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Abstract 

Optical Lever Measurement Accuracy for Off-Resonance 

Atomic Force Microscopy 

by 

R. Parker Eason 

This research evaluates measurement accuracy in optical lever-based atomic force 

microscopy (AFM) for off-resonance conditions and parameter variations. Under con­

trolled conditions and correct calibration, AFM provides researchers with the ability 

to accurately observe and manipulate matter on the micro- and nano-scale. Ac­

curacy of imaging and nano-manipulation operations are directly correlated to the 

accuracy with which the displacement of the probe is measured. The optical lever 

method, a common displacement measurement technique employed in AFM, calcu­

lates probe displacement based on a calibration that assumes a consistent response 

profile throughout operation. Off-resonance excitation and tip-sample interaction 

forces during intermittent contact mode AFM can alter this response profile. Stan­

dard tapping-mode operation at the fundamental frequency is observed to be robust 

to changes in effective stiffness, maintaining accurate measurements for all laser spot 

positions considered. A nominal laser spot position between Xp = 0.5 and 0.6 is de­

termined to most accurately predict displacement for off-resonance excitation during 

both free response and intermittent contact condit ions. Measurement accuracy for 

off-resonance tapping- mode is more directly correlated to changes introduced to the 

interaction force profile than choice of spot position. 
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Chapter 1 

Introduction 

The results in this thesis demonstrate how various parameter values influence opti­

cal lever measurement accuracy in off-resonance atomic force microscopy (AFM) by 

quantifying response profile deviations from the calibration conditions. Among the 

parameters studied, excitation frequency is determined to have a much more signif­

icant influence on response profile than tip-sample interactions have. As a result, 

amplitude modulation imaging is demonstrated to remain robust to variations in ef­

fective stiffness during operation, exhibiting less than 1 nm vertical measurement 

error for an increase of 10 times the effective stiffness. Probe displacement error is 

quantified based on operation conditions and spot position. Near-zero probe displace­

ment measurement error is observed for nominal spot positions between Xp = 0.5 and 

0.6. 

This thesis is organized as follows. An overview of atomic force microscopy, the 

motivation for this work and a review of related studies are presented in the remainder 

of this chapter. The second chapter contains the derivation of governing equations and 

a description of how they are combined to produce a numerical model for simulating 

dynamic AFM operation. Results obtained under free response and intermittent 

contact conditions are presented in the third and fourth chapters, respectively. A 

1 
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concluding summary of the problem and results is presented in the final chapter. 

1.1 Motivation 

For more than two decades, Atomic Force Microscopes (AFM) have been used to 

observe and manipulate matter on the micro- and nano-scale [1]. Whereas the spa­

tial resolution of optical microscopes is limited to hundreds of nanometers by Abbe's 

diffraction law, atomic force microscopes have successfully achieved sub-nanometer 

imaging resolution [2]. Atomic force microscopy, alongside other methods such as 

scanning tunneling microscopy (STM), magnetic force microscopy (MFM) and elec­

trostatic microscopy (ESM), developed from within the broader field of scanning probe 

microscopy (SPM) [3]. Scanning probe microscopes, in general, identify sample prop­

erties or topography by scanning a probe across the surface in close proximity, and 

measuring some interaction quantity between the probe and surface. Topographical 

representations of the surface can then be constructed from the measured interaction 

data [4]. 

As the name suggests, atomic force microscopes measure force interaction with 

the surface to perform imaging or manipulation operations. Main components central 

to AFM operation include a force effector, usually a small flexible probe with known 

stiffness, and means to identify the probe's deflection as it interacts with the sample 

surface. Cantilever probe shapes vary based on application, for example to promote 

or restrict torsional motion or to achieve a specific resonant frequency. Here we focus 

on one of the most common AFM system configurations, illustrated in Fig. 1.1. 

This common configuration consists of a cantilever probe fixed at its base to a 

piezoelectric transducer, providing predictable deformation to allow precise control of 

the probe base movement. Attached to the free end of the probe is a sharp tip, ideally 

the only portion of the AFM system that interacts with the surface. A sharp tip 
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Figure 1.1: Schematic of the components that comprise the optical lever deflection 
measurement system in AFM. 

minimizes the number of atoms that interact with the surface and therefore increases 

lateral resolution, though fracture is often experienced when operating very sharp 

tips on hard surfaces. 

Imaging is performed by scanning t he pro be across a surface in the horizontal 

plane while controlling the vertical (z) height of the base to maintain close proximity 

between tip and surface. In contact mode operation, long- and short-range forces 

near the surface cause t he probe to deflect proport ional to the t ip-surface separa-

tion. Feedback cont rol seeks to achieve constant separation by maintaining constant 

deflection. 

In dynamic operation, an AC voltage is applied at the piezoelectric material to 

harmonically oscillate the cantilever. Surface forces change the response behavior as 

the probe approaches the surface. Vertical z adjustments are made by the controller 

to maintain constant phase offset in non-contact AFM (NC-AFM) or constant re-
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sponse amplitude in amplitude-modulation AFM (AM-AFM) [5,6]. Dynamic modes 

generally offer an increased signal-to-noise ratio and can be less destructive to the 

sample surface. 

At the micro- and nano- scale, methods to accurately measure probe displacement 

are limited. The first AFM systems utilized a scanning tunneling microscope to 

measure the deflection of the AFM probe [1]. Later designs employed piezoelectric 

crystals or piezo-resistive elements to measure the force corresponding to deflection [7]. 

The technique of interest to this work is the optical lever sensor, one of the most widely 

implemented methods today. 

In the optical lever method, a laser is reflected off a point along the probe onto 

the surface of a segmented photo-diode detector. The photo detector returns a voltage 

signal corresponding to the difference between the amount of incident light detected 

by its two opposing vertical segments. Many photodetectors are segmented into quad­

rants, providing an additional difference signal between opposing horizontal segments 

to measure torsional motion of the cantilever. When the probe deflects, its change in 

slope alters the reflected position of the beam on the photodetector and the difference 

signal changes. 

Figure 1.2 illustrates the changes observed by the photo detector as a deflection 

at the probe tip increases the slope at the surface of the probe. The probe has an 

initial deflection of zero with the laser spot centered on the photodetector, returning 

equal voltage readings from each quadrant (i. e. 1A = 1B = 2A = 2B = 5 Volts). 

A deflection at the probe tip introduces an increase of A(} to the probe's slope at 

the laser spot position, increasing the reflected angle of the laser proportional to the 

increase in slope and moving the incident spot upward on the photodetector. Since 

no torsional movement is introduced, the readings between the corresponding A - B 

quadrants remain the same, whereas a voltage difference is introduced between the 

1 - 2 quadrants (i.e. 1A = 1B = 7 Volts, 2A = 2B = 3 Volts). 
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Figure 1.2: Illustration of changes observed by the segmented photo detector as a 
deflection at the probe tip increases its slope by ~e. Quadrants lA, IE , 2A , 2E are 
ordered as shown. 

Through calibration, covered in more detail in Section 2.4.1, probe tip deflection 

is calculated from this difference signal measured by the photo detector. Accurate 

measurement capability therefore depends on maintaining the slope-displacement re-

lationship from calibration. Only lateral displacements are of interest in standard 

AFM , and therefore only the difference signal between the corresponding 1 - 2 quad-

rants is used for displacement calculation. In the preceding example, this difference 

signal was 0 Volts before the probe was deflected and 7 - 3 = 5 Volts after deflection. 

Note that Fig. 1.2 is intentionally drawn not-to-scale in order for all components to 

be presented together. In an actual AFM system the distance between the probe and 

photo detector would be very large compared with the spot size and probe deflection, 

and the diameter of the laser beam would essentially remain constant throughout its 
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path from laser to photodetector. 

Since accurate displacement measurement capability relies on maintaining the 

slope-displacement relationship from calibration, it is important to identify the op­

eration conditions which preserve this relationship. Standard dynamic AFM imag­

ing and manipulation techniques employ excitation near the probe's fundamental 

frequency to exploit its most significant resonance. At the fundamental frequency, 

operating away from the influence of surface forces, the response profile consists of 

only the first mode shape. Because the first mode slope-displacement relationship is 

preserved, accurate measurement capability is achieved. In the presence of nonlinear 

surface forces and during off-resonance conditions above the fundamental frequency, 

however, the influence of higher mode shapes will alter the probe's response profile, 

changing the slope-displacement relationship and reducing measurement accuracy. 

The purpose of the work presented in this thesis is to quantify the accuracy of 

measurements obtained using the optical lever method as the probe is operated in 

intermittent contact with a sample under resonant and off-resonant conditions. First, 

the influence of tip mass, damping and spot position on the slope-displacement rela­

tionship under off-resonance free response conditions-where no surface interaction 

forces are present-are considered. These parameter variations will provide a better 

understanding of how each factor individually affects the response profile. Intermit­

tent contact feedback control will then be implemented to scan a hard and a soft 

surface. Changes to the response profile will be monitored as the effective interaction 

stiffness is changed, corresponding to local surface property variations or tip wear. 

Measurement accuracy will be calculated from the slope-displacement relationship 

change at the incident spot position. 
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1.2 Previous Work 

A review of related publications is presented in this section. First, motivation for and 

applications of off-resonance excitation are examined. Recent studies of the sensitivity 

and accuracy of the optical lever method are presented next. Finally, measurement 

error and response changes due to bistability are briefly discussed. 

1.2.1 Off-Resonance Excitation 

Chin et al. (1994) and Thota and Dankowicz (2006) examined bifurcations produced 

at the point where an oscillator transitions into an impacting state, a condition known 

as "grazing" [8, 9]. Dick et al. (2009) later extended the same theory to tapping­

mode AFM systems in order to reduce contact-force magnitude [10]. Qualitative 

response changes at the grazing boundary are often too small to detect for excitation 

at the fundamental frequency. However, when operating at two-and-a-half times the 

fundamental frequency, a period doubling bifurcation corresponding to the grazing 

condition was easily observed in experiments. 

Dick and Huang continued to examine the period doubling bifurcation in 2009, 

conducting numerical simulations to study its behavior [11]. A relationship between 

the effective interaction stiffness and nominal separation distance of the period dou­

bling bifurcation was discovered for excitation at two and a half times the fundamental 

frequency. By identifying the location of the period doubling bifurcation in a soft sam­

ple and utilizing this trend, it may be possible to characterize local material stiffness. 

