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ABSTRACT

Electronic Properties and Applications of 2D Materials

by

Henry (Shan An) Yu

2D materials has become one of the most exciting areas of research, since the report

of graphene in 2005 [14]. For graphene, the high mobility (⇠ 15,000 cm2V�1s�1) [14]

draws much attention to its potential as high speed electronic devices. Its cone-like

electronic dispersion, resembling that of relativistic massless Dirac fermions, enter-

tains many exotic and interesting behaviors, making it an ideal system for the study

of relativistic particles. Aside from graphene, many other 2D materials have also

been successfully made, including MoS2, h-BN, 2D Boron, etc. Although these newly

made materials have already exhibited several good characteristics, they are also

distinctively di↵erent from traditional 3D materials. This means that a deeper un-

derstanding of 2D materials is imperative, to capture and utilize their unique features.

The abundant atomistic modeling methods nowadays enable us to investigate the var-

ious aspects of 2D materials (or any system in general), with the help of computers.

Density Functional Theory (DFT) based methods can give very accurate descriptions

of the ground state properties of materials, including their charge density, mechanical

moduli or the optimal structure; on top of DFT, many body theory methods also al-

low for the construction of excitation processes based on the DFT results. In the case

of large structures, in which DFT may not be a↵ordable, the tight-binding method

can be an excellent alternative with a much lower cost.



iii

In this work, I will employ these atomistic methods to the understanding of the dis-

tinctive features of 2D materials, especially their electronic, or even electro-mechanical

properties. First, I have found that the graphite screw dislocations (GSD), a family

of graphene-like structures as nanoribbons, turn out to be superior nano-solenoids,

producing magnetic field up to 1T at typical voltage. Second, I have successfully

modeled the strain-induced Landau quantization of the graphene band structure in

large structures (N ⇠ 105), showing the possibility of strain engineering for the de-

sign of desired Landau levels in actual devices. Finally, I have discovered several

universal features for 2D lateral junctions. 2D junctions, due to the weak electronic

screening, turn out to be not merely a miniaturized version of its 3D counterpart.

The scaling laws, depletion region and several practical consequences are analyzed

and quantified.
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. (b) Sideview, Burgers

vector b parallel to the dislocation line � (red). (c) Axial view of

ZGSD, width N
Z

. (d⇠f) The calculated band structure of

armchair-edge AGSD of widths N
A

= 12, 13, 14, and of zigzag-edge

ZGSD for N
Z

= 7, 8, and their bandgaps in (e). (Reprinted

(adapted) with permission from F. Xu et al., Nano Letters,

16,1,34-39, 2016. Copyright 2016 American Chemical Society.) . . . . 4

2.2 (a,b) Metallic zigzag-edge ZGSD, N
Z

= 9. (a) Transmission

coe�cient as a function of energy. (b) Spatial current distribution

integrated over various energy ranges of panel (a), left for green

region (bias V = 0.4 V), middle for green plus blue region (V = 0.7

V), right for green plus blue plus yellow region (V = 2 V). (c)

Bright-dark map of current distribution, for N
Z

= 21 and bias of 0.4

V. (Reprinted (adapted) with permission from F. Xu et al., Nano

Letters, 16,1,34-39, 2016. Copyright 2016 American Chemical Society.) 7
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Chapter 1

Introduction

2-Dimensional materials were previously thought impossible to exist, according to

Landau’s theory on the thermal vibrations of crystal lattice [7]. However, in 2005,

a free-standing, atomically thin film of carbon, graphene, was successfully cleaved

(with the mighty scotch tape) from graphite [14] [15], to which the 2010 Nobel Prize

in Physics was awarded. In fact, many other free-standing 2D materials such as

MoS2, NbS2, h-BN have also been extracted. Although this apparent dichotomy can

be resolved after a closer look at both cases, it manifests the exotic behaviors and

interesting physics of 2D materials.

Due to the reduction of dimensionality, compared to 3D systems, the governing equa-

tions for 2D systems clearly have di↵erent forms and can lead to drastically new

behaviors. Electronic screening is much weaker in 2D systems, which can lead to var-

ious consequences including higher binding energy for excitons, deeper dopant levels

in semiconductors, and higher susceptibility to externally applied field (e.g. FET).

On the other hand, the lattice vibrations, or phonons, also exhibit di↵erent behaviors

which result in van Hove singularities and the instability of 2D crystals. Although

these new properties may render some traditional applications unworkable, it also

opens many pathways to new device designs.

In this thesis I will look at three examples where the distinctive features of 2D ma-

terials lead to new physics compared to its 3D counterparts, and potentially new

applications. In chapter 2 a study of the structure of a graphene spiral, or a graphite
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screw dislocation (GSD), will be presented. Graphitic structures, being so versatile,

can be adapted to many shapes, corresponded with di↵erent electronic and also me-

chanical properties [13] [3]. A graphene spiral, similar to graphene nanoribbons [13],

can have its electronic band gap controlled by the size and edge type, forming a fam-

ily of structures including both insulators and conductors. Surprisingly, for certain

types of conducting GSDs, they turn out to be extremely high quality nano-solenoids,

producing magnetic field up to ⇠1 Tesla, out-performing many current designs. In

chapter 3, I will go on to investigate the very interesting phenomenon of strain-induced

magnetic field in graphene systems. Due to the electronic structure and lattice sym-

metry of graphene, theories have suggested the engineering of the graphene states via

applied strain [19]. Interestingly, under small strain, the e↵ect of distortion mimics

that of a magnetic field, which leads to the Landau quantization of the electronic

states near the Fermi level. According to my studies, a pseudo-magnetic field up to

60 Tesla can be easily obtained in certain graphene structures. Finally, in chapter 4,

I present a novel theoretical analysis for 2D lateral junctions. Due to weak electronic

screening, 2D junctions have drastically di↵erent behaviors compared to traditional

3D junctions. I will show how the traditional knowledge of charge exchange, depletion

region and length scale should be modified to accurately capture the features of 2D

junctions.
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Chapter 2

Graphene Nanosolenoid

In this chapter I will present an analysis of the electronic and transport properties of

graphite screw dislocations (GSD), and also its performance as a nano-solenoid. In

2.1 I will discuss the structural dependence of the electronic properties of GSDs. In

2.2 I will show a multi-level numerical scheme for the modeling of the transport and

magnetic field of a conducting GSD. Finally in 2.3 I will show the calculated results

and the performance of GSD as a nano-solenoid. Most of this chapter is adapted from

my previously published work [26].

