aerodynamic forces. It is 

pointed out that the data used in Figure 7-7 are not calculated to reach steady-state; 

only 60 seconds of data was simulated. For the post-critical velocity simulations, the 

steady-state behavior was reached in the form of LCO. However, with the 
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computational resources used and the necessary length of data required to reach 

steady state for velocities just prior to the critical velocity, the requisite computation 

time was prohibitive for this study. Additionally, no effort was made to optimize the 

time step so as to achieve an acceptable accuracy with minimal computation time. 

 

Figure 7-7: Frequency of Oscillation as a Function of Velocity 

 

Figure 7-1 through Figure 7-7 show the aeroelastic behavior of the system, 

but the cause of such behavior is also relevant. Using the same model, behavior at 

velocities much smaller than the critical velocity was simulated. Figure 7-8 shows 

the behavior at 10 m/s. The frequencies of the pitch and plunge oscillations are 

distinctly different. An interesting phenomenon is encountered as the velocity is 

increased. 
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Figure 7-8: Pitch and Plunge vs. Time, V = 10 m/s 

 

Figure 7-9: Pitch and Plunge vs. Time, V = 50 m/s 
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As Figure 7-9 shows, at 50 m/s the pitch amplitude begins at approximately 

the same amplitude, yet is not damped out as quickly. This is consistent with the 

previously mentioned displacement figures; the damping decreases with increasing 

velocity. However, note the drastic change in the plunge displacement. The initial 

amplitude peak has reduced in amplitude and the damping has actually increased. 

Further, a secondary frequency has become apparent. Further increases in the 

velocity make this secondary frequency more prominent. Figure 7-10 shows the 

displacements at 80 m/s. The secondary frequency in the plunge displacement 

appears to have become dominant. Similarity to the pitch frequency is also noted. 

An additional increase in the velocity to 90 m/s shows a continuance of this 

behavior. 

 

Figure 7-10: Pitch and Plunge vs. Time, V = 80 m/s 
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However, as Figure 7-11 shows, 90 m/s is past the critical velocity and LCO 

behavior has started to occur. One explanation for the emergence of LCO is the 

coalescence of the pitch and plunge frequencies. When the velocity is very low, the 

pitch and plunge modes are fairly independent of each other. As the velocity 

increases the plunge frequency becomes more and more dependent on the pitch 

frequency. This is expected as the lift and moment forces are a function of the pitch 

angle. The behavior shown here is indicative of the flutter mechanism described by 

Figure 1-1. 

 

Figure 7-11: Pitch and Plunge vs. Time, V = 90 m/s 

 

Furthermore, classical flutter analysis has found that if dynamic stall were taken 

into account, one might expect the high frequency of the pitch velocity to result in 
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separated flow (stall) and thus decreased aerodynamic forces. The resulting 

behavior would likely appear differently than shown here.  

7.2. Harmonic Balance  

From the harmonic balance formulation described previously, a computer 

model was developed within the Matlab environment. Forcing data from the quasi-

steady numerical integration model was fit to a single harmonic of the form: 

                    (44) 

 

Using the fit command in Matlab, the parameters A, B, and ω were calculated for 

both the aerodynamic lift and moment based on the forcing data obtained from the 

numerical integration. The fit command in Matlab uses a nonlinear least squares 

method to fit the data to a first order Fourier series expansion. The coefficient of 

determination is of the order 0.99999. Figure 7-12 below shows the superposition 

of the forcing data and the resulting first order Fourier series. This case was done 

for a velocity of 90 m/s. The time scale was modified to accurately show the 

agreement. Parameters, A, B, and ω for both the lift and moment were then input 

into the nonlinear harmonic balance solver. The goal of this analysis is to attempt to 

predict the steady-state oscillation amplitude and frequency if the amplitude and 

frequency of the forcing is known.  
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Figure 7-12: Aerodynamic Forces Fit to 1st Order Fourier Series 

 

Using the harmonic balance solver developed in section 5.1, the harmonic 

forcing data for each velocity was input in terms of the amplitudes and frequency of 

oscillation. From this, the solver computed the coefficients of the assumed response 

used from Equation (34). For a velocity of 90 m/s, the results are shown in Figure 

