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THE THEOREM OF JORDAN ON PLANE CURVES 

The Theorem of Jordan states that a simple closed Jordan 

curve divides the plane into two regions, the interior and the 

exterior. The interior region and the exterior region are re¬ 

spectively, the bounded and the unbounded regions into which 

the plane is divided. It follows that a polygonal line or a 

Jordan curve joining an interior and an exterior point cuts the 

curve in at least one point. 

A simple Jordan curve is represented as 

x-x(t), y — y(t), 

continuous for 0 * t £ 1, where (x( t;) - x( )*+ (y( t,) - y (t)f> 0 

for 0^ and t;9tta. A simple closed Jordan curve is 

represented by 

x= x(t), y •= y(t) 

continuous for 0 - where x(o)=x(l), y(o) =y('l) but 

otherwise (x(t^) - x(%) f+ (y(t,) -y{t)f>Q for 0 and t/3tt4. 

Since most of the proofe considered depend upon the 

Theorem of Jordan for the simple polygon, a proof of that special 

case, due to H. Hahn* will be given. The proof depends upon a 

system of axioms which are eight in number. The preliminary 

theorems upon which the Theorem of Jordan depends will be quoted 

without proof. The axioms involve the point as an undefined ele¬ 

ment and an order relation as the undefined relation. The axioms 

and theorems are as fallows: 

Axiom 1. There exist(( at least two distinct points. 

Axiom 2. If the points A, B, and C lie in the order 

* H. Hahn, Uber die Anordnungsaatze der Geometrie, Monatsheft 
fur Mathematik und PHyoik, vol 19, pp. 2aa-30b. 
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U,B,C) they also lie in the order (G,B,A). 

Axiom 3. If the points A,B, and C lie in the order (A,B,c) 

they do not lie in the order (B,C,A). 

Axiom 4. If the points A, B, and C lie in the order 

(A,B,C) then the point A is not identical with the point C. 

Axiom 5. If the points A and B are distinct, there 

exists a point. C in the order (A,B,C). 

Definition, A straight line AB will consist of the 

points A and B and a|lo points X in the orders (X,A,B), (A,X,B) 

and (A,B,X). 

Definition. The segment AB will be the point set con¬ 

sisting of the points A and B and the points X in the order 

(A,X,B). A and B are the end points of the segment. The points X 

are inner points. 

Axiom 6. If the points C and D lie on the line AB, the. 

point A lies on the line CD. 

Theorem 1. Two distinct points determine only one line. 

^tu.3. Axiom 7. Given three points, the three points A, B, and 

C do not lie in the orders (A,B,C),(B,C,A), (C,A,B). 

Definition. If three points A, B, and C do not lie on a 

line they are said to form a triangle. The points A, B, and C 

are the vertices; the segments AB, BC, and CA are the sides. 

Axiom 8. If the three points A, B, and G form a triangle, 

the point D lies to the order (B,C,D), the point E in the order 

(C,E,A), then F exists in the order (A,F,B) and lies on the line 

thru D .and E. 

Theorem 8. There is no line which meets all three aides 

of a triangle in inner points. 

Theorem 3. Let n distinct points lie on a line. Then we 
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may designate them be A, ,AX,A3,U*... ,A^ao that they lie in the 

order (A, ,At,« ,An). They also lie in the order (A^A^,.... ,A, ) • 

Definition, Given two points A and B. The points X in 

the order (A,B,x) constitute the prolongation of the segment AB 

beyond B. The points X in the order (X,A,B) constitute the pro¬ 

longation of AB beyond A* 

Theorem 4, Each segment and each prolongation of a 

'segment contains infinitely many points* 

Definition. The points A, B, and C form a triangle. 

„We mean by the plane ABC the point set consisting of the points 

/ of the segments AB, BC, CA together with those points that are 

*? \ eollinear with any two points of these segments. 

^ Theorem 5. Three non-collinear points determine a 

plane. 

Theorem 6. If two points of a line belong to a plane, 

all points of the line belong to the plane. 

Theorem 7. Thru a point in the plane pass infinitely many 

distinct lines lying wholly in the plane. 

Theorem 8. Let A, B, and G form a triangle. Then each 

lies in the plane ABC. Then any line in the plane ABC which passes 

thru an inner point of the segment AB, passes thru a second point 

of the triangle ABC. 

Theorem 9. A point on a line separates the line into t¥?o 

subsets, each of which is a half-line. 

Theorem 10. By n points in the order 

the line is divided into n+1 subsets consisting of the n -1 sets 

determined b> the inner points of the segments A^A<i<(i= l,2,...,n -l) 

and the prolongation of A,A„from A,and from A„. 

Theorem 11. The plane i3 divided into two parte by a 

line. 
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Theorem 12. Two point a not on a line b in a plane c and 

lying in the same half-plane determined by b may be joined by a 

segment not meeting b* 

Theorem 13. Two intersecting lines in a plane divide the 

plane into four parte. 

Definition. Let 0 be a point and h and k two half-lines 

going from 0. The point set consisting of the point 0 and the two 

half-lines h and k will be called the asigle (h,k). 0 is the vertex 

of the angle and ij&nd k are the sides. 

Theorem 14. Any angle lying in a plane divides the plane 

into two parts. 

Theorem 15. Let A and B be two points, one on each side 

of an angle. All points of the segment^ AB are interior points (^f) 

of the angle. The segment joining two interior points of an angle 

lies within the angle. 

Theorem 16. Thru a vertex 0 of angles and a point C 

interior to an adjacent angle draw a line. Tbep all points of this 

line lie outside the angle0 (excepting the point 0). 

Theorem 17. The segment joining two points exterior to 

an angle which does not pass thru the vertex, cuts the angle in 

two points or not at all. 

Theorem 18. Let A, B, and C form a triangle. The lines 

AB, BC, and CA divide the plane into seven parts* 

Theorem 19. A triangle divides the plane into two parts. 

Theorem 20, Let D and E be points on different sides 

of a triangle. Then all inner points of the segment DE are interior 

to the triangle. The segment joining two inner points of a triangle 

lies within the triangle. 

Theorem 21. If the segment joining ovvo exterior points 
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of a triangle does not pass thru a vertex, it cuts the triangle 

in two points or not at all* 

Theorem 82, Each half-line going out from an inner 

point of a triangle cuts the triangle in only one point* 

Theorem 83* Each line which contains an interior point 

of a triangle, contains two points of the triangle* 

Theorem 84. If there are n points in a plane there is 

a line such that the n points lie in the same half-plane deter¬ 

mined by this line. 

Definition. Consider n segments. They form a polygonal 

line when an end point of the first is identical with one end 

point of "the second? the oth?r end point of the second is identical 

with an end point of the third? and finally, the other end point 

of the n-1 th,, is identical with an end point of the nth. 

Definition. A polygon is a polygonal line both end 

points of which are identical* The segments of the polygonal line 

are called the sides; the end pointyof the sides, the vertices. 

A polygon will be called simple if: 

1) No interior point of a side belongs to any 

other side, and 

2) Each vertex belongs to only two sides. 

Definition. A point P of a polygon (or Jordan curve) is 

accessible from a point 0 not on the polygon (or the Jordan curve) 

if there exists a polygonal line or Jordan curve joining P and 0 

and having no point of the polygon (or the Jordan curve) other than 

P. The principle of accessibility is fundamental in this proof* 

Lemma 1. If C, a point of a polygon side At-A<vLe 

accessible from a point B not on the polygon, then the points A^ 

At-^,re accessible from B* 
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Proof: Let C be a point of the polygon side A^A,,^. Let B*C be the 

last segment of the broken line BC. We draw from A ./straight lines to 

all the remaining vertices of the polygon. The*e lines cut the 

segment B*C in at most a finite number of points. Let E,,E^ 

be the points laoeled so that they fall inside the segment B*C in 

the order (B^E,^, ,EyC). Let D be an inner point of the 

segment EyC. We shall show that the segment DALdoes not cut the 

side of the polygon and from this ouir lemma follows. 

'■'O 

. 7 

We show now that all vertices of 

the polygon different from A;f&ll outside 

the triangle A^CD. The segment A;C does 

not contain a vertex as otherwise the 

polygon would not be simple. The segment 

CD does not contain a vertex since it is 

a part of a broken line which does not 

meet the polygon. The segment At-D dose 

dot, for if so, D would be the point Ey 
4M 

and would not be^on the segment CE/. There, 

is no vertex A^inside the triangle AjCD for if so, by Theorem 23, 

the line A;Afcwould cut the segment CD and then Eywould not be the 

last point in the sense from B* to C in which lines from Ajto the 

other vertices cut the segjcent B*C. 

If now A*A4^Ls a side of the polygon not terminating at Aj, 

it can not contain a vertex of the triangle A^CD. It can not go 

thru A^or C for if so the polygon would not be simple. It can not 

go thru D because D lies on the broken line BC which contains no 

points of the polygon (except C). According to Theorem 21, it has, 

therefore, two points or none at all in common with the triangle 

A;CD. If this segment A^A^has a point on the interior of the 
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triangle it must cut two sides by Theorem 23. Since it does not 

cut A;C and CD, it does not cut AjD. Hence any side of the polygon 

A^A^-iot ending in A; does not cut A,D. The segments A^and AcAl%l 

do ; at cut the segment A: D except in the point A; as otherwise 

they would coincide with AtD since tv/o distinct lines can meet 

in at most one point* If this did happen it would contradict our 

choice of the point D. Hence the broken line from B to B*, the 

segment B*D and the segment DA:joins B and A^and does not me.t the 

polygon except in A;* 

accessible from a point B not on the polygon, then any point C of 

the sides A.-A; or A.-A-ie acoessible from £• 

Proof. 

Case 1* The last segment B^Aj of the broken line which connects 

B 'with Allies inside the angle A^AjA^ 

Suppose the point lies on the segment Ac At^. We draw from C 

straight lines to all the vertices of the polygon. Call the points 

of intersection of these lines with the inner points o, the 

segment B*A , E7 ,E>>....«,Ey, and choose again the inner point D 

of the segment B*A so that the segment DA ^contains none of these 

points Ey, i.e., on the segment EyAt-. 

We show that if Ateis any vertex 

Lemma 2. If a vertex A;of a simple polygon is 

t 
distinct from A- it is not in or on the 

triangle A^CD. Afeis not on the side A^C 

as then the polygon would not be simple. 

It is not on A'tD as then the oroken line 

BA would meet the polygon in a point 

other than Aicontrary to hypothesis. It 

is not on DC for if so, D would be Eyand 
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would not he on the segment A/Ev* The vertex A^is not . inside the 

triangle for if so the line CA4would, by Theorem 23, cut the seg¬ 

ment A^D and Evwould not be the last point in the sense from 

B* to A,;in which lines from C to the other vertices cut the 

segment B*Aim 

A side of the polygon AkA^, not terminating in Aicannot 

contain a vertex of the triangle A^CD* It can not contain A;or C 

since then the polygon would not be simple. It could not contain 

D since the segment B*A^is part of the brokenlihe BA^which has 

no point on the polygon (except A,-}. According to Theorem 21, it 

has, therefore, two points or none at all in common with the 

triangle AUCD. If this segment has a point on the interior of the 

triangle it must cut two sides by Theorem 23. Since it does not 

cut A£C and AjB it does not cut CD* Hence any aide of the polygon 

not ending in A;, does not cut CD. By Theorem 15 the sides A^A;and 

A,-A,vCould not cut DC since B*A-and hence DA,-is interior to the 

angle A,-_tA Hence the broken line from B to B*, the segment B*D 

and the segment DC joins B and C and does not meet the polygon 

except in C. 

Case 2. The segment B’Ajlies outside of the angle A^A.-A^. 

Let C be a point on We con¬ 

sider a point F on the prolongation of 

V*' in or on the triangle A-CF. A^could not 

lie on A/C since the polygon is simple. 

with the exception of the point A;. 

cut ‘oy a polygon side nor by one ox the 

lines joining C with the polygon vertices 

Uo vertex A^distinct from A^can lie 
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It could not be on ALF or FC because of the choice of F. A^could 

not be interior to the triangle A-tCF for if so, the segment CA^ 

would cut A-F contrary to our hypothesis on F. 

A side of the polygon A^A^not terminating in At-could not 

contain a vertex of the triangle AiCF. It could not contain Ac-or 

C since the polygon is simple. Because of the choice of F it could 

not contain F. According to Theorem 21, it has two points or none 

at all in common with the triangle At-CF. If the segment A^A^has a 

point on the interior of the triangle it must cut two sides by 

Theorem 23* Since it could not cut A^C or At-F it doss not cut CF. 

The segment At.Atdosa not meet CF since F is on the prolongation 

of A. A-. Obviously CF does not meet A* A., Hence CF has no point 

in common with the polygon except C* 

broken line BA t-which does not meet the polygon. FD does not 

contain A^for if so D-Ey. This -would contradict our choice of B. 

If A^A^is a side of the polygon not terminating in At-it 

can not contain a vertex of the polygon. It can not contain A ^ 

obviously, nor F by the choice of F. It can not contain D since 

Now choose the point D on the segment 

B*A£so that the segment DA,; is not cut by 

any of the lines drawn from F to the 

vertices of the polygon except in the 

point A;• We show that no polygon side 

^not ending in Aleuts the segment BF. A 

vertex of the polygon A^different from 

A^oan not lie on or in the triangle Aj,DF. 

The segments A-F does not contain AA 

because of the choice of the point F. AA 

ie not on At-D since kL Die part of the 
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B'Ai&nd hence DA:has **0 point on the polygon. According to 

Theorem 31 it has two points on the triangle A ■ BF or none at all. 