2.1 Structure of Graphene Solenoid

The electronic properties of graphene spirals, or graphite screw dislocations (GSD)

depend strongly on its atomic structure. Here as shown in fig 2.1 we study the

electronic bandstructures of a GSD with the exterior shape as hexagon, bounded by

all armchair or zig-zag edges, AGSD or ZGSD. A screw dislocation Burgers vector b,

where |b| = 3.4Å the natural interlayer spacing for graphene, is assumed. Following

the convention of graphene nano ribbons (GNR), the width of the AGSD is defined

by counting the dimer lines (N
A

) from the inmost atoms to the outermost edge,

and the number of zig-zag chains (N
Z

) defines the width of ZGSD. We employ a

tight-binding framework with nearest and next nearest neighbor hopping parameters

�0 = �2.7 eV and �1 = �0.069 eV, respectively; both varying exponentially with the
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Figure 2.1 : (a⇠c) Atomic structure of a graphite screw dislocation, GSD. (a) Axial view with

armchair edge, width NA. (b) Sideview, Burgers vector b parallel to the dislocation line � (red).

(c) Axial view of ZGSD, width NZ . (d⇠f) The calculated band structure of armchair-edge AGSD

of widths NA = 12, 13, 14, and of zigzag-edge ZGSD for NZ = 7, 8, and their bandgaps in (e).

(Reprinted (adapted) with permission from F. Xu et al., Nano Letters, 16,1,34-39, 2016. Copyright

2016 American Chemical Society.)

bond length to account for possible deformations [17]. Our calculations show that,

in a manner analogous to GNR, the width of the GSD controls whether it is metallic

or insulating. As shown in fig 2.1(d)(e), the AGSD will be metallic for N
A

= 3p + 1

where p is integer, which is very similar to the behavior of AGNR where it is metallic

for N
A

= 3p+2. As for ZGSDs, as shown in fig 2.1(e)(f), it is metallic for N
z

= 2p+1,

which is di↵erent from the behavior of ZGNR where it is metallic for all widths. In

addition, the band gaps of the insulating GSDs, whether A or Z type, decreases to



5

zero as the width increases, approaching the zero-gap spectrum of graphene. With

these analysis, we are able to find the proper metallic GSD according to the width

and edge types, and simulate its transport properties, hopefully to find the suitable

structure for the use of a nano-solenoid.

2.2 Simulation of Transport and Magnetism

In this section I present the calculation methods employed to asses the GSDs ability

as a nanosolenoid. With standard NEGF methods [21] one can easily obtain the

current and conductance of a GSD structure, at a given bias voltage. However, to

obtain the induced magnetic field and also its inductance, the spatial distribution of

the current is required.

Before diving into discussions about the numerical scheme for calculating the current

and magnetic field distribution in a GSD structure, it is instructive to first inves-

tigate a GSD classically. Here we consider a spiral made of ohmic metallic sheets

of conductivity �, with an inner radius R0 and outer radius R, and also a wind-

ing density n = 1/|b|. A voltage v per each turn will generate concentric currents

dI = v�bdr/2⇡r, leading to a total current I = (v�b/2⇡)ln(R/R0). The total mag-

netic flux normal to the GSD axis is � = (µ0v�bn/4)(R2 � R02), whereas the field

profile along the axis is B(r) = (µ0nv�b/2⇡)ln(R/r). With the formula for the total

magnetic energy µ�1
0

R
B2(r)⇡rdr = LI2/2, one can express the inductance as

L = ⇡µ0R
2n2g(R0/R) (2.1)

where g(↵) = (1/2+↵2ln↵�↵2/2)/ ln2 ↵ is a dimensionless factor that accounts for the

finite width of the spirals. For an infinitely thin wire R0/R ! 1 we have g(R0/R) ! 1,

and eq. 2.1 falls back to the expressoin for the inductance of conducting coils. Eq. 2.1
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essentially serves as an asymptotic solution for inductance of graphene GSD with

large width.

For a more realistic modeling of the current distribution and magnetic profile of the

graphene GSDs, we employ a multi-scale numerical scheme. The magnetic field B(r)

can be obtained from the current distribution i(r) via Biot-Savart law. The current

distribution can be first broken down into the inter-atomic bond currents i
↵�

, where

↵ and � represent atomic sites. To calculate i
↵�

we start with the energy-resolved

inter-atomic site current, which, within the tight-binding framework, can be expressed

as [24]

di
↵�

=
4e

~ Im[H
↵�

D
↵�

(E)]dE (2.2)

here H
↵�

is the Hamiltonian matrix element, and D
↵�

is the density of states, which

can be evaluated via real space NEGF methods [24, 27]. The total current flowing

through ↵ to � site is therefore i
↵�

=
R
di

↵�

. Although i
↵�

gives the current among

di↵erent bonds, it does not give the total spatial distribution of the current. We

therefore resort to higher levels of theory, in which the current around a bond can be

expressed as

i(~r) =
1

2

X

ij

Z
dE ·G<

ij

(E) lim
~r!~r

0
(r0 �r)�

i

(~r0)�⇤
j

(~r) (2.3)

here r is the distance from the bond axis, �
i

s are atomic basis sets, and G<

ij

(E) is the

matrix correlation function. With the Hamiltonian and atomic basis sets extracted

from the DFT calculations via the SIESTA program [21], we obtained the current

density distribution of a mono-atomic carbon chain [11]. The distribution is found to

be axially symmetric and well fitted by i(r) = Ar3e�r/↵. For di↵erent values of total

currents, i(r) only scales with the amplitude A, while ↵ remains unchanged. Within

the numerical scheme described above, one can construct the total spatial distribution

of the current, and the magnetic field can be obtained via the Biot-Savart law.
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2.3 Performance