7-13. 
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Figure 7-13: Harmonic Balance Model, V = 90 m/s 

 

The behavior is not as expected. For the pitch displacement the harmonic 

balance approximation is very good initially, but then the amplitude diverges to 

approach the LCO amplitude. For the plunge displacement the behavior is almost 

the opposite; initially the approximation is poor but approaches the LCO amplitude 

much better than the pitch degree of freedom. There appears to be some 

mechanisms at work that prevent the harmonic balance from properly predicting 

the steady-state oscillatory behavior. Presently these mechanisms are unknown and 

require additional investigation to determine the cause of the disagreement. Some 

areas for further examination include the implementation of the equations of 

motion within the numerical integration model, the coding of the harmonic balance 
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model, or possibly the addition of the aerodynamic forcing on the structure. With 

respect to frequency agreement, Figure 7-14 shows a rather close match. Frequency 

agreement was seen at all velocities for both degrees of freedom. This is not 

surprising, however, as the displacement frequency is directly related to the forcing 

frequency. 

 

Figure 7-14: Harmonic Balance Model, V = 90 m/s (Zoomed in) 

 

For larger velocities the initial agreement in the pitch displacement is not 

present as seen in Figure 7-15and Figure 7-16. However, in the plunge degree of 

freedom the harmonic balance approximation approaches the time integration 

results as velocity is increased. A similar trend is seen in the pitch degree of freedom 

but is not as apparent. 
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Figure 7-15: Harmonic Balance Model, V = 95 m/s 

 

Figure 7-16: Harmonic Balance Model, V = 100 m/s 
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For a small range of post-critical velocities Figure 7-17 shows how the error 

changes with respect to velocity. The error is calculated by the equation 

        
       

  
      (45) 

 

where    is the magnitude of the harmonic balance approximation and    is the 

magnitude of the time integration data. A linear relationship is seen that has the 

same rate of change for both the pitch and plunge degrees of freedom. As the figure 

shows, however, the rate of change is very gradual. The pitch degree of freedom 

would require very high velocities that are unreasonable for such an aircraft as 

modeled herein to reach agreement using this trend. 

 

Figure 7-17: Harmonic Balance Approximation Error as a Function of 
Velocity 
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7.3. Quasi-steady Aerodynamics with Stochastic Velocity 

Using a stochastic velocity input based on the von Karman spectrum, the 

results are similar, yet display the sensitivity of the system to variations in the 

velocity. Within the von Karman turbulence model the turbulence intensity was 

taken to be severe. Figure 7-18, Figure 7-19, and Figure 7-20 show the pitch and 

plunge generated by stochastic velocity inputs. The stochastic velocity time histories 

are shown in the center plots in each figure. A red dashed line in the center plot also 

represents the critical velocity found previously. In Figure 7-18 the mean velocity is 

below the critical velocity and thus based on the results presented above one would 

expect the displacements to damp out to zero eventually. But, when the variability 

of the wind turbulence is taken into account, the velocity contains periods both 

above and below the critical velocity. When the critical velocity is exceeded, the 

displacements show behavior similar to LCO. When the velocity later decreases 

below the critical velocity the displacements converge to zero as one would expect. 

The same behavior is seen in Figure 7-19, where the mean velocity is right at the 

critical velocity. In Figure 7-20 where the mean velocity is above the critical velocity, 

the displacements vary as in the previous two figures. However, as the velocity is 

almost exclusively above the critical velocity, the displacements merely vary 

between LCO of different amplitude. 
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Figure 7-18: Pitch and Plunge vs. Time with Stochastic Velocity Input,         
Mean Velocity = 85 m/s 

 

Figure 7-19: Pitch and Plunge vs. Time with Stochastic Velocity Input,         
Mean Velocity = 89.2 m/s 
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Figure 7-20: Pitch and Plunge vs. Time with Stochastic Velocity Input,         
Mean Velocity = 95 m/s 
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Chapter 8 

Concluding Remarks 

The relative inexpensive nature of UAVs lends itself towards inexpensive 

methods of analysis—both monetarily and computationally—as well as inexpensive 

test vehicles. If such cost savings could be realized, the utilization of UAVs would 

grow in leaps and bounds. Improved analysis techniques would allow designers and 

engineers to spend more time and effort on other challenges which would open the 

door to new and exciting technologies.  

