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ABSTRACT

I develop a principal-agent framework in which agents take actions that influence a

firm’s general ledger accounts. My framework is tractable and facilitates optimal closed-

form solutions without assuming preferred actions or imposing exogenous restrictions on

contractual form. I apply the framework to several settings and a consistent theme emerges:

it is cheaper to motivate efficiency improvements than revenue growth. This is driven by a

seemingly trivial property of bookkeeping, that general ledger accounts are bounded below

by zero. I find that this accounting feature influences task allocation, organizational design

and optimal aggregation rules. My analyses produce many readily-testable predictions and

can help explain empirical regularities; for example, I predict that the low pay-performance

sensitivities empirically observed in loss firms may be driven in part by life cycle. My find-

ings demonstrate that when studying the optimal use of accounting information, properties

of the double-entry systems which generate that information should be taken seriously.
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INTRODUCTION

General ledger accounts are the basic building blocks of accounting performance measures.

Accountants have specialized knowledge about these accounts and the double-entry systems

in which they reside. This expertise appears underutilized in theoretical accounting research,

which tends to model the entire accounting report with a single performance measure -

earnings - without regard to its underlying components or features of the accounts which

comprise them. Because earnings is an aggregate measure, managers can only influence

it by affecting one or more of its components. If those components respond differently

to managerial effort, then optimal incentives should depend on the component(s) being

influenced.

In this thesis, I develop a principal-agent framework in which managers stochastically

influence a firm’s accounts, which can serve as performance measures themselves or can be

aggregated to form other measures, such as earnings. I make my framework tractable by
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imposing Poisson distributions, square-root utility preferences and context-specific cost of

effort and profit functions. I demonstrate the features of my framework in five applications

focused on two simple earnings-increasing activities: cost cutting and revenue growth. I

find that the zero bound on revenue and expense accounts affects optimal contracting and

production under moral hazard, and consequently has broad organizational ramifications,

influencing optimal aggregation rules, task allocation, and organizational design. In each

application, I discuss the empirical implications of my findings.

In my framework, an accounting system records a firm’s transactions in Poisson-

distributed accounts. Consistent with accounts in double-entry systems, the Poisson dis-

tribution is unbounded above and bounded below by zero. Poisson-distributed variables

are also amenable to aggregation and thus well-suited for modeling the construction of ac-

counting reports. The firm’s risk-neutral owner hires agent(s) to take action(s) that increase

expected firm value and stochastically influence one or more of the firm’s general ledger ac-

counts. I model this influence by making each account’s Poisson parameter a function of

managerial actions. A given action may increase some accounts, decrease others or affect

how accounts are related, allowing for rich representations of the ways managers influence

firms. My framework technology is quite flexible; the action set, account set, and the func-

tions by which actions affect each account can all be tailored to the specific setting being

studied.

Admittedly, relying on the Poisson specification is not without loss of generality. But

what I gain from this parametric structure, in combination with the other assumptions of my

model, is tractability. Intractability has long been an impediment to studying accounting

issues in an agency theory context, as the general nature of the principal-agent (P-A) model

leaves few degrees of freedom for investigating incentive issues that go beyond the optimal

design of the contract.

One popular approach for addressing the tractability problem is what’s known as the

LEN model, which assumes that an agent with negative exponential utility controls the

mean (and only the mean) of normally-distributed performance measures and that her con-
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tract is linear in those performance measures. These assumptions clear away the cumbrous

machinery of the general P-A problem, making the LEN model algebraically accessible even

in complex settings. However, when LEN’s linear contract restriction does not align with

truly optimal contracts, it can produce results that are based on the suboptimal use of in-

formation. To its credit, the LEN model has been extremely influential, and its widespread

use demonstrates that imposing structure on the P-A problem can facilitate the tractability

needed to study applied issues involving information. While I take a similar approach of

adding structure to the general problem, I do so without restricting the contract to take

a particular form, thereby avoiding the problematic possibility of drifting into a third-best

analysis.

The optimal, unrestricted contracts that emerge from my framework are markedly

simple. A square root utility function, in combination with the linear likelihood ratios

associated with Poisson-distributed accounts, makes the optimal contract linear in account

balances in utility space (and convex in cash space). I show that the optimal contractual

weight on a given account depends on the agent’s cost function and on the setting-specific

technology by which managerial actions affect the account. I find that optimal aggregation

rules are more aggressive (i.e. they weight revenues more heavily than expenses) when a

firm has been reporting extreme losses, has expense accounts loaded with fixed costs, or

competes more on cost than on product differentiation. I also find that optimal weighting

rules are more conservative when cost of effort functions are more convex.

One benefit of my framework is the ease by which it allows one to study the effects of

moral hazard on desired actions. Many applied agency papers deal with optimal contracts

for a given action; for example, papers following Gigler and Hemmer (2001) assume a binary

action space in which the agent can choose either high or low effort. Because these models

assume a certain preferred action ex ante, they are rather limited in their ability to speak

to issues involving production, optimal task assignment or job design.

I study two primary types of actions: revenue-increasing actions and cost-cutting ac-

tions. Very consistently, I find that cost-cutting actions are cheaper to implement than
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revenue-increasing actions. This occurs because, due to the lower bound of zero on the

accounts, managerial action affects the variance of the accounts in opposite ways: revenue

growth increases the variance of revenues, while cost reductions decrease the variance of

expenses. To see this, visualize a revenue distribution that is unimodal, bounded below by

zero and unbounded above. As the manager takes actions that increase expected revenues,

the distribution’s mass is spread rightward over a wider area and the account’s variance

increases. Therefore, a higher equilibrium action injects more variance into the perfor-

mance measure and thus more risk into the agent’s contract. Compensating the agent for

this added risk makes the higher revenue-increasing action more expensive to implement.

In contrast, cost-cutting actions decrease the expected value of the expense account, com-

pressing its mass tighter against the lower bound of zero and decreasing its variance, which

in turn reduces the risk in the agent’s contract.

This phenomenon - that expense-cutting actions are inherently less risky than revenue-

increasing actions - arises because account mean and variance move together. This comes

along with my Poisson specification, because the mean and variance of the Poisson are

equal, but it is not particular to the Poisson. Mean and variance appear to move together

for any distribution which (1) is bounded below and unbounded above, and (2) responds to

mean-shifting managerial action in accordance with the monotone likelihood ratio condition.

The assumption that account mean and variance move together seems reasonably con-

sistent with many real-world settings. A manager hired to increase revenues will likely have

to take bold or risky actions to do so, as any risk-free opportunities for revenue growth will

have already been exhausted by competition. For expenses, the argument is most obvious

in the limit: eliminating all production costs would eliminate the variance of those costs as

well.

While I argue that account mean and variance move together in many real-world op-

erational settings, the assumption does not hold universally. For example, reducing the

expected value of income tax expense may require taking riskier tax positions. My frame-

work cannot speak to these settings; it applies only to settings in which mean-increasing
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actions are also variance-increasing.

I conceptualize revenues as price∗volume and examine settings in which the manager is

tasked with both curbing costs and increasing either sales volume or selling price. I find that

the degree to which cost cutting is emphasized over growth is stronger in volume-focused

firms relative to price-focused firms. This difference arises because sales volume affects

expenses but selling price does not. Consequently, providing incentives for volume growth

creates indirect incentives for cost cutting because it is in the agent’s interest to combat

the associated increase in expense account variance. I also find that optimal aggregation

rules are aggressive for volume-focused firms and neutral for price-focused firms. I discuss

the empirical implications of these findings and suggest a textual analysis approach for

identifying volume- versus price-focused firms.

One application of my framework presents a particularly stark version of the finding

that cost cutting is cheaper to implement than revenue growth. I show that when the

restriction of a square root utility function is lifted and replaced with a general concave

utility function that is unbounded below, implementing the cost-cutting action is free from

a risk-sharing perspective. This is achieved through a penalty scheme a la Mirrlees (1999),

in which the manager is paid the first-best wage if expenses fall below some threshold and

incurs a penalty if expenses exceed that threshold. The scheme works because bad expense

outcomes are unbounded above (assuming unlimited credit or borrowing), so as expense

realizations move toward the extreme right tail of the distribution, the principal becomes

increasingly confident that the manager shirked. For a given threshold, the principal threat-

ens a penalty so painful that the manager never shirks, thereby guaranteeing the first-best

action. The threshold and penalty can be set increasingly high until, in the limit, the

manager takes the first-best action, earns the first-best wage and never incurs the penalty.

Penalty schemes are not efficient for implementing revenue-increasing actions. This

is because bad revenue outcomes are bounded. There is a worst possible revenue outcome

- specifically, zero dollars - making it impossible for the principal to detect shirking with

adequate certainty to approximate the first-best solution.
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The finding that penalty schemes are efficient for cost cutting but not revenue growth

has empirical implications for pay-performance sensitivities (PPS), which I discuss at length

in section 3.5. If one is willing to believe that at least some firms employ penalty schemes

to implement cost cutting, then on average, agents tasked with cutting costs should have

less variable compensation than those tasked with revenue growth. This allows for PPS

predictions across cross sections in which managers are presumed to be tasked more heav-

ily with cost cutting versus growth. For example, it seems reasonable to assume that the

emphasis on cost cutting relative to growth is higher for Chief Operations Officers (COOs)

than for Chief Marketing Officers (CMOs). My findings would then suggest that the sen-

sitivity of COO compensation to operating expenses should be lower than the sensitivity

of CMO compensation to revenues. Notice that this prediction deals with sensitivities to

account-level performance (i.e. expenses for the COO and revenues for the CMO) rather

than aggregate earnings performance; I distinguish between account-PPS and earnings-PPS

and make predictions about each.

I predict that earnings-PPS will be low (or even negative) in startup firms, increase as

firms grow and reach maturity, and decrease as firms enter decline. This suggests a new

explanation for the well-documented phenomenon of lower PPS in loss firm-years relative

to profitable firm-years: to the extent that losses are more common during the startup and

decline phases, the low PPS in loss years may be explained in part by life cycle.

Finally, I study how incentives for revenue growth and cost cutting affect organizational

design. In a setting with N products and N agents, I study job diversification and optimal

team size for a revenue center and a cost center. Members of a sales or cost-cutting team are

compensated on the total sales or production costs, respectively, of the products assigned

to their team. In choosing whether to increase team size, the principal faces a trade-off

between the beneficial synergies of job diversification and the cost of compensating each

agent for the added risk in her contract produced by assessing her performance on measures

affected by an increasingly large team. Because cost-cutting actions are variance reducing,

the added contractual risk from increasing team size is smaller for cost-cutting tasks than
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for sales tasks. This results in optimal team size being larger in cost centers than revenue

centers.

I make three primary contributions. First, I design an analytical representation of

accounting that models economic activity at the account level and mirrors real-world at-

tributes of general ledger accounts (section 2.1). While I employ this structure in an agency

context, disclosure theorists may find it useful as well. Second, I provide a set of assumptions

that make the principal-agent model algebraically tractable without assuming preferred ac-

tions or imposing exogenous restrictions on contractual form (section 2.2). This model

specification should be particularly useful for studying settings in which performance mea-

sures are accounting-generated or have distributional features similar to the Poisson (such

as being bounded below by zero and unbounded above). Third, I find that agency costs tend

to be lower for cost cutting than for revenue growth (section 3.1), which to my knowledge

has not been demonstrated in the agency literature. My findings show that the effects of

this phenomenon ripple throughout the organization, interacting with firm strategy (sec-

tion 3.2), team formation (section 3.3), optimal aggregation rules (sections 3.2 and 3.4),

and pay-performance sensitivities (section 3.5). I believe the applications presented only

scratch the surface of what this framework can address; section 4 discusses my plans for

future work. Overall, I aim to demonstrate that an account-oriented approach to modeling

accounting information can provide new insights into longstanding economic questions.



2

FRAMEWORK

Consider the following single-period model. A firm’s accounting system tracks its economic

activity by recording meaningful events and transactions in accounts which act as random

variables.There are n such accounts, with ending balances represented by ~x ≡ (x1, ..., xn).

The firm’s risk-neutral owner hires a risk-averse manager to exert continuous effort along

m unobservable tasks, denoted ~a ≡ (a1, ..., am), with ai ∈ R+ for all i. The agent’s actions

impose a personal cost on the agent of c(~a), where c(·) is increasing and convex. The agent’s

reservation utility is Ū and her utility from compensation, u(·), is increasing, concave and

is additively separable from her cost of effort. The agent’s actions parametrically influence

the firm’s accounts (~x), which are used as performance measures to evaluate the agent. Let

Π(~a) be the principal’s gross expected payoff from hiring the manager to take action vector

~a. The principal’s objective is to maximize her expected net profit by choosing a set of

actions (~a) as well as a compensation scheme s(~x) to implement those desired actions. The

8
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principal’s problem is shown below.

max
s(~x),~a

Π(~a)− E[s(~x)|~a] (OBJ)

subject to E[u(s(~x))|~a]− c(~a) ≥ Ū (IR)

and ~a ∈ argmax
ã

{E[u(s(~x))|ã]− c(ã)} (IC)

(2.1)

The individual rationality (IR) constraint ensures that the agent is willing to accept

the contract, and the incentive compatibility (IC) constraint ensures that the agent takes

the appropriate actions by making ~a in the agent’s best interest given the contract. Notice

that even in the single action case in which ~a = a ∈ R, (IC) is a set of constraints and

represents infinitely many pairwise comparisons of the agent’s expected utility under all

possible actions. This is a major obstacle to tractable analysis of the problem, as it is difficult

to determine which constraints bind. The first-order approach (FOA) is a commonly used

method for simplifying the IC constraint set; it replaces (IC) with the first-order necessary

condition(s) from the agent’s unconstrained maximization problem.

