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Abstract 

This work develops and tests a trust region algorithm for the nonlinear equality 

constrained optimization problem. Our goal is to develop a robust algorithm that 

can handle lack of second-order sufficiency away from the solution in a natural way. 

Celis, Dennis and Tapia [1985] give a trust region algorithm for this problem, but in 

certain situations their trust region subproblem is too difficult to solve. The algorithm 

given here is based on the restriction of the trust region subproblem given by Celis, 

Dennis and Tapia [1985] to a relevant two-dimensional subspace. This restriction 

greatly facilitates the solution of the subproblem. The trust region subproblem that 

is the focus of this work requires the minimization of a possibly non-convex quadratic 

subject to two quadratic constraints in two dimensions. The solution of this problem 

requires the determination of all the global solutions, and the non-global solution, 

if it exists, to the standard unconstrained trust region subproblem. Algorithms for 

approximating a single global solution to the unconstrained trust region subproblem 

have been well-established. Analytical expressions for all of the solutions will be 

derived for a number of special cases, and necessary and sufficient conditions are given 

for the existence of a non-global solution for the general case of the two-dimensional 

unconstrained trust region subproblem. Finally, numerical results are presented for 

a preliminary implementation of the nonlinear programming algorithm, and these 

results verify that it is indeed robust. 
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Chapter 1 

Introduction 

In this work, we will consider the nonlinear equality constrained optimization problem: 

Problem ENLP: (1.1) 

mm1m1ze f ( x) 

subject to hi(x) = 0, i = 1, ... , m, 

where f and hi are assumed to be smooth nonlinear functions such that f: mn ---+ m, 
hi: mn---+ m for i = l, ... ,m, and (m :Sn). We will denote by h(x) the vector 

(h 1 (x),hi(x), .. ,,hm(x)f. The Lagrangian function associated with problem ENLP 

is the function 

l(x, ,\) = f(x) + ,\Th(x) (1.2) 

where,\ = (,\1 , ,\ 2 , •.• , ,\mf are the Lagrange multipliers. The augmented Lagrangian 

function associated with problem ENLP is the function 

L(x,,\,p) = J(x) + ,\Th(x) + ph(xfh(x) (1.3) 

with penalty constant p 2'.: 0. 

We will assume that problem ENLP has a solution x •. The standard assumptions 

for the analysis of Newton-type methods applied to problem ENLP are 

1. The functions f and hi have continuous second derivatives in an open neighbor­

hood D of a local solution x. of problem ENLP, and these second derivatives 

are Lipschitz continuous at x •. 

2. '\lh(x.) has full rank. 

3. zTv';l(x., ,\.)z > 0 for all z -::JO satisfying v'hT(x.)z = 0. 

If assumptions 1 and 2 hold, then necessary conditions for x. to be a solution of 

problem ENLP are that there exists ..\. E mm such that ( x., ..\.) is a solution of the 
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nonlinear system of equations 

0 (1.4) 

h(x) 0, 

and 

zT'v;l(x., A.)z 2': 0 for all z =JO satisfying 'vhT(x.)z = 0. (1.5) 

Assumption 3 is the standard second-order sufficiency condition requiring the Hessian 

of the Lagrangian to be positive definite on the null space of 'v hT at the solution. 

Since we are interested in iterative methods, we will use Xe to denote the current 

iterate and the subscript ( +) for quantities at the next iteration. Subscripted values 

of functions represent evaluation at a particular point. For example, fc = f(xc), and 

l+ = l(x+, A+)- We use B(x, A) to denote the Hessian of the Lagrangian with respect 

to x, 'v;l(x, A), or an approximation to it. Finally, all vector norms II · II are the 

2-norm unless they are specifically labelled otherwise. 

One of the most successful methods for solving the equality constrained opti­

mization problem is the successive quadratic programming (SQP) method. At each 

iteration, the SQP method solves a quadratic program of the form 

Problem QP: ( 1.6) 

mm1m1ze T l T 
'v xl(xc, Ac) S + 2s Bes 

subject to 'vh(xc{ s + h(xc) = 0, 

for the step Sc and the associated multipliers ~Ac. The next iterate and multipliers 

are taken to be x+ = Xe + Sc and A+ = Ac + ~Ac. Thus, a SQP method solves a 

sequence of quadratic programming problems of the form (1.6) for the SQP step Sc 

and multipliers ~Ac. 

To clarify the terminology concerning the multipliers, notice that ~Ac is the mul­

tiplier step, or change in the multipliers, for the iterative SQP algorithm. Using the 

form of the quadratic model given in (1.6), ~Ac are the multipliers associated with 

the solution of problem QP, and they are the change in the multipliers for the SQP 

algorithm. 

Of course, the solution to this quadratic program, which we will denote by SQP, 

may fail to exist for several reasons, some more serious than others for standard SQP 

implementations. Frequently, assumptions 2 and 3 are implicitly assumed to hold not 
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only at the solution, but for all intermediate iterates (xc, Ac), Since our goal is to 

develop a robust nonlinear programming algorithm, we specifically will not assume 

that '\lh(x) has full rank or that second-order sufficiency holds, except at the solution. 

If V h( Xe) does not have full rank, the linearized constraints, '\1 h( xcf s + h( Xe) = 
0, may be degenerate, or there may not exist a feasible point for problem QP at 

each intermediate iteration. We will discuss ways of dealing with these situations in 

Chapter 3. 

The more fundamental difficulty in the definition of the SQP step is that second­

order sufficiency need not hold at any intermediate iteration. By this we mean that 

B ( x, A) need not be positive definite on the null space of '\1 h ( x f. If there is a direction 

of negative curvature inside the null space of '\1 h( x f, then the quadratic model of 

the Lagrangian is unbounded below on the set of feasible points, and the QP will not 

have a solution. This situation can also happen if there is a direction of zero curvature 

inside the null space of '\lhT. Near a solution to problem ENLP (1.1), this difficulty 

should not arise because of the standard assumptions, and, locally, the SQP method 

performs very well. A way from the solution, however, any acceptable algorithm 

must be prepared to choose a step based on a globalization strategy, particularly 

when second-order sufficiency does not hold. The issue of a satisfactory globalization 

strategy still remains open. A number of line search techniques have been proposed, 

but none of them have proven to be entirely successful. Our approach will use a trust 

region strategy to handle non-positive curvature in a natural way. 