To that end, the goal of this thesis has been to determine the applicability of 

modeling post-critical flutter behavior via the harmonic balance method as well as 

to examine the effects of stochastic forcing. As aircraft design and analysis is an 

expensive endeavor, any means by which costs can be reduced are beneficial. The 

harmonic balance has been an attempt to reduce the costly process of numerical 

integration of the equations of motion. Numerical integration is a great tool for 
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simple systems, however as complexity is added in the structure or force model the 

feasibility of accurate numerical results becomes much more costly in terms of time 

and computational resources. To avoid this cost, it was hoped that the LCO could be 

accurately modeled by knowing the applied harmonic forcing. Based on the findings 

herein, the applied forcing was found to be harmonic once LCO was achieved. Using 

this forcing the frequency of oscillation for both pitch and plunge displacement has 

been modeled quite closely. Amplitude, on the other hand, was off by as much as 

almost 63%. Some possible areas of discrepancy here might include the choice to 

neglect the unsteady effects or perhaps lack of a dynamic stall model. The only 

conclusion that can be made at this time concerning the applicability of the 

harmonic balance method is that more investigation is needed.  

In examining the effects of stochastic forcing on aeroelastic behavior the 

results were rather expected. Velocities below the critical value are damped out at 

different rates depending on the magnitude of the velocity. Exceeding the critical 

velocity, on the other hand, results in LCO. One major finding from this study, 

however, is that there exists a range of notable velocities around the critical velocity. 

The width of this range depends on the turbulence intensity. In essence this creates 

a buffer zone around the critical velocity which should be avoided when operating 

in turbulent conditions.  

Although this analysis is considerably simplified and contains many areas for 

improvement, the insights garnered here are quite useful. Baseline characteristics 
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have been observed that can be improved through incorporating additional model 

components that better represent the physics of the real world problem.  

8.1. Future Work 

Based on the findings of this work, there are several opportunities for further 

study. Aerodynamic modeling stands as the greatest opportunity to improve the 

results gained from this analysis. Incorporating a fully unsteady aerodynamic model 

would increase the realism of the analysis by including wake and inertial effects. 

Several models have been proposed based on the work of Theodorsen [36] and 

Wagner [37]. Beddoes [52] has also developed a computationally efficient model for 

use in rotor analysis based on an indicial formulation. Including these more 

advanced models would likely increase the requisite computation time. However, 

perhaps the additional aerodynamic considerations would lead to better agreement 

between the harmonic balance method and the time integration results. Extending 

the harmonic balance formulation to more than one harmonic excitation might also 

result in better agreement. 

The angle of attack results presented herein exceeded the region where the 

linear lift curve slope applies. Accordingly, worthwhile model improvements should 

also contain some type of dynamic stall model. Perhaps this entails simply fitting a 

polynomial to the lift curve to capture the dynamics at higher angles of attack, or 

perhaps requires building on previous work by Leishman and Beddoes [53] or 

McAlister, et al [54]. 



 80 
 

 

Further investigation into the stochastic effects is also worthwhile. 

Employing a stochastic linearization approach [55] might reveal additional 

important characteristics of the aeroelastic problem within the framework of 

turbulent aerodynamics.  

Another major area of possible improvement is to look at the aeroelastic 

behavior of an entire finite wing. As mentioned before, many researchers have spent 

considerable effort in developing complex finite element models of entire aircraft 

which are then coupled to unsteady aerodynamics code. By refining the number of 

elements, higher order vibration modes can be modeled which can also contribute 

to the frequency coalescence shown previously. Further, better accuracy in the 

displacements can be achieved with higher order models than with the simple 2nd 

order model analyzed herein. Taking into account three-dimensional effects is also 

an avenue for improvement.  

In terms of the simulation presented, computation time improvements can 

also be made by finding an optimal time step which gives accurate results and 

minimal computation time. Further, the code can be perhaps modified to run in 

parallel with a multi-node system. Stochastic velocity time histories could also be 

generated via auto-regressive (AR) [56] or auto-regressive moving-average (ARMA) 

[57] algorithms . Perhaps this would speed up the stochastic modeling. 
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