Even with the first-order approach, the general nature of the principal-agent model

makes it difficult to address specific or applied issues because characterizing the optimal

contract tends to burn up most of the researcher’s degrees of freedom. The popular LEN

framework addresses this technical problem by imposing a particular structure on the P-A

problem. LEN requires that s(·) is linear in performance measures, that the agent has

(multiplicatively separable) negative exponential utility and that signals are normally dis-

tributed; additionally, most LEN models assume that the agent’s cost of effort function is

quadratic. This combination of assumptions provides tractability even in complex settings,

which has facilitated the study of many interesting organizational and economic issues in

the literature. However, LEN’s tractability comes at a cost: the ex ante restriction of linear

contracts might not align with truly optimal contracts.

In this section, I develop a principal-agent framework oriented around two primary
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objectives. First, I aim to replicate LEN’s convenience and algebraic accessibility without

its potential downside. I do this by, like LEN, taking a parametric approach that imposes

a specific structure on the P-A program, but I do so without placing ex ante restrictions

on the contractual form. Second, the parametric assumptions I impose are intended to

capture fundamental attributes of accounting information systems, making it well-suited for

addressing settings with accounting-generated performance measures like the one described

above. Section 2.1 details these distributional assumptions; this is the most important piece

of the framework because it is what makes it accounting-centric. Section 2.2 shows how

the problem can be made more tractable by imposing additional structure on (in order of

importance) the utility function u(s), the cost of effort function c(~a) and the profit function

Π(~a).

2.1 A Parametric Representation of General Ledger Accounts

While certainly convenient, the FOA is unfortunately not always valid (Mirrlees (1999)).

Jewitt (1988) put forth a set of sufficient conditions for validity of the FOA, and I adhere to

his conditions in building my framework.1 This limits the set of possible distributions I can

use to represent the account technology. Jewitt identifies three well-known distributions that

satisfy his conditions: the Chi-squared, gamma, and Poisson. Of these three candidates,

the Poisson best suited to model accounting because it is most amenable to addition and

subtraction, which is at the heart of basic accounting mechanics. Additionally, the Poisson

distribution mirrors the basic properties of double-entry accounts: it is bounded below by

zero and unbounded above.

For these reasons, I assume that accounts in the firm’s double-entry system are Poisson-

1. A different set of sufficient conditions were provided by Mirrlees (1979) and later proven correct by
Rogerson (1985). These conditions included the monotone likelihood ratio property (MLRP) and the con-
vexity of the distribution function condition (CDFC). The CDFC is extremely difficult to satisfy and rules
out almost all known probability distributions, so I use Jewitt’s less restrictive conditions rather than the
Mirrlees-Rogerson conditions.
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distributed. Let xj represent account j and be distributed as follows.

xj ∼ Poisson(x̄j), with x̄j ≡ x̂j + fj(~a), (A1)

The Poisson distribution has one parameter; I call that parameter x̄j and separate it into

two additive components. The first, x̂j , is exogenous and represents the expected value of

xj if the agent takes no action. The second, fj(~a), is the effect of the agent’s actions on the

expected value of xj .

The distribution of any Poisson-distributed account x is unimodal, positively skewed

and has the following probability mass function.

Pr(x|x̄) =
e−x̄ (x̄x)

x!
, x = 0, 1, 2, ... (2.2)

The first four moments of account x are as follows.

E(x) = x̄ (2.3)

V ar(x) = x̄ (2.4)

Skewness(x) =
1√
x̄

(2.5)

Kurtosis(x) =
1

x̄
(2.6)

Notice that all moments of the Poisson distribution are affected by the manager’s effort;

if the manager influences an account’s expected value, she influences all other moments as

well.

The sum of Poisson-distributed random variables is also Poisson-distributed; if xs is the

sum of x1 ∼ Poisson(x̄1) and x2 ∼ Poisson(x̄2), then xs ∼ Poisson (x̄1 + x̄2). The differ-

ence between two Poisson-distributed random variables follows the two-parameter Poisson-

difference distribution or Skellam distribution (Skellam 1946). Distributions of the sums or
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differences of Skellam-distributed accounts are also Skellam-distributed.2

With well-defined sums and differences of account balances, one could use this frame-

work to model the financial statements by appropriately classifying and aggregating gen-

eral ledger accounts. No matter how the aggregation is done, every line item will follow

either a Poisson or Skellam distribution. This technology is illustrated in Figure 1, which

shows a simple income statement in which (Poisson-distributed) revenue accounts aggregate

to Poisson-distributed total revenues, (Poisson-distributed) expense accounts aggregate to

Poisson-distributed total expenses, and total revenues and total expenses are differenced to

arrive at Skellam-distributed earnings.

Let LRij ≡
∂

∂ai
(Pr(xj |~a))

Pr(xj |~a) denote the likelihood ratio for account xj in reference to action

ai ∈ ~a. The following observation provides this likelihood ratio.3

Observation 1. The likelihood ratio for any Poisson-distributed account xj and action ai

is given as

LRij ≡
∂
∂ai

(Pr(xj |~a))

Pr(xj |~a)
=

(
xj − x̄j
x̄j

)
f ij , where f ij ≡

∂fj(~a)

∂ai
. (2.7)

The likelihood ratio has an expected value of zero and the following variance.

V ar(LRij) =

(
f ij

)2

x̄j
(2.8)

The likelihood ratio is a product of the marginal influence of ai on E[xj ] times the scaled

deviation of account xj from its expectation given actions ~a. Notice that the likelihood ratio

is linear in xj ; this will play an important role as I develop tractability in the next section.

2.2 Tractability

One of Jewitt’s (sufficient) conditions for validity of the FOA is that u(s) is a concave

transformation of 1/u′(s). The square root satisfies this condition, and it seems to be

2. Because the settings I investigate in this paper rely on Poisson- rather than Skellam-distributed ac-
counts, I relegate details on the Skellam distribution to Appendix A.

3. All proofs are provided in Appendix B.



13

“less risk averse” than other utility functions that satisfy the condition. For example, the

logarithimic utility function ln(s) can be rearranged as 2ln (
√
s); therefore logarithimic

utility is a concave transformation of square root utility and thus represents more risk

aversion. Additionally, all power utility functions sα with α ≤ 1/2 satisfy Jewitt’s condition

and have a higher constant relative risk aversion than the square root. Within the class

of utility functions satisfying Jewitt’s condition, the square root appears to be among the

least risk averse.4 With a risk-neutral principal, all second-best results are driven by the

agent’s risk aversion, so many utility functions within the class satisfying Jewitt’s condition

would produce more extreme versions of results obtained using the square root.

A square root utility function, in combination with a risk-neutral principal, makes

the compensation contract quadratic in likelihood ratios (see for example Kim and Suh

(1991)). Hemmer, Kim, and Verrecchia (2000) show that this gives the opportunity for

closed-form solutions, particularly when likelihood ratios are linear in performance signals.

Specifically, they show that a square-root utility function, in conjunction with the linear

likelihood ratios of the gamma distribution, facilitates closed-form solutions. The Poisson

distribution also exhibits linear likelihood ratios, as shown in Observation 1. Therefore, in

pursuit of making my accounting-oriented framework tractable, I assign the agent a square

root utility function:

u(s) =
√
s. (A2)

Assumption (A2) allows me to rewrite program (2.1) as follows, where ci ≡ ∂
∂ai
c(~a) is

the marginal cost of action ai.

max
s(~x),~a

Π(~a)− E[s(~x)|~a] (OBJ)

subject to E[
√
s|~a]− c(~a) ≥ Ū (IR)

and ∂
∂ai
E[
√
s|~a] = ci (ICi), for all i ∈ (1, ...,m)

(2.9)

4. The negative exponential utility function also satisfies Jewitt’s condition, but its degree of risk aversion
depends on the specified coefficient of absolute risk aversion, making direct comparison with the square root
difficult.
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The following lemma gives the optimal contract for this (m-action, n-account) program,

where λ is the multiplier on the (IR) constraint and µ1, µ2, ..., µm are the respective multi-

pliers on constraints (IC1), (IC2), ... , (ICm).

Lemma 1. The contract optimizing program (2.9) is characterized by

2
√
s = λ+

m∑
i=1

µi

n∑
j=1

f ij

(
xj − x̄j
x̄j

)
, (2.10)

with multipliers

λ = 2Ū + 2c(~a) (2.11)

and µk =
det(Dk)

det(D)
for all k ∈ (1, ...,m), (2.12)

where D is the m×m matrix with element dik ≡
∑n

j=1

f ijf
k
j

x̄j
in row i and column k, and Dk

is the matrix formed by replacing column k of D with c′ ≡ (c1c2...cm)T.

To ensure that the square root utility function is well defined, I assume that contractual

payments are bounded below by zero; that is, s(·) ≥ 0.With a lower bound on the left-hand

side of contract (2.10), in some cases it is technically necessary to right-truncate certain

account distributions so that the likelihood ratios in the contract are appropriately bounded

below on the right-hand side of (2.10). The potential for likelihood ratios being unbounded

below arises when an equilibrium action ai decreases the expected value of account xj ; that

is, when f ij < 0. Notice from equation (2.7) that f ij < 0 makes the likelihood ratio of

account xj with respect to action ai decreasing in xj , and because xj is unbounded above

and the likelihood ratio is linearly decreasing, LRij is consequently unbounded below. In

these cases, I assume that account xj follows a right-truncated Poisson distribution with no

probability mass above xj = R: xj ∼ RT-Poisson(x̄j , R), xj = 0, 1, ..., R. The likelihood

ratio of this account with respect to action ai is

f ij

xj
x̄j
−
∑R

k=0

x̄k−1
j

(k−1)!∑R
k=0

x̄kj
k!

 .
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The second fraction inside the parentheses above rapidly approaches 1 as R increases

(by R = 25, for example, the value of the quotient is .9999971). The likelihood ratio for a

regular Poisson-distributed account is f ij

(
xj
x̄j
− 1
)

, and therefore the truncated likelihood

ratio rapidly approaches the regular likelihood ratio as the truncation point is increased.

With sufficiently highR the likelihood ratios are indistinguishable for xj < R. Consequently,

because contract 2.10 approximates a contract written over truncated Poisson accounts, and

because the regular Poisson distribution is easier to work with than the truncated one, I

use regular Poisson distributions in my analyses regardless of the sign of f ij .
5

Lemma 1 shows that the optimal contract (2.10) in utility space is a linear combination

of the firm’s accounts, where the weight on account xj is

m∑
i=1

µif
i
j .

The multipliers (µ1, µ2, ..., µm) depend on the account technology and the agent’s marginal

cost of effort in each task, (c1, c2, ..., cm). In order to allow for closed-form solutions, it is

therefore necessary to specify the agent’s cost of effort function. In most of the applications

I explore, the cost of effort function is not of primary interest and my cost of effort function

specification is driven by tractability considerations. Specifically, I assume that c(~a) is linear

and additively separable in all tasks.

c(~a) = δ1a1 + δ2a2 + ...+ δmam, (A3)

where δi is the marginal cost of action ai. Assumption (A3) may be less appropriate if cost

of effort is a salient attribute in the setting being studied. For example, in Section 3.4 I use

a quadratic cost of effort function because I am interested in how optimal aggregation rules

change when the cost of effort function is strictly convex.

All that remains to make closed form solutions possible is to assign a functional form

to the Π(~a), the expected future cash flows generated by the agent’s actions. This specifi-

5. In section 3.5 I lift the background truncation assumption, as well as the square root utility assumption,
and study a setting in which penalty schemes are allowed.
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cation is best done within applied contexts, as the profit function can be tailored to fit the

economics of the specific setting at hand. For example, tasks can be made complements in

the profit function to represent benefits to job diversification, an approach that I take in

section 3.3. The profit function can also be a useful tool for facilitating interior solutions,

as I demonstrate in section 3.1.

2.3 Comparison to LEN

The LEN model imposes structure on the P-A problem by giving a specific form to the

following elements: the distribution of signals, the utility function, the cost of effort function

and the contract. My agency framework specifies each of these elements except for the

contract. It is therefore LEN-like because it employs a parametric approach that provides

the tractability needed to address interesting applied issues. However, this advantage is

gained without LEN’s potential drawback, that the contractual form imposed ex ante might

not be truly optimal.

Table 1 gives a side-by-side comparison of my framework and the LEN framework.

There are a few meaningful differences. First, contracts in the LEN model are (by as-

sumption) linear in cash space, while contracts in my framework are (optimally) linear in

utility space. Second, LEN employs normally-distributed performance measures while I use

Poisson-distributed performance measures. I contend that the Poisson distribution is more

appropriate than the normal for modeling accounting information. Both distributions allow

for tractable aggregation, but the Poisson is bounded below by zero (as are accounts in

a double-entry system), while the Normal is unbounded below. Finally, signal variance is

exogenous in LEN models; the agent controls the signal’s mean but no other moments of

the distribution. In my framework, managerial actions influence all moments of the distri-

bution; for example, any effect on an account’s expected value renders an equal effect on the

account’s variance because E(x) = V ar(x) = x̄ for x ∼ Poisson(x̄). Allowing managerial

effort to influence higher moments opens the door to more robust predictions as to how

agency issues affect the distributions of earnings and other line items.
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Table 1: Comparison of the LEN and Poisson frameworks.

LEN framework My framework

Distribution of

performance measure x

x ∼ Normal(a, σ2) x ∼ Poisson(x̂+ f(a))

Contract

s(x)

Linear by assumption

in cash space

Optimally linear

in utility space

Utility of consumption

u(s)

Negative Exponential

u(s) = −e−s
Square root

u(s) =
√
s

Cost of effort

c(a)

Quadratic

c(a) = a2

Linear

c(a) = δa

Composition of agent’s

utility U(s, c(a))

Multiplicatively separable

U(s, a) = −e−(s−a2)

Additively separable

U(s, a) =
√
s− δa
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APPLICATIONS

This section provides a set of model applications to specific issues where accounting is at the

heart. I focus on revenue and expense accounts - a reasonable starting point for representing

more realistic accounting systems - and explore how the optimal use of these accounts as

performance measures interacts with organizational design, firm strategy and aggregation

rules. I assume Poisson-distributed accounts (A1) throughout all five applications. I use the

tractability-oriented assumptions (A2 and A3) when they are appropriate for the setting

being investigated.