With these provisions, we are ready to analyze the transport and magnetic properties

of various GSD structures. Figure 2.2 depicts the typical behavior of the current

Figure 2.2 : (a,b) Metallic zigzag-edge ZGSD, NZ = 9. (a) Transmission coe�cient as a function

of energy. (b) Spatial current distribution integrated over various energy ranges of panel (a), left

for green region (bias V = 0.4 V), middle for green plus blue region (V = 0.7 V), right for green

plus blue plus yellow region (V = 2 V). (c) Bright-dark map of current distribution, for NZ = 21

and bias of 0.4 V. (Reprinted (adapted) with permission from F. Xu et al., Nano Letters, 16,1,34-39,

2016. Copyright 2016 American Chemical Society.)

distribution in ZGSDs, with respect to width and applied voltage. As can be seen, in

single-channel mode (green region in Figure 2.2(a)) the currents flow along the multi-
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ple concentric circles, Figure 2.2(b) , left. Although the core hexagon plays a leading

role in transport, the currents do not decrease monotonically toward the exterior but

the perimeter zigzag edge carries substantial currents as well. Second, when the rising

voltage opens the second double-channel (light-blue in Figure 2.2(a)), the current vec-

tors almost disappear except those around the core and the ones at the outer zigzag

edge, as shown in Figure 2.2(b), middle. The phenomenon of current-carrying edge is

consistent with the decomposition of wave functions around the Fermi level; previous

analytical study also demonstrated that in a semi-infinite graphene sheet the Bloch

states around the Fermi level are localized at the zigzag edges [16]. The third stage,

that is, the energy region up to the yellow in Figure 2.2(a) is engaged, the incremental

currents mostly distribute around the core hexagon but attenuate toward the outer

edge, as indicated in Figure 2.2(b), right; this remains the case thereafter for higher

voltages. The outer-edge currents contribute significantly within the energy window

of the first single-channel mode, which however shrinks for greater outer radius. If

the radius is su�ciently large, the currents in the outer-edge bonds are negligible even

when the bias is quite low, as shown in Figure 2.2(c). Accordingly, the zigzag-edge

transport contributes only for a relatively small cross-section and under low bias. Such

change of current distribution pattern with voltage constitutes a nonlinearity which

must further lead to nonlinear inductance, as discussed below. Figure 2.3 further

depicts the behavior of the magnetic field, magnetic flux and inductance of ZGSDs,

also with respect to width and applied voltage. In Figure 2.3(a) shows calculated

magnetic field for ZGSD of N
Z

= 9,21. The dashed blue line is obtained by simply

scaling the curve of 0.5 V (solid blue) to fit its maximum with that of the red curve,

as actually computed. Apparently, at smaller cross sections, the magnetic field fluc-

tuates significantly, and at any point (except the axis) its value grows with the total
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Figure 2.3 : (a)Magnetic field B versus the radial position. The dashed blue lines are obtained

by simply scaling the curves of 0.5 V (solid blue) to highlight the deviations from the red curves,

actually computed for 1.2 V. For a wider GSD (NZ = 21) the field rise is closer to proportional

while change in the pattern lessens. (b)The magnetic flux � versus the total current J in a metallic

ZGSD of small width NZ = 5 (red) and wider NZ = 21 (green triangles, fitted by the ohmic-solenoid

formula, blue line). (Inset) Computed inductance for the atomistic models (circles) and the red

curve from the classical model per eq 2.1. (Reprinted (adapted) with permission from F. Xu et al.,

Nano Letters, 16,1,34-39, 2016. Copyright 2016 American Chemical Society.)
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current not linearly, but more slowly. When the cross-section becomes su�ciently

large, the fluctuations are smoothed out, and the B(J) relation at each point is closer

to linear. With the magnetic vectors available at any given point one can compute

the magnetic flux � =
R
B(r)2⇡rdr through a plane normal to the axis of a GSD,

or energy µ�1
0

R
B2(r)⇡rdr to determine the inductance L. We found that for some

metallic ZGSDs with a small cross-section and minimum core R0 = 1.2Å, the flux

is not simply proportional to the total current (Figure 2.3(b)), indicating that the

inductance is a function of the total J , not a constant as for classical ohmic inductor.

The turning points on the �(J) curves (shown example is for N
Z

= 5) represent the

change out of the first single-channel mode (cf. Figure 2.2(a)), when the contribu-

tion of the edge lowers while the currents start to concentrate around the core. A

nonlinear inductance of metallic ZGSD has a distinct physical origin, as discussed

above; the edge e↵ect significantly alters the pattern of the current, whose value at

a given lattice site is not simply linearly proportional to the voltage (and the total

current), accordingly the distribution of the magnetic field across the solenoid varies

and its resulting flux is not proportional to the current. When the ZGSD diameter is

larger, the magnetic flux dependence on the total current gradually becomes linear,

as shown for N
Z

= 21 in Figure 2.3(a). The inset there shows that our computed flux

remains lower than that of the analytical model (continuous ohmic), approaching it

as the radius grows. Therefore, we can infer that when it comes to practical cases in

which the cross-section can be regarded as infinite, the magnetic field at each point

will vary linearly with the total current, and the inductance will be consistent with

the prediction of eq 2.1. Finally, we give a quantitative estimate to show the superior

solenoid performance of GSDs compared to typical existing inductor designs. For

an integrated planar polygon spiral inductor with 8 turns, 3.0 µm turn spacing, 6.5
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µm turn width, and 205 µm outer diameter, the inductance is 7.3 nH, while a GSD

with the minimum inner radius 1.2 Å and a normal thickness 1 µm requires only an

outer diameter of 70 nm to produce the same inductance. Its parasitic capacitance,

roughly estimated as for serially connected [3] numerous turn-to-turn plates capaci-

tors, is only 3.4 ⇥ 105 fF; the planar spiral inductor in the above example has a much

greater 45 fF. Therefore, the parasitic capacitance of a GSD is negligible compared

to spiral inductors, owing to the tiny cross-section and the massive number of turns.

