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Abstract

This paper presents two fast algorithms for total variation-based image reconstruction in
partially parallel magnetic resonance imaging (PPI) where the inversion matrix is large and
ill-conditioned. These algorithms utilize variable splitting techniques to decouple the original
problem into more easily solved subproblems. The first method reduces the image reconstruction
problem to an unconstrained minimization problem, which is solved by an alternating proximal
minimization algorithm. One phase of the algorithm solves a total variation (TV) denoising
problem, and second phase solves an ill-conditioned linear system. Linear and sublinear conver-
gence results are given, and an implementation based on a primal-dual hybrid gradient (PDHG)
scheme for the TV problem and a Barzilai-Borwein scheme for the linear inversion is proposed.
The second algorithm exploits the special structure of the PPI reconstruction problem by de-
composing it into one subproblem involving Fourier transforms and another subproblem that can
be treated by the PDHG scheme. Numerical results and comparisons with recently developed
methods indicate the efficiency of the proposed algorithms.
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1 Introduction

In this paper we provide fast numerical algorithms for image reconstruction problems that arise
from an emerging magnetic resonance (MR) medical imaging technique known as partially parallel
imaging (PPI). MR imaging is commonly used in radiology to visualize the internal structure and
function of the body by non-invasive and non-ionizing means. It provides better contrast between
the different soft tissues than most other modalities. MR images are obtained through an inversion
of Fourier data acquired by the receiver coil(s). The practical performance of inversion algorithms
in terms of image quality and reconstruction speed is crucial in clinical applications.
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Magnetic resonance images are obtained by placing an object in a strong magnetic field and
then turning on and off a radio frequency electromagnetic field. Different body parts produce
different signals which are detected by a receiver. The resulting data is then inverted to obtain an
image of the scanned object. In PPI, the image quality and reconstruction speed are improved by
surrounding the scanned objects by multiple receivers and collecting in parallel part of the Fourier
components at each receiver.

The undersampling patterns of the Fourier coefficients are often described by a mask. Figure
1(a) shows a radial mask while Figure 1(b) shows a Poisson pseudo random mask for a 2D image.
The white pixels correspond to the Fourier component which are measured. The white region in

(a) Radial Mask (b) Poisson Mask

Figure 1: (a) A radial mask with 44 lines, sampling ratio 16.4%. (b) A Poisson pseudo random
mask, sampling ratio 25.0%.

the center of the masks indicates that the low frequency Fourier components are all measured. The
white rays in the radial mask in the surrounding darker region shows the spacing between the higher
frequency Fourier components that are measured. In the Poisson pseudo random mask, about 1/4
of the Fourier components are measured.

Partial data acquisition increases the spacing between read-out lines, thereby reducing scan time,
however, this reduction in the number of recorded Fourier components leads to aliasing artifacts
in images which must be removed by the image reconstruction process. Image reconstruction
in PPI is much different from either denoising and deblurring problems for which there are a
number of algorithms. The PPI reconstruction problem leads to a large and ill-conditioned inversion
matrix with much less structure than the matrices associated with denoising or deblurring problems.
There are two general approaches for removing the aliasing artifacts and reconstructing high quality
images, image domain-based methods and k-space based methods. The k-space based methods
use coil sensitivity variations to reconstruct the missing k-space data, and then apply the Fourier
transform to the original and reconstructed data to obtain the unaliased image [3, 22, 26]. In this
paper, we employ image domain methods and coil sensitivity maps to reconstruct the underlying
image [8, 15, 30, 31, 32, 33, 35, 42, 43].

Sensitivity Encoding (SENSE) is the most common image domain-based parallel imaging method.
It is based on the following equation which relates the partial k-space data fj , acquired by the j-th
receiver, to the sensitivity map Sj and the mask M :

MFSju = fj (1)

Here fj is the vector of measured Fourier coefficients at receiver j, M corresponds to the mask
which is obtained by extracting from the identity those rows corresponding to the measured Fourier
components, F is the Fourier transform, Sj ∈ CN×N is the diagonal sensitivity map for receiver
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j, and u ∈ CN is the underlying image gotten by stacking all columns of the image to form a one
dimensional vector. The sensitivity map is a diagonal matrix whose diagonal elements estimate the
impact of a pixel in the image on the measured Fourier coefficients. Pixels closest to a receiver
may have more impact on the signal than pixels far away from the receiver. There is one diagonal
element in Sj corresponding to each pixel in the image.

Based on (1), the reconstruction of the image u could be accomplished by solving the least
squares problem

min
u∈CN

K∑
j=1

‖MFSju− fj‖2
2 , (2)

where ‖ · ‖2 is the 2-norm (Euclidean norm), and K is the number of channels (or receivers). Since
(2) often does not have a unique solution, the minimization problem can be ill-conditioned. To
alleviate the effect of the ill-conditioning, the SENSE model (2) has been improved recently by
incorporating regularization terms into the energy functional to take advantage of the underlying
sparsity of MR images in the finite difference domain [9, 27]. The images are recovered by solving
an optimization problem of the form

min
u∈CN

‖u‖TV + λ
K∑

j=1

‖MFSju− fj‖2
2, (3)

where ‖·‖TV is the total variation semi-norm and λ > 0 is a parameter corresponding to the relative
weight of the data fidelity term

K∑
j=1

‖MFSju− fj‖2
2.

The term ‖u‖TV controls the solution sparsity. The general form of the image reconstruction
problems is

min
u∈CN

J(u) + H(u), (4)

where J is a convex and possibly nondifferentiable function, and H is convex and continuously
differentiable. In TV-based image reconstruction problems, J and H, respectively, have the form

J(u) = ‖u‖TV and H(u) = λ‖Au− f‖2
2, (5)

where f is the measured data, and A is a possibly large and ill-conditioned matrix describing the
imaging device or the data acquisition pattern. In the PPI problem (3),

A =

 MFS1
...