Equation (2.10) shows that with assumptions (A1) and (A2), optimal contracts (in

utility space) are linear in accounts; however, the optimal weights on those accounts depend

on setting-specific assumptions. This allows for comparison of how accounts are optimally

weighted across settings. Throughout the applications, I refer to an optimal aggregation

rule as the weighting of accounts in the optimal contract. I define an aggregation rule as

18
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neutral if it weights revenues and expenses equally, conservative if it weights expenses more

heavily, and aggressive if it weights revenues more heavily.1

3.1 Incentivizing growth and efficiency

What is the right balance between revenue growth and cost containment? This question is

central to firm strategy and profitability, but to my knowledge it has not been addressed

from a contracting perspective. I investigate it in the following simple setting: One manager

is hired to increase expected revenues and decrease expected expenses. I denote these actions

ar and ae and assume that they influence revenues and expenses, denoted xr and xe, through

the following account technology.

xr ∼ Poisson(x̄r), x̄r = x̂r + ar (3.1)

xe ∼ Poisson(x̄e), x̄e = x̂e − ae. (3.2)

Absent managerial effort, expected revenues are x̂r; this exogenous component can be inter-

preted as expected revenues from existing customers or stable demand. Absent managerial

effort, expected expenses are x̂e and can include both productive spending and waste. No-

tice that ae reduces expenses but does not impact revenues. This assumes that ae does not

involve cuts to productive spending, rather, it represents efforts made to improve operating

efficiency, cut slack or renegotiate contracts with suppliers for better input prices. I assume

that some positive amount of productive spending is required to maintain revenues and

therefore xe cannot be cut to zero.2

I assume that the profit function is

Π(ar, ae) = πar + πae + πbarae, (3.3)

1. There are factors exogenous to this model that may affect whether earnings should be conservative or
aggressively constructed; when I refer to an aggregation rule as optimal it is exclusively from a contracting
perspective.

2. In addition to being realistic, this assumption avoids the potential technical problem arising from the
principal setting ae = x̂e, which would allow the use of a forcing contract because V ar(xe) = x̂e − ae would
equal zero.
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where πar and πae respectively represent the expected future cash flows from ar and ae

individually, and πbarae represents the additional expected future cash flows resulting from

synergies between the two actions. With this profit function and assumptions (A1)-(A3),

the principal’s program is as follows.

max
s(xr,xe),ar,ae

πar + πae + πbarae − E[s(xr, xe)|ar, ae] (OBJ)

s.t E[
√
s(xr, xe)|ar, ae]− δrar − δeae ≥ Ū (IR)

and ∂
∂ar

E[
√
s(xr, xe)|ar, ae] = δr (ICr)

and ∂
∂ae

E[
√
s(xr, xe)|ar, ae] = δe (ICe)

(3.4)

The optimal contract for program (3.4) is provided in the following observation and

follows directly from Lemma 1, with µi = 2δix̄i for i = r, e.

Observation 2. The optimal contract solving program (3.4) is

√
s = Ū + δrar + δeae + δr(xr − x̄r) + δe(x̄e − xe). (3.5)

Notice that revenues and expenses are respectively weighted by δr and δe, the agent’s

marginal cost of effort on each task; intuitively, stronger incentives are required for tasks

that are more personally costly to the agent.3 If the agent is indifferent between actions,

the optimal weighting rule is neutral. For simplicity, I assume that this is the case and let

δr = δe = δ throughout the rest of the application.

If x̂r and x̂e are interpreted as prior period revenues and expenses, then expanding

x̄r and x̄e and canceling some terms in contract (3.5) reveals that the optimal contract is

linearly increasing in revenue growth and expense curtailment, or equivalently, is linear in

positive earnings changes.

√
s = Ū + δ (xr − x̂r)︸ ︷︷ ︸

increase in
revenues

+δ (x̂e − xe)︸ ︷︷ ︸
decrease in
expenses

(3.6)

3. This echoes the findings of Amershi, Banker, and Datar (1990), who show that the optimal way to
aggregate signals for performance evaluation depends on the individual manager being evaluated.
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Before solving for the second-best actions, it is worth observing that the first-best

actions are equal: a∗r = a∗e. Absent contracting considerations, and with actions equally

profitable in the function Π = π(ar) + π(ae) + πbarae, the principal wants a perfectly even

balance between revenue growth and cost cutting. The following lemma shows that agency

costs upset this balance and cause the principal to set ae > ar.

Lemma 2. The second-best actions solving program (3.4) are:

ar =
ππb − 2πbŪδ − δ2(4δ2 − πb)

πb(4δ2 − πb)
(3.7)

and ae =
ππb − 2πbŪδ + δ2(4δ2 − πb)

πb(4δ2 − πb)
. (3.8)

The principal implements more cost cutting than revenue growth. The difference between

the actions, given below, is decreasing in the synergy parameter (πb) and is increasing in

the marginal cost of effort (δ).

ae − ar =
2δ2

πb
> 0. (3.9)

Lemma 2 shows that, from a contracting perspective, cost cutting should be emphasized

over revenue growth. This asymmetry stems from the opposite effect that the two actions

have on the variances of their associated accounts and likelihood ratios. By equation (2.4),

V ar(xr) = x̂r + ar and V ar(xe) = x̂e − ae. Account variance is therefore increasing in ar

and decreasing in ae. Let LRr and LRe be the likelihood ratios of the revenue and expense

accounts, respectively. By equation (2.8), the variances of these likelihood ratios are as

follows.

V ar(LRr) =
1

x̄r
=

1

x̂r + ar
(3.10)

V ar(LRe) =
1

x̄e
=

1

x̂e − ae
(3.11)

V ar(LRr) is decreasing in the equilibrium revenue action (ar), so as ar increases, it becomes

increasingly difficult to infer the agent’s action from xr. By contrast, V ar(LRe) is increasing
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in the equilibrium cost-cutting action (ae), making it easier to infer the agent’s action from

xe. Notice that the finding that ae > ar would not arise naturally from a LEN model

because LEN assumes that variance is independent of managerial actions.

Because ae is cheaper to implement than ar, the existence of an interior solution relies

on positive synergies between the actions. Setting πb = 0 produces a corner solution,

depicted in Figure 2. It shows that the principal’s expected residual payoff is maximized

by setting ar = 0 and maximizing over ae.With a linear profit function (πar + πae) and

a linear cost of effort function, there is too little convexity for interior solutions when one

action is cheaper to implement than the other.

The interior solution given by equations (3.7) and (3.8) obtains for any πb > 0.4 It

seems reasonable to assume some nonzero benefit to balancing across action types and

there is precedent for doing so; for example, Holmström and Milgrom (1991) assume that

the principal wants the agent to put effort toward both quality and quantity.

Empirical insights: Focus on cost-cutting versus growth

The result from Lemma 2 that cost cutting will be emphasized over growth is supported

by survey evidence in Graham, Harvey, and Rajgopal (2005). They document that when

executives are asked what actions they would take when faced with an earnings target, 80

percent report that they would reduce spending while only 39 percent say they would try

to increase revenues. My results shed light on the types of executives driving this result.

Equation (3.9) shows that the emphasis on cost cutting becomes more extreme as marginal

cost of effort increases. Interpreting an executive’s marginal cost as an (inverse) expression

of his or her ability, I predict that the least talented executives will focus almost entirely on

cost cutting and put very little effort towards growth, while talented executives will take a

more balanced approach towards the two objectives.

4. There are other ways to get interior solutions. For example, if the marginal product of the actions are
different so that Π = πrar + πeae, interior solutions emerge when πr is made sufficiently large relative to
πe. However, assuming a marginal positive benefit to balancing across actions seems more realistic and is
mathematically simpler.
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3.2 Revenue growth through sales volume versus selling price

Conceptualizing the revenue account as price ∗ volume, revenues can be increased through

the price component or the volume component. In the account technology given in equations

(3.1) and (3.2), an increase in revenues has no effect on expenses. This is akin to revenues

being increased through the price component, as an increase in selling price does not affect

production costs. I will refer to section 3.1 as the price-focused setting .

In this section I examine a volume-focused setting. Assume a manager is hired to take

action ae, which decreases expenses, and action av, which increases sales volume. Maintain

all the assumptions of section 3.1, but replace equations (3.1) and (3.2) with the following

account technology:

xr ∼ Poisson(x̄r), x̄r = x̂r + av (3.12)

and xe ∼ Poisson(x̄e), x̄e = x̄rγ − ae = x̂e + γav − ae, (3.13)

where γ > 0 is the exogenous cost margin, and consequently, exogenous expenses are

x̂e = γx̂r. Notice that av is reflected in both the xr and xe accounts; the manager improves

revenues by increasing the number of units sold, and the added cost of producing those units

appears in the expense account. The following observation shows that with this volume-

increasing action, the optimal contract weights revenues more heavily than expenses.

Observation 3. The optimal contract, shown below, uses an aggressive weighting rule,

where the degree of aggression increasing in the ex ante cost margin.

√
s = Ū + δ(1 + γ)(xr − x̂r) + δ(x̂e − xe). (3.14)

Revenues are optimally weighted by δ(1 + γ) and expenses by δ. Because γ and δ are both

positive, δ(1 + γ) > δ and therefore the optimal aggregation rule is always aggressive. This

is in contrast with the neutral optimal aggregation rule in the price-focused setting (see con-

tract (3.6)). Proper incentives for simultaneously motivating growth and cost containment
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therefore depend on the strategy used to achieve that growth.

The following lemma addresses the second-best balance between growth and cost-

cutting in a volume-focused setting.

Lemma 3. The principal implements more cost-cutting effort than volume-increasing effort;

that is, ae > av. The difference between the second-best actions (shown below) is increasing

in the ex-ante cost margin γ.

ae − av =
δ2
(
(1 + γ) + (1 + γ)2

)
πb

(3.15)

As in the price-focused setting, the principal implements more expense reduction than

revenue growth. Comparing equations (3.15) and (3.9) reveals that the emphasis on cost

cutting is more pronounced in the volume-focused setting (as δ2
(
(1 + γ) + (1 + γ)2

)
> 2δ2).

This stronger emphasis on cost cutting stems from how expenses are influenced by av and

ae. Notice from equations (3.12) and (3.13) that av increases x̄e while ae decreases x̄e.

Consequently, providing incentives for av indirectly produces incentives for ae because it

is in the agent’s interest to combat the increased variance in the expense account arising

from higher volume. These indirect incentives further reduce the agency costs associated

with implementing ae. Equation (3.15) reveals that the emphasis on cost-cutting is further

exaggerated by higher cost margins (γ). This occurs because a larger cost margin enhances

the influence of av on the expense account, thereby intensifying the indirect incentives for

ae.

Empirical predictions for price- versus volume-focused firms

Growth and cost containment are concerns likely shared by most firms. The findings in

sections 3.1 and 3.2 suggest that, from an agency perspective, the proper way to balance

and motivate growth and cost containment depends on firm strategy, specifically, whether

firms are concerned with selling price or sales volume. I predict that volume-focused firms

will use more aggressive earnings aggregates in their compensation contracts relative to
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price-focused firms. Furthermore, within samples of volume-focused firms, those with higher

cost margins will weight revenues more aggressively in their compensation contracts, and

the degree of aggression will increase with operating cost margin.

Most firms are unlikely to be exclusively price-focused or exclusively volume-focused

but will fall on a continuum between the two extremes. Testing the predictions above

requires some way to empirically estimate where firms fall on this spectrum. If we concep-

tualize price-focused firms as competing on product differentiation and volume-focused firms

as competing on cost, then empirical strategies used to distinguish between differentiation-

based and cost-based strategies in the competition literature could be applied here to iden-

tify volume- and price-focused firms. Conceptualizing price-focused firms as being more

concerned with quality and volume-focused firms as more focused on quantity, textual anal-

ysis of management discussion and analysis in 10-K reports might help categorize firms

accordingly. For example, price-focused firms might use more words and phrases like prod-

uct innovation, consumer experience, unique, loyalty, or luxury, while volume-focused firms

might use words and phrases like efficient, lean, distribution channels, consumer value, or

streamline.

3.3 Job diversification and team size

How should tasks be grouped into jobs? And how should agents be grouped into teams?

Holmström and Milgrom (1991) explored these questions in a simple two-agent, two-task

setting and showed that agents should specialize in one task and never work in teams.

Given that we observe teams in the real world, their model was clearly incomplete and

they describe it as “merely a first pass” into studying optimal task grouping. Many papers

since have continued to study the question of whether agents should specialize or work in

teams. Most closely related to my analysis in this application is Hughes, Zhang, and Xie

(2005). In a two-agent, two-task model, they study sufficient conditions for the principal

to prefer diverse task assignment, in which both agents are assigned both tasks, as opposed

to specific assignments, in which each agent specializes in one task. My research question
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diverges from papers like these by not asking whether agents should be assigned diverse

tasks but rather how diverse their workloads should be. I examine the optimal team size

when tasks are complements in the profit function and agents are evaluated by team output.

Consider a firm that produces and sells N products. Production takes place in a cost

center that employs N homogeneous agents responsible for operating efficiency, and sales are

managed by a revenue center that separately employs N homogeneous agents responsible

for sales. Product sales are tracked in N separate revenue accounts, where xrj denotes sales

of product j. The expected value of xrj , denoted x̄rj , is defined by the following technology,

where arij is the revenue-increasing effort that agent i puts towards product j, and x̂rj is

the portion of expected revenues exogenous to the agents’ actions.

x̄rj = x̂rj +
N∑
i=1

arij , (3.16)

Similarly, the cost center tracks product costs in N individual expense accounts, where x̂ej

represents the inefficient level of production costs absent agent effort, and aeij denotes the

level of effort that agent i puts toward improving the operating efficiency of product j. Let

xej denotes the operating costs of product j with the following expected value.

x̄ej = x̂ej −
N∑
i=1

aeij , (3.17)

I invoke assumption (A3) and assume that agents have no inherent preferences over

projects; that is, projects are substitutes in the agents’ (linear) cost functions. Letting δ

be the marginal cost of effort across the homogeneous agents, agent i has cost of effort

c(~ai) = δ (ai1 + ai2 + ...+ aiN ).5 I also invoke assumption (A2) and assume that all agents

have square root utility preferences.