Note that according to eq 2.1, the larger inner radius will increase the inductance,

while the parasitic capacitance will be lessened.
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Chapter 3

Pseudo-Magnetic Field in Graphene

In this chapter, the phenomenon of strain-induced pseudo-magnetic field in graphene

structures will be demonstrated. In 3.1,3.2 I will discuss the theory and also its

macroscopic manifestation as Landau levels in the graphene electronic states. In 3.3

I will discuss two numerical schemes to model this e↵ect in large graphene structures

(with number of atoms N ⇠ 105).

3.1 Strain Induced Gauge Field in Graphene

A thorough review on the many strain-induced physical phenomena in graphene, and

also its mathematical formalisms was already given by Sasaki et al [19]. Adapted from

Sasaki’s work, I will present a rather brief introduction and formalism to the strain

induced pseudo-magnetic field(PMF) in graphene. Under a tight-binding framework,

as shown in fig 3.1, with only nearest neighbor hopping considered, the Hamiltonian

for graphene is expressed as

H0 = ��0
X

i2A

X

a=1,2,3

[(cB
i+a

)†cA
i

+ (cA
i

)†cB
i+a

]

where �0 ⇡ 2.7eV is the nearest neighbor hopping parameter, c†
i

, c
i

are the creation

and annihilation operators at the ith site, and A,B denote the A and B type of carbon

atoms in a graphene lattice, separated by the lattice parameter a
cc

. By Diagonalizing

the Hamiltonian H0 with the Bloch wavefunction one will find that the conduction

band and valence band will meet at the K point, where k = kF = (4⇡/3a, 0) and
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the K0 point where k = �kF , forming the well-known cone-like band structure. By

taylor expanding the Hamiltonian matrix element near the K and K0 points, one can

write an e↵ective-mass Hamiltonian near K,K0 points as

HK

0 = v
F

� · p̂

HK

0

0 = v
F

�0 · p̂
(3.1)

which is strikingly similar to the Dirac equation for massless fermions or, the Weyl’s

equation. Here v
F

= 3a
cc

�0/2~ ⇡ 106m/s is called Fermi velocity. � = (�
x

, �
y

)

and �0 = (��
x

, �
y

) consist of components of Pauli matrices, and p̂ = �i~r is the

momentum operator.

By applying strain to graphene, one e↵ectively imposes a perturbation to the hopping

Figure 3.1 : Shows the schematics of (a)unstrained and (b)strained graphene lattice structure

parameters �0 ! �0 + ��0. The perturbation Hamiltonian can be expressed as

H1 =
X

i2A

X

a=1,2,3

��a

0 (ri

)[(cB
i+a

)†cA
i

+ (cA
i

)†cB
i+a

]

The perturbation Hamiltonian causes scattering among the original Bloch wavefunc-

tions, i.e. a state in the Brillouin zone k will be scattered into k0 = k + �k. For
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k = k
F

(or �k
F

), it can be shown that for large �k, which means intervalley scat-

tering between the K,K0 points, does not contribute to the formation of the pseudo-

magnetic field. As for small �k, which means intravalley scattering within the K (or

K0) valley, does lead to the presence of an e↵ective gauge field in the Hamiltonian. In

this case we can express the matrix element of the perturbed Hamiltonian near the

K,K0 points as

HK

0 +HK

1 = v
F

� · (p̂+A(r))

HK

0

0 +HK

0

1 = v
F

�0 · (p̂�A(r))
(3.2)

where

v
F

A
x

(r) = ��1
0(r)�

1

2
(��2

0(r) + ��3
0(r))

v
F

A
y

(r) =

p
3

2
(��2

0(r)� ��3
0(r))

(3.3)

Eq 3.2,3.3 clearly shows the connection from the perturbed hopping parameters ��0

to the e↵ective gauge field A(r). In addition, the strain induced magnetic field is

defined as B(r) = r⇥A(r)

3.2 Pseudo-Landau Levels

The macroscopic manifestation of the strain induced magnetic field in graphene can

be realized in the creation of the pseudo-Landau levels. It is known that the energy

for free electrons, under a strong and uniform magnetic field, will be quantized into

separate energy levels, or, Landau levels [8]. For a uniform magnetic field B = Bẑ,

we can have A
x

= �B y. According to eq 3.3 we can choose ��2
0 = ��3

0 = 0 and

��1
0 = �v

F

B y as the strain pattern. This shows that a linearly distributed strain

pattern can produce a uniform strain-induced magnetic field in graphene.
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Finally, the Landau levels due to a uniform magnetic field for linearly dispersed

particles as electrons in graphene near the Fermi level, can be obtained to as [4]

E
n

= ±v
F

p
2e~Bn n=1,2,3... (3.4)

Therefore, at these positions, we should expect a flat band in the bandstructure, and

also a distinctive peak in the density of states (DOS).

3.3 Numerical Simulation

As shown above, the low level tight-binding Hamiltonian of graphene can be easily

diagonalized via Bloch theorem. For a higher level tight-binding Hamiltonian (next

nearest neighbor, multi-orbitals), numerical diagonalization is also trivially simple.