If this segment A*A*£ae a point on the interior of the triangle 

it must cut two sides by Theorem 23. Since it does not cut At-F 

nor DA;it can not cut FD. A. A.-and A; A.-do not cut FD since F was 

chosen outside of the angle A;;A,-A,V. Hence the broken line from 

B toB», the segment B*D, the segment BF, and the segment FC 

taken in order join B to C without meeting the polygon. 

Theorem 25. Every point of a simple polygon is acces¬ 

sible from every point ox the plane* 

Proof. Consider an arbitrary point B of the plane, not on the ■ X-, 

polygon. Join B to a point B* of the polygon by a straight line. 

This line will meet the polygon in a finite number of points. 

There is a first point E, in the sense from B to B*, which the 

line BB* has in common with the polygon.* If the point E is a 

point of the side A;A;<;, then by Lemma 1, sines E is accessible 

from B, A £ is accessible from B. By Lemma 2, every point of the 

side A.'A^ie accessible from B. If E is‘a vertex - e apply Leeuna 2 

directly. By applying Lemmas 1 and 2# vie have that every point 

of the polygon is accessible from every point, of the plane. 

Theorem 26* A simple polygon divides the plane into 

two regions at moat. 

Proof. Let C be an arbitrary inner point of the polygon side 

A;A£tf We draw thru 0 a line distinct from A£A^ and we can choose 

on it two points D and D* lying in the distinct half-planes 

determined by the line A; At;ao that neither of the two segments CD 

and CD* i3 cut by the polygon side. Any arbitrary point B not 

* E may be the point B*. 
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belonging to the polygon is now joined to C by a broken line not 

cutting the polygon except in G, Let B*C be the last of these seg¬ 

ments* B* lies with D or D* in the same half-plane determined by 

the line A{ A,-*, suppose with D. On the segment B*C choose F so 

that the segment FGS is not cut by any of the 

lines joining D to the vertices of the polygon* 

All vertices of the polygon A^lie 

0 

outside of the triangle CDF. The segments CD 

and CF do not contain A&because of the choice 

of D and F. DF does not contain A^for if so, 

DA would meet CB’ in F which would contradict our choice of F. 

For the same reason there is no vertex A^inside the triangle CDF. 

A side of the polygon different from A,-A^pould not contain 

a vertex of the triangle CDF* It could not contain C since the 

polygon is simple. It could not contain D or F because of the 

choice of these points. As before, if A*.A^ distinct from A;A*,* 

has a point on the interior of the triangle it must cut two sides. 

It can not cut CD or CF, hence it can not cut DF. At-A,-,pan not 

cut DF because D and F lie in the same half-plane determined by 

A;At^. Hence B and D may be joined by a broken line not meeting 

the polygon. Then every arbitrary point of the plane not belonging 

to the polygon may be joined either with D or with D* by a broken 

line not meeting the polygon. The polygon then, divides the plane 

ia„o two regions at most. 

joined to a point C by a broken line lying in the plane,which 

does not cut the polygon. Then these two points may be joined by 

a broken line such that, the prolongations of any of its segments do 

Lemma 3. Let B be an arbitrary point of the plane 



not pass thru a vertex of the polygon* 

Proof* Let BB, ST* •««• • *B.X0 be the given broken lice* Draw from B 

lines to all vertices of the polygon* These lines have at most 

& finite, number of points in common with the segment B, Bv* We 

can then choose C ,on the segment B(C,, distinct from these 

intersection, points and such that the segment B, C, contain© none 

of these points* By the method.used above we can shoe that the 

segment BC, does not cut the polygon* The broken lino SC, 3*,.. *Rp 

does not cut the polygon and the segment BC, belongs to & li>a© 

which passes thru no vertex of the polygon* We continue ia this 

manner with the other segments of the broken line* 

Theorem £7* A. simple polygon divides the plane into 

two regions at least* 

Proof* Consider a given straight line which passes thru no vertex 

of the polygon* It follows that two vertices A^and A^lis on the 

same' or different sides of this line according as the segment 

A;A<fiia not or ia cut by she line, This line either does not cut 

the polygon or cute it in an ©van number of points* 

Consider a given angle whose vertex does not lie on the 

polygon and whose sides pass thru no vertex of the polygon* If 

the points A;and A-ars divided by the angle, then the segment 

Ac A..contains a toint of the ^nglej if not, it cor. tains two or 

no points of the angle* It folio © from this that the angle 

ha® no points or an even, number of points in common with the 

polygon* 

From an arbitrary point in the plane dr&w a straight line 

which passes thru no vertex of the poison but which cuts the 

polygon* Let the intersection points of this line and the polygon 

be S, ,EW**..,3S,V. Let them have the ordering (2, ,£21). 
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r 
Ghoose on this line a point A so that we have the ordering 

(AE/jS,.,..... ,Elt/). One <£^both^o £ the half linen- into which our 

line is divided by A contains - points of the polygon. 

Choose a point B on the same linexauch that on each of the 

two half-lines determined by B there are an odd number of 

intersection points E of the polygon. Let C be a point which may be 

joined to B by a broken line which does not cut the polygon. To 

show that every ray drawn from C must 

cut the polygon. 

We can choose the broken line joining 

B and C, by the preceeding Lemma, so that 

the prolongations of its segments have 

no vertices of the polygon. Let BC<Gi...C^P 

be such a broken line, 

Consider the angle ABC/J The vertex 

of this angle does not lie on the polygon and its sides pass thru 

no vertex of the polygon* One of the sides of this angle contains 

an odd number of intersection points with the polygon. Its second 

side must therefore contain an odd number of intersections, and 

since the segment BC, contains none, the prolongation of the seg¬ 

ment BC, contains this odd number of intersections. 

We now consider the angle formed by the segments BC/ and C,CX 

and their prolongations, By the same reasoning we have that the 

prolongation of C,CVcontains an odd number of points of the 

polygon, 7/e have finally that the prolongation of the segment 

C,C from C has an odd number of intersection points with the 

polygon, 

Draw no?/ from C an arbitrary half-line. If it goes thru a 

vertex it ha3 a point in common ?/ith the polygon. If it does not 

• If A, B and C,are collinear the case is trivial. 
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go thru a vertex then it may be treated as above by considering 

the angle which it forms with the prolongation of C^C from C. This 

arbitrary half-line then contains an odd number of intersection 

points with the polygon*. 

We have then that the point A may not be joined t-o the point 

B by a broken line not cutting the polygon since there is at 

least one half-line drawn from A which does not cut the polygon. 
0jU° 

Since we have proved/]that the polygon does not divide the 

plane into more than two regions, we have that it divides the 

plane into exactly two regions. 

In this paper we shall consider the proofs of the Theorem 

of Jad&n as given by Schoenflies, Kerekjarto, de la V&llee Poussin, 

Alexander, and ITeblen, as well as the converse theorem and a 

criticism of the proof of de la Valla© Poussin, both by Schoenflies. 

Of these proofs, two are outstanding. The one by Kerekjarto because 

of its simplicity, and the one by Schoenflies because of its 

elegance and further because the method used leads to the converse 

theorem. 

The proof of Schoenflies ** depends upon vpoint set theory. 

The proof depends upon the property of isolation, i.e., that an 

arc H of a simple closed Jordan curve may be enclosed in a gen¬ 

eralized polygon such that CiUO is on the exterior of the issolygon* 

The Jordan curve will be considered as the 1-1 and continuous 

image of a circle. The polygons used are generalized* They consist 

* In case these two half-lines do n.t form an angle, they are 
either coincident in tvhich case our conclusion followsj or taether 
they form a straight line, and since this line must have an even 
number of intersections with the polygon and one half-line has an 
odd number, the other must also. 

** A. Schoenflies, Uber das eiaejrdeutlg 
Kreiaea jJordancurre)7”Jahresbericht der Deutschen Matheoatiker- 
Veremigung, Vol 3b, pp. 147-157. 
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of two broken lines, the corresponding end points of which approach 

the same point while tbs number of sides increases indefinitely* 

We wish to show that if the Theorem of Jordan holds for an 

ordinary polygon composed of a finite number of segments, that it 

holds for a generalised polygon. Consider such a generalised 

polygon with the limit pointB P, and Pz. About P,and Pzwe may place 

squares of arbitrarily small side length. These squares combine 

with the generalised polygon to form an ordinary polygon*. How 

any point of the plane not on the generalised polygon may be 

placed on the interior or t e exterior of the ordinary polygon 

by choosing the side of the .squares small enough. Any two points 

P and Q separated by every such ordinary polygon are separated 

by the generalized polygon. This follows since any polygonal line 

joining P and Q will either pass thru P, or be at a finite distance 

fro® it. If P, is on the polygonal line then the generalized 

polygon separates P and Q. If P/ is not on the polygonal line we 

choose the square about P, so small that all points of it are 

exterior to the square. Then as the polygonal line cuts the 

ordinary polygon and not points of the square it cuts the general¬ 

ised polygon**. We may show by the method of Theorem 30, that 

only two regions are formed. 

Let S be a circle and let c and d oete/o distinct points on it. 

They determine two circular arcs, consisting of points (exclusive 

of o and d) -which we will call Hr /2i|and K= jk\» 

Hence 
S = H + K+fc,d}, 

where, by [c,d}is meant the two points c and d. For 

* There will be two possible boundaries near each point P.and P,* 
We nay take either one* 

** Similar conclusions hold fear P2 ). 
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the gets H and K, the following hold: 

1. Every limit point of points h is either itself a 

point of H or is one of the two points c and d. The closed sot 

H coasi ts of the sot II and the points eland d. Similarly for K, 

3* If i is any inner point and a is any outer point of 
£ jfg 

the circle*, one can connect i and a with c and d such that a 

'polygon P is formed for which all points of H &r© inner points and 

there fore belong to 'I(P), and all points of K are outer points 

and therefore belong to 0(P). 

We say, therefore, that the polygon P isolates the point 

set H from the point set K (or K), In a similar manner we can 

isolate the point set K from the point set H (or H) by an 

analogous polygon* We call H and K isolated point sets. 

We show that the above elementary properties of the circle 

hold for a general Jordan curve. 

If r is the image circle (i.e., the image of s) and % and 2 

are the image points of c and d, and if = /^]and ^-{x^are the 

image seta of H and K, then one has 

r= . 

On account of the constant relation 

between S and T (this relation is a 1-1 and 

continuous correspondence), r possesses 

property (1) directly, i.e., every limit 

point of points 7j io either itself a point or one of the points 

K , J * It remains to show that the point sets {Land K^are 
****** mm. mm 'm* mm am m* mm -m> m w* m* wm> mm m* mm -mm mm m>. mm- mm mm m 

* Assuming that the circle divides the plane, 

*fLIhi“dLt?eTP1'?erty °f a002s3ibHity shloh will be developed for a general Jordan curve* * 
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isolated from each other. We must show that we can enclose the 

set H^in a polygon P of whichtfand & are vertices, while the set 

K ^liea wholly outside of it. 

If a and b a,re t?/o points of the circular arc H ana (ab) the 

closed arc determined by them, let* and yj be the image points of 

a and b and (*A) the image set of the set (ab). Let the distance 

of the set (°</3) from the closed set Kjt (=-(*
<5)), which is the 

miraimum distance for the points of both sets, be 3e . This is a 

non-zero distance because of the 1-1 and continuous property of 

the correspondence. If one surrounds eadh point of £*/3 ) with a 

square of constant side direction and of side length^ | e t then 

the whole set Julies outside these squares. By the Heine-Borel 

Theorem, a finite set of these squares exists such that every 

point of (*/3) is an inner point of at least one square. These 

squares have one outer edge polygon. Let this outer edge polygon 

be RX/S= R. Then every point of the arc belongs to l(RV/5). In 

general the set K* lies outside all squares, and in particular it 

lies outside R, cifi * 

Let a,a*,aM be a sequence of points of H not interior 

to (ab). They are arranged in the order a,a*,a* 

tiii ...... going from a to, but rot 

|d' including c. Similarly, the points b,b* ,b* 

b* *form a sequence of points of H 

* ^ not interior to (ab) arranged in the order 

b,b*,b*going from b to, but ot including d. The image 

points of the sequences of a* s and b*s are respectively K , 

(S»p ,,**»**an«l because the correspondence relating them is 1-1 

and continuous, the^*s and ^*s bear the same relation to ®<and f 

and yj and (fonTas the a* a and b*s do to a and c and b and d on S. 
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We wish to determine an edge polygon R* for ( °C*/3 *) as was 
a 

done for the eet The ((*#«) and (/>p) are similar to the 

39t (*/3). For these sets there are determined, as was done for 

(*0 ) , edge polygons P and 0 respectively* They overlap R and the 

edge of this overlapping configuration is designated as R1. The 

set belongs to l{R*) and the whole set to 0(R*)* In 

a similar manner we construct for the set (<*.• * f 1) the edge 

polygon R**. This is done by constructing edhe polygons P* and 0* 

for the sets (ac* *c<f) and fyi*/$**)• They project thru R*and 

form with R*, the outer edge of Rf *, i.e*, form the edge polygon 

R**. P* and 0* satisfy the condition (to be proved later) that 

they both lie outside of R and hence do not cross R. We continue 

in this maimer and obtain a series of polygons 

R, R1, R* »,..**.** 

which are made up of the polygon R R and the polygons 

P, P», P*»,..**.* and 0, 0*, 0**,  . 

We must show that the limit of these edge polygons forms an 

isolating polygon for the set ligand therefore its interior cental 

H^and the set belongs to its exterior. 