I first establish a benchmark case of task specialization in which each agent is assigned

to only one product (and consequently has no team members). Assume that jobs are

organized such that aik = 0 for all k 6= i; that is, agent i works only on product i. In this

5. I omit superscripts when an expression applies to both revenue and cost center actions/agents.
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case, x̄ri = x̂ri + arii and x̄ej = x̂ej − aejj for the jth and ith products in the revenue and

cost centers, respectively. The principal contracts with each agent individually. By Lemma

1, the optimal contracts to elicit action arii from agent i in the revenue center and action

aejj from agent j in the cost center are as follows.6

√
si(xri) = Ūi + δarii + δ(xri − x̄ri) (3.18)√
sj(xej) = Ūj + δaejj + δ(x̄ej − xej) (3.19)

Let the profit function of each product be linear in effort so that the principal’s objective

function when contracting with agent i is Πi = πai −E(si). Following the proof of Lemma

2, the second-best actions for the task specialization case are as follows.

ar
∗
ii =

π − 2Ūδ − δ2

2δ2
(3.20)

ae
∗
jj =

π − 2Ūδ + δ2

2δ2
(3.21)

Notice that because agents and products are homogeneous, actions are the same across

agents within each center. Let ar ≡ ar
∗
ii and ae ≡ ae

∗
jj denote the second-best action for all

agents in the revenue and cost centers, respectively.

Now assume that the principal is considering forming teams in order to take advantage

of synergies, while maintaining the total effort level of ar and ae from each revenue and cost

center agent. The principal would like to divide the revenue center into teams of m, where

the members of each team work together on m products. Assume that teams are ordered

such that agent 1 is assigned to products 1 through m and agent i is always assigned to

product i. This team assignment process is shown below, where N agents are evenly divided

into N/m teams.7

6. See the proof of Observation 2 for a straightforward derivation of this contract.
7. Assume that if N is not evenly divisible by m, the remaining agents are formed into team N/m + 1.

For simplicity, I assume that the largest possible team size is N/2, and that N is large enough that the size
of team N/m+ 1 does not affect the principal’s decision.
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Agent

Product

1, 2, ...,m

1, 2, ...,m


Team 1

m+ 1, ..., 2m

m+ 1, ..., 2m


Team 2

...

(k − 1)m+ 1, ..., km

(k − 1)m+ 1, ..., km


Team k

...

N −m+ 1, ..., N

N −m+ 1, ..., N


Team N/m

Let team k be represented by the set Tk ≡ {(k − 1)m + 1, ..., km}, where agent i is a

member of team k if i ∈ Tk and product j is assigned to team k if j ∈ Tk.

Assume that there are within-agent benefits of task diversification such that the prin-

cipal’s profit function for any agent i in team k is defined as follows, where the second term

represents multiplicative synergistic benefit of diversifying agent i’s task assignment.

Πi =
∑
j∈Tk

πaij + πb
∏
j∈Tk

aij , ∀i ∈ Tk. (3.22)

The principal must choose mr and me, the team size for the revenue and expense centers.

The following lemma shows that mr < me, where it is assumed that x̂rj = x̂r and x̂ej = x̂e

for every product j.

Lemma 4. Optimal team size is smaller for revenue tasks than for cost-cutting tasks; that

is, mr < me. For both task types, optimal team size is decreasing in the marginal cost of

effort (δ) and in the account components exogenous to the agents’ actions (x̂r and x̂e).

Equations (B.40) and (B.41) in the proof show that the expected net benefit of forming

teams in the revenue and expense centers are as follows, where for ease of comparison I

assume that x̂r = x̂e ≡ x̂.

Payoff(mr) = πb

(
ar
mr

)mr

− δ2(mr − 1) (x̂+ ar) (3.23)

Payoff(me) = πb

(
ae
me

)me

− δ2(me − 1) (x̂− ae) (3.24)

The first term in each equation is the benefit of job diversification. Recalling from equations

(3.20) and (3.21) that ae > ar, the benefit of team formation is larger in the cost center
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than the revenue center. The second term in each equation is the cost of compensating each

agent for the added risk they face when their contracts are written over m − 1 additional

products. Comparing the last terms in equations (3.23) and (3.24) reveals that the marginal

compensation cost of increasing team size is smaller in the cost center than the revenue

center. The result that me > mr therefore comes from cost center teams being both more

beneficial and less costly than revenue center teams.

This application is not meant as comprehensive analysis of team formation and makes

several simplifying assumptions, such as homogeneous agents and products, evenly divided

teams, and identical account technology and action types within in each center.8 Future

work could relax these assumptions and address additional interesting questions. For ex-

ample, in revenue versus cost centers, what agent characteristics are best suited for what

types of products? Should agents with similar characteristics be grouped together, or is

it beneficial to have diversity within teams? Future analyses could also address questions

concerning team formation in profit centers; for example, whether it is better to form teams

that specialize in cost-cutting versus sales or to form teams that do both types of actions

and specialize by product.

Empirical predictions

The findings in section 3.3 predict that, on average, sales teams will be smaller than cost-

cutting teams. A lack of data availability makes this prediction difficult to test, but it seems

at least anecdotally consistent with reality. Consider a car manufacturer as an example.

In Japanese automobile manufacturing practices such as the Toyota Way, every employee

on the production floor is responsible for finding efficiency improvements; the entire pro-

duction floor is essentially one large cost-cutting team. Car salesmen, by contrast, tend to

work alone. A similar contrast might be drawn between door-to-door salespeople and the

production teams that manufactured the goods they are selling. Given the obvious lack

of archival data on this issue, field surveys might be required to determine whether sales

8. The assumption of homogeneous products is particularly objectionable; if products are perfectly ho-
mogeneous then there is really only one of them.
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teams are in fact smaller than cost-cutting teams.

3.4 Aggregation rules and cost of effort functions

Lemma 1 reveals that optimal aggregation weights depend on two things: account tech-

nology and cost of effort. Section 3.2 experiments with account technology and shows how

optimal aggregation rules changed as a result. In this application, I experiment with the

agent’s cost of effort; specifically, I abandon the weakly convex linear cost of effort function

(A3) in favor of a strictly convex quadratic one.

Assume a manager is tasked with taking actions ar and ae to affect revenues and

expenses via the account technology in equations (3.1) and (3.2). Let c(ar, ae) = a2
r
2 + a2

e
2 ;

notice that this quadratic cost of effort is additively separable in the two types of effort and

is convex in each. Specify the profit function as Π(ar, ae) = πar + πae.
9 Maintaining the

assumption of square root utility (A2), the optimal contract follows from Lemma 1 and is

as presented in the following observation.

Observation 4. The optimal contract, shown below, is a linear aggregation of accounts,

where revenues are weighted by cr = ar and expenses are weighted by ce = ae.

√
s(xr, xe) = Ū +

a2
r

2
+
a2
e

2
+ ar(xr − x̄r) + ae(x̄e − xe) (3.25)

Interpreting x̂r and x̂e as last period’s outcomes and rearranging equation (3.25), the con-

tract is linear in the change in weighted earnings, where revenues are weighted by ar and

expenses by ae.

√
s = Ū − a2

r

2
− a2

e

2
+

current weighted
earnings︷ ︸︸ ︷

(arxr − aexe)−

prior weighted
earnings︷ ︸︸ ︷

(arx̂r − aex̂e)︸ ︷︷ ︸
change in weighted earnings

Let η represent the degree of conservatism in the aggregation rule, where the aggre-

9. The synergy term used in prior applications is no longer needed because the convexity provided by the
quadratic cost of effort function is sufficient for avoiding corner solutions.
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gation rule is conservative if η > 1, aggressive if η < 1 and neutral if η = 1. Because

the contract weights revenues with ar and expenses with ae, deriving the optimal weights

requires deriving the second-best actions. Substituting (3.25) into the principal’s objective

function gives an unconstrained maximization program, but unfortunately, with quadratic

cost of effort the principal’s program is too convex for me to derive closed-form expressions

of the second-best actions. I am however able to obtain insight about the optimal weighting

rule, as shown in the following lemma.

Lemma 5. The degree of conservatism is characterized as follows:

η =
ae
ar

=
(a2
r + 3ar + 2x̂r + a2

e) + 2Ū

(a2
e − 3ae + 2x̂e + a2

r) + 2Ū
. (3.26)

The optimal aggregation rule is conservative unless x̂e � x̂r, and the degree of conservatism

is increasing in x̂r − x̂e.

The lemma reveals that the optimal aggregation rule tends to be conservative because

ae tends to exceed ar (for the reasons discussed in section 3.1). The degree of conservatism is

increasing in x̂r− x̂e, the inherent profitability of the accounts under the manager’s control.

An aggressive weighting rule may be optimal if the exogenous expenses are very large

relative to exogenous revenues, i.e. x̂e � x̂r. Interpreting x̂r and x̂e as prior period

outcomes, x̂e � x̂r could represent the situation in which a CEO is hired to manage a firm

that has been suffering extreme losses. Alternatively, x̂e � x̂r could represent the situation

in which a manager heads a sales department that is loaded with fixed costs (high x̂e) and

operates in a competitive industry in which clients may be poached if their accounts are

not regularly serviced (low x̂r).

Empirical predictions: Conservatism and Cost of Effort Convexity

Lemma 5 suggests that more profitable firms will compensate their CEOs on more conser-

vative performance measures. To the extent that accounting policies are driven by con-

tracting considerations, profitable firms will report more conservative earnings figures than
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loss-making firms.

Lemma 5 also shows that optimal aggregation rules tend to be conservative when cost

of effort is quadratic; in contrast, the optimal aggregation rule is neutral when cost of effort

is linear (see contract (3.6) in section 3.1). Imagine industries or occupations could be

categorized by cost of effort convexity; for example, industries that are very competitive

in the sense of product substitutability might be classified as having highly convex cost of

effort. The contrast between sections 3.1 and 3.4 suggests that firms with more convex cost

functions will use more conservative earnings aggregates in their compensation contracts.

Similar cost of effort functions may help explain why firms in similar sectors tend to adopt

similar performance measures, as documented by De Angelis and Grinstein (2015).

3.5 Penalty schemes

A result that emerged consistently in the previous applications is that it is cheaper to

incentivize cost cutting than revenue growth. This application presents an extreme version

of that finding by showing how cost cutting can be made approximately free from an agency

cost perspective. I examine the cost-cutting and revenue growth settings separately. In each

setting, I maintain the assumption of Poisson-distributed accounts (A1), but I abandon the

tractability-oriented assumptions (A2) and (A3) in favor of more general cost of effort and

utility representations. I assume that the cost of effort c(·) is increasing and convex and

that the agent’s utility function, u(·) is increasing and concave. Furthermore, I assume that

the agent’s utility function is unbounded below:

lim
s→s

u(s) = −∞. (3.27)

This is a relatively common assumption (e.g. Rogerson 1985, Assumption A.7) and is

satisfied by well-known utility functions, such as the negative exponential used in LEN

models.

I consider the cost-cutting setting first. Say that a risk-neutral principal hires a risk-
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averse agent to take action ae with expense account technology x̄e = x̂e − ae. I abandon

the underlying assumption that accounts affected by mean-reducing actions are truncated

at some arbitrarily high threshold; I let expenses be unbounded above so that xe ∈ N, the

set of natural numbers.

Let (w∗, a∗e) represent the first-best wage-action pair, where w∗ ≡ u−1
(
Ū + c(a∗e)

)
.

The following lemma shows that the principal can approximate this first-best cost-cutting

solution arbitrarily closely.

Lemma 6. When a manager is hired to reduce waste, the first-best solution (w∗, a∗e) can be

implemented arbitrarily closely with a contract (s(xe), ae) that takes the following form.

s(xe) =


w̃ = w∗ + ε if xe ≤M

K if xe > M

(3.28)

ae = a∗e

The contract stipulates that when operating expenses fall below threshold M , the agent is

paid the first-best wage (w∗), plus some amount ε required to compensate the agent for

the risk of incurring the penalty (thereby satisfying the IR constraint). For realizations

above threshold M , the agent incurs penalty K < w∗. The proof shows that because the

expense likelihood ratio is unbounded below, ε approaches zero as M approaches infinity.

Therefore, because the probability of incurring the penalty disappears as M is taken to

infinity, E[w̃] = w∗ in the limit. Assumption (3.27) is necessary for this result because it

guarantees that for any threshold M , there is a penalty painful enough to make a∗e incentive

compatible. As the threshold increases, so does the brutality of K, as stated in the following

corollary.

Corollary 1. As the threshold M approaches infinity, the penalty K becomes infinitely

harsh.

A penalty scheme can also be used to enforce the first-best action when the agent’s

compensation is based on the aggregate signal, earnings, rather than on the operating
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expense account directly. Let earnings be represented by y = xr − xe, where xr = x̂r

because revenues are not affected by the manager’s action (ae).

Lemma 7. When a manager is hired to cut waste, the first-best solution (w∗, a∗e) can be

implemented arbitrarily closely with a contract (s(y), ae) that takes the following form.

s(y) =


w̃ = w∗ + δ if y ≥ yM

K if y < yM

(3.29)

ae = a∗e

I now address the single-task setting in which the manager is hired to take action ar

to improve revenues through the baseline revenue technology x̄r = x̂r + ar. Let (w∗, a∗r)

be the first-best wage-action pair. Approximating this first-best with a forcing contract is

impossible.

Lemma 8. The principal cannot approximate the first-best growth solution using a penalty

scheme.

Instead, the contract is monotonically increasing in revenues and mirrors the traditional

second-best characterization of Holmstrom’s (1979) equation (7).