However, while strain is applied to the lattice, translational symmetry is broken

and the Hamiltonian matrix is not circulant anymore. Bloch theorem is no longer

applicable and direct diagonalization of the full Hamiltonian, an operation scaling as

O(N3), becomes necessary, which is computationally prohibitive for large systems.

For an energy spectrum of resolution �E=0.01 eV, the k-point resolution is �k =

�E/v
F

. With the graphene lattice constant a
c

=2.46Å, the system size is N = (a
c

·

�k)�2 = 2682 ⇡ 105. For even higher resolution, diagonalization of such huge matrix

size becomes impractical.

One way to overcome this problem is to utilize the fact that the Landau levels of

interest are near the Fermi level, which means that with the help of spectrum slicing

algorithms, one can solve for only the eigenvalues near the Fermi level with much

less computational cost. In this work we use the linear algebra library SLEPc [5].

With the Jacobi-Davidson algorithm implemented, SLEPc is able to solve for the

eigenvalues around a target position. As shown in fig 3.2(a), we model a 256⇥256
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Figure 3.2 : (a) A 256⇥256 super cell of graphene flake. (b) DOS of unstrained(green) and

strained(blue) graphene.

supercell of graphene, with the hopping parameters �0(r) manually tuned to have a

linear distribution, mimicking the e↵ect of stretching the graphene flake, resulting in

a strain-induced magnetic field B = 10T. The calculated density of states (DOS) is

plotted in fig 3.2(b). From the DOS plot one can clearly see that, while strained,

certain peaks emerge around the Fermi level. To verify that these emerged peaks are

indeed the Landau levels, we plot the energy levels predicted by eq 3.4 as vertical

lines, which matches the peak positions in the DOS. These calculated results show

that, as predicted in sections 3.1, 3.2, application of strain on graphene does induce

an e↵ective gauge field, and these e↵ects are su�ciently captured via a single orbital,

nearest neighbor Hamiltonian.

We now turn to a more realistic case but also very interesting way to overcome the

computational challenge mentioned above. Apart from stretching, strain in graphene

can also be induced by twisting the material. The advantage of studying a twisted

graphene is two-fold. First, the strain profile of a twisted graphene ribbon, as shown

in fig 3.3(a), can be calculated to be " =
p
1 + (↵x)2 � 1, where ↵ is the twisting
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Figure 3.3 : (a) Atomistic structure of a twisted graphene ribbon. (b) Strain profile in a twisted

ribbon.

rate and x is the in-plane distance perpendicular to the twisting axis z. As shown

in fig 3.3(b), the strain profile is quadratic for small x (" ⇡ (↵2/2)x2); as for large

x, the strain becomes linear (" ⇡ ↵2x2), which is desirable for the emergence of

pseudo-Landau levels. Second, a very important feature of this system is its helical

symmetry along the z axis. With a helical symmetry adapted Bloch theorem [25],

the unit cell of a twisted ribbon can be reduced to a small size, allowing the study of

huge systems. For instance, consider a zig-zag graphene ribbon with width ⇠ 170nm

(400 cells), with a twisting rate 0.61�/nm. The translationally symmetric unit cell for

this system can be obtained by considering a full turn of the ribbon along z-direction,

which is of length ⇠ 590 nm in z, containing 3.8⇥106 carbon atoms in total. However,

with the helical symmetry taken into account, the unit cell is reduced to only 0.24 nm

of length in z, with a mere 1600 atoms in total, an astonishing reduction of system

size for more than 1000 times. With these provisions we calculated the band structure

and DOS of this twisted ribbon, which are shown in fig 3.4. In fig 3.4(a)(b) show the

band structure and DOS of the untwisted graphene ribbon. In the band structure the
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Figure 3.4 : (a) Band structure and (b) DOS of zig-zag graphene ribbon of width 170 nm. (c)

Band structure and (d) DOS of twisted ziag-zag graphene ribbon of width 170 nm and twisting rate

0.61�/nm. Dashed lines are plotted according to eq 3.4, with B=60T.

linear dispersion of graphene (Dirac cone) is clearly seen, with an additional out-lying

band resulting from the zig-zag edge states. Similar features are also present in the

DOS plot. The band structure of the twisted graphene is shown in 3.4(c), where one

can still see clearly the original cone-like structure, with flat bands “pulled out” from

the cone. These flat bands manifest themselves as sharp peaks in the DOS, which is

plotted in fig 3.4(d). Here due to the applied strain, the original energy levels shown

in fig 3.4(b) are quantized into the distinctive peaks shown in fig 3.4(d). The position

of the quantized levels agree well with eq 3.4, with a strain-induced magnetic field of

B=60T.
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Chapter 4

2D Lateral Junction

In this chapter I will present a theoretical analysis of the electronic, electrostatic and

doping behaviors of 2D lateral, coplanar junctions. The thermal equilibrium condi-

tions of a heterojunction will be discussed in 4.1. In section 4.2 a brief introduction

to traditional 3D junctions will be presented. In 4.3 the theory for 2D junctions will

be shown, exemplifying the di↵erence from its 3D counterpart. Finally, simulated

results for real materials will be given in 4.4. Contents in sections 4.3 and 4.4 are

mostly adapted from previously published work [28].