We have the following constructing properties, which will 

be justified later* 

(1) The set (= ( tf i)) lies cu.side of each and every 

edge polygon. " 

(2) The polygons P and 0, as is the case with P* and 0* 

etc., lie- outside of each other. 

(3) Just as Pf and 0* lie outside of R, so PM and O' I 

lie outside of R*, etc. 

On the basis of these three properties we establish the 

theorem. The edge polygon R* is formed out of the overlapping of 
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the polygons* P and 0 with R. Now P, 0, and R are each, edge 

polygons formed by the outer boundary of a finite set of squares. 

R* will bs the outer boundary of these three sets of squares. Now 

the polygons P and 0 lie outside of one another oy property (l) 

and hence to R there belongs two well defined segment a, r joining, 

p and q and. r( joining p( and q(along R where p and p, are the points 

of intersection of R and P, and q and q,are the points of inter¬ 

section of R and 0. Two such segments exist, and in case more 

than two exist;, i.e., say P intersects R in more than two points 

the outer segment is chosen. A schematic drawing is shown below. 

as noted above which will be designated as r* = p*pqq* and 

r’ = p,’* To these segments belong the segments r = pq and 

r( sp, q(respectively as parts. The polygon R* consists of points 

of the outer boundary of R, P, and 0* Likewise R*‘ contains 

similarly determined points of R*, P*a and O’; therefore also 

of R, P, 0, P1, a,nd 0* and to the segments determined by these 

points, belong the segments r and r, , since R does not overlap 

P* or 0* by property (3). We know likewise that r* and r* are 

subsets of r*1 and rf * * In such a manner v,e arrive at two increas¬ 

ing series of segments 

r, r*, r**, and r( , r* , 

and their combination sets, 

I 
t t 
J J *> «l * ■*♦♦** 
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u = S(r'v^) and u,= sCr/-*^ 

arc such that asi/ increases, the segments approach Rc^\ 

We consider now the region which is determined by the 

increasing edge polygon. Every point of l(R) is also a point of 

l(R*). Every point of l(R*) is also a point of I(R**), etc. 

?.'e set therefore, 

l(RH) = Iv and G - S(ly ). 

The combination set G describes the above region. 

It foilo\\& as in the proceeding, that every point of H^ie 

a point of G, v.hile every point of can belong at most to the 

boundary of G. The boundary of G is considered as be i * a 

combination of the boundaries of the regions 

I(R), l(2rv;), and l(0^;). 

Each point of the boundary of G is thereby a limit point of 

points which belong to these regions (since they are closed). If 

the points lie in only a finite number of the sets I (R) , I(P^), 

l(Q^), the limit point falls on a segment of the polygonal lines 

u or u,, since any finite number of the above sets is bounded 

by the segments u or u,. If however, they lie in an infinite 

number of fche sets l(R), i(P^), l(0/7^}, then the diameter of the 

polygons F^and 0^approaches asro vsith^V, for suppose in 

particular, .hat the diameter of P^does not approach zero. The 

diameter of P^depends upon <r • If <T0 the diameter of P* 0. 
c-yS 

The diameter of P remains > M >0 if and only if <rdoes not 

approach zero. Since P<y)doeo not approach zero, let the greatest 

lower bound of <T be "5 > 0. Since <* *,. <** form a sequence 

of points approaching Y , for ^sufficiently large, > , the arc 

v xy 
length from * to U will be 4 /4* Consequently, there is a point 

v y+i 
of r bet ween «■ and * , the center of a square, part of the * 



and boundary of which will be contained in the boundary of P^, 

P(^.'ill contain the point tf on its interior, i.e., a point of 

$ which violates property (l) • A similar argument shows that the 

diameter of 0^'-^ 0 ?/ith 

Since the diameters of PfV,and 0* ^approach zero, each point 

of P(V)and 0(V|,(for V sufficiently l^rge) may be replaced by any 

other point of the polygonal region to which it belongs. In 

particular, each point may be replaced by a point of r . As was 

pointed out before, limit points of points of T belong eitner to 

r itself, which case is not relevent here, or they fall on one 

of the points YorS . These points, V and & , are however, limit 

points of point sets which belong to u and u/9 and consequently 

belong to the boundary of the region G. 

The boundary of the region G is thus a generalized polygon 0. 

It reprssente an isolating polygon for the set H^&nd hence we 

have proved that we may isolate each subset H^of the image circle. 

We must now establish the three construction properties used 

above. In order to prove that P and Oi for example, lie outside 

of each other, we must show that they have no points in common 

and that one does not lie within the other. The first is proved 

by an appropriate choice of the side square length ff*. The second 

is proved below. 

Now if a function is continuous in the interval r.......s, 

one can determine for this an interval*Tlength > 0, so that in 

every sub-interval t < a} , the oscillation of the function is less 

than a preassigned b-und w. Hence, given w, one may determine a 

sub-arc (im) of (ab) such that if y% t ju* axe tv/o points of the 

image set (^/* ) of (lm), it follows that for the diameter of the 



(a) y3 (>/*)< w, 

and for the distance of the points )>*, ju* 

(b) p (*/“') 4 W* 

' We have the following considerations: 

(l) The bound w may have such a value that for the 

diameter of the image set { -(ttf)) the relation 

(c) /S (tf S ) > 2v/ 

holds** Furthermore, each of two adjacent points of the’ points 

a, &*, a**,...... b, bf, b**, of the circle shall determine 

an arc, as3hat determined by (lm)j in particular, the arc (ab) 

shall determine an arc of this type*** 

(s) Let k, 1, *», n be four consecutive points of the 

set of a* a or b*s or both* They divide the circLe into four 

circular arcs 

(kl), (lra), (mn), and (kcdn). 

The image sets (>/<} and of the sets (1m) and (kcdn) are 

new sets* If 2 § ie their distance apart, then 3r >0 because of 

the 1-1 and continuous relation between S and f" , while for the 

diameter of (jttf In/ ) the relation 

(d) y0 (KlW) >/3 (jTi ) > 3w 

holds. Also the distance jo of the set (>/<-) from each and every 

subset of ('X^S'/) satisfies the relation 

f> * Z 5. 

The loner bound of 3 for all sets /O coming- under consideration 

is obviously zero* 

We construct now around the set ju) an edge polygon 

by usin£ squares of side length <r which satisfy the relations 

* This is no essential restriction* 
See 4 i«j. j»- I*] 
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(e) <T < | ? ; re • 

Because of the relation <T < g s , the covering squares for the 
set and therefore also the associated edge polygon R>/t , 

have no points in common with the set (-y:it is not sufficient 

Cy~ *6 V) 
to conclude however, that the set^lies outside the edge polygon* 

These squares can determine a multiply connected region, and then 

inside R^ there is at least one region which lies outside all 

these squares. The set (% if $v) can belong to it* Since the set 

is connected, it belongs to such a region wholly or not at 

all, and this is true of each of its subsets* If it belongs to 

such a region, the relation 

>/3 3w 

necessarily holds* 

One the other hand we have also 

P%Mf w + 3<r * 3w* 

This is a contradiction* The set lies, therefore, outside 

the polygon R^u , and on account of the relation (e), it holds 

for every edge polygon composed of squares of side length cr that 

surrounds some subset of (XKSV ). jn particular, the set (& S ) 

(which is a subset of each and every set (2 f <5'i')) lies outside 

each and every edge polygon. 

Now the set (tf &) lies outside each and every edge polygon 

surrounding the set (>/*)• Now as was noted above, (im) is 

determined by any two consecutive a*s or b*s or both. Its image 

set is determined by the two corresponding * *s or /3 *e or both 

and they are necessarily consecutive. In particular (>/<) may be 

(*/*), i**'), (*'*"),*•• • and (#<S) will lie outside the 

edge polygons covering these sets, i.e., outside th©; polygons 

» O******* • Hence K^lies outside the polygons R, P, 0,.* 
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This is property (1). 

Of two such polygons an those considered in the proceeding 

paragraph, one way say that the one surrounding a set (>q* ), the 

other a subset of The set (>yu) may be taken to be (<*/3) 

^nd the subset of (y.f&'J) may be taken to be ( ^* *•*) IOVX (/&<■* ^>1%) 

and by a proper choice of (rand w, the polygon surrounding (*; /J ) 

and those surrounding ( * • <** *) ;ofU (p * yg *♦) will lit^outside 

ox one another, i.e., R and P*, a.nd R and O' lie outside of one 

another and have no points in common. Continuing in this manner 

we deduce properties (s) and (3). 

With the aid of the isolating polygon U we prove the Theorem 

of Jordan. First, as the side of the squares <f becomes smaller 

the polygonal lines u and u,become closer and closer to the 

set H^. Secondly, as the set H^was isolated from the set K^by 

a polygon TJ, we can isolate the set XL^ from the set by a 

polygon B. The polygons tJ and B have only the points y , <5 in 

common, because of the choice of <1% the length of the side of the 

square surrounding each point of the sets and K x . Let ^ and 

be the polygonal lines of B corresponding to the polygoixal lines 

u and u( of U. 

The polygons XJ and B divide the plane into four regions. 

Two are Che polygons l(U) and 1(B), the third comes from \|(&nd ^ 

the fourth, the exterior of u and | . 

If g is determined by u,and |( , it depends upon the size of <T. 

(T(v) takes on a sequence of values j frfae r-* 0.- g^is the region 

to wnicn the values of (T^ correspond. The combination set 

h - G/g^} 

of all these regions determines a region, all of whose limit 

points belong to the image set P . Hence the image set T deter** 
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mines in the plane at least two regions. 

In order to show that the plane is divided into only two 

regions by , v.e need the auxiliary theorem, that the image set 

of a circular arc does not divide the plane. If 6* is the circular 

arc, c and d its end points and 1 its image, with if and S the 

image points ox o and d, then ue have as before, 

G' - H fjb.dj, r' ■ 4] . 

Assuming that r 1 determines a regional division of the plane, 

let i and a be iwo points belonging to 

different regions. From a, draw a 

straight line to T1, meeting it ine,. 

This line may meet p * in more than one 

point, out let e, be the first point of meeting in the sense from 
a to 6, . Draw a similar line xrom i meeting f 1 in<£u. e, and 

ou r * correspond to the points e,and exon G’f The points e,and<2x. 

divide the ardG* into three sub-arcs 

(c<?,), (q e] and (e.d). 

We now enclose their image sets in an isolating polygon. 

First we isolate the sot (e, et) from the sets (if6,a) and (i6vO$ 

then we isolate (J £,) from the polygon just obtained and the sets 

(a&i) and (i£i<5), «xd finally we isolate (<=,. &) from these 

polygons and from (a e,) and (i , The points i and a lie outside 

all three polygons and hence may bo joined. This is a contradiction, 

hence the theorem. 

We now snow that r divides the plane into only two regions. 

If F is any region into which the plane is divided, let q be its 

boundary.** Suppose csjis not identical with r . Then ^ie a 

* ^he drawing of these lines is necessary since the sets we later 
isolate must be simply connected. 
**he uu*e the convention that the boundary, eg., of the points 
x -4-y >a is the circle x’Vy's.a^ as it is for the points x%-yV aX 
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connected subnet of F and is the image of a circular arc and hence 

does not divide the plane by the above auxiliary theorem. Since 

any regional division of the plane has r as its boundary, 

divides the plane into exactly two regions. 

We have seen that the sets and may be enclosed in 

polygons U and B respectively, such that they have no point in 

common except J1 and <5. Further, these polygons may be made arbitrari¬ 

ly close boQ/py a choice of the side length <r. Hence any point P 

of the plane not on Twill be, by a proper choice of <r, in the 

third region determined by u,and % t or -in the fourth region deter¬ 

mined by u andty * Hence it may be joined to u or u, depending upon 

which of the two regions P is in* Hence P may be joined to 

by a- Jordan curve which has no point on V" except for <5 ♦ Since 

Tf and S were an^ two distinct points of r , we are (lead to the 

fact that the points of a Jordan curve are accessible from any 

point of the plane. It is noted that the points Y and & are 

actually limit points of points which are accessible from P by 

polygonal lines. 

We now turn to the proof by Kerelcjarto*which is by far the 

simplest of the proofs considered, but unfortunately it relies 

too much upon intuition. The details of the proof are included 

here, Kerekj^arto omits those details which are obviously true 

and may be easily justified (there is one exception to this, which 

will be pointed out later). He assumes no credit for origi .mality 

since he states that the proof is a combination of the simpler 

parts of the simpler existing proofs. He also assumes the thBorem 

for a simple polygon composed fof a finite number of degments. 
mm m* *m$ mm mm mm re- XM mm »m np ^ „ 

* B. de £erek$arto, demonstration Elementaire du Theorems de 
J oruu.a sur lea Curbeo Planes, Acta Li fctexarum AcScientialumT 
voTs; uSteTOTsoa) pp. 
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XereTcjarto uses the theorem, ae does Schoenfliea, that a simple 

arc does not divide the plane* 

Lemma 4. Let E,and Kxbe two bounded oontinua in the 

piano, of which the common part K is a continuum** If two points 

of the plane A and B which do tot belong to K,-hKt> are separated 

neither by X, nor , then they are not separated by K,+ Ex* 

Proof, Let w, and be two lines which join A and B such that 

w, does not meet X, and w r does not meet X1« We may suppose that 

w, and w have no other points in common except their extremities 

A and B**. 