Due to the unique characteristics and promising applications related to the frequency 

at two-and-a-half times the fundamental, measurement accuracy at this particular 

off-resonance frequency is of interest to the research presented in this thesis. 

Dick and Solares (2011) expanded this work by considering a dual-frequency exci­

tation consisting of a primary component at the fundamental frequency and a small 
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off-resonance component at two-and-a-halftimes the fundamental frequency [12]. Pre­

vious studies of dual-frequency excitation in AFM have incorporated the first two 

modes, demonstrating increased sensitivity and decreased transitions in the bistable 

region [13, 14]. Whereas the contact force levels required to observe the bifurca­

tion were high when operating at the single off-resonance excitation, the forces were 

minimized during dual-frequency excitation. Utilizing only the spectral content of 

the dual-frequency response, Dick and Solares were able to differentiate between the 

attractive and repulsive response regimes. The results from this study lay the ground­

work for a novel AFM operation mode in which the probe could be operated in the 

attractive regime only, drastically reducing contact force levels. For the measure­

ment accuracy study presented within this thesis, however, the probe response at the 

fundamental and off-resonance frequencies are studied individually to identify their 

response characteristics separately. 

A number of other studies have demonstrated additional applications and poten­

tial benefits of higher frequency excitation. Pfeiffer et al. (2000) studied off-resonance 

response characteristics of a rectangular micro-cantilever in ultra high vacuum [15]. 

The reduced quality factors resulting from higher frequency excitations allowed the 

probe to respond faster to tip-sample interaction changes. In 2003, Hoffmann demon­

strated direct measurement of force gradients using off resonance excitation below 

the probe's fundamental frequency [16]. Stark (2004) examined the influence of tip­

sample forces on higher mode shapes using state-space models in order to estimate 

material properties [17]. 

Arafat, Nayfeh and Abdel-Rahman (2008) studied measurement error in off­

resonance AFM due to resonant interactions between the dynamic modes of the 

probe [18]. Approximate analytical solutions were developed using the method of 

multiple scales. A significant internal resonance was observed between the second 

and third modes when the oscillation frequency matched either of these modes. This 
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internal resonance was demonstrated as one potential source of measurement error 

when operating at higher harmonics. In contrast, the frequency range studied within 

this thesis is between the second and third modes, where higher harmonics and non­

linear tip sample forces influence changes to the response profile, but below the range 

of this internal resonance. 

1.2.2 Optical Lever Method 

One of the largest potential sources for error in both resonant and off-resonance 

as well as static AFM operation is the optical lever method. While this method 

has proven to be a powerful and effective element of the AFM system, the indirect 

manner in which measurements are obtained require a thorough understanding of the 

interaction between each component. The interaction between the force applied at 

the probe and the difference signal, and consequently the measurement accuracy, is 

affected by parameters such as the laser spot size and position, geometry of the laser 

setup and even the heat introduced by the power of the laser. 

Schaffer and Hansma (1998) designed an aperture to enable adjustment of the 

laser spot size reflected off an AFM probe in order to maximize detection sensitiv­

ity [19J. Their work was conducted at a time when the range of probe sizes available 

for the AFM system was rapidly expanding. New probes as small as 10J-lm offered 

the advantage of a higher natural frequency, but to maximize the signal-to-noise ra­

tio it is crucial to choose an appropriate spot size based on the size of the probe. 

Through theoretical models and a self-constructed experimental AFM setup, Schaffer 

and Hansma demonstrated the potential of their aperture, successfully doubling the 

signal-to-noise ratio. 

More detailed investigation of the optimum choice of spot size and location was 

performed by Stark (2004) and Schaffer and Fuchs (2005). Stark chose an analytical 

approach, deriving a state space representation of the equations of motion describing 
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the beam [20]. Probe dynamics, spot shape, distribution of spot intensity, wavelength 

of the laser beam and optical losses were accounted for in the dynamic model. In order 

to optimize sensitivity, Stark focused on the interaction between the poles and zeros 

of the transfer functions. Recommendations were given for spot size and location 

relative to the frequency of response to be studied. 

Expanding on Stark's work, Schaffer and Fuchs conducted a more thorough quan­

titative numerical analysis of the effect of laser spot size and placement on detection 

sensitivity [21]. Additional factors considered in the theoretical model included cor­

rection to the laser spot distribution relative to geometric factors: cantilever setup, 

incident beam and scanner angle combined with probe deflection in two dimensions. 

Sensitivity was quantified as the difference signal received by the photodetector, a 

more direct representation of actual operation compared to the work of Stark. Rec­

ommendations were presented to achieve optimum global and local detection sensi­

tivity relative to the mode number of response to be studied. Additional suggestions 

were presented when simultaneous detection of multiple normal modes is considered. 

In contrast to the previous two publications, a geometry-focused laser detection 

sensitivity study was conducted by Beaulieu et al. in 2007 [22]. Optics equations 

and vector analysis were implemented to derive an analytical model relating the can­

tilever deflection and photo detector difference signal. While this work considered 

the important implications of arbitrary setup angles in all three dimensions, other 

critical factors from previous works were ignored, namely spot size and distribution. 

Instead, spot size was considered infinitesimally small, an approximation that may 

or may not be warranted depending on the equipment used. Spot placement on the 

cantilever was considered, but generally held near the free end of the probe, consistent 

with general recommendations given by Schaffer and Fuchs. Guidelines are presented 

within to either maximize detection sensitivity or linearize the relationship between 

cantilever deflection and photo detector difference signal, a crucial requirement to en-
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sure the greatest accuracy of AFM measurements. Experimental verification showed 

very close correlation with analytical results. 

In 2008, Xie et al. proposed a novel calibration method to increase measurement 

optical lever sensitivity and measurement accuracy in AFM [23J. Common practice 

in AFM operation is to tune the system to operate within the linear range of the 

photo detector calibration curve. The nonlinear curve fit proposed by Xie et al. was 

demonstrated to extend the usable range of the photodetector from 36% to 95% of 

the total voltage output. With a greater voltage range available, the ratio of differ­

ence signal to probe displacement increased, improving sensitivity. This nonlinear 

calibration demonstrates great potential to increase measurement accuracy, but like 

the common linear calibration, its accuracy relies on the fundamental assumption of 

a consistent first-mode response profile. 

Another less obvious factor to consider in laser based detection is the heat pro­

duced by the laser. Yang et al. (2009) investigated property changes introduced 

by the joule heating of the laser, specifically the shift in the resonant frequency of 

the AFM cantilever [24J. Correct knowledge of the probe's resonant frequency is 

important in a number of AFM applications, most notably material property identi­

fication techniques such as atomic force acoustic microscopy (AFAM). The authors 

constructed an experimental setup to observe changes in the response behavior of a 

set of probes of various sizes. The laser deflection setup was constructed in the lab 

to simulate a commercial AFM setup, and the test cantilevers were fabricated by the 

researchers from <110> oriented single crystal silicon. A small frequency shift gen­

erally less than 1 kHz was observed for up to a fourfold increase in laser power. The 

frequency shift from joule heating of the laser was recommended to be considered for 

high frequency, low damping applications where frequency resolution is critical, such 

as frequency modulation atomic force microscopy (FM-AFM). 
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1.2.3 Bistability 

A review of factors affecting measurement accuracy would not be complete without 

the mention of bistability, one of the biggest challenges in modern AFM [4, 25J. 

Bistability, due to the presence of both attractive and repulsive nonlinear forces at 

the surface, often results in unpredictable response transitions and image distortion. 

Garcia and San Paulo (2000) used numerical simulations to study the interaction 

behavior between the probe tip, modeled as a single-degree-of-freedom oscillator, and 

surface forces from a DMT force model [26J. By observing the phase portraits of 

the response, the authors identified the distribution of the low and high amplitude 

response solutions based on initial conditions and separation distance. 

The phase space primarily consists of steady state solutions in the low amplitude 

regime for large separation distances, and the high amplitude regime for small separa­

tion distances. Between these extremes, there is a transition period where the phase 

space displays equal attraction to each solution type. Within this range, intrinsic 

perturbations can easily initiate an undesired transition between response regimes. 

Response transitions resulting from bistability are beyond the scope of this thesis. It 

is well known that the abrupt transitions associated with bistability introduce mea­

surement error. However, the minimization of this error does not result from studying 

the response of the probe, but rather by introducing methods to avoid these bistable 

conditions. Therefore, excitation magnitudes and stiffness parameters in this thesis 

were selected to minimize bistable transitions. 



Chapter 2 

Modeling 

In this chapter, the numerical model of the AM-AFM system is developed. First, 

theory from mechanics of materials and dynamics are incorporated to derive the 

governing equations of motion of the probe. Equations are derived to characterize 

the base excitation signal and the surface interaction forces. The following section 

describes how each of the governing equations are implemented to produce the desired 

output. Additional clarification of the calibration methods and signal processing 

within the model is discussed. 

2.1 Differential Equations of Motion 

In order to best account for the complex spatial response of the AFM probe, modal 

approximation is used to derive the governing differential equations for subsequent 

numerical analysis. Since the displacement of the probe is generally less than 0.1 % of 

the probe's length, linear behavior can be assumed. By using a modal approximation, 

the distributed parameter beam with infinite degrees of freedom can be approximated 

as a finite number of single degree of freedom (DOF) oscillators representing the first 

N modes of the probe, whose responses can then be superimposed to describe the 

total probe response. 

13 
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Figure 2.1: Simplified model of a rectangular cantilever probe. 

2.1.1 N on-dimensionalization 

Derivation of the equations of motion for the AFM probe begins with Euler-Bernoulli 

equation for a uniform rectangular beam, illustrated in Fig. 2.1. The flexural stiffness 

is represented by E! and mass per unit area by pit Thansverse probe displacement 

w is displayed as a function of distance x from the probe base and time i. Base 

displacement is denoted by X and is employed using a moving reference frame defined 

by iiJ(x, i) = w(x, i) + X(i). The "hat" symbol n symbol is used to denote all 

dimensional quantities. Eqn. (2.1) represents the common form of the Euler-Bernoulli 

beam equation within a moving reference frame. 