Chapter 2 

Some Trust Region Subproblems for Equality 
Constrained Optimization 

4 

Trust region algorithms have been very successful in the solution of nonlinear equa­

tions and unconstrained minimization problems where they deal very naturally with 

negative or zero curvature in the objective function. In this chapter, we will first 

describe some trust region subproblems that have been proposed to extend the trust 

region concept to equality constrained optimization. Then we will present the trust 

region subproblem that will be the focus of this work. 

2.1 Background 

Consider the essence of trust region algorithms for unconstrained optimization. They 

are centered around Newton's method, a method with fast local convergence prop­

erties. At each iteration, we build a quadratic model qc( s) of the objective function 

around the current point Xe and calculate the Newton step for this model. (The 

Newton step is the unconstrained minimizer of the quadratic model.) The trust re­

gion serves to restrict the step to a region of the form llsll ::; ~c in which we trust 

the model. If the Newton step is inside the trust region, then we will take it as our 

trial step Sc. Otherwise, we choose the trial step to be a solution of the unconstrained 

trust region subproblem 

mm1m1ze qc( s) 

subject to 11s11 ::; ~c • 

Once we have a trial step, we must decide if x+ = Xe+ Sc is a better approximation to 

the solution x* than the current point. If it is, then we accept the step and start the 

next iteration with the new iterate x+. If the step is not acceptable, then we reduce 

the radius of the trust region, ~, and calculate a new trial step in this smaller region. 

Trust region algorithms for problem ENLP contain all of the basic ingredients of 

unconstrained trust region algorithms. They are based on the SQP method which has 
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fast local convergence properties. The SQP step will play the role that the Newton 

step plays in unconstrained optimization. If the SQP step does not exist or if it 

lies outside the region in which we trust our model, then the trial step will be the 

solution to a constrained trust region subproblem. A variety of constrained trust 

region subproblems have been proposed. 

The most straw;htforward way to extend the trust region idea to SQP is to simply 

add a trust region constraint, 11s11 ~ ~, to the SQP subproblem. This leads to a 

subproblem of the form 

QPTR Subproblem 

m1mm1ze 

subject to 

T 1 T v1xle S + 2s Bes 

v1h/s +he= 0 

11s11 ~ ~e-

(2.1) 

If the current iterate is a nonlinearly feasible point, i.e., h(xe) = 0, then this sub­

problem can be solved as a lower dimensional unconstrained trust region subproblem. 

However, if Xe is not a feasible point, then this subproblem may not have a solution. 

The difficulty is that the feasible set may be empty. for the linearized constraint 

manifold v7 he Ts + he = 0 may not intersect the trust region. 

Vardi [1980, 198,5] studies a trust region subproblem of the form 

Vardi Subproblem: 

mm1m1ze 

subject to v7h/ s +he= 0e 

11s11 :S 21e, 

(2.2) 

where 0e E m,m is a multiple of he chosen to ensure that the feasible set is non­

empty. The Vardi subproblem can be transformed into an unconstrained trust region 

subproblem of a lower dimension, and then existing algorithms from unconstrained 

trust region methods can be used to obtain the solution at each iteration. This method 

handles lack of second-order sufficiency away from the solution with no difficulty, but 

there remains the problem of the specific choice of 0e. 
Celis, Dennis, and Tapia [1985] avoid this difficulty by considering a subproblem 

of the form 

CDT Subproblem: (2.3) 
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subject to 

T 1 T 
V xlc S + 2s Bes 

IIVh? S + hell ~ 0c 

11s11 ~ ~c, 

6 

where 0c E m is cJ;iosen to be IIV h? s + hell for some s inside the trust region. In this 

way, the feasible set in the CDT subproblem is guaranteed to be non-empty. Celis, 

Dennis and Tapia chose 0c to be IIVh?scp + hell where Sep= ncVhchc is the step 

to the Cauchy point for the constraints, i.e., the minimizer inside the trust region 

{ s : 11s11 ~ ~c} of IIV h? s + hell along the direction of its negative gradient. This is 

enough to ensure that nonlinear feasibility will be attained in the limit, but it allows 

flexibility for the subproblem to progress towards optimality. Furthermore, El-Alem 

[1988] gives a global convergence proof for a variant of the algorithm given by Celis, 

Dennis and Tapia [1985] which uses the augmented Lagrangian for a merit function 

with a specific strategy for updating the penalty constant. 

Powell and Yuan [1986] also consider a subproblem of the same form as the CDT 

subproblem with a different choice of 0c. They chose it to be any number that satisfies 

(2.4) 

for some O < a ~ 1. This choice of 0c is computationally more expensive than 

the choice based on the Cauchy point for the constraints, and it will provide faster 

convergence to nonlinear feasibility. However, getting nonlinearly feasible too early 

can cause an expensive trip around a curved boundary of the feasible region, and 

numerical experimentation supports this notion, (Dennis, El-Alem and Tapia). A 

conceptual advantage of 0c given by (2.4) is that the SQP step would be chosen 

automatically whenever it is inside the trust region and the linear constraint manifold 

intersects the smaller trust region of radius a~c· Instead, Celis, Dennis and Tapia 

[1985] compute the SQP step and take it as the trial step sc whenever it is inside 

the trust region. Notice that when the SQP step is inside the trust region, it is not 

necessarily the solution to the CDT subproblem. The solution to the CDT subproblem 

could give a smaller value of the quadratic model than the SQP step but have a larger 

residual of the linearized constraints. 