The polygon JT - «,+wu divides the plane into two domains* 

Suppose that the contiaruuta X, which has no point on X , is found 

on the interior of IT***. The points of K situated on /T and on 

its exterior form a set 1£(. The set M,is closed. It is null, or 

contains a finite number of points in'which case it is closed, 

or it contains an infinitude of points. The set M, is bounded 

as it is a subset of K, which is bounded* 

If M, has an infinitude of points it has 

a limit point by the Bolzano-Wsiexstrass 

Theorem. If P is such a limit point suppose 

that M, is not closed and P is not a 

point ox M,« Then P is an interior point 

of 71 , We have then an interval about P which contains no points 

of M i* This is a contradiction*. 

- - The aet M ,is at a positive distance > S >0 from K •*. and from 

* These sets are .assumed to be one dimensional. 

** Itt case v/, and v; x. have other points in common we nay replace 
A and B by two points A’, and B* common to w, and w *. such that the 
part &*3* of w, does not meet K, and A*Bf of wtdoec not meet 

*** This io no restriction. 
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H,i» at a positive dietunes from r, 

It ia at a positive diat&nee from 

have a point la eonuun other that 

i nines w, does not meet K, * 

K*.for if not IC^und 1C,would 

K assad hence the points in 

common would not form a continuum. 

About each point of M place a square of. aids length < ^/4, 

with coiotant side direct! on^JBy the Hein@-Borel Theorem, a finite 

number of such squares exi£(Vp) and the aides of these squares form 

a polygon. This polygon forms with 7/ and its interior a polygonal 

domain. Let 7T* be the boundary of that domain, part of which is 

formed by the whole line w,. The other part of nr* in a line which 

joins A and B without meeting £,+ £*. 

Theorem S3, A simple arc aeon not divide the plane. 

Proof. Let A and B be two points which are not on the simple 

are PQ. We divide the are i?<§ into a finite number of consecutive 

area * ,,P^.P« (Pe-P, 3^ = Q) such that the diameters of 

the .ares ffyJSj^axe less thanthe distance from the points A or B to 

the arc We wish to show that each of t.he subarcs doo3 not 

separate A and B, 

Let C* be the omller of the distances of A and of 3 to the 

arc P^. Consider any one of the arcs lOL* About each point of it 

place a square of side length 4 r/A and of constant side direction. 

Again applying the Heine-Borel Theorem, we have a finite number of 

such squares strictly covering and the outer boundary of this 

finite number of squares farm a polygonal region in which the poinfea 

A and B do not lie. Since this polygon divideo the plane into two 

domains, and since A and B are exterior to it, they asty be joined 

by a polygonal line not meeting this polygon, and hence not meeting 

1^1^,• Hence each of the arcs Ik'lj^does not separate the points A 

and B* Applying the auxiliary theorem above successively to the 



are® E.rPT^i and then to the arcs E,r C"?-»and Eao etc., 

we have the theorem* 

Theorem 39. Let PQ be & straight line segment and let 

iRi be a simple arc which has no points in eotranon with PQ except 

the points P and Q. The simple closed curve j = PQ-^PQ' divides the 

plane into two domains at least. 

Pr 'of* Let ARB be a segment perpendicular to PQ, drawn from a 

point R interior to PQ, such that ARB has no point on the arc R§* 
polygonal 

Suppose AwB is a/line joining A and B 

which does not meet the curve j« AwB 

and ARB form a polygons . 

Suppose that P is interior to rr * 

Then about P there is a neighborhood, all 

points of which are interior top * In traversing PQ from P to Q 

we come to a. first point of PQ on 77" * Let this point be E* flow K 

is on ARB and PQ or on AwB and PQ. Since AwB does not cut j, in 

particular it does not cut PQ. Renee K is on ARB, and therefore 

E s-R* Then all points of the segment PR are interior to H" (ixcept 

the poi. t R)* 

Suppose no?; that Q ia interior to TT • By an argument similar 

to that above, we have that the segment QR is interior to TT except 

the point R which is an rr. Since 7r divides the plane, there are 

points of PR and points of SpT ’which are on opposite sides of the 

boundary of iT, i*e», points of PR which are interior and points 

of QR which are exterior to fl" • This is a contradiction of the 

conclusion that PR and QR are interior to W excepting the point R* 

Hence if P is inferior to M , Q is exterior to /T. By interchange 

P and Q we have similar results. 

* one point is considered as a contimuum. 
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P *u«i Q are then ooperated ay the polygon /T* Then the 

arc PQ outaTr, since 7T divides the plane* How does not cut 

ARB, AO it Hftnst out AnB, contrary to hypothesie# Hence A 

B are tvo points separs ted by j* Hence the theorem* 

Theorem 30* The curve j r PQ + lpQ divides she plane into 

two domain© at most* 

Proof* Let A, B, unci C be three arbitrary points ©i the plane not 

situated on 3. By Theorem S8 i-he arc ^4 does not divide the plane 

and hence does not separate any two points of the plane not on 

Ae any point of a straight cetment is aece sible from any 

point of the plane we aay join A,. B, ana G to points a*, B‘, and C‘ 

of the segment by lines w,, and wjrespeclively, which do 

not ice fit the tire j^* Two at least of the lines w,, w*., and w3 

must meet on the same Bide of jPQ* Suppose that ww w 3 end at Bi, 

C* respectively on the same side of PQ* The points Bf and C* are 

distinct from F and Q eii.ee w u and w, do 

not meet the arc Let <r be the distance 

of the pointe of the arc ^ from the point 

of PQ between B* and C*• We may join wt 

and w3 then, by a line parallel to, and 

at a distance £<rfro§i, FQ, which will have ho point on the arc 

or on the line PQ and hence no point on j. Therefore for any 

three points of the plane not on j, at least two of them WAY he 

gpined by a line not meeting j* Hence j divides the plane into 

not more than two domains* 

We understand by the interior and by the exterior of a 

curve the bounded domain and the unbounded domain 

respectively, determined oy the curve j. 
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Theorem 31* A simple arbitrary closed curve 4 divides 

the plane into two domains at least* 

Proof* consider any t?jo distinct points M and N of the curve 4» 

and draw the segment MN« If the segment Mif has a point A which 

is not a point of 4 then there is an interval about A free of 

points of j for otherwise A would be a limit point of points of 4 

and hence a point of j since 4 Is closed* Consider new the maximum 

interval about A which .ia free of points of 4. The end points of 

tills interval arc points of the curve 4 for i.f not they are neither 

limit points of the curve and the above interval would not be the 

maximum interval of the segment free of points of 4* This segment 

PQ (" l) has its end points p and Q on the curve but no other 

point. 

If every point of the segment Ml is a point of 4 then 4 

contains a linear element* The segment MM contains no other point 

of 4 as otherwise the curve would not be simple. The theorem then 

reduce® to the-proceeding case. 

Let c, and cr be the two arcs of 4 into which j is divided 

by the two points P and Q. For the curves 4, =c,*-l and 4V* c^+1, 

Theorems 29 and 30 are valid* About a point X of c, draw a 

circle which has no point on Kerek4arto 

now assumes that two points A arid B exist 

within this circle such that A is an in¬ 

terior point and B an exterior point of 

the curve 4/ = c,4-l. The existence of these 

two points is not easily verified, even 

though ltse»wt>intuitively obvious* We may however use the principle 

of accessibility as developed by Schoenfliea and show the existence 

o.fc these points. If, as Schosnflies shows, the point X of c, about 
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which the above circle is drawn is accessible from a point of each 

of the two regiono into which the plane is divided by j , then the 

circle about X will contain points of both regions. S7e then have 

a point A interior and a point B exterior to j, and within the 

circle about X. 

We wish to show -hat. the points A and B are separated by j. 

If they are not let w be a line joining A and B without meeting j. 

w must meet 1 since A and B are separated by j,= c,rl. Consider 

the line AwB, letting A* and B* be the first and last point of 

ir.eet.i7ig -.ith 1 in the sense of going from A to B along w. A first 

and last point of meeting exist since the line w is composed of 

a finite number of segments and hence can meet 1 in only a finite 

number of points** Let C and D be two points near respectively 

to A* and B’ on the par os M* and, BB* of v?* On the one hand the 

points C and D are found'on opposite sides of 1 and hence are 

separated by oytl by Theorem 39. On the other hand, the parts 

AC and BD of the line w and the straight degneat AB together 

form a line joining C and D without meeting jl = c*+-l, since w does 

not meet j by hypothesis. This ie a oon-radiotion. Hence there 

exists two points separated by j, i.e., j divides the plane into 

two domains at least. 

Theorem 32. A simple arbitrary closed curve j divides 

the plane into two domains at moot. 

Proof. By Theorem 31 a simple closed curve j divides the plans 

into &.C leant two domains. Hence there exista a point R not on 

j which is separated from the point at infinity. Then any line 

thru R meets the curve j in two points at least. In traversing 

this line in each direction we come to a first point on this line 
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which is on ,1* If these .points are P and Q, the segment PRQ ( =l) 

han no points on j except ? and Q. Every point of this segment, 

excepting P and Q„ Is separated from the point at infinity* 

Let a , and c x be the arcs of j determined by the points P and 

Q and lot j =0, fl and j^Ca+1* We show that the arc c, is exterior 

to 3 t » If o, in not exterior to ;jx we may join a point, of 1, 

(exclusive of ? and Q), to the point at infinity without meeting a± 

(by Theorem 33) and since c, is interior to cyHL, without meeting 

c, » This is a ooatradiction of the assumption that R is separated 

from the point at infinity by j. Hence c, is exterior to jt , and 

by a change of subscripts, c ^is exterior to j,• 

We understand by the interior of j, the sum of she interiors 

of j, and of j2 , and the points of 1, differing from P and Q* 

Each interior point of j, may be joined, thru a point of 1, to a 

point in the interior of ji# (The same may be said with a change 

of subscripts). Then any two points interior to j may be joined 

by a line interior to j without meeting j. 

The exterior of j is defined as the common part of the exter¬ 

iors of j i and jz. Let A and B be two points on the exterior of j. 

They are sep; rated neither by j ^ nor by jz. The curves j, and j x 

are two bounded eontinua of which thee c cam on part is a continuum 1 

By the auxiliary theorem (Lemma 4), we may join A and B by & 

line which hae no points on j,+jt, i.e., no point on j. Hence 

a,11 points of the plane net on j belong either to the interior or 

the exterior of j* Hence j divides the plane into two domains at 

m os t * 

Alexander’s tre taient of the Theorem of J<2?dan* involves 

chains, which are a sort of general! 

* J*W*Alexander, A Proof of Jordan’s 
Closed Curve, Annals of Math^tics 

ad polygon* Alexander 
■***■ .«■*,* MJ* m» sm cm- f» -mm mm 

Theorem about a Simple 

vol 31 pp. lSOTiiil 
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assumes the theorem for the triangle and apparently does so for 

the convex polygon, although hie statements concerning the two 

aides of a chain may be justified without the assumption of the 

polygon case. 

The theorem on the simple arc is used by Alexander. H® uses 

also Lemma 4 of JCerelc jarto in a slightly different form. Xsrekjarto 

gives Alexander credit for this lemma* 

A chain will be any sort of generalized polygon consisting 

of a finite number of non-intersecting edges (which may be line 

segments or rays), and vertices (the end points of the rays), where 

at each vertex there end an even number of edges. A chain need not 

be connected* 

Suppose we have a chain whose edges are all segments. Then if 

two vertices, Y and Z, may be joined by a broken line made up of 

elements of the chain, they may also be joined by a second broken 

line which has no edges in common with the first* For if we remove 

from the chain the? edges of the first broken line?, there «ill 

still .remain an even number of edges abutting at every vertex 

except Y and Z where there will now remain an odd number. But, 

within each connected group of edges and vertices, the total 

number of times that edges abut on vertices ie equal to twice the 

number of edges and is therefore event Hence the vertices Y and S 

still belong to the same connected piece and my be joined by a 

broken line. 

A simple illustration of a chain would be a pair of broken 

lines connecting the same two points Y and Z, an - having a finite 

number of points in common. 

A chain k, like a simple polygon, haa two aides, although 

thendieles are not in general connected regions.' We may determine 
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them as follows. Complete the lines to which the edges of the 

chain fc belong fend Urns obtain a system of lines which subdivide 

one another into a finite number of line segments and rays 

b,,b2,b3,    • ,bH, while they subdivide the plaits into a finite 

number of convex regions a, ,a^,a3 , >aWt* How, the boundaries 

of the regions &c- are chains made up of sets of elements iy and 

their end points. Out of the symbols for the elements in these 

sets, we shall form the expression 

Cl) a — bt^ + b£bt., +■ i b.^ Ci —l#S,j,«* ♦« *,s) 

which shell be used to designate the boundaries of the various. 

cells nLm The expressions(l) ?/ill be combined by adding corres¬ 

ponding members, collecting terms, and reducing all coefficients 

modulo 8. In this way, we can obtain new combinations defining 

new chains whose edges can he read off from the right-hand member# 

lie use the following theorems: any chain, such aa k composed 

of elements by and their end points, can oe derived from elementary 

chj£ni^ (l) in two and only two ways, 

(2) 2, af - k 

(2*) 7~l &c - k 

and ^uha/peach of the regions at- occurs in one and only one of the 

combinations. For example: 

aid 

% 
U7 G} a Ov 

6”# L1 fc* _ 

a* K *• bu 

0, 

L-.  feu. 