(2.1) 

In order to both simplify computation and efficiently account for the extremely 

small length scale, non-dimensionalization is employed. First, displacement quantities 

are normalized by L, the dimensional length of the probe. 
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x=xL, (2.2) 

a 1 a 
(2.3) ax = Lax' 

w=wL, (2.4) 

x=xL. (2.5) 

Equations (2.2 - 2.5) are substituted into (2.1), 

~ 4 ( ~) 2 ( ~) 2 (~) EI ~ a W x, t ~ ~ a w x, t ~ ~ d X t 
-~-L a 4 + pAL ~ = -pAL ~ , 
L4 x at2 dt2 

(2.6) 

and rearranged to the partial-dimensional form in Eq. (2.7). 

(2.7) 

Next, time is non-dimensionalized, normalizing by the coefficient of the accelera-

tion term, 

(2.8) 

(2.9) 

and substituted back into Eq. (2.7) to give the fully non-dimensionalized fourth order 

differential equation of motion, Eq. (2.10). 

a4w (x, t) a2w (x, t) ~ X (t) 
ax4 + at2 = - dt2 • 

(2.10) 
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2.1.2 Discretization 

A transformation of the governing fourth order differential equation (2.10) is desired, 

to return a set of second order ordinary differential equations which can be solved by 

numerical methods. Separation of variables is employed to express the probe response 

as a linear combination of mode shapes ¢n(x) and temporal responses qn(t) for each 

mode number n up to order of approximation N, Eq. 2.11. 

N 

w(x, t) ~ L ¢n(x)qn(t), (2.11) 
n=l 

or, using the common convention of implicit summation over repeated indices, 

(2.12) 

Substitution into non-dimensionalized beam equation (2.10) gives, 

(2.13) 

where partial derivatives with respect to space have been replaced with the prime 

symbol (') and partial derivatives with respect to time with an over-dot (.). 

A primary goal when implementing separation of variables (2.12) is to use or­

thogonal mode shapes such that the equations of motion for a multi- or infinite-DOF 

system can be approximated as a linear combination of the response of N single­

DOF oscillators, uncoupled with respect to mass and stiffness. By using the Galerkin 

Method, we take the inner product of both sides of Eqn. (2.13) with a comparison 

function, mode shape ¢m (x), 
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(11 cPm (x) cP'/:' (x)dx )qn(t) + (11 cPm(X)cPn(x)dx )qn(t) (2.14) 

= -X(t) 11 cPm(x)dx. 

Integration by parts is employed twice to reduce the order of the first term from 

four to two, 

(11 cPm(X)cP,/:'(x)dx )qn(t) = (2.15) 

cPm(1)cP'/:(l)qn(t) - cPm(O)cP,/:(O)qn(t) - cP~(l)cP~(l)qn(t) 

+ cP~(O)cP~(O)qn(t) + (11 cP':n(X)cP~(x)dx )qn(t). 

The first four terms in Eqn. (2.15) are expressed in terms of mode shape values 

at spatial limits x = 0 and x = 1. While the mode shape profiles have not yet been 

defined, generic boundary conditions can be utilized to identify zero terms. Boundary 

conditions for a clamped-free beam are well documented in literature (e.g. [27]) and 

are expressed in their dimensional form in Eqns. (2.16-2.19), with additional non­

homogeneous terms added to the shear condition to account for the tip mass, base 

excitation and tip sample force. 

¢n(O) qn(i) = 0, (2.16) 

¢~(O) qn(i) = 0, (2.17) 

Ef ¢~(£) qn(i) = 0, (2.18) 

Ef ¢'/:(£) qn(i) = mtip (¢n(£) qn(i) + X(i) ) + its ( w(£, i) ). (2.19) 
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Equations (2.16) and (2.17) impose zero displacement and slope, respectively, 

relative to the base at the fixed end of the probe. Absence of an internal moment at 

the free end is ensured by Eqn. (2.18), and Eqn. (2.19) describes the shear force at 

the free end. In the case of a general clamped-free beam, the right hand side of (2.19) 

would be zero, indicating zero shear force at the free end. In this case, the internal 

shear force at the free end is assumed to generally be non-zero, equal to the sum of 

the inertial force from the mass of the probe tip mtip and the nonlinear interaction 

force between the probe tip and sample surface its. 
Following the same procedure as Section 2.1.1, Eqns. (2.2-2.5) and (2.8-2.9) are 

substituted into Eqns. (2.16-2.19) to return the set of fully non-dimensionalized 

boundary conditions, 

4>n(O) qn(t) = 0, 

4>~(0) qn(t) = 0, 

4>~(1) qn(t) = 0, 

4>~/(1) qn(t) = l4>n(1) iin(t) + its ( w(l, t)), 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

where tip mass ratio 1 has been included to represent the ratio between tip mass mtip 

and the mass of the beam-like portion of the probe pAL, 

mtip 
I=~' 

pAL 
(2.24) 

and non-dimensional tip sample force has been introduced, related to its dimensional 

counterpart by, 
A2 

A L 
its = its -A-' 

EI 
(2.25) 

Combining the Galerkin formulation (2.14) with integration by parts substitution 
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(2.15) and boundary conditions (2.16-2.19) results in a set of N second order ordinary 

differential equations with respect to time, taking the form of Eqn. (2.26). 

MQ(t) + CQ(t) + KQ(t) = Z(t). (2.26) 

Temporal response term Q(t) is an (N x 1) vector with each term n given by the 

corresponding modal response qn (t). Matrices M, C, and K are (N x N) square ma­

trices representing the effective mass, damping and stiffness properties of the dynamic 

system, respectively. Excitation term Z(t) is an (N x 1) vector containing one iner­

tial force term from base acceleration X(t) and one term from nonlinear tip-sample 

interaction force Its (t). 

Elements of the modal matrices are presented in Eqns. (2.27-2.29). Equation 

(2.30) displays the value of each element in the excitation vector. Proportional 

damping is implemented to account for the low viscous damping of operation in 

air. Damping terms are defined by a combination the mass and stiffness matrices and 

dimensionless quality factor Q according to Eqn. (2.28). 

Mnm = 11 <Pn(X)<Pm(x)dx + ,<Pn(l)<Pm(1), 

Cnm = [v'KM- 1]nm/Q, 

Knm = 11 <p~(x)<p':n(x)dx, 
Zn = -X(t) 11 <Pn(x)dx - X(t)<Pn(1) - <Pn(1)lts(t). 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Note that the order of the m and n terms have been reversed from their presenta­

tion in Eqn. (2.14), taking into account the symmetry of each matrix, and the single 

index in the excitation vector has been changed from m to n. These modifications 

have no effect on the meaning of the equations and are applied to maintain labeling 
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consistency of the rows and columns of each matrix and vector. 

2.1.3 Mode Shapes 

In order to solve the governing dynamic equations (2.26), characterization of mode 

shapes is necessary. In other words, the spatial response profile of each mode n 

must be determined. In order to begin, the temporal response of each mode qn(t) is 

approximated by a periodic response with magnitude qO,n, 

(2.31) 

and substituted into a conservative, unexcited form of the equation of motion (2.13), 

A.IIII(X) q e'IWnt - A. (x) w2 n e'IWnt = O. 'f'n O,n 'f'n n '10,n (2.32) 

Canceling out like terms returns a fourth order differential equation with respect 

to spatial variable x only, 

<P';:'(x) - <Pn(x) w~ = 0, (2.33) 

or, substituting 

- (32 Wn - n' (2.34) 

the differential mode shape equation becomes, 

<p~"(X) - <Pn(X) (3~ = O. (2.35) 

Solutions to differential equations of the form (2.35) have been well studied. The 

mode shape solution takes the general form of Eqn. (2.36). 
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Each mode shape contains five unknown constants Aj,n, j = (1,4), and f3n. Fol­

lowing standard modal analysis procedure, the characteristic equation is determined, 

where the following shorthand has been employed, 

§ = sin(f3n), 

C = cos(f3n), 

§h = sinh(f3n), 

Ch = cosh (f3n) , 

(2.37) 

(2.38) 

The roots of the characteristic equation (2.37) give the values of f3n. An infinite 

number of solutions exist, but only one f3n value is required for each mode shape and 

therefore only the first N solutions must be calculated. Once f3n values are derived, 

coefficients Aj,n are determined by calculating the eigenvectors of r n, the coefficient 

matrix derived by substituting the mode shape equation into each of the boundary 

conditions. 

Due to the linear dependence of the solutions, each general mode shape 'Pn(x) 

can be scaled by a scalar coefficient an and still satisfy the governing equation and 

boundary conditions, 

(2.39) 



22 

Table 2.1: Modal parameters for dynamic system with no tip mass b = 0). 

n (3n A 1n A2n A 3 ,n A4,n an , , 

1 1.8751 0.4184 -0.5700 -0.4184 0.5700 1.7543 
2 4.6941 -0.5456 0.4954 0.5456 -0.4954 2.0186 
3 7.8548 -0.4998 0.5002 0.4998 -0.5002 1.9992 

Table 2.2: Modal parameters for dynamic system with tip mass equal to three percent 
of the beam-like portion of the probe b = 0.03). 

n (3n A 1n , 

1 1.8226 0.4187 
2 4.5743 -0.5045 
3 7.6698 -0.4998 

A2n , A 3,n 

-0.5698 -0.4187 
0.4955 0.5045 
0.5002 0.4998 

A4n , 

0.5698 
-0.4955 
-0.5002 

1. 7311 
1.9957 
1.9804 

We therefore impose an additional constraint to normalize the diagonal elements 

of mass matrix M to unity, 

(2.40) 

Substituting (2.36) and (2.39) into (2.40) and solving gives normalization con­

stants an. At this time the mode shapes are fully characterized, defined by Eqns. 

(2.36) and (2.39). Tables 2.1 and 2.2 present numerical values for all modal and 

normalization parameters when tip mass is zero and tip mass of 3% the mass of the 

beam-like portion of the probe, respectively. 

Probe parameter values used for dimensional response calculations are chosen to 

represent Asylum Research AC240TS, a commercially available AFM probe [28]. The 

probe's effective density and modulus are 1595 kg/m3 and 136.3 GPa, respectively. 

Additional parameter values are presented in Table 2.3. Based on nominal geometry, 
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Table 2.3: Parameters for AC240TS, Asylum Research, www.asylumresearch.com. 