Celis, Dennis and Tapia [1985] give an algorithm for solving t.h,· CDT subprob­

lem. Using this subproblem, they developed an algorithm for solving the equality 

constrained optimization problem which compared favorably with two existing SQP 
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implementations. However, at the time of the original development of the CDT al­

gorithm, a complete characterization of the solutions to the CDT subproblem was 

not known. In essence, the CDT subproblem requires the minimization of a possi­

bly non-convex quadratic subject to two quadratic constraints. Unfortunately, when 

both of the quadratic constraints are binding, the CDT subproblem is too difficult 

and expensive to solve unless the quadratic objective function is strictly convex. (See 

Y. Zhang [1988] and Y. Yuan [1987], [1988]). 

2.2 The New Trust Region Subproblem 

Motivated by the work of Byrd, Schnabel and Shultz [1988] on trust region methods 

for unconstrained optimization, Dennis, Martinez and Williamson [1991] have pro­

posed a more convenient trust region problem by restricting the CDT subproblem to 

a relevant two-dimensional subspace. This gives a subproblem of the form 

2DCTR Subproblem: 

mm1rmze 

subject to 

T I T 
v'xle S + 2s Bes 

llv'heTS + hell2 ~ 0e 

llsll2 ~ ~e 
s E span { V1, V2}. 

We will refer to this subproblem as the 2DCTR ( 2-Dimensional Constrained Trust 

Region) subproblem. For the required amount of linear feasibility, we choose 0e in 

a manner similar to Celis, Dennis and Tapia [1985]. We use a dogleg strategy as 

in unconstrained trust region algorithms to determine the step s which will give us 

Be= llv'heTs + hell- We use the Cauchy point for the constraints and a most Linearly 

Feasible point SLF for the dogleg. More details about the dogleg and calculating the 

required linear feasibility can be found in Chapter 4. 

The 2DCTR subproblem also requires the choice of the relevant two-dimensional 

subspace. We will use the dogleg step which determined the required linear feasibility 

as the first direction. Notice that this ensures that the two-dimensional subspace 

intersects the feasible region given by the two quadratic constraints since the dogleg 

point determined this region. For the second direction, we will use the SQP step 

when it exists. If the SQP step does not exist, then we will use a resulting direction 

of negative or zero curvature which is a descent direction for the quadratic model 

inside the null space of v' he T as the second direction. 
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2.3 Overview of the Algorithm 

The remainder of this work is concerned with the specification and solution of the 

2DCTR subproblem, and the incorporation of this two-dimensional subproblem into 

an algorithm for solving problem ENLP. Chapter 3 gives our algorithm for solving 

the quadratic programming problem QP and discusses how we deal with the situation 

when V he does not have full rank. In addition, we discuss how to obtain a direction 

of zero or negative curvature when second-order sufficiency does not hold. 

In Chapter 4 we give our strategies for calculating a trial step at each iteration of 

our nonlinear programming algorithm. Included in this chapter is the characteriza­

tion of the solutions to our two-dimensional subproblem 2DCTR, and the resulting 

algorithm to solve this constrained trust region subproblem. The solution of this 

subproblem requires the minimization of a possibly non-convex quadratic subject to 

two quadratic constraints in two dimensions. As we will see, to solve this subproblem, 

we will need to be able to find all of the local solutions to the unconstrained trust 

region subproblem in two dimensions. In Chapter 6, we derive analytical expressions 

for all the local solutions of the unconstrained trust region subproblem in a number 

of degenerate situations. vVe also give necessary and sufficient conditions for the ex­

istence of a local, non-global solution in the non-degenerate case. Finally, we give an 

algorithm for finding all of the local solutions to the two-dimensional unconstrained 

trust region subproblem. This algorithm completes the calculation of a trial step. 

Once we have a trial step, Chapter 7 discusses the criteria we use to accept the 

step and update the trust region radius. This chapter contains the choice of the merit 

function which includes the strategy for choosing the penalty constant. We discuss 

several choices of Lagrange multiplier estimates and numerical experimentation with 

them. Finally, we give the numerical results for a preliminary implementation of 

our nonlinear programming algorithm, and we compare it to other existing nonlinear 

programming codes. 



Chapter 3 

Solution of the Quadratic Program 

In this section we will discuss the solution of the quadratic program 

Problem QP: 

mm1m1ze 

subject to 

T 1 T 
Vxle S + 2s Bes 

Vh?s +he= 0 

9 

for the step SQP and the associated multipliers !::J.).QP when the solution exists, and 

we will discuss how to handle the quadratic program when the solution does not 

exist. Since we will focus attention only on obtaining a solution to problem QP in 

this chapter, we will drop the subscript c which indicates the current iteration in the 

nonlinear programming algorithm. 

First we will briefly summarize the standard approach to the solution of problem 

QP under the ideal conditions; namely that Vh has full rank and that the Hessian 

B restricted to the null space of the linear constraints is positive definite. See, for 

example, Gill, Murray and Wright, (1981]. If SQP is the solution to problem QP and 

!::J.).QP is the associated multiplier, then SQP and !::J.).QP satisfy the linear system 

[ V~T ~h l [~~=Pl = - [ V;I] · (3.1) 

The first step in the solution of problem QP is the orthogonal factorization of the 

matrix Vh =QR where Q is (n x n) and orthonormal and R is (n x m), nonsingular 

and upper triangular. Then, the first m columns of the matrix Q, which we will denote 

by Q1, provide a basis for the range space of V h, and the last ( n - m) columns of 

Q, which we will denote by Q2 , provide a basis for the null space of '\lhT. The range 

space component of the solution SQP is completely determined from the solution to 

the lower triangular system 

RT W1 = -h. 