4<, 6j, <}1 

a, r b, f b3 + % - k 

4- +• ^y4* 4* f- 

- b/+ \ + bb -f- o, t- b? + b? +■ + by * b^t- b? 

rb, + b/e + b/o+ b^ +. b/( + bt + bl%+ bll+ bM <- bs- 

= a b,-t a b4 + ti by + ho, 2 b^. + .f 0/o + 8otl +• 2G(1+ b, 4- b^+ b,+- by 

= b, +• bx * b3 + b<, = h 

Therefore the pointe of the plane fall into vno classes according 
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as ft hey belong to the inferior or boundary of a region occuring in 

the first- combination, or of a. region occurring in the second. 

These two classes of points sill bs called the sides of the chain k. 

Suppose we have two chains k, and k r* Then the set of points 

sshich are on given sides both of the chain k ; and the chain oay 

be subdivided into a finite number of convex regions# Therefore* 

the set is bounded by a chain composed of the sum, modulo 3, of 

the boundaries of the convex regions. 3y combining this chain 

with the chain , we obtain a new chain ks* 

& yegion is a set of points, each of which is interior to a 

triangle inclosing only points of the set, .while any two may be 

joined by an arc made up of points of the set* The first condition 

is satisfied by r,he complement of any closed set. When the second 

condition is satisfied, two points, Y and 2, of the region may 

also be connected within the region by a broken line which may 

be so chosen as to have only a finite number of points in common 

with any prs&sssigned finite system of lines# To show Uiie property 

consider any point P, of the arc joining Y end Z, We may place about 

? -a triangle which incloses only points of the region. Therefore* 

within this triangle, we may find &. aub-aro containing the point P 

such that tuny two points of this cub-arc may be joined by a broken 

line of the required type and such that the point P is not an end 

point of the sub-arc unless it is an end point of the aro YZ itself* 

Since the whole arc is covered by these sub-arcs, it may be covered 

by a finite number of them by the Heine-Borel Theorem. We may 

therefore construct a broken line connecting the points Y and 2 

by piecing together a series of broken lines running from one sub- 

segment to an adjacent one, aid so chosen thfct no uwo of them have 

.more chan a finite number of points in common* The broken line thus 
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obtained, which my or oca .w^odi <*> finite number of times, has 

a finite number of segments., ©a h of which cannot meet a pro** 

assigned finite aystem of lines in more than a finite number of • 

points. 

Lemma 5. Let ACB be a simple arc passing thru a point 

C and. ending at the points A and B, and let Y and Z be any two 

points of the plane not on the axe ACB. Then, if the points Y and 

2 arse*not separated by either of the sub-arcs AC or CB, neither 

are they separated by the arc ACB itself. 

Proof* The points Y and Z may be connected by a pair of oroken 

lines a and b such that a does not meet the arc* AC and b doee not 

roses the arc CB* The broken line a may be chosen ao that it meets 

the broken line a in at most a finite 

number of points and hence may be cofr* 

blued with & to form a chain k* How 

consider such points of the arc CB ae 

are either on the chain k, (i.e., on the 

broken line .a), or on the opposite side of the chain lc from the 

point Cm Each of these points may be enclosed within a triangle 

which neither assets aor encloses a point of the arc AC or of the 

broken line b, and since the set of all such points ie closed, 

they may all be enclosed within a finite number of these triangles 

by the Heine-Bcrel Theorem* 

We add^ modulo to the chain k, the boundaries of the finite 

est of convex regions made up of points v»hioh are ooth interior to 

one of the triangle a and, on the opposite side of the chain, k 

from the point 0* We thus obtain a new chain k*, which still contaia 

the broken lias b, m/. re.11 ::,s a, ‘supplementary piece a*, made up 

oi segments which neither meet nor end on the arc ABC. Therefore, 



the points Y and 2 may os joined oy a broken line which close not 

reset the arc ACB. 

Theorem 33* The points of the plane not on a simple 

arc AB do not form more than one connected region. 

Proof. We wish to snow that any two points, X and 2, not on the arc 

AB, may he joined by a broken line which does not meet the arc AB. 

About any point C, of the arc AB, we may place a triangle 

with respect to which ¥ and 2 are exterior points, since Y and 2 

are not on the arc AB. By remaining within this triangle, we imy 

find a'sub-are of the arc AB which does not separate the poiate 

I and 2, - which contains the point G, and which ends at the point 

C only when 0 is one of tho points A or B. The arc A3 nay thus 

be covered by a set of overlapping sub-arcs, and consequently by 

a finite set of overlapping suo-aros, each chat no one of them. . 

separata® tits points Y and 2. But the end. point's of this last set 

subdivide the arc AB into a 3till smaller finite sec of non-over¬ 

lapping euo-arce* Therefore, since the arc A3 may oe built up by 

piecing together these ouo-arca, it cannot separate the points 

. Y and Z by Lemma 5. 

Theorem 34* The points of the plane not on a simple 

closed curve do not form more than tw.o connsoted regions* 

Proof. iV© wish to show that given any three points X, Y, and 2, 

not on the curve, two of them at least, my always be connected 

by a broken line which does net meet the curve. 

Let A, B, and C be any three distinct points of the curve. 

Then the points X and Y, Y and Z, and Z and X, by Theoreia33, may 

be joined by three broken lines a, b, and c re epee lively, which 

do not meet the arcs CnB . nliC, and £0A. respectively* Moreover, 

the broken lines a, b, and c may be so chosen that no• t?;3> of 
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them have more than a xinite number of points in common, so that 

rbcp way be combined to form a chain k. 

Mow of the three points A, 3, and C, two at least, must be on 

the same aide of the chain .k, ard w© may assume without loss of 

generality shat the points B and C are*' 

Efe now have that the points X and y are joined by & pair of . 

broken lines a and ho which do not meet each other in mere than 

a finite number of points and such that the line a deee not meet 

the axe GAB and he does; not meet the arc DC* Theee broken lines 

form & chain k* 

Consider the points ox the are, BC v~.hich are either on the 

chain k (i*e#, on the broken liaxs a), or on Die opposite side of 

mue chain, k .from the point C. Each ox these points aiay *>.-= enclosed 

within a triangle which, neither- meets nor encloses a point of the- 

arc CAB or the broken line be, £pV ii V •it*,**' 0 iXi,". t\j ij ■» \ ij.O A i ^3 li £3 

is closed they may all be enclosed within a finite number of these 

triangles by the Heine-Bore.l Theorem# 

vie add modulo 3 to the chain k, the boundary of the finite 

set of convex regions made up of points which are both interior 

v» O v one of . the triangles and on the opposite tilde chain. k fr'ot 

the point C* W® thus botain a <ie-; chain k*, which still contains 

the broken line bo, as well as a supplementary piece a*, made up 

of segments which neither meet nor end .on the arc ACS, Therefore, 

the points X and Y- may be joined by a broken line which does not 

fj.eet the arc AC3« Since A(2 is the closed curve., the theorem . 

1L Gw 0 • 

Theorem 35. The points of the plena not oa a simple 

closed curve form •**, ls,».xn t.vo -coaxacted regions# 

Proof. Choose any two points, A and B, on the curve and denote 
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by AB and BA respect Ivsly, nfe-3 pro ores of the curve bounded by 

these points* Then any line 1,. which separatee the points A and B 

meet® the arcs AB and BA in two closed seta of points. If this were 

not so, either these exists a point P on 1 such tb&t every circle 

about P contains a point of the arc AB, P excepted, or, about any 

point P* of l«e may draw a circle small emough so that none of 

these circles contain a point of the arc AB. The same may be said 

of the arc BA. In the first cane, the point P would be a point of 

the arc AB since the curve is a closed set of pointsi In the 

second oase, we should have the arc AB divided into two sate whose 

distance %part is finite. This would contradict the fact that the 

curve is a simple closed Jordan curve. The sets of points in which 

X meets AB and BA are then closed. 

Kbf/ every point of the first set is interior to some intervh^k 

of tso line 1 which contains no poiat-suof the arc BA, for if not, 

every interval of 1 about a point P of AB would c, on point 

of BA, Then.P would be a limit point of points of B& and hence a 

point of BA since the curve is a closed set of points. Then AB 

.1 
and BA would not be distinct/points. In fact, the curve -ould not 

be simple. By the Heins-Borel Theorem, the entire set o£ points 

may be covered by a finite number of intervale. By combining; 

intervals when necessary, we my arrange them so that no two over¬ 

lap or are contiguous. We shall prove that the end points of this 

last set of intervals, i, or© not all within the same region by 

showing that., however we may connect them in p&ira by a system of 

uroken lines, one or more of the broken lines will always meet • 

uhs curve. 

Consider such a system of oroicea Hues, assuming, as we may. 
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that' no one of them meet's the line lf or another broken line of 

the system in more than a finite number of points* Then the system 

of lines may be combined With the internals i to form a chain |v 

Moreover, if to.add to the chain k the boundary of one side of the 

line X (i.ej, the line 1 itself), we shall obtain a second chain k* 

mads up of the broken lines combi tied with the segments s of the line 

1, complementary to the inter (.’■ale i* By the definition of the sides 

of a chain it is clear that one or the other of the chains• fc and k* 

separates the points A and 8. 

How, if the chain k separates the points A and 8, it surely 

meets the arc BA* But the arc BA can not meet the intervals i and 

must therefore meet one of the broken lines of the system* Similarly 

if the net k* separates the point® A and B, the other ore AB must 

meet one of the broken lines, since it can not meet the segments a. . 

Therefore, in either case, the curve meets 'one of the oroken lines, 

proving that the ends of the intervals i do not all belong to the 

same region. 

?eble»rs treatment * of the Theorem of Jordan is geometrical 

and non-metric in character* The theorem is aasuraed for. th© case of 
' 

the .triangle* It is based on a paper by l&bl&H on ordsrrelat-ion**, 
/ 

Theorem 46 is not valid as is pointsdxmt by feblen himself. As 

k does Kerekjarto, ?e bleu proves the 't her ora for she' case of a simple 

closed curve which has a linear arc and then goes to the more 

general curve. . • 

* 0. Sshlen, Theory on Plane Curves in ?3 on-Metric Analysis Situs? 

American ‘-Mathematical Society Transactions, voi. 6 pp. 83-98. 



Definition* A triangular region is the interior of a _ 

triaiqgftft* A geometrical limit point of a set of points, [xj ,• 

in a plane is a point P such that every triangular region including 

P iacludee a point X, diotinot from P* A triangular, region including 

a point is called a neighborhood of the point. 

Definition* A region la a set of points, any two of 

which are points of at least can cro&en line composed entirely of 

points of she set* Aa .interior paint of a region R, is one that 

can be- surrounded oy a- trias^M. containing only points of R. 

Consequently, an interior point of B is a geometrical limit point 

of'no mt of pci ESS that does 'hot contain points of R* A frontier 

point of a region B is a point or geometrical limit point of R 

not an interior point, i.e*, it is a liisit point of points of 8 

and of points not points of It, A a exterior point' of B or & point •'. 

exterior to R is any point neither an interior nor a frontier ■ 

point of R, fhe frontier or boundary of a region is a' set of all 

frostier'points* An open region contains no frontier points* A 

Closed region contains all its frontier points* 

Definition* Simple curves, closed or enclosed, arc 

composed of sets of points subject to certain conditions as iolloest 

A* Linear order* Among she points of a set of points /P] there 

exists a relation © , which we «my read proceeds, ouch that, 

1* contains at least two points* 

3. If P( and F^ar® any two dieting points of [P} than 

either ?, © \ or Pa© I>* 

3* If P,@ Plthsa not p, **e 
«p «» <» IS It. «I * # ns -«• 4» « » m *» *» #* m m m 4* *» ** «» '*» *» *» W «*' «» '<» 

55 If the so i is ordered we use [X"$ instead of [X] « 

®* pro® this it follows shat if P, © Pz, then P, :£ Pz* 
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4*. If ?, «?x and T% <2> p* , then P, e P* . 

B* Ordinal conti nuity* 

1. If P, and P^&re any two distinct point? of {p\ * 

such that P, ® P3 , then there is a point P^ of {Pi such that 

P, ® YK and K® PJ • 

S. If every point of j>Pl belongs to £P,]or [P^l, two 

infinite subsets of such that for every P, and Px, F, ©Pz* then 

there is a point P* such, that for every P, and Pt distinct from P?p 

P, « P* and P« ® Px* 

0. Geometries,! continuity* 

X. Let % he any point of for which there is an 

infinity of points P* such that P* ® Pe, * Denote the set of all such 

points by CP* 1 j then for. tiftrery triangular region t, including ^ 

there is a point of fPfJ , P* such that t includes all points of 

[?*] for which ® P*. 

2. bet P0 be any point of for which there is an 

infinity of points PM such that Pc ©Prt, Denote the set of all 

such points by [P* *J ? then f or every triangular region t, including 

P0 there ic a point of jPV*} , Py such that t includes all points 

of [P*«] for which ¥**& P£*. 

Definition* By the term arc or arc of curve is meant a 

set of points {P} satisfying conditions A, 3, and C and including 

two points P, , Px such that every point P, distinct fro® P, and P^ 9 

satisfies the further conditions that P, ® P and P ® Pv* The arc 

is said to 4°ln P/ and Px which are called its end-points* . 

Definition* A simple closed curve 4» is a sat of points 

fj\ 8 consisting of two arc© Joining two potato $,and but 

having no points in oerosion except J, and 

Theorem 36. Any two points of j may be taken as the points 

J, .v.M Juin the above definition* 



Definition* A simple unclosed ourve is a set of points 

= © that satisfies conditions A, B, and C and also tbs .following! 