Lemma 9. If (s(xr), ar) solves the principal’s program, then s(xr) is increasing monoton-

ically in xr and satisfies the following equation for all xr:

1

u′(s(xr))
= λr + µr

(
xr − x̄r
x̄r

)
. (3.30)

There is a stark contrast between the optimal revenue contract (equation 3.30) and

the expense contract (equation 3.28). The revenue contract is second-best: compensation

is contingent on realized revenues and is inefficient from a risk-sharing perspective. The

expense contract, by contrast, pays a flat wage in expectation and approximates the first-

best solution. Cost-cutting actions are therefore cheaper (and almost free) to implement,
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and assuming that there is sufficient waste to cut, it is more profitable for the principal to

hire a manager to cut waste than to grow revenues.

It is worthwhile to discuss why first-best approximation is possible for cost cutting but

not growth. Notice that ar is account-increasing while ae is account-decreasing. This creates

a difference in what it means to get a tail-end account balance when motivating ae versus

ar. When motivating ae, higher-than-expected operating expenses (xe) is a bad outcome.

As xe approaches the extreme right tail, the principal becomes increasingly confident that

the manager shirked, and in the limit she is certain that the agent shirked. In technical

terms, the likelihood ratio approaches negative infinity as xe approaches infinity. This near-

certainty - in combination with the availability of penalties severe enough to deter shirking

due to utility being unbounded below - allows the principal to approximate the first-best

solution arbitrarily closely.

In contrast, when motivating growth actions, higher account balances are good; a bad

outcome is one where revenues are less than expected. But there is a lower bound on bad

revenues: the worst-case revenue outcome is zero dollars. When the principal observes

lower-than-expected revenues, she is unsure whether the manager worked or shirked, even

when revenues are zero. In technical terms, the revenue likelihood ratio is bounded below,

and therefore the limiting argument made in Lemma 6 cannot be applied to the revenue

case. The stark difference between the revenue and expense contracts is thus driven by the

fact that accounts are bounded below by zero, and that ar moves revenues away from that

lower bound while ae moves expenses closer to it.

Empirical predictions: Pay-performance sensitivities and life cycle

This section has shown that in certain conditions, cost-cutting actions are best implemented

with flat wage penalty schemes, but that revenue growth is never efficiently implemented

with these schemes. If one is willing to entertain the idea that at least some firms employ

penalty schemes when implementing cost-cutting actions, then these findings suggest that

agents charged with improving efficiency will have less variable compensation than those
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charged with growth. This leads to empirical predictions about pay-performance sensitivi-

ties (PPS) in settings where it is reasonable to expect that managers are charged primarily

with either cost-cutting or revenues.

If Chief Operations Officers (COOs) are primarily tasked with efficiency and Chief

Marketing Officers (CMOs) are primarily charged with revenue growth, then to the extent

that at least some firms in a given sample employ penalty schemes to enact cost-cutting, the

sensitivity of COO compensation to operating expenses should be lower than the sensitivity

of CMO compensation to revenues. Notice that these predictions deal with sensitivities to

account-level performance - expenses and revenues for COOs and CMOs, respectively. If

CMOs have revenue-contingent contracts and COOs have expense-contingent contracts,

then comparing performance sensitivities at the account-level should give sharper results

than at the aggregate earnings level.

Life cycle plays an important role in the allocation of effort between cost cutting and

revenue growth and therefore is relevant to predictions about PPS. Startup firms don’t have

waste to cut and are obviously concerned with growth. In pursuit of that growth, startups

may require managers to make investments that are expected to pay off in the future but

reduce current period earnings. It therefore seems unlikely that startups will contract

on current accounting measures before revenues have substantially materialized.10 This

suggests that early startup firms will have low earnings-PPS. In fact, if managers are hired

to make investments that flow through the income statement (e.g. research and development

or marketing expenditures), it may actually appear empirically that the manager is being

paid to generate losses. I predict that earnings-PPS is zero or even negative in samples of

early startup firms and becomes less negative or turns positive as revenues materialize.

10. This idea is supported by evidence in De Angelis and Grinstein (2015), who find that firms with more
growth opportunities rely on more market-based measures than accounting-based measures, and that mature
firms are more likely to rely on accounting-based measures.
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Lifecycle stage:

Actions:

Startup/Growth Maturity Decline

Revenue growth

Cost-cutting

Revenue growth Cost-cutting

Mature firms are likely concerned with both containing costs and increasing (or at

least maintaining) revenues. If a sample of mature firms includes some firms that enforce

cost-cutting through flat wage penalty schemes, CEO compensation in that sample should

on average be more sensitive to revenues than to operating expenses.

As firms leave the maturity phase and seek to manage decline as profitably as possi-

ble, managers are likely to be tasked primarily with cost-cutting actions. Within samples

declining firms, compensation should be more sensitive to costs than to revenues because

revenue growth is less likely to be part of the manager’s job description.

As firms that employ flat-wage penalty schemes to implement cost-cutting actions move

from maturity to decline, compensation will continue to be flat in expenses and will stop

varying in revenues. Therefore, as long as some firms employ flat-wage penalty schemes,

earnings-PPS should decrease as firms move from maturity to decline. Suggestive evidence

for this prediction can be found in Gilson and Vetsuypens (1993) who study financially

distressed firms and find that earnings performance explains very little variation in CEO

compensation. Similarly, Eckbo, Thorburn, and Wang (2016) find that CEOs retained

during Ch 11 reorganization experience a median compensation change of zero. Carter,

Hotchkiss, and Mohseni (2018) find that as firms become financially distressed they decrease

their use of accounting-based metrics.

Empirical compensation studies have documented that CEO compensation is less sensi-

tive to earnings when earnings are negative; that is, earnings PPS is lower in loss firms (e.g.

Gaver and Gaver 1998; Leone, Wu, and Zimmerman 2006; Shaw and Zhang 2010). Several

explanations have been put forth in the literature to explain this asymmetric sensitivity.

Matĕjka, Merchant, and Van der Stede (2009) argue that managers of loss-making firms



38

have shorter employment horizons and that consequently their compensation contracts are

more likely to rely on nonfinancial performance measures rather than financial measures like

earnings. Gaver and Gaver (1998) speculate that either CEOs at loss firms are extracting

rents or compensation committees don’t want to discourage loss-generating actions that

are profitable in the long run. Drake, Engel, and Martin (2018) suggest that performance

measures are less informative about managerial effort in loss years relative to profitable

years.

My findings offer an alternative explanation: If more losses occur during startup and

decline relative to maturity, then the lower PPS in loss firm-years relative to profitable

firm-years can be explained in part by life cycle. There is nothing special about losses

per se; if revenues and expenses are informative about a CEO’s growth and cost-cutting

efforts, this does not become less true in a year when earnings happen to be negative.

Rather, it may just be that losses are more common during (1) the startup/growth stage

when accounting measures are less likely to be used in compensation contracts, and (2) the

decline phase, when managers are tasked primarily with cost-cutting actions which some

firms might enforce using flat-wage penalty schemes.

What this section should make clear is that theory makes no universal prediction about

the sensitivity of pay to performance in loss firms; I have discussed settings in which theory

predicts earnings-level PPS to be negative, positive or zero. Therefore, treating loss firms

as homogeneous by lumping them into one sample is unlikely to yield productive findings.

A more fruitful approach might be to investigate the earnings components that are driving

the losses.11 This account-based perspective could shed light on what actions managers in

a firm might be tasked with, as well as how optimal compensation is expected to vary with

individual line items and with earnings.

11. Drake, Engel, and Martin (2018) take a different, clever approach in an attempt to differentiate among
loss firms. They use deferred tax asset valuation allowances to categorize loss years by expected loss persis-
tence.
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CONCLUSION

Tasked with discussing the intellectual foundations of accounting research, John Fellingham

identified two pervasive concepts in our discipline: information and double entry mechan-

ics.1 Analytical accounting research has focused on the former but neglected the latter. I

believe this is an oversight. This paper demonstrates that the basic features of general

ledger accounts should not be trivialized. Specifically, I show that accounts being bounded

below by zero has contracting implications that affect task allocation, aggregation rules,

team formation, and the relationship between pay and performance.

Future applications of my framework could investigate the organizational implications

of managerial accounting practices, such as traditional versus activity-based costing or dif-

ferent joint cost allocation methods. With the exception of Lemma 7, this paper has focused

exclusively on Poisson-distributed signals; future applications could make better use of the

1. Demski et al. 2002.

39
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framework’s aggregation technology by doing more with Skellam-distributed signals. I have

considered an accounting system that perfectly reports true account realizations. Exten-

sions of the model could incorporate a measurement element and show how accounting

standards or reporting bias interact with broader organizational issues. For example, I have

shown that revenue actions are more expensive to implement than cost-cutting actions; per-

haps conservative accounting standards for revenue recognition could mitigate the inherent

riskiness of revenue-increasing actions. The model could also be extended to incorporate

a valuation or disclosure angle or to consider multiple time periods, perhaps where the

realization of account x in period t becomes x̂ in year t+ 1.

Finally, the applications in this paper have only considered income statement accounts.

I hope in future work to better capture the dynamics of double-entry accounting rather than

just the properties of accounts that reside in the double-entry system. By modeling the bal-

ance sheet alongside the income statement, I could perhaps shed light on how relationships

among financial statement line items speak to the actions being taken by firm executives,

providing a stewardship-oriented approach to financial statement analysis. In a multi-period

extension of the framework, modeling both sides of each journal entry would allow me to

study optimal accrual policies for incentivizing certain activities or providing information

to different types of stakeholders.



APPENDIX A

THE SKELLAM DISTRIBUTION

A.1 Definition and properties

Let y = x1 − x2, where

x1 ∼ Poisson(x̄1), x̄1 = x̂1 + f1(~a) (A.1)

and x2 ∼ Poisson(x̄2), x̄2 = x̂2 + f2(~a). (A.2)

Then y is said to follow the two-parameter Skellam distribution (y ∼ Skellam(x̄1, x̄2)) and

has the following probability mass function, which I call θ.

pr(y|x̄1, x̄2) = e−x̄1−x̄2

(
x̄1

x̄2

) y
2

Iy
(
2
√
x̄1x̄2

)
, y = ...,−1, 0, 1, ... (A.3)
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where

Iy(z) =
(z

2

)y ∞∑
j=0

(
z2

4

)j
j!(y + j)!

(A.4)

is the modified Bessel function of the first kind of order y. Following Alzaid and Omair

(2010), I use the convention that any term containing a negative factorial in the denominator

is equal to zero.

The Skellam distribution is unimodal. It is positively skewed when x̄1 > x̄2 and

negatively skewed when x̄1 < x̄2. The first four moments of the y ∼ Skellam(x̄1, x̄2) are as

follows.

E(y) = x̄1 − x̄2 (A.5)

V ar(y) = x̄1 + x̄2 (A.6)

Skewness(y) =
x̄1 − x̄2

(x̄1 + x̄2)3/2
(A.7)

Kurtosis(y) = 3 +
1

x̄1 + x̄2
(A.8)

A.2 Likelihood ratios for Skellam-distributed aggregates

Here I calculate the likelihood ratio of signal y with respect to action ab, where y has the

probability mass function shown in equation (A.3). I denote this likelihood ratio LRby ≡
∂

∂ab
θ

θ . To find the derivative, I break equation (A.3) into three pieces and let m = e−x̄1−x̄2 ,

n =
(
x̄1
x̄2

)k/2
, and o = Ik(2

√
x̄1x̄2); and I let mb, nb and ob represent the derivatives of these

terms with respect to ab. Then

LRby =
mb

m
+
nb

n
+
ob

o
. (A.9)

Now mb = (−1)
[
∂
∂ab

x̄1 + ∂
∂ab

x̄2

]
e−x̄1−x̄2 . With f b1 = ∂

∂ab
x̄1 and f b2 = ∂

∂ab
x̄2, we have

mb

m
= −f b1 − f b2 (A.10)
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and

nb

n
=
y

2

(
x̄2f

b
1 − x̄1f

b
2

x̄1x̄2

)
. (A.11)

The last term in equation (A.3), o = Iy (2
√
x̄1x̄2) is the modified Bessel function of the

first kind, which has the following property (Abramowitz and Stegun 1970, p. 376).

∂

∂z
Iv(z) = Iv+1(z) +

v

z
Iv(z). (A.12)

Then ob =
(

∂
∂ab

(2
√
x̄1x̄2)

) [
Iy+1(2

√
x̄1x̄2) + y

2
√
x̄1x̄2

Iy(2
√
x̄1x̄2)

]
, and so

ob

o
=
x̄1f

b
2 + x̄2f

b
1

(x̄1x̄2)1/2

[
Iy+1

Iy
+

y

2
√
x̄1x̄2

]
(A.13)

Putting this all together gives

LRby =
x̄1f

b
2 + x̄2f

b
1

(x̄1x̄2)1/2

[
Iy+1

Iy
+

y

2
√
x̄1x̄2

]
+
y

2

(
x̄2f

b
1 − x̄1f

b
2

x̄1x̄2

)
− f b1 − f b2 . (A.14)



APPENDIX B

PROOFS

Proof of Observation 1. Recall that xj ∼ Poisson(x̄j); then

Pr(xj |x̄j) =
e−x̄j (x̄j)

xj

xj !
, (B.1)

where x̄j = x̂j + fj(~a). With
∂x̄j
∂ai

=
∂fj(~a)
∂ai

≡ f ij , LR
i
j ≡

∂
∂ai

Pr(xj |x̄j)

Pr(xj |x̄j) can be calculated as

follows.