MFSK

 , (6)

and f is the vector formed from the data collected by the K receivers.
TV-based regularization was originally introduced in image processing by Rudin, Osher and

Fetami in their pioneering work [34] for denoising. A significant advantage of TV regularization is
that it preserves edges in the solution. The TV term in (5) leads to an underlying sparse solution of
Au = f . The lack of smoothness in the TV term makes the solution of (4) difficult. In recent years,
many algorithms were proposed to efficiently solve the TV-based image reconstruction problem (4).
An overview of these algorithms will be provided in the next section. Note that the efficiency of
most algorithms relies on a very special structure for the matrix A. For example, A is either the
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identity or diagonalizable by a discrete Fourier or cosine transform. Therefore, they do not directly
apply to the PPI problem (3).

Our paper is organized as follows. In Section 2 we give an overview of TV-based image recon-
struction techniques. In Section 3 we present two algorithms that we have used to solve the PPI
problem (3). The first algorithm is based on the very general splitting v = u, while the second
algorithm uses the PPI-based spitting vj = Sju. Section 4 studies the convergence rate of the first
algorithm. Finally, Section 5 uses PPI images to compare our algorithms to recently developed
methods.

Notation. For a differentiable function, ∇f denotes the gradient of f , a row vector. More
generally, ∂J(x) denotes the subdifferential set at x, a set of row vectors. For any matrix M , N (M)
is the null space of M . xT denotes the conjugate transpose of the vector x and 〈x, y〉 = xTy is the
Euclidean inner product. ‖ · ‖p is the p-norm, and ‖ · ‖TV is the discrete total variation semi-norm.
A list of matrices (or vectors) separated by semicolons, such as (A; B) where A and B have the
same number of columns, denotes the stacked matrix with A on top of B.

2 Related Work

The image reconstruction problem (4)–(5) is equivalent to solving the problem

min
u∈CN

‖u‖TV + λ‖Au− f‖2
2, (7)

where ‖ · ‖TV is the discrete (isotropic) TV semi-norm defined by

‖u‖TV ,
N∑

i=1

‖Diu‖2, (8)

where Diu ∈ R2 contains the forward finite differences of u along its first and second dimensions,
and N is the number of pixels in the image. The early work on algorithms for (7) used gradient
descent methods with explicit [34] or semi-implicit schemes [24, 36] in which the TV norm was
replaced by a smooth approximation

‖u‖TV,ε =
N∑

i=1

√
‖Diu‖2

2 + ε. (9)

The choice of ε > 0 was crucial to the reconstruction results and convergence speed. A large ε
encourages fast convergence rate, but fails to preserve high quality details such as edges in the
restored image; a small ε better preserves fine structure in the reconstruction at the expense of slow
convergence.

In [37, 39], a method is developed based on the following reformulation of (7):

min
u,w

N∑
i=1

‖wi‖2 + λ‖Au− f‖2
2, subject to wi = Diu, i = 1, · · · , N. (10)

The linear constraint is treated with a quadratic penalty

min
u,w

N∑
i=1

‖wi‖2 + ρ‖Du− w‖2
2 + λ‖Au− f‖2

2, (11)

4



where w = (w1; · · · ;wN ) ∈ C2N and D is obtained by stacking the Di matrices. For any fixed ρ,
(11) can be solved by alternating minimizations, first over w and then over u. If both D>D and
A>A can be diagonalized by the Fourier matrix, as they would if A is either the identity matrix or a
blurring matrix with periodic boundary conditions, then each minimization involves shrinkage and
a fast Fourier transform (FFT). A continuation method is used to deal with the slow convergence
rate associated with a large value for ρ. The method, however, may not be suitable to more general
A.

In [21] Goldstein and Osher develop a split Bregman method for (11). The resulting algorithm
has similar computational complexity to the algorithm in [37]; the convergence is fast and the
constraints are exactly satisfied. Later the split Bregman method was shown to be equivalent to
the alternating direction method of multipliers (ADMM) [7, 14, 19, 20] applied to the augmented
Lagrangian

L(w, u, p) ,
N∑

i=1

‖wi‖2 + λ‖Au− f‖2
2 + 〈p, Du− w〉+ ρ‖Du− w‖2

2. (12)

Nonetheless, the algorithms in [21, 37, 39] benefit from the special structure of A, and they lose
efficiency if ATA cannot be diagonalized by fast transforms. To treat a more general A, the Bregman
operator splitting (BOS) method [44] replaces ‖Au− f‖2

2 by a proximal-like term

δ‖u− (uk − δ−1A>(Auk − f))‖2
2

for some δ > 0. BOS is an inexact Uzawa method that depends on the choice of δ. It is generally
less efficient than split Bregman when A has special structure.

There are also several methods developed to solve the associated dual or primal-dual formulations
of (7) based on the dual formulation of the TV norm:

‖u‖TV = max
p∈X

〈p, Du〉, where X = {p = (p1; · · · ; pN ) ∈ C2N : pi ∈ C2, ‖pi‖2 ≤ 1, 1 ≤ i ≤ N}

(13)
Consequently, (7) can be written as a minimax problem

min
u∈CN

max
p∈X

〈p, Du〉+ λ‖Au− f‖2
2. (14)

In [11], Chan et al. proposed to solve the primal-dual Euler-Lagrange equations using Newton’s
method. This leads to a quadratic convergence rate and highly accurate solutions; however, the
cost per iteration is high since the method explicitly uses second-order information and the inversion
of a Hessian matrix is required. In [10], Chambolle used the dual formulation of the TV denoising
problem (7) with A = I, and provided an efficient semi-implicit gradient descent algorithm for the
dual. However, the method does not naturally extend to the case with more general A. Recently,
Zhu and Chan [46] proposed a primal-dual hybrid gradient (PDHG) method. PDHG alternately
updates the primal and dual variables u and p. Numerical results show that PDHG outperforms
methods in [10, 21] for denoising and deblurring problems, but its efficiency again relies on the fact
that ATA can be diagonalized by fast transforms. Later, several variations of PDHG, referred to
as projected gradient descent algorithms, were applied to the dual formulation of image denoising
problem in [47] to make the method more efficient. Further enhancements involve different step-
length rules and line-search strategies, including techniques based on the Barzilai-Borwein method
[5].