B* If O is any point of the ©awe, no point except C 1© a 

limit point {in the geomstrie&l sense of definition above) both o£4, 

the set of all points 0* such that 0* © C and- of the eat of all "■ 

points 0f t such that 6©Ctl# 

Definition* A rsl&tioa satisfying;- condition© A#, 8/ and 6 

is called a> ©ease* A sense in which P; © Pz is said to. be fro® P, tb-E* 

, Theorems?. From one point to another upon & simple' 

unclosed QUXW there is mm and but one- sense* while upon a simple 
; ’ N 

closed, curves these are two and bufe two senses* 

Definition. If with respect • to any -sense on a curve 

P, © t\ &m-- F^V ^ * Pz is between F, and P3 is that sense* She sot 

of points between F; and .Pyia the given -sense'is called a segment: - 

whose' end. points are end- P3 .- The aegnsoai and its end-; 

points together constitute an arc or interval of the curve* On a 

simple unclosed' curve, if P, © P*.® § * P-^ie said to separate ? I* and - 

Pj# On any simple curve if P, «© P*.©!* <z>X^# P, and are-Mid to 

separate and be asperated* by fi&iid Pf. If a-set lpi/)( t'- lj3,*«•*} 

in such that Py s> Pw/ * the; point a Pv are said to be in tits order alo^i 

the curve P, PZP, *******^P^.**** * A point Pe i© the first of a 

act [P] if P0 ©P for every P p P6 j P, is the*last of the tet [Pi 

if P GP P, for every P ^t P,« 

Definition* A geometrically closed set of points in a 

set that- includes all .it® geometrical limit’ points* 

theorem 33*. If [P} Is any geometrically closed set of 

points, and a any arc that doss not. have a point incomaoe with [P] 

then ’{1} there exists a finite set of triangles [t-^such that 

every point of a is- interior to at least vne i* and every point 
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of [Pi is exterior to every tK, and (B) the wo end points A,, A 

of a can be joined by & oroken line not meeting [P)« 

Proof. (1) If A is any point of a there is & triangle t, including 

A but not including any point of 0?} f otherwise A would be a 

limit point of [P 3 and hence & point of [pj t as LPl is closed. 

Place such a triangle about’ every point of a. By condition C each 

of these triangles determines an arc i, of which lies entirely 

within.t and include© the point A to which t belongs. By the 

Heine^Borel Theorem there exists & finite subset [iuJ of the arcs ! 

such that every point of i belongs to one arc in. T he finite set 

of triangles tHwhich determine these arcs iH are those required 

by:- the theorem. 

(&)-The end points of the arcs i* constitute & finite set 

of point© which we. take as ordered by. the sense of a from A, to Av« 

The broken lino (this broken line meed not be simple) joining these 

points, taken in order is such-that each side lies within a triangle 

t and therefore can hot meet [Pj. 

0orollary. If tPl is any geometrically set of points 

and Q„ & point not of bo. then Ci e and the set of points, 

that can be joined to by arcs not meeting [P] - constitute fed 

open set* 

Theorem 39* About any point of a eegaient of a simple 

curve there is a triangle which includes no points o f the curve 

not on the segment. 

Definition, A finitely closed set of points is a 

geometrically closed set of which every infinite subset possesses 

a geometrical limit point* A finitely closed set, every point of 

which is a geometrical limit point, is a finitely perfect set* 

A finitely perfect set of points ©Hi ch cannot convict enfc^iely 
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of two closed subset ? i? called coherent set of points* 

Theorem 40. A closed curve or an arc of curve is a 

finitely perfect set of points which .can not consist entirely of 

two subsets, each of which includes all its limit points* la other 

words a closed curve or an arc of curve .is a- coherent aet of 

points* _ 

Theorem 41* If every point of a coherent set of points 

[A J is earn a simple curve c, closed or unclosed, then [Al is an 

interval- of c. 

Corollary* If every point of an arc, a, ia on a simple 

curve, o„ then a ie an interval of c. 

Theorem 42* If c ia any simple curve, any triangle t, 
*
1 

of the plane includes.potafca not on c* 

Definition* het P be an interior point of a region R, 

and B a point of the boundary b of R, An arc of a curve a,. whose 

end points are P and B approaches B from P thru R if every interval 

of a, one of whose end points is B, contains interior points of B« 

The approach-is one-sided if, besides the above condition, the 

are a, contains no point® exterior to R* The approach is simple 

If all the points of a, except B, are interior points of R-* 
:'N V 

An arc a* departs from a point B* of b to a point 

Q exterior to R if every interval of A* with B* as an end point 

contains points exterior to R. The departure is one-dided if, 

besides the above condition, the arc a* contains no points interior 

to R. The departure is simple if all the points of a* except B* are 

exterior to R. 

A curve c crosses the boundary in a point B if, 

with respect to a fixed &er>s«, B is between two points o, , Gj, 

tf c, q, interior and o^exteriox to R, in such a way that the arc 
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C/B approaches B through R and Bczdeparts from B to c2* . 

A curve c crosses the boundary b ina pair of points 

BB* if, with respect to a certain sense, one arc BB' of c is 

composed entirely of boundary points and if there are two points 

c,, c % of c such that c , is interior to R and an arc o, B of o 

approaches B from c ; while c a is exterior to R and an arc B*^ 

departs from B' to c^. 

The crossing of a boundary is simple is both the 

approach and departure at the point B or a point pair BB* are 

simple. 

The crossing of a straight line by a curve is a 

special case of the definition just given. A curve is said to 

cross a segment AB if the curve crosses the line AB in a point 

or a pair of points. 

Theorem 43. Ary simple curve joining an interior point 

of a region to an exterior point crosses the boundary in a point 

or a pair of points. 

Proof. Let I be the interior, 0 the exterior point, and a any arc 

of the curve from I to 0. Let [A].be the set of all points, A, of 

the arc a such that every point following 

I and proceeding C(A) is an interior or 

boundary point of the region. There are 

such points by Condition C.- By the 

Ordinal Continuity of a, the set £A] has 

a first forward bound B, i.e., a first point in the sense front I 

to 0 that follows ev'ery point of except possibly B itself. 

The arc BO of a departs from B to 0 as otherwise every arc 

BB* of BO would contain only interior or boundary points of the 
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region and thus B would not be a bound of •* Two cases can 

now occur. Either B is approached from I by the arc IB of a, in 

which case our conclusion follows, or there are points A* of [A| 

such that the arcs A*B include only boundary points. In the last 

case the set of all points A*, must have a first forward bound B* 

in the sense from B to I. The point B* is evidently a boundary 

point and is approached from I by the arc of a, IB'. Thus in the 

second case, the boundary is crossed by the pair of points B*B. 

Theorem 44. If a simple closed curve crosses a eide^e 

of a polygon (simple or not) in one point or point pair, it must 

pass thru a vertex or cross the same or another side in another 

point or point pair. 

Proof. Let the polygon be F; Pt .PH and let the curve ;} cross 

it in a point of P, Pz . If there is another crossing on the segment 

P, P*. ; or if j passes thru a vertex , Pz^ , the theorem 

is verified. Now P, ,P,,P3 may either be collineax or not. In the 

first case the original crossing is on P, P* and if the second 

crossing is pn Px P3 the theorem is verified. If there is not a 

crossing on PXP3 we consider P,PSPH if not collinear or if so 

P, Pv Py , etc. In case P, P^Ps are not collinear there must be a 

point J, of j and a point 0(com onto ;j and P, P% such that in a 

certain sense on 3, the arc J,0, of j approaches 0, thru the 

region on one aide of P/Px; likewise there must be a point J,. of 

j on the opposite side of P, Px from Jt and a point 0X common to 

P, Pt and j such that in the same sense the arc 0,JV departs from 

0zto .** Moreover the points J, and Jt may be so chosen that 

* This is not exactly correct. It is sufficient to have one arc 
BB' of BO containing only interior or boundary points, and then 
B would not be a bound of •fA'i . It follows that if there is one such 
arc there is an infinitude of them. 

** 0, and 0X may be identical. 
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one and only one of them lies within the triangle P, Pz. Since j 

crosses P, Pv only once, 0, and 0 are on the same arc of j with 

end points J, ,JX. The other arc a of j with end points J, ,Jxmust 

the theorem is verified, or must cross P,P3. 

If a crosses P, P3, let 0* be the first point in the sense , 
flv 

f °* px from J, to Jxin which a meets P, P, and 0* the 

0* and OJ. from opposite sides of P, P3 . 

In case P, P, Pw are non-coil inear, J* and may be so chosen 

that one is interior and the other exterior to the triangle P, P3 P* . 

P; P?Pyare not collinear the curve must, by Theorem 43, cross PjPf, 

in which case the theorem is verified, or must cross P, P¥ in which 

case we-are lead to the consideration of P, P*Pj,-* Continuing in 

this manner we are lead by a finite number of steps to P; P^P^in 

which the theorem is verified if not having been verified before. 

which is a linear interval J, Ja, and if the segment J, J,. is crossed 

by a simple closed curve j2in one point or a point pair, then 

either J,Jxia crossed in another point or point pair or the non¬ 

linear arc J, Jvof j(has a point in common with 

Proof* In case J( J^were not crossed more than once and the other 

T—by Theorem 45, cross the boundary of the 

y' triangle P, Pt P3 and since it does not cross 

V / a vertex, must either cross P, P3 , in which case 

last such point* Upon the arcs J, 0} and 0* Jt 

there must be two points of a, J,* and 3* on 

opposite sides of ^ Fs such that in opposite 

senese along j the arcs 3*0* and 3*0* approach 

Whether P, P, are colli near or not we proceed as with P; PaP3. If 

Corollary 1. If j,is a simple closed curve having an arc 
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arc Jf J^. of j,did n t meat j^, by Theorem 38, J, and J t could 

be joined by a broken line not meeting jt, since j^ie a closed 

set and the non-linear arc J,J^has no point on j^. We have then 

a contradiction of Theorem 44 sin© jtmeets the linear arc J, J,. 

and does not meet the constructed polygonal line which forms with 

the linear arc a polygon, one side of which is cut by the closed 

curve 

Corollary 2. Any simple closed curve j,having a linear 

arc J, ^decomposes the plane into at least two regions. 

Proof. Let PQ be a linear segment crossing the linear arc J, 

in a point 0. Then the region composed of all points that corn be 

joined to P by polygonal lines not meeting j/is by Theorem 44, 

separated from the region similarly connected with Q. 

Lemma 6. Any simple closed curve j decomposes the plane 

in which it lies into at least two regions. 

Proof. Let J,and Jzbe two points of j such that the linear segment 

J, Jv has no point in common with j . Such points exist, for 

if a is any line joining two points of j, it either has an (Interval 

free of j points and whose end points are the required points J, 

or its points with j constitute a single arc of j by the Corollary 

to Theorem 41. In the latter case any line a* joining a point of 

j on a to a point of j not on a evidently 

has the required points J; ,JA. 

Let t be a triangle about J; such that 

one of its sides meets the linear segment 

J, Jxin a point 0. Let Q* and Q*1 be two 

points of this side separated by 0 and such 

that the linear interval Q’Q*' contains no point of j. The existence 

of these points depends on the theorem that j is a geometrical 
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perfect set* 

J, and ^decompose j into two segments which, with the linear 

interval J, ^constitute two closed curves 1* and J*’. Assign the 

notation so that the firat point J* after 

Q** in the sense Q* 0J Q*
1 in which the 

boundary of t meets j shall be a point of 

j** It follows that the first point J** 

after Q* in the sense Q*,0Qt in which the 

boundary of t meets 3' is a point of j,f, 

for if it were a point of j*, the closed curve composed of the 

boundary of t from J** to J* in the s-inse Q*OQ** and the arc 

common to j and j* between Jj md JJ' would cross the linear 

segment J; of j** simply in 0 and would meet j** in no other 

point, This would contradict Corollary 1, Theorem 44* 

Thus «T* * is a point of J1** Let J** be the first point after 

J* in the sense Q,OQl1 in which the boundary of t meets 3* *• By 

the continuity of j, there exists a segment of the boundary of t 

just prseeeding J* • in the sense Q,OQ** and containing no point of 

j* or jM* Let X be any point of this segment. The broken line b** 

composed of the boundary of t in the sense Q» 0 QH from Q*1 to X 

does not meet j*** Likewise X is joined to Q* by a simple curve c* 

composed of the linear segment XJ**, the comman part of j** and j* 

from JJ* to J)' (it may happen that J** =. J** and in this case c* is 

a broken line), and the part of the boundary of t from J*’ to Q* 

in the sense Q*0Q*1. Thus c* can not meet j*, and , applying 

Theorem 38, c* can be replaced by a broken line b* joining X to Q* 

without meeting jA* We now extablish the lemma by showing that X 

can not be joined to 0 by a oroken line not meeting j* 

In the sense from X to 0 any such broken line would meet the 
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linear segments J, Jz&nd Q'Q*' in some first point 0,* If O^vere on 

some pointss preceeding 0, in the 

sense from X to 0 could be joined to a 

point B of Q*Q** by a segment not meeting 

4^ or j* *. Call b the resulting broken 

line from X to B. In case 0 were not on 

J, J,,it would be on Q’Q*' and different fror 

0, and b would be the oroken line from 

X to Q,rB. 

If B were on the same aide of J, J,with Q*» then the polygon 

composed of b+-b* and BQ* would be crossed 

by j* in 0 and would meet j in no other 

point, contradicting Theorem 44* If B 

were on the opposite side of the line J, 

from Q**, the polygon composed of b and 

b*1 and BQ** would be crossed by j&* in 0 

and would meet j** in no other point. X 

and 0 are therefore two points that can¬ 

not be joined by a broken line not meeting 

j* 

Definition. A point C of a curve c is finitely accessible 

from a point P not on c if there is a broken line from C to P not 

meeting c except in C. 