Parameter Value 

Length (J-Lm) 240 
Width (J-Lm) 30 
Thickness (J-Lm) 2.7 
Stiffness (N/m) 2 
Fundamental Frequency (kHz) 70 

the mass of the probe tip is approximately 3% that of the beam-like portion of the 

probe, I = 0.03. 

2.2 External Base Excitation 

The applied base motion is simple harmonic, described by, 

X(t) = Xo cos(wext). (2.41) 

Within Eqn. (2.41), the magnitude of the excitation is represented by Xo. Exci­

tation frequency Wex will be varied between the fundamental frequency Wex = WI and 

two-and-a-half times the fundamental frequency, Wex = 2.5 X WI. 

Differentiating Eqn. (2.41) twice with respect to time returns the expression for 

base acceleration, for direct implementation into the governing equations of motion. 

.. 2 
X(t) = -XOwex cos(wext). (2.42) 
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2.3 Surface Interaction Forces 

A number of models are available to characterize the surface interaction forces at the 

micro- and nano- scale. Depending on the application, the influence of various factors 

on the interaction force must be considered, foremost the elastic forces resulting from 

the shape, contact and modulus of the interacting bodies. At the micro-scale, surface 

forces and adhesive forces can also become dominant. In some cases, plasticity and 

hysteretic behavior between the loading and unloading curves must be taken into 

account [29]. 

A few of the most popular interaction force models are Hertz (1881), Derjaguin­

Miiller-Toporov (1975), Johnson-Kendall-Roberts (1971), and Maugis (1992). Of 

these, Hertz provides the most simplistic approximation, approximating the repulsive 

forces from a deformable elastic sphere (probe tip) pressed into a rigid, flat surface 

(sample). In most applications the elastic deformation of the surface should not 

be neglected, but the Hertzian model can provide a sufficient approximation when 

attractive forces are low and contact forces are high. 

The remaining interaction force models include additional attractive force terms 

resulting from the net intermolecular van der Waals forces within a finite range of 

the surface. Each interaction model is best suited for different applications. For 

interactions with low effective stiffness, significant attractive forces and large tip radii, 

the Johnson-Kendall-Roberts (JKR) method provides the best approximation. JKR 

theory accounts for hysteretic van der Waals forces within the region of contact [30]. 

Maugis theory provides an interaction model which transitions between the JKR and 

Derjaguin-Miiller-Toporov (DMT) models [31]. 

For the opposite case of high effective stiffness, low attractive force and small tip 

radius, the Derjaguin-Miiller-Toporov model is preferred. The DMT model expands 

upon the Hertzian model by including the influence of van der Waals surface forces 

from a finite region surrounding the deformed sphere [32]. Tip-sample force its cal-
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culated with the DMT model is presented in Eqns. (2.43) and (2.44). Within the 

equations, R represents the tip radius, iI the Hamaker constant, and d the inter­

molecular distance. Coefficient /3 is defined in terms of tip radius and effective elastic 

modulus E* between the tip and sample as (4/3)E*VR. 

(2.43) 

(2.44) 

Within Eqn. (2.44), UB represents the effective separation distance from the 

sample based on the sum of tip response w(L, t), base excitation X(t) and separation 

distance b. The form of the equation is chosen such that the interaction force is zero 

at an effective separation distance of zero. 

2.4 Integration of Governing Equations to 

Simulate AFM Measurement 

At this time, all equations have been derived to characterize the system dynamics and 

describe the applied excitation and interaction forces. In this section, the manner in 

which the equations are combined to accurately simulate an AFM system will be 

discussed. Calculation of the calibration curve and control system implementation 

will be presented in subsections within. 

Figure 2.2 illustrates the simulation process developed for this thesis to derive 

meaningful results from the various inputs. Governing equations are presented within 

the dashed boundary with arrows depicting their interaction. System inputs, shown 

outside the dashed boundary, include Q factor, tip mass " spot position X p , exci-
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Figure 2.2: Flowchart depicting the interaction between equations and input param­
eters within the numerical model to calculate displacement measurement error. 

tation signal X (t) , tip-sample interaction parameters (E* , H, R , d) and separation 

distance D(t). 

Numerical simulations are performed within the MATLAB environment using a 

fourth-order Runge-Kutta method. At each time step t = tk , base-relative tip de­

flection w(l , t) is summed with separation distance D(t) , determining the separation 

distance z (t) between the probe tip and the sample surface. The DMT force model , 

(2.43- 2.44) , translates this separation distance into a point force ft s, applied within 

the equations of motion. 

2.4.1 Simulated Calibration 

Although the response of the probe w(x , t) is calculated within the dynamic model , 

real AFM systems lack the ability to directly measure deflection. Recalling Figure 1.1 , 
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the optical lever method calculates tip displacement by measuring a voltage difference 

signal influenced by the slope of the probe at spot position Xpo Calibration determines 

the relationship used to calculate tip displacement from this difference signal. 

In practice, static calibration is performed by plotting voltage difference signal 

versus vertical piezo height D(t) while the probe is in contact with a sample surface. 

Selection of a sample possessing high effective stiffness relative to the cantilever en­

sures that the vertical piezo height is approximately equal to the tip deflection. A 

linear curve fit to this data provides the difference signal-deflection relationship used 

to calculate subsequent measurements. 

Since the first mode shape effectively describes the deformation profile produced 

under the least amount of applied energy, the quasi-static applied tip force applied 

during calibration leads to the exact same profile. So, the first mode shape and its 

spatial derivative calculated in Section 2.1.3 provide all information necessary for 

calibration. The slope-displacement calibration constant Csd is calculated at spot 

position Xp based on Eqn. 2.45. 

(2.45) 

Displacement is then calculated within the model as follows, 

(2.46) 

Two assumptions are made within this optical lever method calibration model. 

First, the relationship between the slope of the cantilever and the photodetector 

voltage signal is assumed to be linear. This approximation is made for simplicity and 

is valid when operating within the linear range of the calibration curve. The focus of 

this work is on cantilever dynamics which affects the slope-displacement relationship, 

not the slope-difference signal relationship. A more detailed study of the nonlinearity 
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of the calibration curve when operating within full detection limits is presented by 

Xie et ai. [23J. 

The laser spot size on the probe is also assumed to be infinitesimally small, de­

riving displacement from the slope value a single discrete point. The validity of this 

simplification was tested by comparing difference signals using single-point and fi­

nite spot sizes calculated with the relationship presented by Schaffer and Fuchs [21J. 

The difference signal was effectively identical for spot sizes up to 25% of the probe 

width when compared with the single-point measurement, so long as the whole spot 

remained positioned along the probe surface confined within the outer boundaries. 

2.4.2 Signal Processing 

Separation distance feedback control requires real-time amplitude monitoring of the 

calculated tip response. In general, the nonlinear tip-sample forces produce an ahar­

monic response signal, including strong influence from in the frequency band of the 

primary excitation component as well as varying additional harmonics. A Fourier 

transform is implemented to extract the amplitude of the response component at the 

frequency of the primary excitation. Equation (2.47) describes the governing equation 

from Fourier theory used to derive the amplitude, adapted from reference [33J. 

(2.47) 

where trapezoidal integration is implemented to approximate the continuous integral 

in numerical simulations. 



Chapter 3 

Parametric Analysis for Free 

Response Conditions 

Before studying the behavior under nonlinear interactions with the sample material, 

a free response case in the absence of surface forces is first considered to examine 

how spot position, tip mass and quality factor affect optical lever measurements 

as the spatial response of the probe changes during off resonance excitation. For 

these simulations, tip-sample force Its is set to zero and the steady state behavior 

is studied at different excitation frequencies. The off-resonance excitation introduces 

predictable changes to the response profile to allow comparison between the influence 

of spot position, tip mass and quality factor on the slope-displacement relationship. 

Response amplitude Aca1c calculated from measured response wc(Xp , t), Eqns. (2.46) 

and (2.47), is compared with tip response amplitude A tip calculated from the true 

response w(l, t) to determine how accurately the optical lever method is measuring 

tip amplitude. Displacement measurement error c is then defined as, 

c (%) = Acal~ - A tip x 100. 
tip 
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(3.1) 
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Figure 3.1: Measurement error versus normalized excitation frequency. Curves cor­
respond to results obtained at different spot positions. 

3.1 Varying Spot Position 

Before intermittent contact is studied in the following chapter, it is important to 

understand how laser spot position Xp can influence calculated displacement using 

the optical lever method. Figure 3.1 illustrates measurement error between 0.8 and 

2.5 times the fundamental frequency, corresponding to 56 - 175 kHz based on the 

dimensional parameters of the probe. The upper limit was chosen to represent the 

particular frequency where period-doubling behavior has been observed in the work 

of Dick et al. and Dick and Huang [10 , 11]. Curves are shown for six discrete laser 

spot positions from probe midpoint (Xp = 0.5) to free end (Xp = 1.0). For this initial 

case, the effect of the tip mass has been removed by setting mass ratio r equal to zero. 

Quality factor is fixed at Q = 50 to represent reasonable conditions for operation in 

air. 
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For excitation at the fundamental frequency WI, displacement calculations match 

exactly for all spot positions. This is exactly as expected, since the response at 

the fundamental frequency matches the first mode shape, the exact profile of the 

calibration relationship. For excitation at 2.5 x WI, displacement errors range from 

c = -2% measured at Xp = 0.5 to c = +18% measured at Xp = 1.0 when compared 

with the actual amplitude. Measurements obtained at Xp = 0.52, accented with circle 

markers (0), are determined to accurately predict displacement amplitudes within the 

frequency range of interest. At this nominal spot position, the slope-displacement 

relationship has been preserved within the frequency range of interest. 

Utilization of this particular spot location where c ~ 0 could have implications in 

non-contact AFM or research applications with relatively weak surface interactions 

where accurate measurement of the tip displacement is necessary. It is of interest to 

study this point when additional nonlinear forces influence the response behavior to 

observe whether displacement measurement accuracy is preserved. 

3.2 Varying Tip Mass 

Mass of the probe tip can vary between commercially available probes based on its 

unique shape, size and density. The additional mass concentrated on the end of 

the probe changes the probe's fundamental frequency and response characteristics. 