The null space component of SQP is determined by minimizing the quadratic objective 

function restricted to the null space. If the reduced Hessian, Q/ BQ2, is positive 
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definite, then the null space component is uniquely determined from the solution to 

the linear system 

[Q/ BQ2] W2 = -Q/ (B SLF + 'vxl), 

and the solution to problem QP is given by 

Once SQP has been calculated, the multipliers associated with problem QP, llAQP, 

are determined from the solution of the linear system 

'vhtl>.. = -(BSQP + 'v xl) 

using the QR factorization of 'v h. 

Let us consider the difficulties that can arise in the solution of problem QP. Since 

'v h may not have full rank, the algorithm must be able to handle situations in which 

the constraints are degenerate. This is not a serious problem, and it can be handled 

in a straightforward manner. A more substantial difficulty is that there may not be 

a linearly feasible point. In other words, there may not be any step s which satisfies 

the linear constraints 'v hT s + h = 0, and problem QP will not have a solution. To 

overcome this obstacle, let SLF, ( a most Linearly Feasible step), be a solution of the 

linear least-squares problem 

minimize ll'vhT s + hll, 

and define 0 MIN to be the residual of the linear constraints at s LF , 

(3.2) 

We will replace the linear constraints in problem QP with 'vhT s + h = 0MIN which 

will require the step to be as linearly feasible as possible. Thus, when problem QP 

does not have a solution because 'v h does not have full rank, we will actually solve 

the quadratic program referred to as problem GQP, for a generalized SQP step. 

Problem GQP: (3.3) 

mm1m1ze 

subject to 

There should be no confusion in using the notation sqp in this way since if a linearly 

feasible point exists, 0MIN will be O and problem GQP is identical to problem QP. 
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Otherwise, if problem QP does not have a solution because there is not a step s that 

satisfies "vhT s + h = 0, then this constraint is relaxed in a meaningful way in problem 

GQP to obtain a quadratic program which does have a solution. In addition, we 

point out that problem GQP can be formulated as the bi-level optimization problem 

m1mm1ze 
1 

"v [Ts + -sT Bs 
X 2 

subject to s E argmin {ll"vhT s + hll} . 

As indicated in Chapter 1, we will also assume that second-order sufficiency may 

not hold away from the solution to problem ENLP. Recall that the second-order 

sufficiency condition at the point ( x)) is 

zT B(x, >..)z > 0 for all z =J. 0 satisfying "vhT(x)z = 0. (3.4) 

If this condition does not hold, then there will be a direction of zero or negative 

curvature inside the null space of "vhT. We will denote such a direction by dQP· 

These situations yield three possibilities. First, if dQP is a direction of negative 

curvature, then the quadratic model is unbounded below on the linear constraints, 

and the QP does not have a solution. If dQP is a direction of zero curvature which 

makes a nonzero inner product with the gradient, then again the quadratic model 

is unbounded below on the linear constraints, and the QP does not have a solution. 

Finally, there is the possibility that the quadratic model is completely flat along a 

direction of zero curvature, and the QP has an infinite number of solutions. 

Thus, our algorithm for the solution of the quadratic programming problem first 

computes a most linearly feasible step, SLF, which will be the range space component 

of the solution, if a solution exists. (The nonlinear programming algorithm will use 

the step SLF regardless of whether or not problem GQP has a solution.) The next 

step is to form the reduced Hessian and to determine if a solution exists. If a solution 

exists, the algorithm will find it and its associated Lagrange multipliers. Otherwise, 

we will calculate a descent direction of zero or negative curvature inside the null space 

of "iJhT. 

3.1 Calculating a Most Linearly Feasible Step 

The first part of the solution of problem GQP is the determination of the step to the 

linear constraints, SLF· The first step is the calculation of the QR decomposition of 
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'vh using column pivoting. Notice that this is not the obvious way to solve the linear 

constraints in the least-squares sense, but keep in mind that the goal is to solve the 

system given by (3.1), not just the linear constraints. The QR decomposition yields 

(3.5) 

where Q is (n x n) and orthonormal, R is (n x m) and upper triangular, and II is the 

( m x m) permutation matrix that describes the column pivoting. This decomposition 

allows us to estimate the rank of 'v h, which we will denote by r. Then, the columns 

of the matrix Q can be partitioned into two sets, Qi and Q 2 • The matrix Qi has r 

columns which form an orthonormal basis for the column space of 'vh. The matrix 

Q2 has (n - r) columns which span the null space of 'vhT. When 'vh does not have 

full rank, we will partition R in a similar manner so that 

where Ri is an (r x r) nonsingular, upper triangular matrix. 

Let Wi E mr and w2 E JR,(n-r). The step s can now be represented as the sum of 

two components, one which lies in the column space of 'v h and another which lies in 

the null space of 'v h T, i.e. 

(3.6) 

Often, Qi Wi is referred to as the vertical component of the step and Q 2 w2 as the 

horizontal component. 

Since we have not assumed that 'vh has full rank, we will interpret 'vhT s = -h 

in the least-squares sense. Namely, we want to find a step SLF which is a solution to 

(3.7) 

In addition, we would like SLF to be the shortest step to the linearized constraints 

since we intend to use it in a trust region algorithm. For example, if SLF is outside 

the trust region, we will want to conclude that there are no linearly feasible points 

inside the trust region. Using the QR decomposition of 'v h and the representation of 

s given by (3.6), the least-squares problem (3. 7) is equivalent to 

(3.8) 
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and 

(3.9) 

If v' h has full rank, then R1 _ R, and SLF is easily determined from the solution of 

the lower triangular system 

(3.10) 

with SLF = Q1w1, 

When v' h does not have full rank, the most tempting idea is to simply take w1 as 

the solution to 

(3.11) 

where [ II Th L is intended to denote the first r elements of the vector II Th. However, 

the resulting step is not necessarily a solution of the least-squares problem (3. 7) as 

the following example will show. 