∂
∂ai

[Pr(xj |x̄j)]
Pr(xj |x̄j)

=
∂
∂ai

[(x̄j)
xj e−x̄j ]

(x̄j)
xj e−x̄j

=
∂
∂ai

[(x̄j)
xj ] e−x̄j + (x̄j)

xj ∂
∂ai

[e−x̄j ]

(x̄j)
xj ex̄j

=
xjf

i
j

[
(x̄j)

xj−1
]
e−x̄j − (x̄j)

xj f ije
−x̄j

(x̄j)
xj ex̄j
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=
xjf

i
j

[
(x̄j)

xj−1
]
− (x̄j)

xj f ij

(x̄j)
xj

= f ij

[
xj (x̄j)

xj−1 − (x̄j)
xj

(x̄j)
xj

]

= f ij

(
xj − x̄j
x̄j

)

Now I prove the second part of the observation. By definition, V ar[LR] = E[LR2] −

[E(LR)]2. Noting that [E(LR)]2 = 0, we have

V ar[LR] = E[LR2] = E

[(
f ij
xj − x̄j
x̄j

)2
]

=

(
f ij

)2

x̄2
j

E
[
(xj − x̄j)2

]

=

(
f ij

)2

x̄2
j

E
[
x2
j − 2xj x̄j + x̄2

j

]
.

By equations (2.3) and (2.4),

E[x2
j ] = x̄j + x̄2

j . (B.2)

Using this to take the expectation,

V ar[LR] =

(
f ij

)2

x̄2
j

(
x̄j + x̄2

j − 2x̄2
j + x̄2

j

)

=

(
f ij

)2

x̄2
j

(x̄j)

=

(
f ij

)2

x̄j
(B.3)
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Proof of Lemma 1. Program (3.4) can be expressed in Lagrangian form as follows.

max
s(~x),~a

L =Π(~a)−
∑
x1

∑
x2

...
∑
xn

s(~x)
n∏
j=1

Pr(xj |~a)

+ λ

∑
x1

∑
x2

...
∑
xn

√
s(~x)

n∏
j=1

Pr(xj |~a)− c(~a)− Ū


+ µ1

∑
x1

∑
x2

...
∑
xn

√
s(~x)

∂

∂a1

 n∏
j=1

Pr(xj |~a)

− c1

 (B.4)

+...+ µi

∑
x1

∑
x2

...
∑
xn

√
s(~x)

∂

∂ai

 n∏
j=1

Pr(xj |~a)

− ci


+...+ µm

∑
x1

∑
x2

...
∑
xn

√
s(~x)

∂

∂am

 n∏
j=1

Pr(xj |~a)

− cm


To simplify notation, let Pj ≡ Pr(xj |~a), and let P ij ≡ ∂
∂ai
Pr(xj |~a). Notice that

∂

∂ai
(P1P2...Pn) = P i1

∏
j 6=i

Pj + P i2
∏
j 6=2

Pj ...+ P in
∏
j 6=n

Pj .

Then differentiating (B.4) with respect to s and rearranging yields

2
√
s = λ+ µ1

(
P 1

1

P1
+
P 1

2

P2
+ ...+

P 1
n

Pn

)
+ µ2

(
P 2

1

P1
+
P 2

2

P2
+ ...+

P 2
n

Pn

)
+ ...

...+ µm

(
Pm1
P1

+
Pm2
P2

+ ...+
Pmn
Pn

)
.

Noting that, by definition, P ij/Pj is the likelihood ratio LRij , and taking the calculation of

LRij from Observation 1, the above contract can be written as follows, which is the contract

given in the lemma.

2
√
s = λ+ µ1

n∑
j=1

f1
j

(
xj − x̄j
x̄j

)
+ µ2

n∑
j=1

f2
j

(
xj − x̄j
x̄j

)
+ ... (B.5)

...+ µm

n∑
j=1

fmj

(
xj − x̄j
x̄j

)
.
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I now solve for the multipliers µ1, ..., µm. Substituting contract (B.5) into constraint

(ICi) gives

∂

∂ai

λ+ µ1

n∑
j=1

f1
j

(
xj − x̄j
x̄j

)
+ µ2

n∑
j=1

f2
j

(
xj − x̄j
x̄j

)
+ ...+ µm

n∑
j=1

fmj

(
xj − x̄j
x̄j

) = 2ci.

Noting that ∂/∂aiE(xj) = f ij , carrying out the expectation in the expression above gives

µ1

n∑
j=1

(
f1
j f

i
j

x̄j

)
+ µ2

n∑
j=1

(
f2
j f

i
j

x̄j

)
+ ...+ µm

n∑
j=1

(
fmj f

i
j

x̄j

)
= 2ci, ∀i = 1, ...,m

These m equations and m unknowns can be expressed in matrix form as Dµ = c′, where

µ ≡ (µ1, ..., µ2)T, c′ ≡ (c1c2...cm)T and D is the coefficient matrix with dik ≡
f ijf

k
j

x̄j
as its

the element in its ith row and kth column. Then the solutions given by equation (2.12) in

the lemma follows directly from Cramer’s method for solving systems of equations.
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Proof of Observation 2. Program (3.4) can be expressed in Lagrangian form as follows.

max
s(xr,xe),ar,ae

L = πar + πae + πbarae − E[s(xr, xe)|ar, ae]

+λ
[
E
(√

s(xr, xe)|ar, ae
)
− δrar − δeae − Ū

]
+µr

[
∂
∂ar

E[
√
s(xr, xe)|ar, ae]− δr

]
+µe

[
∂
∂ae

E[
√
s(xr, xe)|ar, ae]− δe

]
(B.6)

Let p = Pr(xr|ar) and q = Pr(xe|ae); then because xr and xe are independent, Pr(xr∩

xe|ar, ae) = pq. Then taking the derivative of L with respect to s yields

2
√
s = λ+ µr

p′

p
+ µe

q′

q
. (B.7)

By equation (2.7), p′/p = xr−x̄r
x̄r

and q′/q = (−1)xe−x̄ex̄e
= x̄e−xe

x̄e
; substituting these likelihood

ratios into the contract above gives

2
√
s = λ+ µr

(
xr − x̄r
x̄r

)
+ µe

(
x̄e − xe
x̄e

)
. (B.8)

Now I solve for the multipliers. Notice that taking expectations over both sides of (B.8)

gives

2E[
√
s] = λ. (B.9)

The first-order condition of L with respect to λ gives

E
(√
s|ar, ae

)
− δrar − δeae = Ū (B.10)

Combining equations (B.9) and (B.10) gives λ = 2Ū + 2δrar + 2δeae. Now substitute (B.8)
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into (ICr) and (ICe).

∂

∂ar
E

[
λ

2
+
µr
2

(
xr − x̄r
x̄r

)
+
µe
2

(
x̄e − xe
x̄e

)]
= δr (B.11)

∂

∂ae
E

[
λ

2
+
µr
2

(
xr − x̄r
x̄r

)
+
µe
2

(
x̄e − xe
x̄e

)]
= δe (B.12)

Because E[xr] = x̂r + ar and E[xe] = x̂e − ae, we have ∂
∂ar

E[xr] = 1 and ∂
∂ae

E[xe] =

−1. Then executing the expectations and partial derivatives in (B.11) and (B.12) and

rearranging results in the following multipliers.

µr = 2δrx̄r (B.13)

µe = 2δex̄e (B.14)

Finally, substituting λ, µr and µe into equation (B.8) gives the optimal contract presented

in the lemma.
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Proof of Lemma 2. The optimal contract in utility space is given by equation (3.5). Squar-

ing both sides gives the contract in cash space.

s =
(
λ
2

)2
+δ2

r (xr − x̄r)2 + δ2
e(xe − x̄e)2 + λδr(xr − x̄r) + λδe(xe − x̄e)

+2δrδe(xr − x̄r)(xe − x̄e)
(B.15)

Now I expand the squared terms and take expectations over both sides.

E(s) =
(
λ
2

)2
+δ2

r

(
E[x2

r ] + x̄2
r − 2x̄rE[xr]

)
+ δ2

e

(
E[x2

e] + x̄2
e − 2x̄eE[xe]

)
+λδr (E[xr]− x̄r) + λδe (xe − x̄e)

+2δrδe (E[xr]− x̄r) (E[xe]− x̄e)

(B.16)

We know that E[xr] = x̄r and E[xe] = x̄e. Recalling that a Poisson distribution has

the same variance as its mean, calculate E(x2
r) as follows.

V ar(xr) = E(x2
r)− [E(xr)]

2

⇐⇒ x̄r = E(x2
r)− x̄2

r

⇐⇒ E(x2
r) = x̄r + x̄2

r

(B.17)

Following the same procedure, E(x2
e) = x̄e + x̄2

e. Then executing the expectations over xr

and xe in (B.16) gives

E(s) =

(
λ

2

)2

+ δ2
r x̄r + δ2

e x̄e.

Finally, expanding x̄r, x̄e and
(
λ
2

)2
gives

E(s) = Ū2 + δ2
ra

2
r + δ2

ea
2
e + 2Ūδrar + 2Ūδeae+ 2δrδearae+ δ2

r (x̂r +ar) + δ2
e(x̂e−ae). (B.18)

Substituting (B.18) into the principal’s objective function leaves an unconstrained max-

imization program in which the principal chooses ar and ae to maximize the following
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expression.

PP = π(ar + ae) + πbarae − Ū2 − δ2
ra

2
r − 2Ūδrar − δ2

ea
2
e − 2Ūδeae − 2δrδearae

− δ2
r (x̂r + ar)− δ2

e(x̂e − ae)

Now I take first order conditions.

(
∂PP

∂ar

)
: π + πbae − 2δ2

rar − 2Ūδr − 2δrδeae − δ2
r = 0 (B.19)(

∂PP

∂ae

)
: π + πbar − 2δ2

eae − 2Ūδe − 2δrδear + δ2
e = 0 (B.20)

Solving this system of equations with δr = δe = δ gives the closed-form expressions provided

in the lemma.
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Proof of Observation 3. The principal’s program is given as follows. I assume that δv =

δe = δ.

max
s(xr,xe),av ,ae

Π(av, ae)− E[s(xr, xe)|av, ae] (OBJ)

subject to E[
√
s(xr, xe)|av, ae]− δav − δae ≥ Ū (IR)

∂
∂av

E[
√
s(xr, xe)|av, ae] = δ (ICv)

∂
∂ae

E[
√
s(xr, xe)|av, ae] = δ (ICe)

(B.21)

Let λ, µv and µe be the respective multipliers on constraints (IR), (ICv) and (ICe).

Then differentiating the associated Lagrangian with respect to s gives the following, where

LRij denotes the likelihood ratio for account xj with respect to action ai.

2
√
s = λ+ µv (LRvr + LRve) + µeLR

e
e (B.22)

By Observation 1, LRvr = xr−x̄r
x̄r

, LRve = γ xe−x̄ex̄e
and LRee = x̄e−xe

x̄e
.

2
√
s = λ+ µv

[
xr − x̄r
x̄r

+ γ

(
xe − x̄e
x̄e

)]
+ µe

(
x̄e − xe
x̄e

)
(B.23)

Now take expectations of (B.23) over xr and xe and substitute it into (ICv), noting that

E(xr) = x̂r + av and E(xe) = γx̂r + γav − ae.

∂

∂av

[
λ+ µv

(
x̂r + av − x̄r

x̄r

)
+ µvγ

(
(γx̂r + γav − ae)− x̄e

x̄e

)

+ µe

(
x̄e − (γx̂r + γav − ae)

x̄e

)]
= 2δ

Then taking the partial derivative on the left have side leaves

µv

(
1

x̄r
+
γ2

x̄e

)
− µe

γ

x̄e
= 2δ. (B.24)
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Following the same procedure for (ICe) gives

µv

(
−1

x̄e

)
+ µe

1

x̄e
= 2δ (B.25)

Then (B.24) and (B.25) provide two equations and two unknowns; solving this system for

µv and µe gives µv = 2δ(1 + γ)x̄r and µe = 2δ [x̄e + γ(1 + γ)x̄r].

Finally, substituting these multipliers into equation (B.23) and rearranging gives con-

tract (3.14) in the observation.
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Proof of Lemma 3. The optimal contract in utility space is given by equation (3.14). Squar-

ing both sides gives the contract in cash space.

s =
(
λ
2

)2
+δ2(1 + γ)2(xr − x̄r)2 + δ2(xe − x̄e)2

+λδ(1 + γ)(xr − x̄r) + λδ(xe − x̄e)

+2δ2(1 + γ)(xr − x̄r)(xe − x̄e)

(B.26)

Now I expand the squared terms and take expectations over both sides.

E(s) =
(
λ
2

)2
+δ2(1 + γ)2

(
E[x2

r ] + x̄2
r − 2x̄rE[xr]

)
+δ2

(
E[x2

e] + x̄2
e − 2x̄eE[xe]

)
+λδ(1 + γ) (E[xr]− x̄r) + λδ (xe − x̄e)

+2δ2(1 + γ) (E[xr]− x̄r) (E[xe]− x̄e)

(B.27)

Following the logic shown in equation (B.17) from the proof of Lemma 2, I execute the

expectations and I’m left with:

E(s) =

(
λ

2

)2

+ δ2(1 + γ)2x̄r + δ2x̄e.

Finally, expanding x̄r, x̄e and
(
λ
2

)2
gives

E(s) = Ū2 + δ2a2
v + δ2a2

e + 2Ūδav + 2Ūδae + 2δ2avae

+δ2(1 + γ)2(x̂r + av) + δ2(γx̂r + γav − ae).
(B.28)

Substituting (B.28) into the principal’s objective function leaves an unconstrained max-

imization program in which the principal chooses av and ae to maximize the following

expression.

PP = π(av + ae) + πbavae − Ū2 − δ2a2
v − 2Ūδav − δ2a2

e − 2Ūδae − 2δ2avae

− δ2(1 + γ)2(x̂r + av)− δ2(γx̂r + γav − ae)
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Now I take first order conditions.