Figure 3.2 illustrates the influence of mass ratio on displacement calculations under 

off resonance excitation. Each curve represents a discrete mass ratio from 'Y = 0 to 

0.05. Laser spot measurement position is fixed at the free end of the probe, Xp = 1, 

and the quality factor remains at Q = 50. The solid curve represents the same 

set of parameters and is identical to the solid curve in Fig. 3.1. Again, all curves 

exhibit perfect displacement calulation at the fundamental frequency, when operation 

conditions match calibration conditions. As excitation levels increase toward 2.5 x WI, 
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Figure 3.2: Measurement error versus normalized excitation frequency. Curves cor­
respond to results obtained at different tip mass ratios . 

response profiles exhibit more drastic change for higher tip mass ratios, leading to 

larger discrepancies between calculated and actual amplitudes. 

These results should be taken into consideration during both equipment selection 

and operation. For off-resonance applications where accurate displacement measure-

ment is a concern, the probe with the lowest tip mass among those fit to the particular 

application should be chosen. In applications where a significant amount of mate-

rial is being added to the tip through contaminants from the surface or intentional 

bonding, the researcher should expect a corresponding increase in measurement error 

according to the trend in Fig. 3.2. 

N ow that the relationship between calculated and actual displacement has been 

quantified for different Xp and f ' it is helpful to directly examine the profile changes 

responsible for this behavior. Response profiles and their corresponding slopes are 
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Figure 3.3: Displacement and slope response profiles for W ex = WI, r = 0 (SOLID), 
W ex = 2.5 X WI, r = 0 (DASHED) and W ex = 2.5 X WI, r = 0.03 (DASH-DOT). 

compared in Fig. 3.3. Three instances from the results above are illustrated: (1) 

W ex = WI, no tip mass, representing the probe's first mode profile from which the 

static calibration curve is obtained; (2) W ex = 2.5 X WI, no tip mass , representing 

the excitation condition within this study which produces the largest variation of the 

probe from the fundamental frequency; and (3) Wex = 2.5 X WI, r = 0.03, including 

the effect of the mass ratio employed in subsequent intermittent contact simulations. 

Base excitation amplitudes for each of the three cases are tuned to produce the same 

response amplitude, in this case 2 nm, for easy comparison. Transverse displacement 

from a nominal position as a function of non-dimensional position x is presented 

in Fig. 3.3(A). Response profile differences are clearly seen, but from displacement 

alone it is difficult to identify the cause of the calculated displacement discrepancies 

previously discussed. Additional consideration of the slope profile helps clarify the 

relation to the calibration conditions. 
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The spot location observed in Fig. 3.1 to maintain perfect measurement capability 

is most easily identified in Fig. 3.3(B). Slope as a function of non-dimensional posi­

tion x is presented for each condition. Non-dimensional position x = 0.52 is clearly 

identified as the point where the slope of the off-resonance condition matches the 

slope at Wex = WI. In other words, this is the non-dimensional beam position where 

the slope-displacement relationship from calibration has been preserved. 

For applications involving dynamic operation of an AFM probe with negligible 

influence from surface forces, it would be useful to identify and operate at this spot 

position. For example, in AFM-based chemical mass detection (e.g. [34]), appropriate 

spot position selection can help isolate the true response behavior as the chemical 

mass attaches to the tip. Increased response robustness to the added mass of tip 

contamination in non-contact AFM is also possible. The increased displacement 

measurement accuracy should, of course, be weighed against the potential sacrifice 

in detection sensitivity corresponding to operation much closer to the probe's base. 

This sensitivity decrease is studied in detail by Stark (2004) and Schaffer and Fuchs 

(2005) [20, 21J. 

By examining the modal contributions at off-resonance excitation (Fig. 3.4), a 

better understanding of the factors governing the location of this ideal spot position 

can be gained. Panels (A)-(C) display the modal response profiles for Wex = 2.5 X WI. 

Within these panels, the colored curves of various styles correspond to the condition 

of zero tip mass. The dotted black curves in the same panels correspond to a tip mass 

of I = 0.03. Each modal response has been normalized to a nominal amplitude to 

clearly illustrate the response profiles. Figure 3.4(D) displays first (DASHED), second 

(DASH-DOT) and third (SOLID) mode contributions and the resultant response 

profile (THICK) for Wex = 2.5 X WI. It is observed that at this off-resonance frequency 

of two-and-a-half times the fundamental frequency, the response is still dominated by 

the first mode, though significant contribution from the second mode is also present. 
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Figure 3.4: Normalized response profiles of the (A) first, (B) second, and (C) third 
modesforwex = 2.5xWI' '"'I = 0 (COLORED) and, = 0.03 (BLACK, DOTTED); (D) 
modal contributions of the first (DASHED), second (DASH-DOT) and third (SOLID) 
modes and the resultant response profile (THICK) for W ex = 2.5 X WI, , = o. 
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The third mode exhibits negligible influence in this case. 

In Fig. 3.4(B), the anti-node of the second mode response has been identified for 

zero tip mass (SOLID VERTICAL) and'Y = 0.03 (DASHED VERTICAL). At this 

location on the probe, influence from the second mode neither adds to nor subtracts 

from the slope of the first mode profile. However, the positive influence from this mode 

increases the displacement at the tip and consequently decreases the ratio between 

slope and displacement from the calibrated relationship. The ideal spot position 

therefore lies just to the right of this anti-node at the location where a sufficient 

increase to the slope has been contributed by the second mode to compensate for the 

increased tip deflection. 

3.3 Varying Quality Factor 

Quality factor varies between dynamic AFM operation in ultra high vacuum (UHV) 

and ambient conditions. Figure 3.5 illustrates the influence of the quality factor on 

displacement measurements for off-resonance conditions. Measurement discrepancy 

is displayed as the value of the quality factor is varied from Q = 1 - 10. Four curves 

are shown, each representing excitation frequencies from 1.0 to 2.5 x wex . The mass 

ratio is set at 'Y = 0, corresponding to zero tip mass. 

In the range between Q = 2 - 10, the change in quality factor creates only about 

2% change in measurement error at Wex = 2.5 X WI and has even less effect on all other 

off-resonance frequencies. The only significant change in measurement error appears 

between Q = 1- 2, corresponding to extremely high levels of damping. Measurement 

error remains constant as quality factor is increased above Q = 10 (not shown). 

Quality factor for AFM operation in both air and UHV falls well above Q = 10 where 

the response is not sensitive to variations in the quality factor. These results instill 

confidence that an approximate quality factor of Q = 50 can be used without the 
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Figure 3.5: Measurement error versus quality factor at nominal excitation frequencies 
W ex/WI = 1.0 (x), Wex/WI = 1.5 (0), W ex/WI = 2.0 (+) and Wex/WI = 2.5 (*). 

results of the simulation being specific to that parameter choice. 

3.4 Combined Influence of Parameters 

In order to provide more insight into the coupled influence of mass ratio, spot position 

and damping on displacement measurements , simulations are conducted for each of 

the three possible pairs of parameters X p , rand Q between the limits defined in 

Sections 3.1- 3.3 for each parameter. All simulations are conducted at the highest 

excitation frequency considered within this study, 2.5 x WI, to observe the largest 

error magnitudes. 

Figure 3.6 displays a contour plot of measured displacement error versus mass 

ratio and spot position. Each hue represents a error percentage, illustrated by the 

corresponding color bar. Mass ratio and laser spot position are varied from r = 0 -
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0.10 and Xp = 0.5-1, respectively. The white band appearing between Xp = 0.5-0.6 

represents the closest correlation between calculated and actual displacement. The 

dashed curve in the center of the band identifies the nominal position along the probe 

where the slope-displacement relationship from calibration is maintained at the off­

resonance condition for each mass ratio. It is observed that the exact location of 

this particular spot position varies slightly with mass ratio, due to a difference in 

off-resonance response profiles corresponding to variations in tip mass. A similar 

contour plot with excitation at the fundamental frequency would simply indicate 

perfect measurement capability for all spot positions and mass ratios, since operation 

conditions would match calibration conditions. 

Whereas measurement error appears highly sensitive to changes in tip mass when 

the laser spot position is focused at the free end of the probe, as determined in 

Section 3.2, spot positions focused near the probe midpoint exhibit a much smaller 

measurement error fluctuation (.6.E < 10%) over the same range of mass ratios. This 

suggests that a system using a laser spot measurement focused near the midpoint will 

exhibit less measurement error regardless of tip mass than the same measurements 

taken elsewhere along the probe. Using Fig. 3.6, a spot position can be selected a 

priori based on tip mass, that will accurately measure displacement for off-resonance 

excitation up to 2.5 X Wi. 

Figure 3.7 displays a contour plot of measurement error versus spot position and 

quality factor. Measurement error versus tip mass and quality factor is illustrated 

in Fig. 3.8. These two plots verify the conclusions drawn from Fig. 3.5; namely, 

for Q > 3, measurement error does not vary with quality factor. Only below Q = 3 

(much higher damping than would be experienced in air) does the measurement error 

exhibit variation with Q. Both figures confirm that the subsequent results obtained 

within this study, using a value of Q = 50, will not be unique to this particular value 

of damping. 
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Figure 3.6: Contour plot of measurement error versus mass ratio and spot position 
for excitation at 2.5 x WI. Trend line (DASHED) represents the spot position where 
c = 0 at each tip mass. Labels identify positive and negative measurement error 
regions for grayscale prints. 
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Figure 3.7: Contour plot of measurement error versus spot position and quality factor 
for W ex = 2.5 X WI , 'Y = O. Trend line (DASHED) represents the spot position where 
c = 0 at each quality factor. Labels identify positive and negative measurement error 
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Figure 3.8: Contour plot of measurement error versus tip mass and quality factor for 
W ex = 2.5 X WI , Xp = 1.0. 



Chapter 4 

Results and Analysis for 

Intermittent Contact Operation 

In this section, numerical results are presented to study the response behavior and 

corresponding measurement accuracy during intermittent contact with the sample 

surface. As described in Section 2.3, a DMT force model is chosen to define the 

tip-sample interaction forces near the sample surface. Two sets of force parameters 

are implemented, listed in Table 4.1. The corresponding materials, silicone rubber 

and glass, represent a soft and a stiff interaction surface, respectively. First, the 

force curves will be characterized and changes due to effective modulus variation will 

be illustrated. Next, measurement accuracy will be determined using a PID control 

system to measure each of the surfaces as the effective modulus is varied. Finally, 

a general study of calculated versus true response amplitude will be conducted for 

off-resonance conditions, from which measurement accuracy can be estimated. 