4.1 Thermodynamics of a Heterojunction

Regarding the thermodynamics of a heterojunction of two materials, the equilibrium

conditions are the following [7]. The first condition is that the temperature is constant

throughout the system, i.e. T = constant. A second condition can be obtained by

maximizing the total entropy S = S1 + S2 with respect to the number of electrons

in each system. Since the total number of electrons in the system N = N1 + N2 is

constant, we can have

@S

@N1
=

@S1

@N1
+

@S2

@N1
=

@S1

@N1
� @S2

@N2
= 0

by writing

dS = (1/T )dE � (µ/T )dN
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we can see that at equilbrium, for constant E and T we have @S
i

/@N
i

= �µ
i

/T
i

(i=1,2). Thus we have µ1/T1 = µ2/T2. Since in equilibrium T1 = T2, we have

µ1 = µ2. The second condition for the equilibrium of a heterojunction is therefore

µ = constant (4.1)

The total chemical potential can be broken down into two parts µ = µ0 � � where

µ0 is the intrinsic chemical potential in the absence of external field, and � is the

electrostatic potential caused by the exchange of electrons between two materials. At

equilibrium, we should expect regions within material 1 (x ! �1) to have µ0 = µ0
1,

where µ0
1 is the intrinsic chemical potential of material 1 before junction. Similarly

we should expect in µ0 = µ0
2 in regions within material 2 (x ! 1). This observation

leads to

�� = �(1)� �(�1) = µ0
2 � µ0

1 = �µ0 (4.2)

which shows that for the system to reach equilibrium, the exchange of electrons

between two materials shall establish an electrostatic potential step throughout the

heterojunction, balancing the di↵erence between the intrinsic chemical potentials of

two materials.

4.2 3-Dimensional Heterojunction

Now that we have established the criterion for thermal equilibrium of a heterojunction,

we further relate these quantities with the charge density ⇢(x) by means of electro-

statics. The electrostatics of 3D junction, being symmetric in 2 directions, is rather

straightforward. From Poisson equation (in atomic unit) we have @2
x

� = �4⇡⇢(x),

therefore we can write

@2
x

µ0(x) = @2
x

�(x) = �4⇡⇢(x) (4.3)
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Figure 4.1 : 3D heterojunction of two materials with chemical potentials µ

0
1, µ

0
2 respectively.

Charge exchange forms a dipole of width 2w at the interface, establishing an electrostatic potential

�(x) to equilibrate the system.

which shows that the charge density at point x is locally defined by the intrinsic

chemical potential µ0(x). This is a direct consequence of the strong screening in a 3D

system. For a junction with a thin interface (such as metals), µ0(x) is a step function,

hence we have ⇢(x) = �(��/4⇡)�0(x), a charge dipole. This shows that the charge

exchange in a 3D junction is in general highly localized. As for junctions of materials

with moderate carrier density such as semiconductors, the interface will have a finite

width w, which is called the depletion width. As shown in fig 4.1, within the depleted

region, the charge density will reach the maximum value which is determined by the

dopant level. There is also a transition region from the fully depleted zone to the

neutral material, which is very narrow in 3D junctions. This justifies the common

use of the abrupt depletion-layer approximation.
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4.3 Theory of 2D Junction

In the description of a 2D lateral junction, while many of the properties regarding

thermodynamic equilibrium can be successfully transferred from the 3D case, the

electrostatics will be drastically di↵erent due to the dimensionality. As shown in

Figure 4.2 : (a) Schematics of a 2D lateral junction, showing how two in-plane charges can have

long range interaction via out of plane direction. (b) Schematics of local charge exchange in a 2D

junction forming a dipole line, which cannot establish a global potential step. (c) Shows that a

delocalized charge exchange is required for the equilibration of the intrinsic chemical potentials.

fig 4.2(a), in-plane charges can interact via the out-of-plane direction, leading to long

range interaction and extremely weak electronic screening in 2D systems. Moreover,

if one assumes a localized charge transfer as in 3D case for a 2D junction, forming a

dipole line as shown in fig 4.2(b), the potential will decay as ⇠ 1/x, not being able

to establish a potential step necessary for equilibrium. This immediately means that

a delocalized charge exchange is necessary for the establishment of the potential step
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�� to balance the di↵erence in the intrinsic chemical potentials �µ0.

Many of the important distinctions between 3D and 2D junctions can be captured

by the analysis of lateral heterojunction of two semi-infinite metal sheets. If the

di↵erence of their intrinsic chemical potential is �µ0 = ��, the 2D Poisson equation

for the potential distribution �(x, y) is:

r2�(x, y) = �4⇡�(x)�(y) (4.4)

with the boundary conditions �(x = ±1, y = 0) = ±��/2. Here x is the in-plane

direction normal to the interface line z, y is the out of plane direction, and �(x) is

the surface charge density, multiplied by �(y) for a thin junction layer. Translational

symmetry is assumed along z. We find that eq 4.4 is analytically solvable, with an

elegantly simple solution �(x, y) = ��/⇡ tan�1(x/y). The in-plane surface charge

density �(x) is therefore given by:

�(x) = � 1

⇡

@�

@y

����
y=0

=
1

2⇡2

��

x
(4.5)

The charge density is proportional to the chemical potential di↵erence �µ0 = ��,

and its singularity at the origin would be truncated by the carrier concentration

in a real metal. The extensive tail � ⇠ 1/x is however a common feature of all

lateral 2D heterojunctions. The necessity of the long charge tail in 2D junctions

and even its functional form can be understood by estimating the integral of the

electric field, E(x) = 2⇡�(x) at the surface y = 0 and then of nearly constant value

over an arch-path connecting two remote points ±x. The path length is ⇡x, so that

2⇡2�(x) · x = ��, which yields precisely eq 2. Note the diverging integral
R1
w

�(x)dx,

indicating the extensive charge transfer in a 2D junction, limited in reality by the

device size L at the upper limit.

We also note that eq 4.5 contains no length scale at all to characterize the width
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of the junction, unless a finite carrier density is introduced. The latter becomes

essential when turning to p-n junction with carrier density limited by the dopant

(areal) concentration c = p/a2, p being probability of a dopant per unit cell of area a2.

Accordingly the maximum carrier charge density is limited by �(x)  ec. Combined

with eq 2, one finds the width of depletion region as

W2 =
1

2

��

⇡2c
⇠ ��/p (4.6)

Note that its scaling with the built-in potential and the dopant concentration is

qualitatively di↵erent from that in a 3D junction, where W3 ⇠ (��/p)1/2 [22]. Yet

more striking di↵erence is in the extensive transition region �(x) ⇠ 1/x, generally

negligible in 3D junctions. Now that significant new features of 2D junction are

captured, in the next section we go on to explore how it will be a↵ected by specific

material details in case of p-n junction in real semiconductor (e.g. MoS2) or semimetal

(graphene, Gr) or possibly their heterojunction (Gr|MoS2).