Another approach that can be applied to (4) in the imaging context (5) with a general A is
the forward-backward operator splitting (OS) method. In [28] the OS idea of [25] is applied to
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image reconstruction in compressed MR imaging. The scheme is based on the first-order optimality
condition at a local minimizer u∗:

0 ∈ ∂J(u∗) + 2λAT(Au∗ − f).

This is rewritten in the form

0 ∈ ∂J(u∗) +
1
δ

(u∗ − s∗) , s∗ = u∗ − 2δλAT(Au∗ − f).

The iterative scheme is

sk = uk − δλAT(Auk − f),

uk+1 = arg min
u

J(u) +
1
2δ
‖u− sk‖2

2.

The computation of uk+1, given sk, is a TV-denoising problem. If this problem is solved using
a split Bregman method [21], then this is equivalent to BOS [44], which can accommodate an
arbitrary matrix A. In [40], Ye et al. proposed a variation of BOS utilizing the Barzilai-Borwein
stepsize to significantly improve the efficiency; however, the convergence of the algorithm is not
known, although it seems to converge in numerical experiments. Numerical comparisons with the
algorithm of [40] are given in Section 5.

3 Proposed Algorithms

In this section, we give two algorithms based on different variable splittings to solve the TV-based
image reconstruction problem (4). The first algorithm is based on the general splitting v = u and
the alternating proximal minimization algorithm to solve a penalized problem. The convergence
speed is either sublinear or linear depending on the properties of A. The practical performance of
this algorithm in the context of PPI is much better than that of many recently developed methods.
The second algorithm is specifically designed for the TV-based SENSE problem in PPI (3). It
employs the PPI-based splitting vj = Sju and the alternating direction method of multipliers for
which convergence is guaranteed. The numerical results in Section 5 show high efficiency of these
algorithms in PPI image reconstruction.

3.1 The Splitting v = u and the Alternating Minimization Algorithm

To cope with the lack of smoothness in J in problem (4), we introduce an auxiliary variable v to
obtain the equivalent constrained problem

min
u,v∈CN

J(v) + H(u) subject to u = v, u, v ∈ CN . (15)

The equality constrained problem is converted to an unconstrained problem using a quadratic
penalty:

min
u,v∈CN

J(v) + H(u) + α‖v − u‖2
2, (16)

where α > 0 is a parameter. The additional variable v allows us to treat the smooth term H and
the nondifferentiable term J somewhat independently. Starting from an initial guess u0, we solve
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the penalized problem by first minimizing over v with u fixed, and then minimizing over u with v
fixed:

vk+1 = T (uk), T (u) , arg minv∈CN J(v) + α‖v − u‖2
2

uk+1 = L(vk+1), L(v) , arg minu∈CN H(u) + α‖v − u‖2
2

}
(17)

Since J and H are convex, the objective functions in both subproblems are strongly convex. Hence,
for any starting guess u0, the iteration sequence (vk, uk), k ≥ 1, exists and is unique. In the imaging
context (5), the iteration is

vk+1 = arg minv∈CN ‖v‖TV + α‖v − u‖2
2 (TV)

uk+1 = arg minu∈CN λ‖Au− f‖2
2 + α‖v − u‖2

2 (LS)

}
(18)

The first subproblem, denoted (TV), is a TV-based image denoising which has been extensively
studied in the literature, and second subproblem (LS) is a least squares problem. Both subproblems
can be solved quickly.

In the literature, algorithms of the form (17) are called alternating proximal minimization al-
gorithms. References include [1, 4, 6]. Alternating proximal minimization was recently applied to
the TV-based image deblurring problem in [23, 38] and to TV-based SENSE problem in [41], with
different algorithms for the subproblems. The iterates converge to a solution of (16), if a solution
exists, according to [6, Cor. 4.5], for example. In general, one needs to let α tend to infinity to
obtain the solution of (4). However, our numerical experience in PPI reconstruction indicates that
in this application, a suitable approximation to the solution of (4) is generated using a fixed, not
very large α.

We now provide implementations for the TV and LS subproblems of the alternating proximal
minimization algorithm (18). One of the reasons that the splitting (15) worked well was that each
of the subproblems could be solved quickly. As discussed earlier, there are many fast algorithms
for the TV subproblem that take advantage of the simplicity of the ‖v − u‖2

2 term. Recent work
includes the dual approach in [10, 47], variable splitting and continuation [37, 39], split Bregman
[21], primal-dual hybrid gradient [46]. In the numerical experiments of Section 5, we used a primal-
dual hybrid gradient (PDHG) scheme which is shown to be one of the fastest methods for TV image
denoising.

We now explain in detail the PDHG scheme that we use for the TV subproblem in (18). Based
on the dual formulation of the TV norm (8), the TV subproblem can be written as

min
v

N∑
i=1

‖Div‖2 + α‖v − u‖2
2 = min

v
max
p∈X

〈p, Dv〉+ α‖v − u‖2
2.

where X = {p = (p1; · · · ; pN ) ∈ C2N : pi ∈ C2, ‖pi‖2 ≤ 1, i = 1, · · · , N}. The PDHG algorithm is
based on the following updates for the primal and dual variables:

pl+1 = arg maxp∈X Φ(vl, p)− 1
2τl
‖p− pl‖2

2,

vl+1 = arg minv∈CN Φ(v, pl+1) + 1
2θl
‖v − vl‖2

2,

}
(19)

where Φ(v, p) = 〈p, Dv〉 + α‖v − uk‖2
2, and θl and τl represent the primal and dual step sizes

corresponding to the regularization terms in (19). Due to the simple form for the quadratic term
in Φ, the iteration takes the form given in Algorithm 1.