4.1 Interaction Force Curves 

Figures 4.1 and 4.2 illustrate the force interaction curves for the silicone rubber and 

glass surfaces, respectively, as their effective modulus E* is increased to five and 
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Table 4.1: Interaction force parameters for intermittent contact simulations 

Hamaker constant, iI (Nm) 
Radius, R (m) 
Intermolecular distance, d (m) 
Effective modulus, E* (GPa) 

Silicone Rubber Glass 

4.5 X 10-20 

10 X 10-9 

0.165 X 10-9 

4.50 X 10-3 

6.6 X 10-20 

10 X 10-9 

0.170 X 10-9 

4.50 X 10-3 
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ten times its original value. In each, the solid line represents the effective stiffness 

corresponding to the original material. Note the wide variation in scales between 

the two plots. The change in effective modulus induces drastic changes over a short 

distance for the hard glass sample, increasing interaction forces from around 10 nN 

to 100 nN at a penetration of only a tenth of a nanometer into the sample. The 

most prominent change observed in the silicone rubber sample is a shift in the force 

threshold, the distance between the initial force interaction most distant from the 

surface and the zero-force crossing of the force (identified as the surface boundary). 

The movement of this force threshold is identified with an arrow in Fig. 4.1. 

4.2 Measurement Accuracy at the Fundamental 

Frequency Using PID Control 

4.2.1 Controller Description 

Feedback control is an essential part of nearly all AFM operation modes. In AM­

AFM, a proportional-integral-derivative (PID) controller is implemented to maintain 

a constant response amplitude by adjusting base separation distance D(t). Equation 

(4.1) describes the control equation, adapted from Eaton and West [7]. 
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35 

Figure 4.1: Tip-sample interaction force curve for Si probe on silicone rubber , curves 
plotted for effective modulus values of 1 (SOLID), 5 (DASHED) and 10 (DASH-DOT) 
times the nominal value. 

( ) ( ) J ( ) dAerr ( t ) 
D t = C p x Aerr t + C J X Aerr t dt + CD x dt (4.1 ) 

Distance adjustments are implemented with the controller at t ime step t = tk 

once every period of oscillation (k = T , 2T, . .. ). Constants Cp , CJ and CD are the 

proportional, integral and derivative control parameters , respectively. The derivative 

control parameter is set to zero, but the controller will still be referred to by its full 

title, "PID", following common convention for AFM. The two remaining parameters 

are tuned to produce desired tracking according to recommendations by Eaton and 

West (2010). A detailed discussion of the implementation of the controller is discussed 

in the following section. 
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Figure 4.2: Tip-sample interaction force curve for Si probe on glass, curves plotted 
for effective modulus values of 1 (SOLID), 5 (DASHED) and 10 (DASH-DOT) times 
the nominal value. 

4.2.2 Controller Implementation 

Figure 4.3 illustrates how feedback control is implemented within the numerical model 

to simulate AM-AFM operation. New elements and parameters not implemented in 

the original numerical model (Fig. 2.2) are shaded. Whereas separation distance D(t) 

was explicitly defined as a system input in the previous model, D(t) is now calculated 

within the PID controller from the difference between the calculated amplitude A calc 

and a user-defined set point amplitude Aset according to Eqn. (4.1). Tip-sample 

separation distance z(t) is also influenced by an additional system input, surface 

profile S, expressed as a function of position coordinates Xs and Ys in the horizontal 

plane of the sample. This input is included to simulate changing topography and is 

used primarily to tune the control parameters by monitoring the probe's response to 

a stepped surface. 
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Figure 4.3: Flowchart depicting the interaction between equations and input param­
eters within the numerical model for feedback control simulations. 

Tapping-mode AFM operation at the fundamental frequency will be considered 

first. Consistent with standard AM-AFM operation, a PID controller is implemented 

to adjust the vertical separation distance D based on observation of the difference be-

tween the set point amplitude and the response amplitude measured with the optical 

lever method. In order to begin the surface scan, lateral motion is kept stationary and 

the controller is activated. With the probe starting from a steady state oscillation 

at 20 nm above the influence of surface forces, the controller brings the probe into 

intermittent contact with the surface, adjusting the separation distance until the set 

point amplitude Aset is reached. The measured separation distance at this starting 

point is stored as the reference separation distance Dr ej , and all height measurements 

during the scan are expressed in reference to this point. 

If the surface topography changes, a corresponding change in response amplitude 

occurs , at which point the feedback controller adjusts the separation distance to 

maintain a response amplitude equal to the set point. Under ideal conditions, the 
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separation distance history provides a perfect representation of the vertical profile 

of the surface feature. An image of the surface is created by mapping separation 

distance D versus the lateral (xs, Ys) surface position. 

As the results from Chapter 3 demonstrate, the calculated displacement using the 

optical lever method can be higher or lower than the actual response amplitude de­

pending on how close the response profile matches the fundamental mode shape. In 

tapping-mode AFM, if the optical lever method is accurately calculating the true dis­

placement when the reference distance Drej is set, and the displacement calculations 

remain accurate throughout the scan, clearly the vertical measurement accuracy will 

be ideal. In the same manner, if the response amplitude calculated with the optical 

lever method differs from the true response amplitude due to higher mode response 

from the surface interactions but the difference between calculated and true ampli­

tudes is consistent throughout the scan, the vertical measurement accuracy will also 

be ideal. If, however, the calculated response amplitude is within a certain degree of 

the true response value at the beginning of the scan and the response profile changes 

during the scan, the relationship between calculated response amplitude and true 

response amplitude will also change, and the vertical measurement accuracy will be 

affected. 

Effective modulus variations possess the greatest potential to change the response 

profile during the scan and therefore are the focus of this chapter. The simulated AM­

AFM scanning method described above is implemented to image an atomically flat 

surface as the effective modulus changes from the nominal value (corresponding to the 

original E* value for each material from Table 4.1) to ten times the nominal value. An 

atomically flat surface is chosen to avoid any influence from transient behavior while 

scanning varying topography. Hereafter, when referring to the effective modulus in a 

simulation as E;lass or E;ubber, it is implied that the corresponding parameters iI, R 
and d from Table 4.1 are also implemented. 
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Effective modulus changes during operation can be due, for example, to localized 

material properties or tip wear. Biological specimens exhibit a range of modulus 

values depending on their composition, from soft membranes to hard protein sur­

faces [35]. Lin, Dimitriadis and Horkay (2007) observed effective modulus fluctuations 

up to 2000 percent during indentation tests of tissue-engineered cartilage [36]. Tip 

wear is an inevitable reality in AFM (see, e.g. [37,38]), leading to increased effective 

stiffness from the larger interaction area, in addition to the loss of lateral resolution. 

4.2.3 Controlled AM-AFM Results 

Figures 4.4 and 4.5 display vertical measurement error for the glass and silicone rubber 

surface, respectively. Since the actual surface is flat (S(xs, Ys) = 0), the measurement 

error is simply the vertical profile measured during the scan relative to the reference 

distance D ref . For each case, the width of the imaged area is defined as 50 nm and the 

lateral scanning speed is held constant at 2500 nm/ s. The influence of scanning speed 

was observed during a number of model verification simulations and was determined 

to not significantly influence the results. 

Measurement error from six separate scans are plotted in Fig. 4.4. The feedback 

within each scan is controlled by measurements at different spot positions, ranging 

from the midpoint of the probe, Xp = 0.5 to the free end of the probe, Xp = 1.0. Base 

excitation magnitude is tuned to produce a free response amplitude of 20 nm and the 

set point amplitude is fixed at 18 nm, 90% of the free response, modeling common 

conditions [7]. Although the effective modulus is steadily increased throughout the 

scan to a final value 10 times greater, results from scans utilizing each spot position 

accurately measured the flat surface within 1 nm. Local fluctuations observed in 

the measurement profile of each are likely due to the control system over- or under­

correcting on the subnanometer scale. 

Figure 4.5 illustrates measurement error for scans utilizing six different spot posi-
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Figure 4.4: Vertical measurement error during a simulated tapping-mode scan of a 
50 nm flat glass surface. Curves represent simulations conducted utilizing different 
spot positions Xp = 0.5 - 1.0. 

tions on a flat silicone rubber surface as the effective modulus is increased by 10 times 

its nominal value. Curves from all six scans overlay one another, indicating that the 

exact same response is observed at each of t he spot positions, causing the controller to 

respond the same in each scan and produce identical error curves. Plotted alongside 

the curves are markers (x) representing the shift of the force threshold value (see 

Fig. 4.1 ). It is observed that the measured error and the force threshold shift follow 

one another closely as the effective modulus is increased. It is therefore concluded 

that this measurement error is due to the relocation of the threshold at which the 

attractive force first acts within the model, and not to a change in response profile. A 

change of coordinates within the force model-defining the zero surface of the sample 

as the threshold of the attractive regim instead calculates sub-nanometer vertical 
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Figure 4.5: Vertical measurement error during a simulated tapping-mode scan of a 
50 nm fiat silicone rubber surface. Curves represent simulations conducted utilizing 
different spot positions Xp = 0.5 -1.0 (SOLID) ; markers (x) represent the movement 
of the force threshold value. 

measurement error for the same simulation. 

This conclusion is supported by the perfect correlation between the results at each 

spot position. A response profile change would be identified by divergence of one or 

more of the curves, likely all six, signifying that the spatial relationship between the 

points had changed. It is not overlooked that the force curve for the glass sample 

exhibits the same threshold movement with increasing stiffness, but it is noted that 

the total movement is less than one tenth of a nanometer for a 10 x increase in stiffness 

and is determined to be negligible. 