4.4 Simulation of Real Material 2D Junction

For materials with a moderate carrier density (semiconductor, semimetal), eq 1.1 is no

longer su�cient to obtain the potential and charge density, requiring a more material-

specific account. Using full atomistic description such as the DFT is impractical [23]:

as the above eqs 2-3 suggest and is shown below, depletion regions span very long

range in 2D junctions, from 10 to 104 nm which is orders of magnitude greater than

in 3D; the standard plane wave basis used for extended systems imposes periodicity

in all directions, requiring a supercell of at least 102⇠108 nm3 size . Instead, we

employed a more manageable semiclassical approach [1] by considering the following
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expression for the charge distribution �(x):

�(x) = �+ + ec�
Z

�(x)

�1
C

q

d�0 (4.7)

Here, the local charge density �(x) is obtained by adding the constant positive back-

ground from the host material (�+), and dopant ion concentration (c = p/a2). The

important variable third term represents the electrons stored by the layer intrinsic

(quantum) capacitance C
q

charged up to the local voltage �(x)�(x, y = 0). This

quantum capacitance is directly related to the density of states available to the elec-

trons, D(") or DOS: [12, 18]C
q

= @�/@� =
R
D(")(�@f("� �)/@")d", where f(")

is the Fermi function. This expression relies on a rigid band approximation (RBA)

for the DOS, i.e. D(") independent of the local external potential �(x) and charge

�(x). To obtain the potential and charge distributions, eqs 1 and 4 are solved self-

consistently. [9] By choosing the appropriate harmonic basis for the 2D Poisson equa-

tion, we are able to consider an infinite box length in the y direction, which is essential

to capture the long-ranged features in a 2D junction. Use of RBA for the DOS is

justified, as is clear from Figures 1c-d, which show full band structures of MoS2 and

graphene charged to p = -0.1 (red), 0.0 (black) and +0.1 (blue). The band structures

change very slightly with charging, showing almost rigid bands under doping of ±0.1.

Actual typical dopant levels are much smaller, from 10�6 to 10�3, where the RBA is

valid a fortiori. With these provisions we are ready to analyze two representative p-n

junctions in monolayer semiconductors (MoS2, Figure 1b) and semimetals (graphene,

Figure 1c). Both junctions are assumed abrupt and having no interface states. For

the p-n junction of MoS2, the DOS near the band edges derives from the doubly de-

generate parabolic bands originating from the K and K0 valleys, with respective hole

and electron masses of m
h

= 0.58 m and m
e

= 0.48 m [6, 20], m being the nominal

electron mass; an experimental band gap of 1.85 eV [10] was assumed. The p- and n-
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Figure 4.3 : Schematics of a lateral coplanar 2D heterojunction (a) and (b)-(d) of band alignments

in the contacts of two metals (b), and semiconductor (c) or graphene (d) p-n junctions. EF is the

equilibrated Fermi level and �(x) is the built-in potential within the plane of the materials. Full

band structures of a 2D semiconductor (MoS2) and graphene, with doping levels of -0.1 (red dashed),

0.0 (black solid) and +0.1 (blue dashed) e/cell are shown on the left. Horizontal lines show positions

of the Fermi level for each doping degree. (Reprinted (adapted) with permission from H. Yu et al.,

Nano Letters, 2016, doi:10.1021/acs.nanolett.6b01822. Copyright 2016 American Chemical Society.)

dopant ion concentration of p = 10�4 was used symmetrically for MoS2, which results

in a built-in potential of �� = 1.60 V. To contrast the dimension-related behav-

iors more clearly, we also consider an equivalent hypothetical 3D semiconductor p-n

junction with identical e↵ective masses, band degeneracy, dopant concentration, and

natural layer-spacing in y-direction. Other choices for the parameters of 3D materials

are possible; however they do not alter the results significantly.

For the DOS of graphene near the Dirac point a linear dispersionD(E) = (2/⇡~2v2
F

)|E|

was used [2], with v
F

= 106 m/s Fermi velocity. A dopant ion concentration p =

1.5⇥10�4 was applied symmetrically, resulting in a built-in potential of �� = 0.093

V. The corresponding 3D p-n junction had graphene DOS and the natural interlayer

spacing in y-direction is assumed. A temperature T = 300 K was used for the Fermi
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function in all calculations. The Fermi level of all materials is assumed to be con-

trolled by the dopant type and amount, given by the dopant concentration p. The

0.5
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Figure 4.4 : Computed electrostatic potential and surface charge density in 2D lateral MoS2|MoS2

and graphene|graphene p-n junctions; only the n-doped side is shown. (a) Surface charge density

(top) and electrostatic potential (bottom) for symmetrically doped 2D (solid red lines) and 3D bulk

(solid blue lines) MoS2 p-n junctions with doping p = 10�4. The asymptotic behavior of eq 2 is

shown with a red dashed line; the depletion width W=48 nm is marked. (b) Surface charge density

(top) and electrostatic potential (bottom) for symmetrically doped lateral 2D and 3D bulk graphene

p-n junctions with p = 1.5·10�4; width W = 12 nm of graphene junction is marked. (Reprinted

(adapted) with permission from H. Yu et al., Nano Letters, 2016, doi:10.1021/acs.nanolett.6b01822.