In Algorithm 1, ΠX : C2N → C2N is the projection onto X. For the step (21), vl+1 is a linear
combination of vl, uk and DTpl+1. The authors in [46] suggested that the step size be updated by
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Algorithm 1 PDHG [46] for TV Subproblem

pl+1 = ΠX(pl + τlDvl), (ΠX(p))i = pi/ max{‖pi‖2, 1} ∀ i, (20)

vl+1 = (1 + 2αθl)−1(vl − θlD
Tpl+1 + 2αθlu

k)(1− θl)vl + θl

(
uk − (1/2α)DTpl+1

)
(21)

the rule τl = 0.2+0.08l, θl = (0.5− 5
15+l )/τl for improved efficiency; however, PDHG with constant

step sizes already outperforms most of other methods. In our experiments, we use the suggested
updates for τl and θl. Note that both steps in Algorithm 1 only require pointwise operations and
hence can be computed in parallel. Based on the results given in [46], Algorithm 1 is expected to
be very efficient.

The LS subproblem in (18) is a least-squares problem in u. We solve this by Nesterov’s op-
timal gradient algorithm in [41], however, we found that comparable or better performance was
obtained using the Barzilai-Borwein (BB) method [5]. This could also be solved by a conjugate
gradient method, but again, comparable or better performance was obtained using the BB method,
which handles ill-conditioning much better than gradient methods with a Cauchy step [2]. The LS
subproblem has the form

min
u

λ‖Au− f‖2
2 + α‖v − u‖2

2. (22)

In the standard implementation of the BB method, the Hessian of the objective function is approx-
imated by a multiple of the identity matrix. For the LS problem, however, the Hessian of ‖v − u‖2

2

with respect to u is already a multiple of the identity. Hence, we only approximate the Hessian of
‖Au − f‖2

2 by a multiple of the identity. More precisely, if uk is the current BB iterate, then we
employ the approximation

‖Au− f‖2
2 ≈ ‖Auk − f‖2

2 + 2(Auk − f)TA(u− uk) + δk‖u− uk‖2
2, (23)

where
δk = ‖A(uk − uk−1)‖2

2/‖uk − uk−1‖2
2.

Since the ‖Auk − f‖2
2 term in (23) does not depend on u, the BB method for the LS subproblem

has the form shown in Algorithm 2.

Algorithm 2 BB method [5] for LS Subproblem

uk+1 = arg min
u∈CN

λ
(
2(Auk − f)TA(u− uk) + δk‖u− uk‖2

2

)
+ α‖v − u‖2

2. (24)

Under suitable assumptions [12, 13, 17], the iteration (24) converges linearly to a solution of
(22). Each iteration involves multiplication by A and AT where A is defined in (6). The time to
multiply by M or Sj is proportional to N , while the Fourier transform F can be performed in time
proportional to N log(N). Hence, each iteration of Algorithm 2 can be performed quickly in our
target application PPI.

The scheme (18), with the TV subproblem solved by PDHG (Algorithm 1) and with the LS sub-
problem solved by BB (Algorithm 2), will be referred to as the alternating minimization algorithm
or (AM). In theory, in order to enforce the constraint u = v, we must let α tend to infinity in (18).
As an alternative to the penalty method for handling the equality constraint, we could apply the
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multiplier method. When the iteration is implemented by the alternating proximal minimization
algorithm [16, 18, 45], we obtain the alternating direction method of multipliers (ADMM):

vk+1 = arg minv∈CN ‖v‖TV + 〈bk, v − uk〉+ α‖v − uk‖2
2

uk+1 = arg minu∈CN λ‖Au− f‖2
2 + 〈bk, vk+1 − u〉+ α‖vk+1 − u‖2

2

bk+1 = bk + 2α(vk+1 − uk+1)

 (25)

ADMM converges to a solution of (15), while AM reaches a solution of (15) only in the limit, as
α tends to infinity. However, we found that in our target application PPI, ADMM and AM have
almost identical performance (see Figure 5 of Section 5).

Another approach for treating the penalty term in (17) is the continuation method where the
value of α is gradually increased. The solution for a previous α is used as a ’warm start’ for the
next larger α. However, in our numerical tests with PPI data sets, we found it was more efficient to
simply take a fixed, not very large value α. The reason is the following: The image reconstruction
techniques are designed to minimize the TV-based energy (7). The ground truth, however, is
typically not a minimizer of (7). As the penalty α in the AM algorithm tends to infinity, the
iterates approach a solution of (7), however, at some point, the iterates may increase their distance
to the ground truth since it does not minimize (7). We found that α does not need to be very large
for a suitable image reconstruction, and that further increases in α may not improve the image
quality. And in the case where α is not very large, there was no significant increase in efficiency
when we implemented a continuation scheme.

3.2 The Splitting vj = Sju and ADMM

Another approach that we consider for the TV-based SENSE problem in PPI is based on the
substitution vj = Sju in (3). This leads to the problem

min
u,vj

‖u‖TV + λ
K∑

j=1

‖MFvj − fj‖2
2, vj = Sju. (26)

We employ the following augmented Lagrangian associated with (26):

‖u‖TV + λ
K∑

j=1

(
‖MFvj − fj‖2

2 + 2α〈bj , vj − Sju〉+ α‖vj − Sju‖2
2

)
. (27)

In this context, ADMM is

vk+1
j = arg min

vj∈CN
‖MFvj − fj‖2

2 + 2α〈bk
j , vj − Sju

k〉+ α‖vj − Sju
k‖2

2, j = 1, · · · ,K,

uk+1 = arg min
u∈CN

‖u‖TV + αλ
K∑

j=1

(
2〈bk

j , v
k+1
j − Sju〉+ ‖Sju− vk+1

j ‖2
2

)
,

bk+1
j = bk

j + (vk+1
j − Sju

k+1), j = 1, · · · ,K.