From the controlled tapping mode simulations, it is concluded that the response 

behavior for intermittent contact at the fundamental frequency is consistent through 
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effective modulus changes in both soft and hard samples, introducing error on the 

order of less than one nanometer and further confirming its robustness as a powerful 

imaging tool. Furthermore, the choice of spot position under these conditions does 

not significantly influence the vertical measurement accuracy, although other impli­

cations (e.g. detection sensitivity) regarding choice of spot position are certainly not 

refuted. In order to account for possible variations based on response amplitude or 

set point, additional simulations were conducted, implementing free response ampli­

tudes between 5 - 100 nm and set points between 50% - 90% of the free response 

amplitudes. All additional simulations support the original conclusions. 

4.3 Off-Resonance Tapping-Mode Response and 

Accuracy 

In order to extend the study to include off-resonance excitation while maintaining the 

most broad scope of applicability in research, the PID control system is abandoned in 

subsequent simulations and replaced with a separation distance sweep. As discussed 

in Section 1.2, current applications of off-resonance excitation are diverse, so it is 

desired to present the following results in a general sense from which measurement 

accuracy can be inferred depending on application. First, the measured response 

at various spot positions will be compared with the actual response amplitude at a 

range of separation distances for the glass and the silicone rubber sample. Next, a 

method will be described to estimate vertical measurement error from these response 

amplitude plots. Finally, displacement measurement error and the existance of the 

"ideal" spot position will be examined for intermittent contact conditions. 
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4.3.1 Response Amplitude Versus Separation Distance on 

Glass Sample 

Figures 4.6-4.9 illustrate the measured response as a function of spot position and 

separation distance as the probe is brought into intermittent contact with a glass 

surface at an excitation frequency of Wex = 1 x, 1.5x, 2x, and 2.5 x WI. In all 

simulations, the magnitude of base excitation is tuned to produce a 20 nm response 

amplitude. Steady-state conditions are achieved at a separation distance of 25 nm, 

an initial separation sufficiently far from the attractive regime. Then, the response is 

observed as separation distance is decreased at a constant rate. A decrease of 0.1 nm 

per period of oscillation was determined to minimize the effect of transient oscillations. 

The entire response profile is recorded throughout each simulation, and through post­

processing the response amplitudes at the range of spot positions between Xp -

0.5 - 1.0 are calculated using the same procedure as the controlled simulations. 

Four panels are presented within each figure. Panels (A) and (B) correspond to 

a simulation at original force parameters of the glass sample. A separate simulation 

at 10 times the effective modulus for the glass sample is illustrated in (C) and (D). 

Panels (A) and (C) display the time response signal of the tip over the entire simula­

tion (DOTTED) and the response amplitude calculated from the actual tip response 

and Eqn. (2.47) (THICK). Panels (B) and (D) are contour plots which use shading to 

represent calculated response amplitude versus spot position and separation distance. 

Shading is applied such that a white hue represents the original free response ampli­

tude of 20 nm, red represents values greater and blue, values below. The shading 

convention is not meant to directly infer accurate measurement, it is only chosen as 

a reference. Estimating measurement accuracy from the figures will be discussed in 

more detail after they are presented. Note that axes and colorbar scaling are adjusted 

in each case to account for both large and small response amplitudes. 

Figure 4.6, operating at the fundamental frequency, exhibits consistent response 
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Figure 4.6: (A) Time response (DOTTED) and corresponding amplitude (THICK) 
and (B) calculat ed tip amplitude (SHADED) versus spot position and separation 
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profile throughout. Consistent response profile is when the calculated response am­

plitudes maintain the same distribution for all separation distances over the range 

of investigation. In this case, the calculated amplitudes are independent of choice 

of Xp at each separation distance, indicating that the response is dominated by the 

fundamental mode shape despite significant interactions with the surface that reduce 

its amplitude by over 60% at E* = E;las8 and double its amplitude in the increased 

stiffness case of E* = 10 x E;lass' Only a slight deviation from this trend is observed 

for spot positions near the midpoint and separation distances below 16 nm, resulting 

in slightly higher calculated amplitude than the corresponding measurements near 

the tip, around 1 nm. 

In Fig. 4.7, actual response amplitude is constant near the free response amplitude 

of 20 nm in both cases until an abrupt transition into a high amplitude oscillation 

regime, an expected response for a stiff sample. Measured amplitudes from the re­

sponse at D < 11 nm are on the order of 100 nm. Rather than redefine the color 

scheme to include these amplitudes, values above 40 nm have been shaded black to 

maintain easy comparison between each of the figures. A slight spatial dependence 

in the calculated measurement amplitude is now observed for free response condi­

tions, due to the off-resonance excitation only, maintaining the same profile until the 

transition into the high amplitude response. 

Figures 4.8 and 4.9 demonstrate similar behavior. Measured amplitude varies 

based on spot position for the free response condition (highest separation distance), its 

relation relative to the actual amplitude matching the displacement calculation error 

trend in Fig. 3.6 for, = 0.03. The response profile remains consistent, indicated by 

the parallel horizontal shading, until a sharp transition to a high amplitude response 

around 8 nm. 

To better characterize the response behavior and transitions observed in Figs. 

4.6-4.9, a number of supplementary plots are displayed. Two representative cases 
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from the previous simulations are presented: Fig. 4.10 for excitation at 1.5 x WI, and 

Fig. 4.11 at 2.5 x WI, E* = E;lass' Within each figure, panels (A) and (B) display the 

frequency spectra of the response before significant influence of the interaction forces 

and during intermittent contact with the sample surface, respectively. Frequency 

content is presented using a log scale to observe both large and small components. 

Panel (C) illustrates the Poincare section of the response as the separation distance 

is decreased, and panels (D) and (E) show the phase portrait of the response at the 

respective separation distances from (A) and (B). 

Prior to surface interaction in the first case, 1.5 x WI, a strong frequency compo­

nent corresponding to the excitation frequency is observed from the spectra in Fig. 

4.10(A) in addition to a component five orders of magnitude smaller observed at the 

probe's fundamental frequency-an artifact of transient vibrations. The phase por­

trait in panel (D) confirms that this initial response is essentially simple harmonic. 

Upon contact with the surface, a superharmonic component at twice the excitation 

frequency becomes significant and is accompanied by smaller broadband frequency 

content. The response transition to the high amplitude regime is clearly observed 

in both panels (C) and (E), but the irregular response behavior and large jump in 

response amplitude below D = 11 nm make it unlikely that these conditions would 

be utilized in experimental applications. Therefore, for this excitation condition the 

focus is placed on the response prior to the transition. 

As expected, similar qualitative behavior is observed prior to interaction with the 

surface in Fig. 4.11, Wex = 2.5 X WI. In this case, however, the response transition 

as the separation distance decreases appears more abrupt. Significant contribution 

from the subharmonic at half the excitation frequency is observed in both the phase 

portrait and the frequency spectrum, effectively doubling the period of the response. 

The qualitative behavior of the response transition at D = 8 nm suggests the presence 

of a Secondary Hopf bifurcation, which has been observed in previous work under 
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Figure 4.10: Frequency response spectra for (A) D = 25 - 26 nm and (B) D = 
9.8 -10 nm, (C) Poincare section of t ip response versus separation distance and phase 
portraits of tip response for (D) 25 - 26 nm and (E) 9.8 - 10 nm; W ex = 1.5 X WI, 

A fr ee = 20 nm, and E* = E;lass· 

these conditions. If the separation distance was decreased in incremental steps and 

the transient behavior allowed to completely decay, a much sharper transition would 

be expected in the Poincare section. This bifurcation could have potential utility in 

future experimental work in a similar manner as the period doubling bifurcation in 

Ref. [11], for example. The results presented within this thesis would therefore be 

useful to estimate the measurement accuracy during operation at these conditions. A 

method for estimating the measurement accuracy using standard or- in this case-

novel feedback control is presented in Section 4.3.3. 



(j:~: I:;:J : 
o 50 100 150 200 250 300 

(8) 106 Frequency (kHz) 

1104~ 
g> 102 

~ 
100~--~--~--~~--~--~--~ 

o 50 100 150 200 250 300 
Frequency (kHz) 

(C) 80 .--------,-----,-------,-----,---- --, 

15 20 25 30 
D (nm) 

60 

(D) X 10
7 

2 

en 
E 
-S 
~ 

0 .(3 
0 

Q5 
> 
~ -1 

-2 

-20 -10 0 10 20 
Tip Position (nm) 

7 

(E) 4
x1O 

en 2 
E 
-S 
~ 

0 .(3 
0 

Q5 
> 
a. 
i= -2 

-=-~O 0 20 40 60 
Tip Position (nm) 

Figure 4.11: Frequency response spectra for (A) D = 25 - 26 nm and (B) D = 
5 -7.5 nm, (C) Poincare section of tip response versus separation distance and phase 
portraits of tip response for (D) 25 - 26 nm and (E) 5 - 7.5 nm; Wex = 2.5 X WI, 

A jTee = 20 nm, and E * = E;zass. 



61 

4.3.2 Response Amplitude Versus Separation Distance on 

Silicone Rubber Sample 

Figures 4.12-4.15 illustrate the same simulations performed on the rubber sample. 

Again, free response amplitude is tuned to 20 nm. An initial separation distance 

of 58 nm is chosen such that the probe is initially no closer than 10 nm to the 

force threshold at D = 27.6 nm in the cases where E* = E;ubber' For the first 

case at the fundamental frequency, Fig. 4.12 (A) and (B), the response amplitude 

decreases as the probe enters the attractive regime, then increases as it continues 

into the repulsive regime. Calculated response is again independent of spot position, 

indicating a consistently strong first mode response component for all separation 

distances. Panels (C) and (D) exhibit similar behavior, though scaled into a smaller 

range of separation distance values, reflecting the manner in which the interaction 

force profile changes with effective modulus (Fig. 4.1). 

Figures 4.13-4.15, corresponding to off-resonance excitation cases Wex = 1.5 x, 

2.0x, and 2.5 x WI, exhibit the same trend that the response profile is not significantly 

affected by the interaction forces. The behavior most prominently observed between 

D = 17 and 37 nm in Fig. 4.13 is due to the true response amplitude increase when 

significant contribution from the interaction forces are experienced. The influence 

of the surface forces on the probe response is severely diminished for both effective 

modulus values at Wex = 2.0x and 2.5 x WI due to the higher kinetic energy of the 

probe during the interactions. 