Example: 

v'h 

R 

Solving equation (3.11) yields 

[

-4 1 

0 1 

0 0 

(3.12) 

Q = I, ITT= I, 

-~ ] , and h = [: ] 

and llv' hTs + hll = 1.2748. On the other hand, the direct calculation of the minimum 

norm least-squares solution using the pseudo-inverse of v' hT yields 

[ 

0.2481 l 
s+ = - (v'hT)+ h = -1.1860 

0.0000 
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and IIVhTs+ + hll = 1.2117. Clearly s obtained from equation (3.11) is not a least­

squares solution. Thus, when V h does not have full rank, the QR decomposition of 

Vh is not sufficient to determine a least-squares solution to VhT s + h = 0. 

Can we use the QR decomposition that we already have to obtain the minimum 

norm least-squares solution? Surprisingly enough, we can. Contemplation of the 

structure of the least-squares problem in (3.8) and (3.9) suggests that we would 

like to eliminate the R2 term. To accomplish this, we further decompose R using 

Householder transformations into 

R - [ ~
1 

~
2 l [ ~ ~ l zT 

where T is an (r x r) nonsingular, upper triangular matrix and Z is an (m x m) 

orthonormal matrix. Pivoting is not necessary since we have already selected the 

columns in R1 to have full rank. The complete decomposition is then 

Vh Q R IT T = Q T zT ITT 

[Q,IQ,] [: ~] zT rrT_ 

Combining this with (3.8) yields the least-squares problem 

mm1m1ze II [ :T ~ ] [ :: ] + zT II Thi[, 

which reduces to 

mm1m1ze II yT Wt + [ zT IT Th L 11. 

Therefore, w1 is the unique solution of the lower triangular system 

yT w1 = - [ zT IT Th L , 
and SLF = Q1w1. 

Returning to the example in (3.12), we further decompose R into 

R = [: ~ l zT 

[ 4.0156 -1.0607 0.0000 l [-0.9961 0.0623 -0.0623 l 
0.0000 -1.4142 0.0000 0.0000 -0.7071 -0.7071 . 

0.0000 0.0000 0.0000 -0.0880 -0.7044 0.7044 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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Using this decomposition, we can solve equation (3.16) for w 1 , and S£F = Q1w1 = 
(0.2481, -1.1860, o.oooof, the same as the solution obtained using the pseudo-inverse 

of '\l hT. 

The following theorems verify that the decomposition of '7 h given in (3.14) can 

be used to obtain the minimum norm least-squares solution to '7 hT s + h = 0. 

Theorem 3.1 Let '7 h be an ( n x m) matrix, for m :'.S n, with the QR 

decomposition 

'\lh = QRITT (3.17) 

where Q is n x n and orthonormal, R is n x m and upper triangular, and 

IT is the m x m permutation matrix that describes the column pivoting. 

If '7 h has full rank, then the pseudo-inverse of '7 hT is given by 

(3.18) 

Let r denote the rank of '7 h. If '7 h does not have full rank, then R has 

the structure 

R = [ ~
1 

~

2 l 
where R1 is an (r x r) nonsingular, upper triangular matrix. The matrix 

R can be further decomposed so that '\lh can be written as 

(3.19) 

where T is an ( r x r) nonsingular, upper triangular matrix and Z is an 

(m x m) orthonormal matrix. Then, the pseudo-inverse of '\lhT can be 

represented as 

(3.20) 

Proof To show that the expressions given in equations (3.18) and (3.20) represent 

the pseudo-inverse of '\lhT, we must verify that they satisfy the four Moore-Penrose 

conditions: 
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2. (VhT)+ VhT (VhT)+ = (VhT)+ 

3. (V hT (V hT)+ f = V hT (V hT)+ 

4. ((VhT)+ VhTf = (VhT)+ VhT. 

See, for example, Golub and Van Loan [1983]. In the full rank case, it is an easy 

exercise to verify that equation (3.18) satisfies the Moore-Penrose conditions. 

When V h is rank deficient, we will show that equation (3.20) satisfies conditions 

1 - 4. First, 

VhT (VhT)+ VhT II z [ T: ~ ] QT Q [ T~T ~ ] zT ITT IT z [ r; 

Next, 

II Z [ :T 0 l [ T-T O l [ TT O l T 
0 0 0 0 0 Q 

IT Z [ :T ~ ][ ~ ~] QT 

IT z [ T: ~]QT= VhT 

(VhT)+ VhT (VhTt = 

Q [ T~T ~ ] zT ITT IT Z [ :T n QT Q [ T~T 

~ ] zr IT r Q [ T~ T ~ ] [ :T ~ ] [ T~ T 

Q [ T~T ~ l u ~ l zT ITT 

Q [ T~T ~ l zT ITT= (VhT)+. 

Now we will verify the symmetry requirements. 

VhT(VhT)+ = ITz[:T ~]QTQ[T~T ~]zTIIT 

- rr z [ 1 0 
] zT rr T 

0 0 ' 

~] QT 
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which is symmetric. Finally, 

('VhT)+ 'vh7 = Q [ T~T ~ ] zT ITT IT Z [ ~T ~ ] QT 

Q [ ~ ~ l QT, 

which is also symmetric. Thus, the pseudo-inverse of VhT can be expressed as equa­

tion (3.20) when Vh does not have full rank. 0 

Theorem 3.2 Let Vh, Q, R, II, T, and Z be given as in Theorem 3.1. 

Then, if V h has full rank, the minimum norm solution to 

(3.21) 

is given by 

(3.22) 

If Vh is rank deficient with rank r, then the minimum norm solution to 

the least-squares problem (3.21) is given by 

(3.23) 

where [ zT ITT h] r denotes the first r elements of the vector zT ITT h. 

Proof The proof follows from the fact that the pseudo-inverse yields the minimum 

norm solution to the linear least-squares problem and from Theorem 3.1. D 

Once w1 has been determined, we can calculate SLF, the step to the linear con­

straint manifold, by 

SLF = Q1W1. (3.24) 

We can also calculate 0MIN, the residual of the linear constraints, by 

(3.25) 

and if Vh has full rank, 0MJN = 0. 
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3.2 Directions of Zero or Negative Curvature 

Now that we have calculated a step to the linear constraints, we must determine if 

problem GQP has a solution or if there is a descent direction of zero or negative 

curvature for the quadratic inside the null space of v'hT. 