Lemma 7. If P is a point not on a simple closed curve j, 

and J,and J^are any two points of j finitely accessible from P 

or limit points of points finitely accessible from P, then there 

exists a pair of points J^and Jyfinitely accessible from P that 

separate J, and J3, 

Proof. Let t,be a rriangle about J, not including J,, and t3 a 
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triangle about ^ noth including any point of ty • By condition C of 

the definition of j there is a segment of j including J, and lying 

wholly within t( j by Theorem 39 there in a triangle t,* about J, 

within t, and including no point of j not on this segment* Thus 

every segment of j with end points on t, which meets tf must 

include J, • Similarly there is within t^a .triangle t* such that 

every segment of j with end points on t3which meets t^ must include 

. 

Let J* be a point within t* finitely accessible from P and 

JJ a point within t_J finitely accessible from P. The points 4* an<i 

J/ are thus joined by a broken line b, meeting j only in and 

J11, which without loss of generality may be supposed to be simple* 

On this broken line let P, be the first 

point in the sense from JJ to J/ in which 

it meets the boundary of t,. P,lies on an 

an interval 1„ of the boundary of t, con¬ 

taining no points of j but such that its 

end points are points of j* Let P, be the 

last point in the sense from J* to J* in 

which b meets the interval i,. In case P^io distinct from P; replace 

the portion of the oroken line fr om P, to Plby the portion of i, 

from P, to Pt, calling the new broken line b,» If b, crosses the 

interval 1, , Jtand J^are the end points of the interval* If by does 

not cross i, there must be some point P^beyond Pzin the sense from 

to J* in which b,meets the boundary of t, . The point P3must lies 

on an interval i of the boundary of t analogous to i* Proceed 

with i3as with i, • Since J* is inside tyand outside t^and since 

b, has but a finite number o.f sides, we must by repeating the 

above process come to a first interval i^in which the boundary of 

P 
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t,is crossed by a x*educed broken line b^from J\ to J* in a point 

F^or a pair of points PgI^« The end points of the jrpoint free 

interval i^of the boundary of t, are npw shown to be the required 

and • 

We prove first that J^and separate J3* and J*. If this were 

not so, let the simple closed curve formed by b^and the arc J,*JJ 

of J not including J^and <Jy be denoted by Also let ^denote the 

simple cloded curve formed by i^and the arc J^JyOf j not including 

J* and J,*. The simple closed curve j^would cross the arc i^of j -in 

the point or point pair l?k I^p.nd would meet j^in no o_her point, 

contrary to Corollary 1, Theorem 44. 

Hence J* and J* are on different arcs of j with end points 

J^and • But by the construction of the triangle t;’, J, must be on 

the same arc with J,1 and by the construction of t* , Jj must be on 

the same arc with . Hence ^ Jvseparate Jj. 

Theorem 45. The set of points of a simple curve j finitely 

accessible from a point P not on 3 is everywhere dense on j. 

Proof. Denote by £j*J the set of points of j which are either 

finitely accessible from P or are limit points of the set of 

finitely accessible points. The Theorem amounts to showing that£«J*3 

is identical with 3. If is any point of j which does not belong 

to [*rO it would 2>ie on an ar c of j free of points J* and having 

two points of £j*Jas end points* This would contradict Lemma ?• 

Lemma 8* Any simple closed curve of which one arc is a 

linear interval decomposes its plane into two open regions. 

I’roof. In Corollary 3, Theorem 44 it was shown that j decomposes 

the plane into at least tvo regions. The regions are open because 

a supposed frontier point of the set of points [P] not on j could 

if not itself & point of j, be surrounded by a triangle not meeting 

a point of j, and containing points of 03. It would, therefore be 
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an interior point of £p} , contrary to hypothesis. • 

By Theorem 45, every point 0 of the straight arc j is finitely 

accessible from any point of the plane. Thus if there were three 

distinct regions there would be three segments meeting in 0 and 

one lying in each of the three regions. But as two of these must 

lie on the same aide of the straight segment of j, they could be 

joined by a straight segment not meeting j, contrary to the 

hypothesis that the three regions are separated from one another 

by j. Hence j decomposes the plane into two and only two regions. 

Theorem 46. Every simple closed curve, j, decomposes its 

plane into two open regions. 

Proof. By Lemma 6, the curve j decomposes the plane into at least 

two regions. The regions are open by the reasoning employed in 

Lemmata. Let P be any point not on j and let PJ; and PJ,be two 

linear intervals meeting only in J, and J2. The points J, and 

exist because j is a perfect set of points. It would then follow 

that P would be a point of j. Let Q be any point not on j and not 

in the same region-with P and let be a point on j such that 

the linear segment QJ3 does not meet j and such that J3 is distinct 

from J, and Jz. Then QJj does not meet PJ, or PJa.&nd Q can, by 

Theorem 45, be joined by a broken line 

not meeting PJ/ #pjz#Qj,0r j except in J,, 

to a point of j in the order J, 

The broken line J, PJ,, the points between 

Ji&nd in the sense J, , the broken 

line J3QJV, and the points between Jvand 

J, in the sense constitute a simple closed curve j* of the 

type which we have proved to decompose the plane into tv;o and only 

regions. The points of the segments J, , J, Jvin the sense J, J, 
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are not points of j* and must lie both in the same region or in 

opposite regions with respect to j1. If they were in the same 

region a point in the region not containing the segments J, J* and 

J, could by Theorem 45 he joined by broken lines not meeting j 

to P and Q, thus contradicting the hypothesis that P and Q are in 

different regions. 

Having shown that the arcs J, J, and J3 (in the fixed sense 

J,JiJ3) are in opposite regions with respect to j* we are ready 

to complete the proof that j does not decompose the plane into 

more than two regions. A point R in a supposed third region 

could be joined by Theorem 45, by a broken line not meeting j 

except in its end points to a point J^-of J, Jzand by a similar 

broken li. e- to a point JtQf . Since R would not be in the same 

region with P or Q these oroken liiieo would not meet the broken 

line part of j*. Thus we should have two points Jj-aad J4in 

opposite regions with respect to j* joined by a broken lino not 

meeting j*,contrary to Lemma 8. Hence j decomposes the plane into 

not more than two, and therefore into exactly two, open regions. 

The proof by de la Valiae Poussin* depends upon rings which 

are constructed by two polygons and Pxsuch that P, ie strictly 

interior to P2 • The ri,.g is the portion of the plane exterior to 

P, and interior to Px* This proof is not valid as was pointed out 

by Schoenflies who shows how the errors may be corrected* The 

Theorem of Jordan for the polygon is assumed by de la Yallee 

Poussin. 

A link shall be a region of the plane, d'un eeul tenant** 

* be la Vallee Poussin, Corn’s D*Analyse Infiniteaimale. i n 
(1914) pp. 374-379. ■' * ' 

, connected. 
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bounded by an exterior polygonal contour without multiple points. 

It may have a number of interior regions, i,e., it may not be 

simply connected. If it has interior regions the boundary of these 

regions is the same as the boundary of the exterior* 

If we have links (l), (2)(n) such that each two 

oonseoutive links have points or parte in common, and two non- 

consecutive links do not toutch, the links constitute an open 

chain* Links (l) and (n) have no points in common* 

If (l) and (n) toutch, theij become consecutive and if all 

other conditions above hold, the links constitute a closed chain* 

The domain containing all the points of an open chain, is as 

the link itselfi, d*un seul tenant, bounded by a polygonal contour 

and having interior regions. 

A region of the plane is interior to a link or to an open 

chain if it is enclosed in their exterior contour, neglecting the 

interior regions. 

A chain is regular if a link may not be enclosed in another 

link, nor in a group of two other links, taken in the chain and 

necessarily consecutive* 

Theorem 47. If a closed chain (l) ,(2) ,.... (n) is 

irregular, it is interior to a chain of at most four of its links. 

Proof. Since the chain is irregular, it contains a link interior 

to one or to two others. If interior to two links, let these two 

links be (l) and (8f.-If the interior link, (3) for example, is 

contiguous to the group of two links, all the following links 

(4),.....(n—l), which neither toutch (l) nor (£), are enclosed 

with (3). If a link (k), non contiguous ’with (l) and (£), which 

is enclosed in (l) and (B) , all the chain (4) (n —l) which 



58 

contains (k) is enclosed with (k), for the same reason. All the 

chain is then interior to (n),(l),(&),(3). 

Theorem 48. Any interior region of an open chain is 

interior to a group of two consecutive links. 

Proof* Vie prove the theorem by induction. The theorem is evident 

for a chain of two links. Suppose the theorem true for k —1. Let 

C be the exterior cont ,ur of the cla in (1), (2),.... (k - l). Add 

the link (k). This last link is composed of a part (k*) interior 

to C . and a part (It* *) exterior to C, each of which may be de 

plusieurs tenants*. The addition of (k?) cari only reduce the 

number of interior regions, for which the theorem is already 

verified. 

We must now consider (k**). Suppose that an interior region 

ie produced between C and the frontier of (k*1)* We show that 

it ie interior to the group (k—l), (k) and hence that any line L 

going from a point of an interior region to the point at infinity, 

without cutting (k), cute (k -l)* 

The line L goes out of an interior region by the frontier 

of C, of which the two extremities touching (k), are two points 

A and. B of (k ~l). The line L divides the domain i nterior to C 

into at least two pieces which closes the interior region so as to 

separate A and B. Then (k —l), which is all in the interior of C, 

is not all in the same piece and it is divided by L. 

Theorem 59* The exterior contour of a regular open chain 

is unique and touches all the links, while the contour of an 

interior region touches at most four links. 

Proof* The links which touch the exterior contour form themselfea 

an open chain. That property persists if one outs in the interior 

* i.e., multiply connected. * ~ 
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of tlie chain (in order to make the interior regions) all the 

links which do not touch at the boundary, if there are any* Then, 

by Theorem 48, all links removed are interior to two links of the 

boundary, such that, if so the chain will toe irregular* Then the 

exterior contour of a regular open chain touches all tl$a links. 

On the other hand, an interior region, being interior to 

two consecutive links, may only be bounded by themselves and the 

two contiguous links, the only ones which will be exterior to 

the first two. 

Theorem 50. In a regular open chain of five links at 

least, an interior region may not touch at the same time the two 

extreme links. 

Proof* If an interior region touchesythe two extreme links it 

touches all links and hence more than four, which contradicts 

Theorem 49. 

We turn now to a consideration of closed chains. Let 

(l),(2),(3),(n) be a regular closed chain of five links 

at least. We wish to replace the group of the first three links 

by another group of three which is simplier and has the same 

exterior contour. 

Let G be the exterior contour of the group (1),(2),(3) and 

D the domain interior to C. Since (l) and (3) do not touch and 

each is exterior to the others (since the chain is regular), we 

may divide D by two transversals into three parts (l),(ll),(lll), 

such that the first contains all of (l) without touching (3), the 

third contain© all (3) without touching (l), and the second 

contains the remainder. 

We huyse thus constructed a new regular closed chain 

(l),(II),(ill),(4)(n) of the same number of .links as the 
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first; bcli (i) and (II) touch only along a common frontier d*un 

seui tenant, which we may call by its extremities, ab. 

In order to open that chain it :ia sufficient to consider the 

transversal ab as a cut disjointing (i) and (II)* To that effect, 

suppose that there are two''sides to that line, the one a*b* serving 

as the frontier of Uih the other a"bu serving as the frontier 

of (il); considering the line ab itself as exterior to the chain* 

Then (l) and (ll) are the two extreme links ana the chain is open. 

With the aid of the above considerations we establish the 

following theorem* 

Theorem 51* A regular closed chain of five links or 

less constitutes a ring, interior so a polygon P, end exterior to 

a polygon P2 contained in the interior of the first* Beyond the 

region that it encircles,the ring may contain certain interior 

regions* These are interior to one or two consecutive links and 

touch four at .most* On the contrary, the regions interior and 

exterior to the ring, touch all links, the one by P and the other 

by Pj. 

Proof* Let P be the exterior contour of the above open chain* 

That contour has the two frontiers a*b* and a’,b*,« Make a circuit 

of P keeping the .interior on the left, as a*b* and a’ ‘ b11 are then 

traversed in the opposite sense, the circuit then is composed of 

a1 to*., a* ,b,‘, and the two polygons P, and P^ joined respectively 

a* to a*’ and b1* to b* and each passing by all the intermediate 

links of the cahin (I), (II); then each passes also by all the 

links (l),(2p,*«.,.*,(n), for a and b are on (2) and one passes 

from (ill) to (4) only by (3), and from (i) to (n) only by (1$) 

Supress now the cut ab, which amounts to joining a1©* and 

a* * to * * | the chain as well as Pf and P^are closed, and it is contained 
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between the two polygonal lines of which one is*, consequently, 

interior to the other. We give to the hoop comprised between them 

the name of the ring. 

The chain (l), (ll)differs from (l),(s),.... only by 

the suppression of the interior regions of the group (l),(S),(3). 

Replace these interior regions and apply Theorem 48 to the other 

part of the chain opened by the cut* 

Theorem 52.A simple closed contour* may be enclosed in 

a regular closed chain of which the links have diameters as small 

as we please. 

Proof. Consider <^>0, leae than £ the diameter of the contour. 

Suppose the contour is described by (x,y) when t varies from 
by points. 

t,toT. Divide the contour t( T into pieces  stM)T 

such that the diameteraof each piece will be < &/%• Let S' be 

the smallest of the distances from two non-consecutive pieces. 