(28)

In (28), vk+1
j can be computed quickly since the matrix in the normal equation is

FTMTMF + αI = FT(MTM + αI)F ,
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which is the product of Fourier transforms and a diagonal matrix. The solution to the u-subproblem
in (28) was computed using the PDHG scheme. To put the u-subproblem into the framework for
the PDHG scheme, observe that the objective function in the u-subproblem can be expressed

min
u∈CN

max
p∈X

Φ(u, p) , 〈p, Du〉+ αλ
K∑

j=1

(
2〈bk

j , v
k+1
j − Sju〉+ ‖Sju− vk+1

j ‖2
2

)
. (29)

The PDHG iteration is then written

pl+1 = arg max
p∈X

Φ(ul, p)− 1
2τl

‖p− pl‖2
2,

ul+1 = arg min
u∈CN

Φ(u, pl+1) +
1

2θl
‖u− ul‖2

2.

(30)

The computation of pl+1 reduces to the projection given in (20). The computation of ul+1 is trivial
since the matrix in the normal equation is I + 2αλθl

∑K
j=1 Sj

TSj , a diagonal matrix. Therefore,
Algorithm 3 only requires pointwise operations which can be computed in parallel. A more detailed
statement of the PDHG algorithm in this context appears in Algorithm 3. The alternating direction
method (28) with the u-subproblem solved by the PDHG scheme is referred to as the APD algorithm.

Algorithm 3 PDHG [46] for TV Subproblem in (28)

pl+1 = ΠX(pl + τlDul) (31)

ul+1 =

I + 2αλθl

K∑
j=1

Sj
TSj

−1 ul + 2αλθl

K∑
j=1

Sj
T(bk

j + vk+1
j )− θlD

Tp

 , (32)

4 Convergence Analysis

In this section, we examine the convergence rate of the alternating proximal minimization scheme
(17). Since H is convex, there exists a constant σ ≥ 0 such that the following monotonicity condition
holds for all u and v ∈ Cn:

(∇H(u)−∇H(v))(u− v) ≥ σ‖u− v‖2
2 (33)

Here, ∇H denotes the gradient, a row vector. If σ > 0, then H is strongly convex. As shown below
in Corollary 4.2, strong convexity of H and convexity of J imply that the objective function in the
penalized problem (16) is strongly convex, which ensures the existence of a unique minimizer.

Theorem 4.1. If (16) has minimizers v∗ and u∗, then for each k we have

‖vk+1 − v∗‖2 ≤
2α

2α + σ
‖vk − v∗‖2 and ‖uk+1 − u∗‖2 ≤

2α

2α + σ
‖uk − u∗‖2. (34)

Proof. It is well-known that the operators T and L in (17) are nonexpansive relative to the Euclidean
norm. That is, for all u and v, we have

‖T (v)− T (u)‖2 ≤ ‖v − u‖2 and ‖L(v)− L(u)‖2 ≤ ‖v − u‖2.
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This follows from the first-order optimality conditions characterizing the minimizers in (17). For
example, if vi = T (ui) for i = 1, 2, then 2α(ui − vi)T ∈ ∂J(vi), where ∂ denotes the subdifferential.
By the convexity of J , it follows that

J(v2) ≥ J(v1) + 2α(u1 − v1)T(v2 − v1). (35)

Likewise, interchanging v1 and v2 gives

J(v1) ≥ J(v2) + 2α(u2 − v2)T(v1 − v2). (36)

We add (35) and (36) to obtain

‖v2 − v1‖2
2 ≤ (u2 − u1)T(v2 − v1) ≤ ‖u2 − u1‖2‖v2 − v1‖2. (37)

Hence, ‖v2 − v1‖2 = ‖T (u2)− T (u1)‖2 ≤ ‖u2 − u1‖2, which yields the nonexpansive property.
Since v∗ and u∗ achieve the minimum in (17), we have v∗ = T (u∗). Subtracting this identity

from the equation vk+1 = T (uk) and utilizing the nonexpansive property gives

‖vk+1 − v∗‖2 ≤ ‖T (uk)− T (u∗)‖2 ≤ ‖uk − u∗‖2. (38)

The first-order optimality conditions for uk and u∗ are

∇H(uk)− 2α(vk − uk)T = 0,

∇H(u∗)− 2α(v∗ − u∗)T = 0.

We subtract the second equation from the first and multiply by (uk − u∗) to obtain

(∇H(uk)−∇H(u∗))(uk − u∗) + 2α‖uk − u∗‖2
2 = 2α(vk − v∗)T(uk − u∗) (39)

≤ 2α‖vk − v∗‖2 ‖uk − u∗‖2.

Utilizing the monotonicity condition (33) on the left side of (39) gives

(σ + 2α)‖uk − u∗‖2
2 ≤ 2α‖vk − v∗‖2 ‖uk − u∗‖2,

which yields

‖uk − u∗‖2 ≤
(

2α

σ + 2α

)
‖vk − v∗‖2. (40)

Combining this with (38) gives

‖vk+1 − v∗‖2 ≤
(

2α

σ + 2α

)
‖vk − v∗‖2,

the first inequality in (34). Combining (40), with k replaced by k+1, and the nonexpansive property
(38) gives the second inequality in (34).

Corollary 4.2. If σ > 0, then the iterates generated by (17) converge linearly to the unique mini-
mizer of (16).
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Proof. We first observe that when σ > 0, the objective function in (16) strongly convex. Let
F (u, v) = H(u) + α‖v − u‖2

2 be the part of the objective which excludes J . By the convexity
inequality (33), we have

(∇F (u1, v1)−∇F (u2, v2))
[

δu
δv

]
= (∇H(u1)−∇H(u2))(u1 − u2) + 2α‖δu− δv‖2

2

≥ σ‖δu‖2
2 + 2α‖δu− δv‖2

2, (41)

where δu = u1 − u2 and δv = v1 − v2. The matrix corresponding to the quadratic in (41) is

2
[

α + σ/2 −α
−α α

]
.