To see why problem GQP will not have a solution when dQP is a direction of 

negative curvature inside the null space of v'hT, consider a step S£F to the linearized 

constraint manifold v'hT S£F+h = 0MIN· Then, any step of the forms= S£F+adQP, 

where a is a scalar, will also satisfy v' hT s + h = 0 MIN since dQP lies in the null space 

of v'hT. Now the quadratic objective function q(s) = v'xlTs + ½sT Bs for any step of 

the forms = S£F + adQP is 

q(s) T 1 T - v'xl (sLF+adqp)+ 2(sLF+adQP) B(sLF+adQp) 

q(sLF) + a(v'xlTdQP + sIFBdQP) + ta2d~pBdQP. 

Since dQP is a direction of negative curvature for B, cf6pBdQP < 0. We can choose 

the sign of a so that 

Then, as we increase the magnitude of a, it is easy to see that q( s) -+ -oo, for 

any step s of the form S£F + adQP· Thus, problem GQP will not have a solution 

since the objective function is unbounded below on the feasible region. (As an aside, 

notice that if we choose the sign of a so that av' xlT dQP s; 0, then a step of the 

form s = adQP is a (perhaps infeasible) descent direction for the quadratic objective 

function since cf6pBdQP < O.) 

Now, consider the situation when dQP is a direction of zero curvature inside the 

null space of v'hT. Without loss of generality, we will assume that there is not a 

direction of negative curvature inside the null space of v' hT since we have already 

shown that problem GQP will not have a solution if such a direction exists. The 

quadratic objective function for s = S£F + adqp reduces to 

(3.26) 

If v' xlT dQP =/:- 0, then q( s) will be unbounded below in the feasible region. In this case, 

as in the negative curvature case, problem GQP will not have a solution. (Similarly, 

s = adQP is a (possibly infeasible) descent direction for q( s) when the sign of a is 

chosen to satisfy av' xf dQP ::; 0.) Since we could have more than one direction of zero 
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curvature, problem GQP will not have a solution if any direction of zero curvature is 

a descent direction for q( s). 

On the other hand, if v7 xlT dQP = 0 for all of the directions of zero curvature inside 

the null space of v7 hT, then q( s) = q( SLF) for all a. Thus, dQP gives us not a descent 

direction but a direction along which the quadratic is unchanging. However, there 

may still be a linearly feasible descent direction from s = SLF· The steps= S£F takes 

us to the linearized constraint manifold. To determine if there is a descent direction 

inside the null space, we will simply minimize the quadratic restricted to the null 

space. This gives us a step SMJN to the minimizer of the quadratic inside the null 

space. Combining this step with the step to the null space and the nzero directions 

of zero curvature in which the quadratic is unchanging gives us an infinite number of 

solutions to problem GQP of the form 

nzero 

SQP = SLF + SMJN + L a(i)dQp(i) (3.27) 
i=l 

for all scalars a(i), i = 1, ... , nzero. 

To illustrate this case, consider the following trivial example, 

Example: (3.28) 

mm1m1ze 

subject to s1 = -1, 

for s = (s1,s2 ,saf. The step from s = 0 to the linear constraint is SLF = (-1,0,0f. 
Restricting the quadratic to the null space of the constraint yields the reduced 

quadratic, -s2 + ½s~. Since the reduced quadratic does not depend on s3 , dQP = 
(0, 0, ll is a direction of zero curvature inside the null space of the constraint along 

which the quadratic is constant. Minimizing the reduced quadratic in the s2 variable 

gives SJ.fIN = (0, 1, Of. Then, our example has an infinite number of solutions of the 

form 

(3.29) 

for all scalars a. 

Thus, there are three possible solution cases. If second-order sufficiency holds, 

i.e., if the reduced Hessian is positive definite, then the QP will have a single, unique 

solution. If there is a direction of negative or zero curvature inside the null space of 
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V hT which is a descent direction for the quadratic model, then the QP does not have 

a solution. In this situation, the algorithm will calculate a direction dQP as described 

above and a step S£F to the linear constraints. Finally, if there are nzero directions of 

zero curvature inside the null space of V hT and none of them are descent directions, 

then the QP will have an infinite number of solutions of the form given in (3.27). If 
the algorithm detects this case, (which we admit is unlikely), it will calculate SMIN 

in addition to S£F· 

3.3 Formulation of the Algorithm 

The first part of the solution of problem GQP is the determination of the step to 

the linear constraints, S£F as discussed in Section 3.1. Now we want to determine 

whether or not the generalized QP has a single solution, no solution, or an infinite 

number of solutions. The Hessian B restricted to the null space of V hT is Qf B Q2 • 

If the reduced Hessian is positive definite, then the QP has a single solution. Let 

A1 denote the smallest eigenvalue of Qf B Q2, and let v1 denote the corresponding 

eigenvector. Then, v1 is a direction of negative curvature inside the null space if 

A1 < 0 or a direction of zero curvature if A1 = 0. If the smallest eigenvalue of the 

reduced Hessian is negative, then the quadratic is unbounded below on the feasible 

set, and the QP does not have a solution. Changing the basis from that of the null 

space to !Rn gives us a direction of negative curvature dQP by 

Although there may be more than one direction of negative curvature inside the null 

space, we will calculate only the one corresponding to the smallest eigenvalue of the 

reduced Hessian. This direction is the "steepest" direction of negative curvature in 

the sense that it gives the most negative value of dQPT BdQP· 

If the smallest eigenvalue of the reduced Hessian is zero, then we must distinguish 

between flat directions of zero curvature and descent directions of zero curvature along 

which the quadratic will be unbounded below. From the expression for the quadratic 

objective function for a step of the forms= SLF+adQP given in (3.26), the quadratic 

will be unbounded below on the feasible set if any direction of zero curvature makes 

a nonzero inner product with the gradient, i.e., if 
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where v;, for i = 1, ... , nzero, are the eigenvectors of the reduced Hessian correspond­

ing to zero eigenvalues. If there is more than one descent direction of zero curvature, 

then we will take the one which makes the smallest angle with the gradient to obtain 

dQP· 

If the quadratic objective function is flat along all of the directions of zero curva-

ture, then problem GQP will have an infinite number of solutions of the form 
nzero 