(
∂PP

∂av

)
: π + πbae − 2δ2av − 2Ūδ − 2δ2ae − δ2(1 + γ)2 − δ2γ = 0 (B.29)(

∂PP

∂ae

)
: π + πbav − 2δ2ae − 2Ūδ − 2δ2av + δ2 = 0 (B.30)

Solving this system of equations gives the closed-form expressions for av and ae provided in

the lemma.
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Proof of Lemma 4. Recall that the principal wants to incentivize total effort ar and ae from

each agent in the revenue and expense centers, respectively. With homogeneous agents and

homogeneous products, the principal can do no better than having each agent within a

team split her effort evenly among the m products assigned to that team.

arij =


ar
mr

if i, j ∈ Tk

0 otherwise

(B.31)

aeij =


ae
me

if i, j ∈ Tk

0 otherwise

(B.32)

With this action symmetry and the homogeneity of agents and products, I simplify the

analysis by focusing on the principal’s contracting problem with agent 1. I rewrite (3.18)

to obtain the optimal contract for agent 1 in the revenue center.

√
s1 = Ū + δar + δ

m∑
j=1

(xrj − x̄rj). (B.33)

Squaring both sides of equation (B.33) gives the contract in cash space.

s1 = Ū2 + 2Ūδar + δ2a2
r + δ2

m∑
j=1

(xrj − x̄rj)2 +
(
2arδ

2 + 2Ūδ
) m∑
j=1

(xrj − x̄rj) (B.34)
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Taking expectations over xrj gives E[s1].

E(s1) = Ū2 + 2Ūδar + δ2a2
r + δ2

mr∑
j=1

(
E[x2

rj ] + x̄2
rj − E[xrj ]x̄rj

)
⇐⇒ E(s1) = Ū2 + 2Ūδar + δ2a2

r + δ2
mr∑
j=1

(
E[x2

rj ] + x̄2
rj − 2E[xrj ]x̄rj

)
⇐⇒ E(s1) = Ū2 + 2Ūδar + δ2a2

r + δ2
mr∑
j=1

(
x̄rj + x̄2

rj + x̄2
rj − 2x̄2

rj

)
⇐⇒ E(s1) = Ū2 + 2Ūδar + δ2a2

r + δ2
mr∑
j=1

x̄rj (B.35)

When analyzing the principal’s contracting program with a focal agent (here agent 1),

I denote the action of any other agent as âij . Then the expected revenue of product j ∈ T1

can be expressed as

x̄rj = x̂rj +

mr∑
i=2

ârij +
ar
mr

(B.36)

= x̂rj +

mr∑
i=2

âr
mr

+
ar
mr

(B.37)

= x̂r + (mr − 1)
âr
mr

+
ar
mr

, (B.38)

where the second equality comes from equation (B.31), and the third equality comes from

homogeneous products with x̂rj = x̂r for all j. Substituting (B.38) into equation (B.35) and

substituting action (B.31) into the profit function (3.22) gives PP r1 , the principal’s expected

payoff from contracting with agent 1 in the revenue center.

PP r1 = πar + πb

(
ar
mr

)mr

− Ū2 − 2Ūδar − δ2a2
r − δ2

mr∑
j=1

(
x̂r + (mr − 1)

âr
mr

+
ar
mr

)

Homogeneity allows the following simplification.

PP r1 = πar + πb

(
ar
mr

)mr

− Ū2 − 2Ūδar − δ2a2
r − δ2 [mrx̂r + (mr − 1)âr + ar] (B.39)
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Equation (B.39) shows that in determining team size, the principal faces a tradeoff

between the synergistic benefit of job diversification, term πb (ar/mr)
mr , and the added cost

of compensating the agent for team output, which is δ2(mr−1) (x̂r + âr). Compensating for

team output adds risk to the agent’s contract because her compensation is now dependent

on mr−1 additional products, each with exogenous variance x̂r and actions âr that are out

of the agent’s control. With homogeneous agents and evenly divisible teams, PP r1 = PP ri

for any agent i in the revenue center. Analysis of the expected payoff from a single agent

is therefore equivalent to analysis of cumulative payoff from contracting with all N agents,

and with âr = ar, the principal’s expected payoff can be rewritten as

PPr = πar + πb

(
ar
mr

)mr

− Ū2 − 2Ūδar − δ2a2
r − δ2mr (x̂r + ar) (B.40)

Following the same steps for the cost center gives the principal’s expected payoff from

contracting with agents in the expense center.

PPe = πae + πb

(
ae
me

)me

− Ū2 − 2Ūδae − δ2a2
e − δ2me (x̂e − ae) (B.41)

Comparing equations (B.40) and (B.41) reveals that the marginal cost of increasing

team size is δ2 (x̂r + ar) for the revenue center and δ2 (x̂e − ae) for the expense center.

Assume for simplicity that x̂r = x̂e = x̂, and recall that ae > ar (see equations (3.20) and

(3.21)). Then the benefits of teamwork are larger for the cost center because πb
(
ae
m

)m
>

πb
(
ar
m

)m
, and the costs of teamwork are smaller for the cost center because δ2m(x̂− ae) <

δ2m(x̂ + ar). Teams are therefore larger in the cost center than in the revenue center, i.e.

me > mr. Additionally, teams will be smaller when x̂ or δ is large because the cost of team

size is increasing in x̂ and δ.
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Proof of Observation 4. The principal’s program can be written as follows.

max
s(xr,xe),ar,ae

E[Π(ar, ae)]− E[s|ar, ae] (OBJ)

s.t E[
√
s|ar, ae]− a2

r
2 −

a2
r
2 ≥ Ū (IR)

and ∂
∂ar

E[
√
s|ar, ae] = ar (ICr)

and ∂
∂ae

E[
√
s|ar, ae] = ae (ICe)

Let λ, µr and µe be the multipliers on the IR, ICr and ICe constraints, respectively. Then

differentiating the Lagrangian pointwise with respect to s yields

2
√
s = λ+ µr

(
xr − x̄r
x̄r

)
+ µe

(
x̄e − xe
x̄e

)
, (B.42)

where the terms in parentheses are the likelihood ratios of the revenue and expense accounts.

Taking the expectation over both sides of (B.42) and noticing that the expected values of

the likelihood ratios equal zero, we get 2E[
√
s] = λ. Substituting this into the (binding) IR

constraint yields

λ = 2Ū + a2
r + a2

e. (B.43)

Substituting (B.42) into (ICr) gives

µr
∂
∂ar

(
E
[
xr
x̄r

])
= 2ar

⇐⇒ µr
∂
∂ar

(
x̂r+ar
x̄r

)
= 2ar

⇐⇒ µr
x̄r

= 2ar

⇐⇒ µr = 2arx̄r.

(B.44)

Similarly, substituting (B.42) into (ICe) gives µe = 2aex̄e. Now substituting these

expressions for λ, µr and µe back into (B.42), dividing through by 2 and rearranging gives

√
s = Ū +

a2
r

2
+
a2
r

2
+ ar(xr − x̄r) + ae(x̄e − xe). (B.45)
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Finally, substituting in x̄r = x̂r+ar and x̄e = x̂e−ae and rearranging yields equation (3.25)

in the observation.
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Proof of Lemma 5.

The principal wants to maximize E[Π|ar, ae]−E[s|ar, ae] over ar and ae. To find E[s|ar, ae],

first square (B.45) and take the expectation over xr and xe.

E[s] = λ2

4 + a2
rE(x2

r) + a2
rx̄

2
r − 2a2

rx̄rE(xr) + a2
ex̄

2
e + a2

eE(x2
e)− 2a2

ex̄eE(xe) (B.46)

By equation (B.17), E(x2
r) = x̄r + x̄2

r and E(x2
e) = x̄e + x̄2

e. Then (B.46) can be

rewritten as follows.

E[s] = λ2

4 + a2
r

(
x̄r + x̄2

r

)
+ a2

rx̄
2
r − 2a2

rx̄
2
r + a2

ex̄
2
e + a2

e

(
x̄e + x̄2

e

)
− 2a2

ex̄
2
e

⇐⇒ E(s) = λ2

4 + a2
rx̄r + a2

ex̄e

Now substituting in λ, x̄r and x̄e gives

E(s) = Ū2 + a4
r
4 + a4

e
4 + Ūa2

r + Ūa2
e + a2

ra
2
e

2 + a2
r (x̂r + ar) + a2

e (x̂e − ae)

and the principal chooses ar and ae to maximize her expected payoff, given in the following

expression.

π(ar + ae)− Ū2 − a4
r
4 −

a4
e
4 − Ūa

2
r − Ūa2

e −
a2
ra

2
e

2 − a2
rx̂r − a3

r − a2
ex̂e + a3

e. (PP)

Differentiating with respect to ar and ae yields the following first-order conditions.

(
∂PP

∂ar

)
: π = a3

r + 2Ūar + a2
ear + 2x̂rar + 3a2

r (B.47)(
∂PP

∂ae

)
: π = a3

e + 2Ūae + a2
rae + 2x̂eae − 3a2

e (B.48)

The two equations appear symmetric except for the minus sign before the last term. Assume

for a moment that x̂r = x̂e; then it cannot be the case that ar = ae after cancellations we’d

be left with 3a2
r = −3a2

e, whose only solution is the degenerate ar = ae = 0. With ar 6= ae,

the only way for the equations to hold is to have ae > ar so that the positivity of a3
e is large
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enough to overwhelm the negativity of −3a2
e.

The one thing that can disrupt the finding that ae > ar is to have x̂e � x̂e; if x̂e

becomes very large relative to x̂r there reaches a point which requires ar > ae for the

equations to hold.

Setting the right-hand sides of (B.47) and (B.48) equal and rearranging provides the

characterization of ae/ar shown in Lemma 5.
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Proof of Lemma 6. To implement the contract in Lemma 6, the payments w̃ and K must

ensure that the agent is willing to accept the contract and the contract is incentive com-

patible with action a∗e. That is, K and w̃ must satisfy the following two conditions, given

threshold M , where I let qj(ae) ≡ Pr(xe = j|ae) and qej (ae) ≡ ∂
∂ae

Pr(xe = j|ae)

M∑
j=0

u(w̃)qj(a
∗
e) +

∞∑
j=M+1

u(K)qj(a
∗
e) = u(w∗) (B.49)

M∑
j=0

u(w̃)qej (a
∗
e) +

∞∑
j=M+1

u(K)qej (a
∗
e) = c′(a∗e) (B.50)

Let Qi ≡
∑i

j=0 qj and Qei ≡
∑i

j=0 q
e
j represent the expense account CDF and the

derivative of the CDF with respect to ae. By the definition of qj(ae) as a probability density

function,
∑∞

j=0 q
e
j (ae) = 0; this implies that

∑∞
j=M+1 q

e
j (a
∗
e) = −

∑M
j=0 q

e
j (a
∗
e) = −QeM .

Then solving equation (B.50) for u(K) and substituting into (B.49) yields:

u(w̃) = u(w∗) + c′(a∗e)
(1−QM )

QeM
(B.51)

u(K) = u(w∗)− c′(a∗e)
QM
QeM

(B.52)

Therefore, the contractual payments are characterized as follows.

w̃ ≡ w∗ + ε = u−1

(
u(w∗) + c′(a∗e)

1−QM
QeM

)
. (B.53)

K = u−1

(
u(w∗)− c′(a∗e)

QM
QeM

)
. (B.54)

The first-best solution is the pair (w∗, a∗e) which is what the penalty scheme is aimed

to approximate. Conditions (B.49) and (B.50) ensure that the agent will take action a∗e; the

remainder of the proof is dedicated to showing that the payment w̃ can be made arbitrarily

close to w∗ by increasing the penalty threshold. I will establish that w̃ approaches w∗ from

above as M approaches infinity, i.e. ε −→ 0 as M −→∞. Equation (B.53) shows that this
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limit obtains if c′(a∗e)
1−QM
Qe

M
approaches zero. With c′(a∗e) constant in M , what remains to

show is that 1−QM
Qe

M
approaches zero as M goes to infinity. The following calculation shows

that that Qei = qi.

Qei ≡
∑i

j=0 q
e
j

=
∑i

j=0
e−(x̄e)(x̄e)j

j!

[
1− j

(x̄e)

]
= e−(x̄e)

[
(x̄e)0

0!

(
1− 0

(x̄e)

)
+ (x̄e)1

1!

(
1− 1

(x̄e)

)
+ (x̄e)2

2!

(
1− 2

(x̄e)

)
+ ...+ (x̄e)i

i!

(
1− i

(x̄e)

)]
= e−(x̄e)

[
1 + (x̄e − 1) +

(
(x̄e)2

2! − x̄e
)

+
(

(x̄e)3

3! −
(x̄e)2

2!

)
+ ...+

(
(x̄e)i

i! −
(x̄e)i−1

(i−1)!

)]
= e−(x̄e)

[
�A1 +��

�HHH(x̄e) − �A1 +�
��ZZZ

(x̄e)2

2! −���HHH(x̄e) +�
��ZZZ

(x̄e)3

3! −�
��ZZZ

(x̄e)2

2! + ...+ (x̄e)i

i! −��
��H
HHH

(x̄e)i−1

(i−1)!

]
= e−(x̄e)(x̄e)i

i!

= qi

Then 1−QM
Qe

M
can be rearranged as follows.

1−QM
Qe

M
=

1−
∑M

j=0 qj
qM

=
1−

∑M
j=0

(x̄e)je−x̄e

j!

(x̄e)Me−x̄e

M !

= M !
(x̄e)Me−x̄e

(
1− e−x̄e

∑M
j=0

(x̄e)j

j!

)
= M !

(x̄e)M

(
ex̄e −

∑M
j=0

(x̄e)j

j!

)
=⇒ limM→∞

[
M !

(x̄e)M

(
ex̄e −

∑M
j=0

(x̄e)j

j!

)]
= 0,

where the last equality follows from
∑∞

j=0
bj

j! = eb.
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Proof of Corollary 1. The proof of Lemma 6 gives that

u(K) = u(w∗)− c′(a∗e)
QM
QeM

.

The only piece that varies with M is QM
Qe

M
. Thus, to show that K becomes increasingly brutal

as the threshold increases, it remains only to show that this quotient approaches infinity as

M approaches infinity. Recall from the proof of Lemma 6 that QeM = qM ; this allows me

to rewrite the quotient as follows.

QM
Qe

M
=

∑M
j=0 qj
qM

=
e−x̄e

∑M
j=0

(x̄e)j

j!

e−x̄e (x̄e)M

M !