Since the eigenvalues of this matrix are strictly positive, F is strongly convex. The objective function
in (16) is the sum J + F of a convex function J and a strongly convex function F . Hence, it is
strongly convex and there exists a unique minimizer (u∗, v∗). By Theorem 4.1, the iterates generated
by (17) converge to (u∗, v∗) linearly.

In the case σ = 0, Theorem 4.1 only yields

‖vk+1 − v∗‖2 ≤ ‖vk − v∗‖2 and ‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2, (42)

which does not imply convergence. On the other hand, by the theory for the alternating proximal
minimization algorithm, we know that the iterates do converge. We now observe that the inequalities
in (42) are strict except when convergence is achieved in a finite number of steps. This result is
based on the following property.

Lemma 4.3. If P : Cn → Cn satisfies

‖P(u)− P(v)‖2
2 ≤ 〈P(u)− P(v), u− v〉 (43)

for all u and v ∈ Cn, then
‖P(u)− P(v)‖2 ≤ ‖u− v‖2 (44)

for all u and v ∈ Cn with equality only if P(u)− P(v) = u− v.

Operators satisfying (43) are called firmly nonexpansive. The fact that the proximal maps T or
L are firmly nonexpansive is implied by (37).

Proof. The inequality (44) is a consequence of the Schwarz inequality applied to (43). Moreover,
by (43) we have

‖(u− v)− (P(u)− P(v))‖2
2 = ‖u− v‖2

2 − 2〈P(u)− P(v), u− v〉+ ‖P(u)− P(v)‖2
2

≤ ‖u− v‖2
2 − ‖P(u)− P(v)‖2

2. (45)

If (44) is an equality, then the right side of (45) vanishes, which implies that the left side vanishes:

(u− v)− (P(u)− P(v)) = 0.
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Theorem 4.4. Suppose that u∗ and v∗ are optimal in (16). If for some k, the iterates of the
alternating proximal minimization algorithm (17) satisfy ‖uk+1 − u∗‖2 = ‖uk − u∗‖2, then uj = uk

and vj+1 = vk+1 for all j > k. If ‖vk+1 − v∗‖2 = ‖vk − v∗‖2 for some k, then vj = vk and uj = uk

for all j > k.

Proof. Suppose that ‖uk+1 − u∗‖2 = ‖uk − u∗‖2. Since v∗ and u∗ are optimal in (16), we have

(LT )(u∗) = L(T (u∗)) = L(v∗) = u∗. (46)

By (17), it follows that uk+1 = (LT )(uk). Hence, the equality ‖uk+1 − u∗‖2 = ‖uk − u∗‖2 coupled
with the nonexpansive properties of L and T yield

‖uk − u∗‖2 = ‖(LT )(uk)− (LT )(u∗)‖2 = ‖L(T (uk))− L(T (u∗))‖2

≤ ‖T (uk)− T (u∗)‖2

≤ ‖uk − u∗‖2. (47)

Since the right and left sides of (47) are equal, all the inequalities in (47) are equalities. The equality
‖T (uk)− T (u∗)‖2 = ‖uk − u∗‖2 and Lemma 4.3 imply that

T (uk)− T (u∗) = uk − u∗. (48)

The equality ‖L(T (uk))− L(T (u∗))‖2 = ‖T (uk)− T (u∗)‖2 and Lemma 4.3 imply that

(LT )(uk)− (LT )(u∗) = L(T (uk))− L(T (u∗)) = T (uk)− T (u∗). (49)

Together, (48) and (49) yield

(LT )(uk)− (LT )(u∗) = uk − u∗. (50)

We combine (46) and (50) to obtain

uk+1 = (LT )(uk) = uk.

Hence, uk is a fixed point of (LT ) and uj = uk for all j > k. Since vj+1 = T (uj), we conclude that
vj+1 = vk+1 for all j > k. The equality ‖vk+1−v∗‖2 = ‖vk−v∗‖2 is treated in the same way except
that L and T are interchanged.

By the convergence theory for the alternating proximal minimization algorithm, we know that
the iterates converge to a solution (u∗, v∗) of (16) provided a solution exists. Theorem 4.4 implies
that

‖uk+1 − u∗‖2/‖uk − u∗‖2 < 1

except when uk = u∗. Likewise

‖vk+1 − v∗‖2/‖vk − v∗‖2 < 1

except when vk = v∗. This implies at least sublinear convergence of the alternating proximal
minimization algorithm (17).

For any fixed α, the solution of (16) generates an approximation to a solution of (4). Let αk,
k ≥ 0, denote an increasing sequence of values for the penalty parameter tending to infinity, and
let (Uk, V k) denote associated solutions of (16), assuming they exist. By the theory describing the
convergence of the penalty scheme (see [29, Thm. 17.1]), convergent subsequences of the iterates
approach a solution of (4). We now show in the context (5) of image reconstruction that the iterates
(Uk, V k) are bounded.
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Theorem 4.5. Suppose that J and H are given by (5). If µ ≥ 0, λ > 0, and N (D) ∩ N (A) = 0,
where N denotes null space, then for each α0 > 0, there exists a compact set K which contains the
solutions of (16) for all α ≥ α0. Moreover, as α tends to infinity, any convergent subsequence of
the iterates approaches a solution of either (4) or the equivalent problem (15).