Similar to the response quantities plotted in Figs. 4.10 and 4.11 for the glass 

sample, Fig. 4.16 illustrates the changes to the response behavior for intermittent 

contact with the rubber sample at 2.5 x WI, E* = E;ubber' Again, a strong spectral 

component is observed at the excitation frequency and a small component observed 

at the probe's fundamental frequency for response away from the surface interaction. 

Upon interaction with the sample surface, the response appears to remain essen-
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tially simple harmonic, with the only significant frequency component matching the 

excitation. The Poincare section displays a small but smooth dip in the response 

amplitude centered around D = 20 nm. Examining each of the panels, it is clear that 

the period doubling bifurcation has not been encountered for these conditions, likely 

requiring larger compression of the sample. However, these results are important to 

characterize the measurement accuracy under similar conditions immediately prior to 

bifurcation. 

4.3.3 Estimation of Vertical Measurement Error from 

Response Amplitude Plots 

By comparing panels (B) and (D) in each figure, it is possible to estimate the vertical 

measurement error for certain applications. The data is presented in this manner to 

give the most useful information to conduct measurement accuracy estimations given 

a particular application. As an example, Fig. 4.17 illustrates this process as applied 

to Fig. 4.12 to estimate the vertical measurement accuracy for the same conditions 

as the PID control implementation in Section 4.2.3. 

Recall that the controller operates by adjusting the separation distance until the 

set point amplitude is achieved. So, to estimate vertical measurement accuracy during 

this lOx effective modulus increase for a set point of 90%, first the separation distance 

is located on the left panel of Fig. 4.17 where the 18 nm response amplitude is 

observed at a spot position of, say, Xp = 0.9. In this case, the calculated amplitude is 

independent of spot position; so D = 42 nm for all Xp. Note that an 18 nm response 

amplitude is also observed at D = 22 nm (marked with an x), but in practice the 

probe would initially approach from a higher separation distance and first reach its 

set point at D = 42 nm. 

Next, calculate the location that the probe will have moved to after the effective 

modulus change, i.e. locate D in the right panel of Fig. 4.17 corresponding to 
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Figure 4.17: Estimation of vertical measurement error using amplitude contour plots. 

Xp = 0.9 , A = 18 nm; in this case D = 20 nm. The estimated vertical measurement 

error due to the effective modulus change is therefore the amount the controller 

has moved, or 22 nm, an estimation which agrees with the results from the actual 

controlled simulation illustrated in Fig. 4.5. 

It is concluded from Figs. 4.6- 4.15 that, although the nonlinear surface forces 

certainly influence both the response amplitude and characteristics, the excitation 

frequency has a much higher influence on the response profile than the nonlinear tip 

sample interaction forces. Effective modulus increases of up to 10 times have been 

demonstrated to affect the true response amplitude and in the case of the silicone 

rubber, significantly decrease the range of interaction according to the movement 

of the force threshold (see Fig. 4.5), but the response generally maintains the pro-

file determined by the excitation frequency. Therefore the only significant vertical 

measurement error corresponds to the movement of the force threshold. This is con-

sidered a result of the chosen form of Eqn. (2.43), where the surface boundary is 

defined as the location between the attractive and repulsive regimes where zero force 

is experienced. Utilizing a coordinate system where the surface is defined by the outer 



boundary of the attractive regime would eliminate this error. 

4.3.4 Displacement Measurement Error for Intermittent 

Contact Operation 
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As a final example to complete the scope of the measurement accuracy study for off­

resonance excitation in tapping-mode AFM, the results from Figs. 4.6 and 4.13 are 

presented in another manner which may provide useful in to alternate applications 

and general research at off-resonance conditions. The contour plots in Figs. 4.18 

and 4.19 illustrate the percent difference between calculated and actual tip response 

amplitude versus spot position and separation distance, with top and bottom contour 

plots again representing E* = E;ubber and 10 x E;ubber. Actual response amplitude 

corresponding to each case is included for reference in panels (A) and (C). 

Whereas the presentation of Figs. 4.6 and 4.15 are tailored to more easily compare 

measurement accuracy for scanning modes, Figs. 4.18 and 4.19 provide an evalua­

tion of how accurately the calculated response amplitude matches the true response 

amplitude, using the same calculation method as in Chapter 3. Again, this measure­

ment is not directly correlated to accuracy in common scanning modes, but is rather 

considered most useful for research applications at off-resonance excitation where an 

accurate knowledge of tip displacement is of primary importance. 

By examining Fig. 4.18 (B) and (D), it is observed that spot positions located near 

the tip exhibit a 5 - 6% overestimation of the response amplitude during the range 

of separation where the amplitude is changing with D. However, the spot position 

just above Xp = 0.5 maintains accurate response amplitude calculations within 0.5% 

of the actual value throughout the range of separation distances. 

Figure 4.19 provides an even more drastic example. In both panels (B) and 

(D) a laser spot positioned between Xp = 0.5 and 0.6 is still able to accurately 

calculate the response amplitude after the response abruptly transitions to the high 
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amplitude regime. In fact, the same behavior is observed when plotting each of the 

responses from 4.6-4.15 in this manner. As illustrated in Fig. 3.3, a spot position 

near Xp = 0.52 exhibits the same relationship between slope and displacement at this 

off-resonance frequency as at the fundamental response frequency, corresponding to 

calibration conditions. The robustness of the spot position between Xp = 0.5 and 

0.6 to maintain accurate displacement prediction has been demonstrated in this work 

using both hard and soft samples. 
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Figure 4.18: (A) True response amplitude and (B) displacement measurement error c 
(SHADED) versus spot position and separation distance for W ex = 1.5 X WI , A f ree = 
20 nm, and E* = E;ubber; (C) and (D) provide similar illustrations for E * = 10 x 

E;ubber · 
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Chapter 5 

Conclusions 

5.1 Concluding Remarks 

Optical lever measurement accuracy was studied for a dynamic AFM system for res­

onant and off-resonance excitation for a range of different system parameter values. 

The most pronounced contribution of this work is the identification of a spot position 

range Xp = 0.5 to 0.6 within which the measurement error is zero under free re­

sponse conditions and minimal during intermittent contact. Measurement error was 

determined to decrease for smaller values of tip mass for off-resonance conditions. 

Less than 1 nm error was observed for simulated AM-AFM scans at the fundamen­

tal frequency as the effective modulus was increased to 10 times its original value, 

confirming the accuracy of the optical lever method in this application. 

Equations of motion were derived from the Euler-Bernoulli beam equation with 

additional terms accounting for tip mass, base excitation and nonlinear surface forces. 

A numerical model was developed from the equations of motion to study the response 

of the probe for different values of the excitation frequency, spot position, tip mass, 

quality factor, separation distance and surface force parameters. 

Measurement accuracy was quantified in two ways. In the first method, displace-

73 
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ment measurement error f was defined to represent the percent difference between 

the tip displacement calculated from the photodetector voltage signal and calibration 

equation and the actual tip displacement directly observed from the probe's response. 

This error measure provides a more general evaluation of how well the optical lever 

measurement captures the response, and is most applicable in research applications 

where accurate knowledge of the response amplitude is important. 

The second error metric f z provides an application-specific measurement of the 

vertical error during AM-AFM scanning, a direct cause of image distortion. In order 

to calculate this measurement, feedback control was implemented within the numeri­

cal model to simulate actual AM-AFM operation. Scans of an atomically flat surface 

with linearly increasing effective modulus were simulated and the z-movement of the 

base from the reference distance was identified as the error f z. 

Simulations were conducted for free response conditions and intermittent contact 

with a sample surface. Displacement measurement error was determined to be in­

dependent of quality factor for Q > 10. This suggests that the results from the 

numerical model were not only specific to the particular quality factor used. Zero 

measurement error was confirmed at the fundamental frequency regardless of tip 

mass and spot position, verifying the value of the optical lever method in traditional 

AFM applications. 

Larger tip mass values were determined to produce greater displacement measure­

ment error for off-resonance conditions. Added tip mass from surface contaminants 

or matter intentionally bonded to the probe decrease the measurement accuracy at 

these higher frequencies. Researchers should consider lower tip mass probes for off­

resonance applications when possible to produce the most accurate measurements. 

The robustness of the optical lever system to variations in effective modulus of 

the sample surface during AM-AFM operation was verified for operation at the fun­

damental frequency. Vertical measurement error fz was determined for scans on a 
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soft silicone rubber material and a hard glass sample. In each case, effective modulus 

was increased linearly during the scan to ten times its original value. Subnanometer 

vertical measurement error was observed for all scans on the glass sample. Vertical 

measurement error for the rubber material directly correlated to the movement of 

the attractive interaction force threshold, and therefore the system can be consid­

ered to have accurately tracked the movement of the effective surface. In both cases, 

the results show that the higher mode contributions from the increased interaction 

forces from higher effective modulus values did not produce significant response pro­

file changes. It can be concluded that the optical lever method can be used with 

confidence to provide high accuracy measurements in AM-AFM at the fundamental 

frequency. 

Spot location was determined to have a significant effect on measurement accuracy 

due to profile changes from the additional influence of higher mode shapes during off­

resonance excitation. For each mass ratio, a spot position between Xp = 0.5 and 0.6 

was identified which produced zero measurement error during off-resonance excitation 

and free response conditions. This specific point corresponds to the location where 

the slope-displacement relationship from the first mode is preserved after modal con­

tributions from the second mode. Intermittent contact simulations with a soft silicone 

rubber material and a hard glass sample confirmed that the highest measurement ac­

curacy, near zero in most cases, was achieved at a spot position between Xp = 0.5 

and 0.6. The laser spot should be positioned within this range during off-resonance 

operation to most accurately measure probe displacement. 

5.2 Future Work 

Based on the results of this study, potential areas for future work include experimental 

verification, submerged operation and hysteretic interactions. Experimental work 
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would be helpful to confirm higher measurement accuracy at spot positions near the 

midpoint, though the challenge of capturing the actual response for comparison arises. 

It may be possible to construct an experimental setup using a multi-laser system to 

simultaneously measure and compare the response signal at multiple spot positions. 

Refinement of the numerical model to account for submerged operation in a liquid 

environment would be useful to expand the scope of this work to additional AFM 

applications, and the use of an alternate force model, such as the JKR interaction 

model, would allow the scope of the work to be extended to materials with a significant 

attractive regime, or those whose properties result in force hysteresis between the 

probe's approach and retraction. 
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