=
(

M !
(x̄e)M

)(∑M
i=0

(x̄e)i

i!

)
Now evaluating the limit as M −→∞, the first piece in parentheses approaches infinity

and the second piece approaches ex̄e . Therefore QM
Qe

M
−→ ∞ as M −→ ∞. Then u(K) −→

−∞ and thus, by assumption (3.27), K −→
¯
s as M −→∞.
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Proof of Lemma 7. Let θj = Pr(y = j|x̄r, x̄e) and let θej = ∂
∂ae

[Pr(y = j|x̄r, x̄e)]. Notice

that the agent has no influence over the revenue account; therefore the revenue account has

expected value x̄r = x̂r, and fr(~a) = 0.

Following the proof strategy of Lemma 6, the contractual payments can be characterized

as follows, where Θi ≡
∑i

j=−∞ θj and Θe
i ≡ ∂

∂ae

∑i
j=−∞ θj .

u(w̃) = u(w∗)− c′(a∗e)
ΘM

Θe
M

(B.55)

u(K) = u(w∗) + c′(a∗e)
(1−ΘM )

Θe
M

(B.56)

I want to show that u(w̃)→ u(w∗) as M → −∞. As c′(a∗e) is constant, what I need to

show is that ΘM/Θ
e
M −→ 0. Notice that θe/θ −→ −∞ implies that Θe

M/ΘM −→ −∞ and

thus 1/(Θe
M/ΘM ) = ΘM/Θ

e
M −→ 0. Then all that remains to show is that θe/θ −→ −∞;

that is, the likelihood ratio of earnings with respect to the cost-cutting action is unbounded

below.

Equation (A.14) in Appendix A gives the likelihood ratio LRby for a Skellam-distributed

signal y = x1 − x2 and action ab. Applying it here, with x1 = xr, x2 = xe and ab = ae,

gives the likelihood ratio below.

LRey =
θe

θ
=

[
1−

(
x̄r
x̄e

)1/2 Iy+1(2
√
x̄rx̄e)

Iy(2
√
x̄rx̄e)

]
. (B.57)

Now I show that LRey → −∞ as y → −∞. It is clear that if Iy+1(z)/Iy(z) → ∞ as

y → −∞, then LRey → −∞ as y → −∞, where z = 2
√
x̄rx̄e.

A well known property of the modified Bessel function of the first kind is that I−v(z) =

Iv(z) when v ∈ Z (Abramowitz and Stegun 1970, p. 375). Because y ∈ Z, we can write

Iy(z) = I−y(z) = In(z), where n = |y|. Additionally, for y < 0, we can write Iy+1 = I−n+1 =

I|−n+1| = In−1. Then for y < 0, we can rewrite the ratio Iy+1(z)/Iy(z) as In−1(z)/In(z),

which is equivalent to Iy−1(z)/Iy(z) for y > 0. Thus, showing that Iy(z)/Iy+1(z) → ∞ as

y →∞ is equivalent to showing that Iy+1(z)/Iy(z)→∞ as y → −∞, which is what I need



67

to prove.

N̊asell (1974) establishes that for all y ≥ −1 and z > 0,

1 +
y

z
<

Iy(z)

Iy+1(z)
(B.58)

It’s clear that the left-hand side of (B.58) approaches infinity as y →∞, which implies that

the right-hand side does as well. This completes the proof.



68

Proof of Lemma 8. I will prove the lemma by contradiction. Assume that the first-best

solution to the revenue-only model, (w∗, a∗r), can be approximated arbitrarily closely by a

contract (s(xr), ar), defined as follows.

s(xr) =


w̃ = w∗ + ε if xr ≥M

K if xr < M

ar = a∗r

The agent is punished with penalty payment K for outcomes below threshold M and

receives a flat wage, w̃ > w∗, for outcomes above M . To make the agent indifferent between

the penalty contract and the first-best contract, the penalty contract must give the agent

the same expected utility as the first-best contract, and it must be incentive compatible.

Thus, (s(xr), ar) must satisfy the following two constraints, where pi(ar) ≡ Pr(xr = i|ar)

and pri (ar) ≡ ∂/∂ar [Pr(xr = i|ar)].

M∑
i=0

u(K)pi(a
∗
r) +

∞∑
j=M+1

u(w̃)pi(a
∗
r) = u(w∗) (B.59)

M∑
i=0

u(K)pri (a
∗
r) +

∞∑
j=M+1

u(w̃)pri (a
∗
r) = c′(a∗r) (B.60)

Observe that pri (ar) = pi(ar)× LRr by definition of the likelihood ratio LRr =
pri (ar)
pi(ar) .

Noting that LRr = xr−x̄r
x̄r

= xr
x̄r
− 1, I find that

∑i
j=0 p

r
j(ar) can be simplified as follows.
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∑i
j=0 p

r
j(ar) =

∑i
j=0

e−x̄r (x̄r)j

j!

[
j
x̄r
− 1
]

= e−x̄r
[

(x̄r)0

0!

(
0
x̄r
− 1
)

+ (x̄r)1

1!

(
1
x̄r
− 1
)

+ x̄2
r

2!

(
2
x̄r
− 1
)

+ ...+ (x̄r)i

i!

(
i
x̄r
− 1
)]

= e−x̄r
[
(0− 1) + (1− x̄r) +

(
x̄r − (x̄r)2

2!

)
+
(

(x̄r)2

2! −
(x̄r)3

3!

)
+ ...

...+
(

(x̄r)i−1

(i−1)! −
(x̄r)i

i!

) ]
= e−x̄r

[
− 1 + 1− x̄r + x̄r − (x̄r)2

2! + (x̄r)2

2! −
(x̄r)3

3! + (x̄r)3

3! − ...

...− (x̄r)i−1

(i−1)! + (x̄r)i−1

(i−1)! −
(x̄r)i

i!

]
= − e−x̄r (x̄r)i

i!

= −pi(ar)

Therefore, the term
∑M

i=0 p
r
i (a
∗
r) in equation (B.60) can be replaced with −pM . Notice

that because
∑∞

i=0 p
r
i (ar) = 0, it must be the case that

∑∞
i=M+1 p

r
i (ar) = −

∑M
i=0 p

r
i (ar) =

pM .

Let PM ≡
∑M

i=0 pi; then
∑∞

i=M+1 pi = 1 − PM by definition of a CDF. Noting that

u(K) and u(w̃) are fixed values independent of xr, I rewrite equations (B.59) and (B.60) as

follows.

u(K)PM + u(w̃)(1− PM ) = u(w∗) (B.61)

−u(K)pM + u(w̃)pM = c′(a∗r) (B.62)

With some algebraic substitution, equations (B.61) and (B.62) characterize the con-

tractual payments w̃ and K as follows.

w̃ =u−1

(
u(w∗) + c′(a∗r)

PM
pM

)
(B.63)

K =u−1

(
u(w∗)− c′(a∗r)

(1− PM )

pM

)
(B.64)

For the penalty scheme to approximate the first-best solution, it must be that w̃ can be
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made arbitrarily close to w∗. By equation (B.63), this is equivalent to making PM
pM

arbitrarily

close to zero. But the smallest value attained by PM
pM

occurs at M = 0, where P0
p0

= p0

p0
= 1.

I will show that PM
pM

<
PM+1

pM+1
for all M < E[xr]. The proof is by induction. For the base

case, it is clear that P0
p0

= p0

p0
< P1

p1
= p0+p1

p1
because p0 + p1 > p1 and thus p0+p1

p1
> 1 = p0

p0
.

Assume the induction hypothesis that for all M less than E[xr],

PM−1

pM−1
<
PM
pM

.

Now use the recursive property of the Poisson distribution pM−1 = M
x̄r
pM to get

PM−1
M
x̄r
pM

<
PM
pM

⇐⇒ PM−1

pM
<

PM
x̄r
M pM

,

where the equivalence comes from multiplying through by x̄r
M . Now add 1 to both sides to

get

PM−1 + pM
pM

<
PM + x̄r

M pM
x̄r
M pM

.

I use the fact that x̄r
M > x̄r

M+1 to write

PM−1 + pM
pM

<
PM + x̄r

M pM
x̄r
M pM

<
PM + x̄r

M+1pM
x̄r
M+1pM

=
PM + pM+1

pM+1
.

The above equation shows that
PM−1+pM

pM
= PM

pM
<

PM+1

pM+1
=

PM+pM+1

pM+1
, which completes the

proof by iteration.

Having established that PM
pM

is minimized at M = 0 with a value of 1, we revisit equation

(B.63) and see that the smallest possible value of w̃ is w̃ = u−1 (u(w∗) + c′(a∗e)). Then w̃

cannot be made arbitrarily close to w∗, contradicting the opening assertion that the penalty

contract could approximate the first-best arbitrarily closely.
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Proof of Lemma 9. The principal’s problem is as follows, letting pi(ar) ≡ Pr(xr = i|ar)

and pri (ar) ≡ ∂/∂ar [Pr(xr = i|ar)].

max
s(xr),ar

Π(xr)−
∑

i s(x
r
i ))pi(ar) (OBJ)

subject to
∑

i u(s(xri ))pi(ar)− c(ar) ≥ Ū (IR)

and
∑

i u(s(xri ))p
r
i = c′(ar) (IC)

(B.65)

Write program (B.65) in Lagrangian form.

L (s(xr), ar, λr, µr) =
∑

i (xri − s(xri )) pi(ar)

+ λr[
∑

i u(s(xri ))pi(ar)− c(ar)− Ū ]

+ µr[
∑

i u(s(xri ))p
r
i (ar)− c′(ar)]

(B.66)

Differentiating (B.66) with respect to si yields equation (3.30) in the lemma. Standard

Kuhn-Tucker conditions give that the constant λr is positive.

In his Lemma 1, Jewitt (1988) gives a clever proof that µr > 0. I repeat his argument

here for completeness. Any (s, ar) which solves program (B.65) must satisfy equations (3.30)

and the (IC) constraint. Equation (3.30) can be rearranged as

pri (ar) =

[
1

u′(si)
− λr

]
pi(ar)

µr
.

Plugging this expression into equation the (IC) constraint and rearranging gives

∑
i

u(si)

[
1

u′(si)
− λr

]
pi(ar) = c′(ar)µr. (B.67)

Now I take the expectation of both sides of (3.30) and simplify, employing the fact that
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∑
i p
r
i = 0.

∑
i

1
u′(si)

pi(ar) =
∑

i

[
λr + µr

pri (ar)
pi(ar)

]
pi(ar)

⇐⇒
∑

i
1

u′(si)
pi(ar) = λr + µr

∑
i p
r
i (ar)

⇐⇒
∑

i
1

u′(si)
pi(ar) = λr

⇐⇒ E
[

1
u′(si)

]
= λr

(B.68)

Recall that E

[(
g(y)− E [g(y)]

)(
h(y)− E [h(y)]

)]
is the covariance between g(y) and

h(y). Because the utility function u(·) is an ordinal representation and unaffected by affine

transformations, we can normalize u(·) such that E[u(si)] = 0. Then equation (B.67) can

be written

∑
i

[u(si)− 0]

[
1

u′(si)
− λr

]
pi(ar) = c′(ar)µr

⇐⇒ E

[(
u(si)− E [u(si)]

)(
1

u′(si)
− E

[
1

u′(si)

])]
= c′(ar)µr, (B.69)

where the left-hand side is the covariance between u(si) and 1/u′(si). Signing this covariance

will help us sign µr. u(·) is increasing in its argument. The agent’s risk aversion gives

u′′(·) < 0, so u′(·) is decreasing in its argument and thus 1/u′(·) is increasing in its argument.

So u(si) and 1/u′(si) are both increasing in si and thus cov (u(si), 1/u
′(si)) > 0, so the left

hand side of (B.69) is positive. The agent’s effort aversion gives c′(ar) > 0, so for (B.69) to

hold, µr must be positive.

Armed with µr > 0, return to examining equation (3.30).
xri−x̄r
x̄r

is increasing in i,

so with λr, µr > 0, the right-hand side of (3.30) is increasing in i. This implies that the

left-hand side is also increasing in i. We know already that 1/u′(si) must be increasing in

its argument, so for the left-hand side to be increasing in i, si must be increasing in i, which

is what the lemma claims.
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Income Statement

Revenues

xr1 ∼ Poisson(x̂r1 + fr1(~a))

xr2 ∼ Poisson(x̂r2 + fr2(~a))

xrm ∼ Poisson(x̂rm + frm(~a))

Total revenues = xr ∼ Poisson (
∑m

i=1(x̂ri + fri(~a)))

Expenses

xe1 ∼ Poisson(x̂e1 + fe1(~a))

xe2 ∼ Poisson(x̂e2 + fe2(~a))

xen ∼ Poisson(x̂en + fen(~a))

Total expenses = xe ∼ Poisson
(∑n

j=1(x̂ej + fej(~a))
)

Earnings = y ∼ Skellam
(∑m

i=1(x̂ri + fri(~a));
∑n

j=1(x̂ej + fej(~a))
)

~a

Figure 1: Income statement with Poisson-distributed ac-
counts. A vector of managerial actions ~a influences the firm’s m
revenue accounts, xr1, ..., xrm, and n expense accounts, xe1, ..., xen.
Each account follows a Poisson distribution parameterized by its
expected value, x̂+ f(~a), where x̂ is exogenous and f(~a) is the ac-
count’s change in expected value from managerial actions (where
f(~a) may equal zero). Total revenues and total expenses also follow
Poisson distributions with parameters simply equal to the sum of
the revenue and expense account parameters, respectively. Earn-
ings are equal to total revenues minus total expenses and follow
a Skellam distribution whose first and second parameters are the
parameters from total revenues and total expenses.
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Figure 2: Corner solution with πb = 0. The principal’s ex-
pected residual payoff (Π−E(s)) is graphed over actions ae and ar.
Because ae is cheaper to implement than ar, a linear profit function
and linear cost of effort function result in a corner solution in which
the principal sets ar = 0 and maximizes only over ae.