Proof. In the special case (5), J(0) = 0 and H(0) = λ‖f‖2
2. Let ρ = λ‖f‖2

2 be the value of the
objective function value in (16) corresponding to u = v = 0. For any choice of α, the optimal
objective function value in (16) is bounded by ρ. Hence, for any choice of α, when minimizing the
objective function in (16), we should restrict our attention to those u and v satisfying

J(v) + H(u) + α‖v − u‖2
2 ≤ ρ. (51)

Since J(v) = ‖v‖TV + µ‖Ψv‖1 ≥ 0 and H(u) = ‖Au− f‖2
2 ≥ 0, it follows from (51) that

‖v − u‖2 ≤
√

ρ/α, (52)
‖v‖TV ≤ ρ, (53)

‖Au− f‖2 ≤
√

ρ/λ. (54)

Decompose u = un + up where un ∈ N (A) and up is orthogonal to N (A). By (8), (52), and (53),
we have

ρ ≥ ‖v‖TV =
N∑

i=1

‖Div‖2 ≥ ‖Dv‖2 ≥ ‖Du‖2 − ‖D(v − u)‖2

≥ ‖Dun‖2 − ‖Dup‖2 − ‖D‖2‖v − u‖2

≥ ‖Dun‖2 − ‖Dup‖2 − ‖D‖2

√
ρ/α. (55)

Since N (D) ∩N (A) = 0, there exists γ1 > 0 such that

‖Du‖2 ≥ γ1‖u‖2 for all u ∈ N (A).

Hence, by (55)
‖un‖2 ≤

(
ρ + ‖Dup‖2 + ‖D‖2

√
ρ/α

)
/γ1. (56)

Similarly, there exists γ2 > 0 such that

‖Aup‖2 ≥ γ2‖up‖2.

Hence, by (54), we have

γ2‖up‖2 ≤ ‖Au‖2 ≤ ‖f‖2 + ‖Au− f‖2 ≤ ‖f‖2 +
√

ρ/λ. (57)

Combine (56) and (57) to deduce that u = un + up lies in a compact set. By (52), we have

‖v‖2 ≤ ‖u‖2 +
√

ρ/α,

which yields a bound for ‖v‖2. As α increases, the level set of (16) corresponding to the objective
function value ρ can only shrink. Hence, this level set is bounded for any α ≥ α0. Let αk,
k = 0, 1, · · · , denote an increasing sequence of values for the penalty tending to infinity, and let
(Uk, V k) denote associated solutions of (16). By [29, Thm. 17.1], every convergent subsequence of
the minimizers (Uk, V k) approaches a solution of (15).

Remark. If H is strongly convex, then (4) has a unique solution; hence, any sequence of
solutions to (16) approaches the unique solution of (4) as α tends to infinity.
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5 Numerical Experiments

In this section we evaluate the performance of algorithms using two PPI reconstructions. We
compare performance of AM (18), ADMM (25), and APD (28) to that of the Bregman operator
splitting (BOS) in [44] and a slightly modified version (SBB) of the algorithm proposed in [40].

5.1 Data Acquisition and Experimental Setup

In our tests, all k-space data were fully acquired with an 8-channel head coil. By full acquisition we
mean that each receiver coil obtains the complete k-space data and hence a high resolution image.
The first data set, denoted data1, is a collection of sagittal Cartesian brain images acquired on a 3T
GE system (GE Healthcare, Waukesha, Wisconsin, USA). The data acquisition parameters were
FOV 220mm2, size 512× 512× 8, TR 3060ms, TE 126ms, slice thickness 5mm, and flip angle 90◦.
The phase encoding direction was anterior-posterior. To make this data set less similar to the next
data set, we reduced the image size to 256. The second data set, data2, is a Cartesian brain image
acquired on a 3.0T Philips scanner (Philips, Best, Netherlands) using T2-weighted turbo spin echo
(T2 TSE) sequence. The acquisition parameters were FOV 205mm2, matrix 512 × 500 × 8, TR
3000ms, and TE 85ms. The echo train length was 20.

The ground truth or reference image ū was given by the formula

ūi =

 K∑
j=1

|ūij |2
1/2

.

Here ūij is the i-component of the Fourier transform of the full k-space data acquired on the j-th
channel. In all cases, we simulate the sensitivity maps Sj using the central 32 × 32 k-space data,
and generate the pesudo full k-space data by FSj ū. The sensitivity map for data2 is shown in
Figure 2. We add a complex valued Gaussian noise (same level for both real and imagery parts)
with standard deviation 0.01 in magnitude to the pseudo full data, and downsample the pseudo full
data using the mask shown in Figure 1(a) for data1 and the mask shown in Figure 1(b) for data2.

Figure 2: The sensitivity maps for the eight channels of data2.

Algorithms were implemented in MATLAB, Version R2009b. All the experiments were per-
formed on a Lenovo laptop with an Intel Dual Core 2 Duo 2.53 GHz processor and a Windows
operating system.

5.2 Comparison Algorithms

Many of the algorithms in Section 2 are not very effective for PPI imaging due to the complicated
structure of A. For comparison, we chose the recently proposed Bregman operator splitting (BOS)
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scheme from [44] and a split Bregman scheme SBB [40] utilizing a BB step size. BOS and SBB are
currently, to the best of the authors knowledge, among the most efficient methods for solving (7)
with arbitrary matrix A. The BOS scheme of [44] and the SBB scheme of [40] are iterative methods
for solving (10). They are based on the alternating direction method of multipliers applied to the
Lagrangian (12), and they correspond to the following iteration:

wk+1
i = max{‖Dk

i u + bk
i ‖2 − 1/2ρ, 0}(Dk

i u + bk
i )/‖Dk

i u + bk
i ‖2 ∀ i,

uk+1 =
(
ρDTD + λδkI

)−1 (
ρDT(wk+1 − bk) + λδku

k − λAT(Auk − f)
)

,

bk+1
i = bk

i − (wk+1
i −Diu

k+1) ∀ i.

 (58)

In the BOS scheme of [44], δk is a constant δ and convergence to a solution of (7) holds when
δ ∈ (‖ATA‖2,∞). In the SBB scheme, δk is given by the BB formula [5], which reduces to

δk =
‖A(uk − uk−1)‖2

2

‖uk − uk−1‖2
2

.