Cover the curve with a network of rectangular meshes formed by 

parallel! to the coordinat axes such that the diameter of each 

mesh is^6*/B. The meshes which touch the same part of the curve 

corresponding-to each (t; form a link. The links (l), (a). (n) 

are constructed respec ively on t,t,,tfct,, t„T* 

These links form a closed chain, for two consecutive links 

(Vi) and (t*) have in common the point tfe. The diameter of a link 

does not surpass <5/3 + S' hence St for /* my not surpass the 

diameter /2, the diameter of a link. Finally the chain is regular, 

for otherwise it will be interior to four links and its diameter 

will be less than 4 5, hence less than that of the curve. That is 

evidently impossible since the curve is contained in the chain. 

*i.e., a Jordan curve 
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The interior region surrounded by the ring touches the most 

separated links, and hence is of greater diameter than 4^-2 5= 2 2. 

On the contrary, as the interior regions of the ring itself are 

interior to two links, they are of diameter a££ . Then in order to 

construct the ring it is sufficient to cut out all the meshes of 

the net which are meet by the curve and all the interior regions 

except one, which is of diameter > 2 & and which constitutes the 

interior region of the ring* 

Theorem 53. All closed curves without multiple points 

decompose the plane into two regions, one interior and one 

exterior to the curve. 

Proof* Let p be a point not situated on the curve and 5 its 

distance from the curve. Construct a ring of which all the points 

will be at a distance < & from the curve j the point p, being 

excluded from the ring, falls on the interior or the exterior of 

the ring. We say in the first case that it is interior to the 

curve and in the second that it is exterior* 

That distinction depends in no manner upon the constructive 

properties of the ring, but edepenxlsm upon the curve. In fact, 

if the. point p is not surrounded by the ring, it is possible to 

trace a polygonal line starting from p and departing to the point 

at infinity v/ithout meeting the curve. That possibility disappears 

as soon as the point is surrounded by the ring. In fact, all 

polygonal lines going from p to the point at infinity should cut 

the chain and, consequently, cut a link in two, eg., (l), between 

the two points t,and t^tvhich unite it to its adg&eent one. The 

piece t, t^, which is situated entirely with in a link, passes then 

from one to the other part of the link determined by the line 

which outs the link and must meet the line. 
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The set of points Interior to the ring and the set of points 

exterior to the ring constitute respectively the interior and the 

exterior regions of the curve. The interior region ja&y not be re¬ 

duced to aero, for one way always construct a ring. Finally, two 

interior ox two exterior points nay always be joined by a polygonal 

line which docs not meet the curve, for one may construct a ring 

containing or excluding the two points and then a line which 

joins them doss not meet the curve, 

Schoenfliea * points out that the method of de la Valle© 

Poussin in conatmating, the ring is not without fault. In dividing 

the curve into n arcs unci placing the polygons P, ,PtJ..... about 

them, there is no assurance that a ring is constructed. The 

Polygons may be arranged as is figure 1, 2, or 3, with the points 

« and/3 on two consecutive aubarco such that their distance apart 

is always *n figures £ and & we see that the polygons P, and 

reform a ring. In figure 1 the remaining polygons lie inside 

In figure 3 one of the polygons encloses all the others. It is 

evident in these cases that the plane is divided into more than 
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Theorem of Jordan*. The Ja' dan Theorem as proved, by Schoenflies, 

0tatoa that the 1-1 and continuous i/nags of a circle is a closed 

curve which dividea the plana, and that each ox its points is 

accessible from both the inner and outer regions. The converse 

Theorem is that any simple cloned curve, which divides the plane 

into two regions, and v/ltooe points are accessible from points of 

each of the regions into which the plane is divided by the curve, 

is a 1-1 and continuous image of a circle. In the proof of 

Jordan* s Theorem, Schoenflies shows that the property of isolation 

nay be smbstituted .for the property of accessibility. The property 

of accessibility means that any point P in the plane not on a 

simple closed Jordan curve, imy be Joined to any point Q of the 

curve, by a. Jordan curve which has no point on the curve except Q. 

The property is isolation i* defined as follows: Consider a 
(X 

simple closed Jordan curve r , and two 

point a p and S m it. These two points 

determine two point seta H anu K. If & is 

any outer and i any inner point, and the 

points a and i are Joined by open Jordan 

curves such that, they meet r only in the 

points if and &, then these four open Jordan curves form an isolating 

polygon, which isolates the mt H from the eat K. 

We now prove the converse of Jordan*s Theorem, using the 
p 

property of isolation. Let^be a closed 

curve and let c and d be two points on it. 

Let the regions which it determiJies be 

1= I{£) and A=A(S)* The paths which 

**** ■•', *•■ •**** ■•* •*»> *» sa, «r. «» ««» «p* «». mm mm mm 

* 3. Sbhoenflies, Umkehrung dea Jordanschen Kurvenoatses, 
Jahresbarioht der Deutschen Mathematfcker - Vereizitung, "vol 33# 
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lead to c and a from an outer point a and an inner point i, form 

a polygon P, that encloses a certain subset 0 of ^* If we therefore 

set up the relation, 

fa,*)* C+D 

then every point of D belongs to the exterior of P, ana hence to 

A(P)« Since the points of the curve are accessible we ussy pick 

the points in the outer and the point in the inner region arbitrari¬ 

ly eio&e to the ouifve, ana in fact, the paths the; ms elves, 00 that 

all points of the polygon are arbitrarily close to the curve . 

If we sake the seta C or D closed we* increase them by the points 

c and d. 

The polygon P is an isolating polygon and isolates the set 

C from D* A similar polygon 0 exists for the set B and ii> is such 

that the two polygons have only the points c ana d in common, but 

otherwise lie outside of one another* 

Let T oe a circle. On the curve ^choose- two points c and d do 

that their distance apart is the maximum of the distances of pairs 

of points* The points c ana d are made to correspond to the end 

points Y and ^ of the diameter of the circle T. We shall further let 

the sets G and D correspond to the inner points of the circular 

area determined by Y and i* For this proof it is necessary to 

consider the sets closed* The above mentioned sets ©hall be 

designated &e 

&, * rj, / % * 

I'or^and^we imagine isolating polygons P; and Px such that 

they lie outside one another excepting for the points c and d. 

The set contained in each of these polygons shall be divided by 

the insertion of proper division points, 30 that the correspondi% 

sunsets on the circle , as well as on the curve, become gradually 
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awe.!!* On the are^fchooee' & point o, no that it is equidistant 

from c and 4* In case there is more than one such point, we shall 

choose c,as that point which is great eat t equidistaat from c and d. 

We choose, similarly, a point cton the arc/aand make the points 

o, :-B.d c,correspond to the middle points tf,and*i.of the circular 

arosr; andli» By these points (c,&nd c„) ^and £are divided into 

the arde^ , ^corresponding to the sets Wi,^and I7(,I7r* 

This process is continued. 

Finally, we surround each, set ^ with an isolating polygon P,-* * 

We a all have (by the isolating property asathe method of deter-. 

wining the isolating polygene), that, first, PM and P,x are 

inclosed by ?, , juet as PMund 2 jure inclosed by and secondly, 

that each two of the polygons Pc>fe (i.e5, Pc.4 and P*,-) lie outside 

of one another. 

On each sot &e-A\-<e determine further a point ct(aa was doaa 

above, and make it a or respond to the middle point/,* of the circular 

arc 17* . The indices «'fc of-toe middle points are the dame as those 

of4* We proceed to the curve area 

the circular arcs 

^c, £<'h ) 6> lift VH ] J 
s. 

Lift - - - "O'* 5 

p,.., VI > 

the isolating polygons, 

p,-,p,-k,  

and the points, 

<b,<h •*, - - «••?>'" and - **» "**1 v"^ 

For these the following hold: 

1. Each of the polygons Pa/_. Is an isolating polygon 

for the curve arc^.^ _ with the proper index. 
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S. Each polygon P^.^lieo out Bide the polygon PLt* — ~j 

with the a&flie index groupp*. ~»o * 

3* The polygons of each and, every Hides group 

lie entirely outside of one another. 

The points o£ke... , the curve arcs^,... , which these points 

determine, and their isolating polygons around them, possess 

the salad ordering (according to the subscripts) as the circular 

arc point and the circular arcs Tcht  , on which they lie. 

If we can then pro® that the breadth of the curve aro^*Ae... with 

increasing index number, becomes uniformly infinitely small, we 

show thereby that every point of the curve -z& by the ordering 

is in 1-1 and continuous correspondence with the points of the 

circle, 

&e show now the lemma, that there are not infinitely many 

curve arcs whose breadth is > <r .. Each arc whose breadth is > <r , 

hue a aubarc whose end points are exactly a distance r'apart. If 

now 

(A) > &" 

are ouch curve arcs, let 

(B) c^c^c* * . and d* ,d.‘ •,dr» 

be their end points. Further let 4L be the limiting configuration 

determined by them. is an arc of the curve all points of which 

are limit points of the area (A), The jfcimit points of (B) like¬ 

wise belong to this thus a connected set, 

We assume now that there is only one pair of limit points 

presenti namely and eta • Their distance apart is obviously <T~ • 

If we therefore put 

-£aj ~ ^Au.O.io)4' C.O, 

then C* be comes by the addition of c ^and d^. For the curve 
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itself, we have the foil oaring equation, 

& = ( Gua , &«j) -+- CL + D«j, 

and of course all the points of the sets (A) belong to the set D * 

si nee all the sets C* ,C* which determine <&, are distinct- (for j ), 

except possibly for end points. Since each of the sets 

  

is distinct from the f, one can surround^* by an isolating 

polygon P* so that all of these sets are excluded, and therefore 

no point of^ lies inside of P*. If we pass therefore from to 

the closed set which contains it, thin set contains all the points 

of 'Su since all points of ^are limit points of the arcs (A) which 

belong to 15^. The seta and Doo could not therefore be isolated 

from each other in contradiction to our assumption. 

In the above we have assumed that one and only one pair of 

pointy and d«, exist. If this is not the case, then we can 

select from the sets (A), o. suoset for which it ia th» case, and 

reach the same conclusion as before. 

7?e now show that no arcs of uhe cur we exist whose diameter 

is ><r , and none exist in which no division points lie. If this 

is shown, the curve S is filled with division points. 

If (ef) is any arc containing no division point cCke —, we 

consider, any one of tbeindex groups ich*— i to which (ef) belongs 

i.e., e arid f are division points. Let a and b be those division 

points next to e and f* The next division will cause a point to 

fall in the are (ab). It may fall between a and a, i.e., at a*. 

In the next division, it division point falls in the arc (a*b). 

It can either fall ia the arc (a*e) or in the arc (fb). In the 
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first case the area in which the division point fails, change with 

each other infinitely often. In the aecond case only a finite 

number of division points fall in one of she arcs* VI& treat the 

second case first. Let (fb) bo the arc in which infinitely many 

division pointe fall. In the arc (ae) 

only & finite number fall. Let g be the 

last of these*. Further if f, in the 

division point of the arc (gb), fx that of 

(gf i), etc., and if h ia a limit point of 

the sequence , than the arc (gh) ia also free .from division 

points. Mew the diameter of the arc (fyfw) can not become infinitely 

email, sines artoXCt 11 b ae d^. &«me. er or ( f ^ , £? h sni £o*r 

•V > i/o» the distance from h to f^wiXI be loss than the distance 

from g so fv and a division point will fall in the arc (gh). Hence 

*> 0 exists, such that for -v > V* , the diameter 

/3 (x/£^f() > * • 

If now ffivia the center of the straight line fyfw, andthe 

point of the arc (fyfw) which from avhas the greatest distance, 

then a number^ exist a such that for e.&ch*v>yu # 

/3 (fvf) >5* and / (frwfv) > i't * 

The arcs (fv <fy) form an infinite set of arch of ^, the breadth of 

ail being > {t . This oontaadiuts the above lemma. Hence the theorem. 

In the first case, when two division points fy,iw,fall in the 

same arc, the treatment is the same as above* £vtl ia replaced by fv, 

evby gvn , <3v*tby gV)* If fvie ouch a division point of (of), that the 

nekt division point (it is called gw*), falls in (ae), the division 

I-CA'II oi I he arc (fv gwV again has a maximum and equal distance from 

g may be identical with e. 
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iy&nd gw According as the point grails in (ae) or the point ^ 

1‘alle in (bf), one concludes that the arc (&HQ*J cr the arc (fW(f»J 

h&a a breadth which regains greater than k>0. The theorem follows 

as above. 

We have then &or the curved that each ®nb&xc into which 4 is 

divided, ie subdivided by other division points and approach zero 

in diameter* Each group of polygons about these subarea determines 

one and only one point, since the diameter of the arcs approach 

aero* Any point of whioh in a point of division corresponds to 

one and only one point of the circle* Likewise such points of the 

circle correspond to one and only one point of &, I t is r& eeaaary 

to show that any point which is noc a point ol division also 

corresponds to one and only one point of the circle. The points 

of division are everywhere dense since between any two there is 

a- tfilrd. Further, any point not a point ox division is determined 

by a group of nested polygons* Such a point is then a- limit point 

of points of division* The corresponding points of division on 

the circle approach a limit (unique), and these two limit points 

correspond. Similar conclusions hold ia the case of points of the 

circle which are not points of division* Since the arcs of divi« 

si on of rf approach aero uniformly in length, we have that the 

correspondence between $ and the circle is 1~1 and continuous* 