SQP = SLF + SMJN + L a;dQp(i) 
i=l 

(3.30) 

where dQp(i) = Q2v;, for i = 1, ... , nzero. In this case, SJ,,fIN is obtained by min­

imizing the quadratic restricted to the null space minus the flat directions of zero 

curvature. Thus, SMJN = Q2w2 for 

(3.31) 

where ( · )+ denotes the pseudo-inverse of the matrix. Since we will use SQP in a trust 

region algorithm, we need the following lemma for completeness. 

Lemma 3.1 Assume that the smallest eigenvalue of the reduced Hessian 

is zero. Let Q be an orthonormal matrix with the partition given in (3.5), 

where Q1 is a basis for the column space of V h and Q2 is a basis for 

the null space of VhT. Let SLF = Q1w1 where w1 is determined from 

(3.10) or (3.16), and let SMJN = Q2w2 where w2 is given by (3.31 ). Let 

dQp(i) = Q2vi where v;, for i = 1, ... , nzero, are the null orthonormal 

eigenvectors of the reduced Hessian Q{ B Q2 • Assume that 

V xlT dQp(i) = 0 for all i = 1, ... , nzero. (3.32) 

Then, 
nzero 

llsLF + SM1NII :s; llsLF + SMJN + L aidQp(i)II (3.33) 
i=l 

for all constants a;. 

Proof Expanding the norm yields 
nzero nzero 

llsLF + SM/N + L a;dQp(i)ll 2 = lisLFll 2 + llsM1Nll 2 + II L a;dQp(i)ll 2 + 
i=l i=l 

nzero 

2SLFT SMJN + 2 L (a;sLFT dQp(i)) + 
i=l 

nzero 

2 L (aiSMJNT dQP(i)). 
i=l 

(3.34) 



Since the null eigenvectors of the reduced Hessian are orthonormal, 

and lldQp(i)II = 1, for i = 1, ... , nzero. Therefore, 

nzero nzero nzero 

II L aidQp(i)ll 2 = L af lldQp(i)ll 2 = L a; · 
i=l i=l i=l 

Similarly, since each dQp(i) can be written as Q2vi, 

Expanding the remaining term gives 

-v?Q2TQ2(Qf BQ2)+ Qf(Vxl + BsLF) 

-v/(Q{ B Q2)+ Q{(V xl + BsLF). 
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(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

We can write the pseudo-inverse of the reduced Hessian in terms of its eigen decom­

position, i.e., 

(3.40) 

where the columns of V are the orthonormal eigenvectors and A is a diagonal matrix 

whose diagonal elements are the eigenvalues of the reduced Hessian. Let e; denote 

the ith unit vector. Then, 

-v?V(A)+vTQf(Vxl + BsLF) 

-e?(A)+vTQf(Vxl + BsLF) 

0' 

(3.41) 

(3.42) 

(3.43) 

since the ith diagonal element of (A)+ corresponds to a zero eigenvalue and is 0. 

Combining these relations yields 

nzero nzero 

llsLF + SMfN + L a;dQP(i)ll 2 = llsLFll 2 + 1isM1Nll 2 + L a? , (3.44) 
i=l i=l 

and the desired result follows. 0 
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Thus, when the smallest eigenvalue of the reduced Hessian is zero and none of the 

resulting directions of zero curvature are descent directions for the quadratic objective 

function, we will take SQP = SLF + SMJN as our particular solution to the quadratic 

program. Lemma 3.1 guarantees that this particular solution is the minimum norm 

solution. In the nonlinear programming context, if SQP = SLF + SMJN is not inside 

the trust region, then none of the infinite number of solutions to problem GQP are 

inside the trust region. 

Therefore, if dQP is a direction of zero or negative curvature, then either problem 

GQP does not have a solution, or it has infinitely many solutions of the form SLF + 
SMJN + adQP· In either case, we are finished. 

At this point, the only remaining possibility is that the reduced Hessian is positive 

definite. Then, we will compute the component of the step SQP that lies inside the 

null space of 'v h T from 

(3.45) 

Substituting the parameterization s = Q1 w1 + Q2 w2 and multiplying from the left 

by QI yields 

[Qf B Q2] W2 = -Q;('v xl + BQ1w1). (3.46) 

Since sLF = Q1 w1 , equation (3.46) simplifies to 

[Qf BQ2] W2 = -Qf('vxl + BsLF). (3.4 7) 

This linear system can be solved for the remaining component of the step w2 , and 

then the solution of the step is complete with 

The only task remaining is the determination of the associated Lagrange multi­

pliers, fl)..QP, from equation (3.45). Substituting the decomposition of 'vh, equation 

(3.45) becomes 

(3.48) 

Partition the vector zr ITT fl).. into the first r components, [ zr ITT fl).. L, and the 

last ( m - r) components, [zT ITT fl>..] . The first r elements are determined from 
(m-r) 

the solution of the upper triangular system 

(3.49) 
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and the last ( m - r) components will be set to zero, i.e., 

[ zT II T ~>.] = 0 . 
(m-r) 

Application of the orthogonal transformations represented by Z and the pivot inter­

changes represented by II to the resulting vector yield the multipliers associated with 

the quadratic program, ~AQP· In the event that V h has full rank, the multipliers are 

simply determined by application of the pivot information II to the solution of the 

upper triangular system 

(3.50) 

3.4 Statement of the Algorithm 

The algorithm for the solution of problem GQP will calculate SQP and ~AQP when 

such a solution exists. ·when a solution does not exist, a step SLF that satisfies 

v'hT S£F + h = 0MIN and a descent direction of negative or zero curvature inside the 

null space of v' h will be found. The preliminary implementation of this algorithm 

uses the full eigen decomposition of the reduced Hessian to determine the necessary 

curvature information. A topic for the future will be to replace this decomposition 

with a symmetric indefinite factorization. The algorithm can be stated as follows. 