In either BOS or SBB, the w-subproblem represents a 2D shrinkage. In the u-subproblem, DTD
can be diagonalized by a Fourier transform provided the image has periodic boundary condition;
hence, ρDTD+λδkI can be inverted easily. Consequently, the main computational cost corresponds
to multiplication by AT and by A, or equivalently, to the evaluation of two fast Fourier transforms.

5.3 Experimental Results

In all experiments, we set λ = 0.5× 103 for which the reconstructions of the test data by (7) have
the optimal signal to noise ratio. Also, we set ρ = 10 for the BOS and SBB schemes, whereas
moderate changes of ρ in [100, 102] do not have much influence on the results. For BOS where δk is
constant, we found in numerical experiments that the fastest asymptotic convergence was achieved
by taking δk = 1.

We set α = 0.1 × λ = 50 for AM, ADMM, and APD. For α in the range [100, 102], the AM
scheme has stable performance when the data is normalized between [0, 1] . The iterations in the TV
subproblems for AM, ADMM, and APD as well as the least squares subproblem of AM and ADMM
are terminated when the relative change of the inner iterates is less than εinn = 10−2. Dynamically
adjusting εinn as the outer iterates approaches the solution can lead to improved efficiency, however,
in our experiments, a constant εinn already leads to better performance than most recently developed
algorithms.

For all algorithms tested in our experiments, we set the initial guess u0 to zero, and we terminate
the computation when the relative change ‖uk − uk−1‖2/‖uk‖2 of the (outer) iterate reaches the
prescribed stopping criterion ε = 10−4. A tighter stopping criterion can lead to slightly improved
accuracy for all algorithms at the expense of a much longer computational time. For many real
applications where A has extensive computational complexity, it is better and more practical to
stop at a suboptimal solution with satisfactory quality obtained in a reasonably short time period.

The reconstructed images for data1 and data2 are shown in Figures 3 and 4, respectively. The
relative error in the reconstructed image u, ‖u− ū‖2/‖ū‖2, is indicated in parenthesis in the Figures.
In Figures 3 and 4, we zoom into the square shown in the boxes of Figure 3(a) and 4(a). It is seen
that all methods adequately recovered the image while SBB, APD, AM, and ADMM have higher
accuracy than BOS for this stopping criterion.

To examine the efficiency of AM, ADMM, and APD compared to BOS and SBB, we plotted the
relative error as a function of the CPU time for the two data sets. In Figures 5(a) and 5(b), we see
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that all algorithms converged faster for the smaller image, data1, than for data2. For both data1
and data2, SBB and APD appear to be fastest, closely followed by AM and ADMM. BOS has the
slowest convergence speed for these data sets. In Table 1 we summarize the comparison of these
algorithms for these two data sets.

Table 1: Comparison of the tested algorithms
Criterion BOS SBB APD AM/ADMM

Efficiency in PPI? Relatively low Very high Very high Relatively high
Works for general A? Yes Yes No Yes

Convergence established? Yes No Yes Yes

The reason that BOS is slower than the other schemes is due to the total number of iterations
that are required. Even though each iteration was fast, there were too many iterations to compete
with the other algorithms. APD exploits the special structure of A in PPI to achieve fast convergence
by solving the LS subproblem using FFTs. The relatively fast convergence of the BB method for
the LS problem helped the performance of AM. AM, ADMM, and APD all benefit from the speed
of the PDHG solver for the TV subproblems.

Remark. In some PPI applications, the images are sparse under an orthogonal wavelet trans-
form Ψ. In this case, we add ‖Ψu‖1 to the energy function (7). To minimize the energy function,
we introduce the splitting z = Ψu and again apply quadratic penalty and multiplier methods. All
the algorithms (BOS, AM, ADMM, ADP, and SBB) remain valid with small modifications.

6 Conclusions

Two fast algorithm for total variation-based image reconstruction were introduced. The first method
AM employs variable splitting, a quadratic penalty, and an alternating proximal minimization
algorithm. Linear convergence was established when the smooth part of the objective function was
strongly convex, while the convergence was sublinear under a weaker convexity assumption. An
implementation based on a primal-dual hybrid gradient (PDHG) scheme for the TV problem and a
Barzilai-Borwein method for the linear inversion is proposed. The second algorithm APD is based
on an augmented Lagrangian and a primal-dual algorithm; it exploits the special structure of the
PPI reconstruction problem by decomposing it into one subproblem involving Fourier transforms
and another subproblem that can be treated by the PDHG scheme. The numerical performance
of these algorithms was compared to that of a Bregman operator splitting (BOS) [44], a modified
algorithm SBB [40] where the constant BOS stepsize is replaced by a variable stepsize based on
the BB algorithm [5], and the alternating direction method of multipliers ADMM [7, 14, 19, 20]. It
was found that for the same stopping criteria, SBB and APD produced the highest quality images,
AM and ADMM were second in quality, and BOS was third. BOS was significantly slower than the
other four methods, while both SBB and APD were slightly faster than both AM and ADMM for
two Cartesian brain images.
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(a) Ground truth (b) BOS (11.07%) (c) SBB (9.30%)

(d) APD (9.29%) (e) AM (9.48%) (f) ADMM (9.47%)

(g) Ground truth (h) BOS (i) SBB

(j) APD (k) AM (l) ADMM

Figure 3: Reconstructed images of data1. (g)–(l) zoom in on the box in (a)–(f), respectively.
Corresponding relative errors are indicated in parenthesis.
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(a) Ground truth (b) BOS (9.72%) (c) SBB (7.80%)

(d) APD (7.59%) (e) AM (8.32%) (f) ADMM (8.25%)

(g) Ground truth (h) BOS (i) SBB

(j) APD (k) AM (l) ADMM

Figure 4: Reconstructed images of data2. (g)–(l) zoom in on the box in (a)–(f), respectively.
Corresponding relative errors are indicated in parenthesis.
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(a) Relative errors versus CPU time of data1.
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(b) Relative errors versus CPU time of data2.

Figure 5: Comparison of BOS, SBB, APD, AM and ADMM on data1 and data2.
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