Copyright 2016 American Chemical Society.)

calculated charge densities and electrostatic potentials are shown in Figure 3.2. Red

solid curves plot solutions for 2D materials (MoS2, graphene), red dashed curves are

the asymptotic forms given by eq 2, and blue solid curves correspond to the 3D junc-

tions. The charge distribution in a coplanar MoS2|MoS2 p-n junction is shown in the

top panel of Figure 2a with a solid red line. The fully depleted area with constant

charge near the contact transitions into a long charge tail extending into the material,

approaching the asymptote ⇠ 1/x (dashed red line) as predicted by eq 2. The deple-
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tion width W , defined as a distance to the intersection of the full depletion level and

perfect metal solution, is ⇠48 nm for this case. In contrast, the charge distribution

in the corresponding 3D junction (solid blue line) drops rather abruptly at ⇠5 nm,

without long tail. The potential profile in a MoS2|MoS2 p-n junction, shown in the

bottom panel of Figure 2.2a with a solid red line, reaches the asymptotic value over

the length of more than 60 nm. The potential varies rather slowly, change of ��/2 =

0.8 V over 192 unit cells of MoS2 amounts to 4 meV per unit cell. This contrasts with

the potential in the bulk junction (solid blue line) reaching the asymptotic value at

just ⇠4 nm. The fully depleted region is absent in gapless graphene, and the charge

density in Figure 2b decreases gradually, approaching ⇠ 1/x behavior at ⇠10 nm.

We define the width of graphene junction as W where �(W ) = 0.1·p/a2, which yields

W = 12 nm. In contrast, the charge density for the corresponding 3D junction (solid

blue line) drops rather quickly within 2 nm, without a long tail. The potential profile

for Gr|Gr p-n junction (solid red line in the bottom of Figure 3.2b) approaches the

asymptotic value at ⇠10 nm. This corresponds to the �� gradient of 1.1 meV per

unit cell, small enough to justify using � as a parameter in the RBA for this system.

It is clear from Figure 3.2 that in both examples of MoS2 and Gr the depletion widths

of 2D junctions are much greater than those of 3D analogs. More importantly, an

extensive charge transfer with a 1/x charge tail is present in 2D junctions, while in

3D the charge transfer is localized and drops rapidly to zero over a small distance.

These qualitative di↵erences between the 2D and 3D junctions would be reflected in

their response to the applied voltage. According to eq 3, the depletion widths scale

as di↵erent powers of the built-in potential, W ⇠ ��1/d�1 with d = 2 or 3, for the 2D

or 3D cases. When the forward bias V is applied, the potential step becomes ���V ,

allowing one to determine how the depletion width W depends on the bias voltage,
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Figure 4.5 : The depletion width W in MoS2| MoS2 and Gr|Gr p-n junctions. Red circles show

computed widths W2 of lateral 2D MoS2 junctions, and the red solid line is from eq 3; blue dashed

line shows the depletion width W3 of a corresponding 3D semiconductor. Red crosses, and the

tracking red line show similar results for graphene. Inset compares the depletion widths of 2D (red

lines) and 3D (blue dashed lines ) semiconductors as functions of the total built-in potential ���V ;

depletion widths W2 for 2D (red lines) and the widths W3 for the 3D analog (blue dashed lines) are

shown for p = 10�7,10�5, and 10�3. (Reprinted (adapted) with permission from H. Yu et al., Nano

Letters, 2016, doi:10.1021/acs.nanolett.6b01822. Copyright 2016 American Chemical Society.)

using eq 3. The depletion width can be measured indirectly through di↵erential ca-

pacitance of the junction. For traditional 3D junctions the di↵erential capacitance is

given by C3D ⇠ p1/2(���V )�1/2 ⇠ W�1
3 . [22] The capacitance of a 2D junction has

a di↵erent form. For a 2D junction of finite total length L with the total charge Q (per

transverse length) the capacitance C2D = dQ/dV can be calculated using eqs 2-3 as

C2D = (1/2⇡2) ln(L/W2). This yields an exponential relation, W2 = L exp(2⇡2C2D),

between the depletion width of a 2D junction and its measured capacitance. Figure

3 shows the computed W2 for both junctions as a function of doping level p. The

computed widths are plotted with red circles (for MoS2) and red crosses (for Gr),
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with the corresponding predictions of eq 3 shown as thin lines. For a semiconductor

like MoS2, the built-in potential �� is mainly determined by the band gap, with only

small change due to doping, i.e. �� ⇡ const and, according to eq. 3, the depletion

width changes as ⇠ p�1, in close agreement with the computed data in Figure 3.

In graphene, where DOS is decreasing near the Dirac point, the built-in potential

depends strongly on the dopant concentration. The relation between the built-in

potential and doping can be expressed as p =
R ��/2

0 D(E)dE = (1/⇡~2v2
F

)��2 if

temperature is ignored, which gives �� ⇠ p1/2. Substituting into eq 3, we have

W graphene

2 ⇠ ��/p ⇠ p�1/2, which is also in close agreement with computed values in

Figure 3 for high doping (p > 10�4). For low doping, the built-in potential �� for

graphene becomes comparable to the thermal energy k
B

T = 26 meV. In this region

the carriers are created predominantly by thermal excitations and the W reaches a

plateau at p <10�4.
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Chapter 5

Summary

In summary, I explored the interesting features and physics of 2D materials, and also

their possible applications. Although many interesting problems have been solved,

they also open ways to more exciting and challenging ones. For example, the multi-

level numerical scheme employed in chapter 2 provides information of the current

distribution, which is a powerful tool for the study of the electro-magnetic properties

of large nano-structures. In chapter 3 the Landau quantization of the Dirac fermions

in graphene caused by strain was shown and realized numerically. In the future, the

possibility of large scale modeling and prediction of realistic devices will be explored.

Finally, in chapter 4 I presented several universal features and scaling laws for 2D

lateral junctions. In the future, I plan to explore the role of material specifics on top

of these features. For example, how do interface states of di↵erent heterostructures

a↵ect the equilibrium state? Can we further describe the interface states in light of the

topological band theory? Due to the abundant combinations of di↵erent materials,

the room for further studies and investigations seem boundless.
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