Algorithm GQP: 

1. Obtain h, v'h, Vxl, and B. 

2. Calculate the QR decomposition of v' h using column pivoting. 

(a) v'h=QRIIT. 

(b) Determine the rank of Vh. Let the rank of Vh = r. 

(c) Partition Q and R such that Q = [Q, I Q2] and R = [ ~
1 

~' ] where 

Q1 has r columns and R1 is r x r and upper triangular. 

( d) If (v' h not full rank), then 

• Eliminate R2 using Householder transformations to obtain 

'vh = Q[: ~]zTrrT, 
where T is an ( r x r) nonsingular, upper triangular matrix and Z is 

an ( m x m) orthonormal matrix. 
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End if 

3. Calculate the step to the linear constraint manifold. 

(a) If (''vh full rank), then 

e Solve RTw1 = - [rrTh] for W1. 

Else 

e Solve yr W1 = - [zT ITT h]r for W1. 

End if 

(b) SLF = Qi W1. 

(c) Calculate the residual of the linear constraints 0MIN· 

4. Determine if problem GQP has a solution or if B has a descent direction of zero 

or negative curvature inside the null space of '7hr. 

(a) Form the reduced Hessian, QI B Q2. 

(b) Find the smallest eigenvalue of [ QI B Q2 ] , A 1 , and the corresponding 

eigenvector, v1 . 

(c) If (A 1 > 0), then 

• solution = true 

Else 

• If (A1 < 0), then 

* curvature = negative 

* solution = false 

* dQP = Q2V1 

Else 

* curvature = zero 

* Determine the number of zero eigenvalues of QI B Q 2 , nzero, and 

the corresponding eigenvectors, Vi. 

* If ('7 xlT Q2vi =J. 0 for any i E (1, nzero]), then 

<> solution =false 

<> imax = argmax { 1'7 xlT Q2vil, i = l, ... , nzero} 



0 dQP = Q2Vimax 

Else 

o solution = true 

o dQP(i) = Q2vi, i =I, ... , nzero 

End if 

End if 

End if 

5. Calculate the horizontal component of the step. 

(a) If (solution = true), then 

• If (curvature= zero), then 

* W2 = -(Q{BQ2)+ QI(Vxl + BsLF). 

Else 

* W2 = -( Qf B Q2)-l Qf(V xl + BsLF) 

End if 

• SQP = SLF + Q2 W2 · 

End if 

6. Calculate the multipliers. 

(a) If (solution = true), then 

• If (V h full rank), then 

* Solve R [rrT ~.\] = -Qf(Vxl + BsQP) for [rrT ~.\]. 
Else 
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* Solve T [u]r = -Q[(V xl + BsQP) for [u]r where [u]r denotes the 
first r elements of [ zTIT T ~A] . 

7. End. 

* Set the last (m - r) elements of u to zero, [u](m-r) = 0. 

*[rrT~A]=Zu 
End if 

• "Unpivot" the multipliers: ~AQP = IT [rr T ~.\] . 

End if 



27 

Chapter 4 

Calculation of a Trial Step 

The focus of this chapter is the calculation of a trial step sc at each iteration of our 

nonlinear programming algorithm. At the current iterate Xe with multipliers Ac, we 

will calculate the function information Jc= f(xc), v'fc, Be, he and v'hc needed to 

build a local model of problem ENLP (1.1). We assume that we have the current 

trust region radius ~c- (The strategy for calculating the trust region radius will 

be discussed in Section 7.4.) Given this information, we want to determine a trial 

step Sc which, when added to the current point, will hopefully give us a new iterate 

X+ = Xe + Sc that is a better approximation to x* than the current iterate. 

To design an algorithm for calculating a trial step, there are some considerations 

to keep in mind. First, in order to retain the fast local convergence properties of the 

SQP method, we will want to take SQP as our trial step whenever it exists and lies 

inside the trust region. Far from the solution, though, we will need to choose our trial 

step based on a globalization strategy. The globalization strategy that is the basis of 

this work is the 2DCTR subproblem, and so we will choose the trial step to be the 

solution to the two-dimensional constrained trust region subproblem, 

2DCTR Subproblem: 

mm1m1ze 

subject to 

when we are far from the solution. 

T 1 T 
v'xlc S + 2s Bes 

jjv'hc TS+ hcll2 :=:; 0c 

llsll2 :::; ~c 

s E span { v1, v2}, 

( 4.1) 

Using these ideas, the obvious strategy is to first solve the generalized quadratic 

program, 

Problem GQP: ( 4.2) 

mm1m1ze 
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for SQP, if problem GQP has a solution, or dQP, a descent direction of zero or negative 

curvature inside the null space of '7 hI, otherwise. If SQP exists and is inside the trust 

region, then we will take it as our trial step. If not, we would then solve the 2DCTR 

subproblem for a trial step. The advantages of this simple and straightforward ap­

proach are that it retains the fast local convergence of the SQP method, the cost 

of the trial step is dominated by the cost of the solution to problem GQP, and the 

numerical results show good global behavior. 

However, there are a number of circumstances in which the constraint 

(4.3) 

can be ill-conditioned, and it is not numerically advisable to use the 2DCTR sub­

problem. Consider, for example, the situation when h(xe) = 0 and the SQP step 

is not chosen as the trial step. Then, the linear feasibility constraint ( 4.3) becomes 

IJVh~s11 2 = 0. The theory for linear least squares problems, (Golub and Van Loan, 

Chapter 6), tells us that we would prefer to solve ll"vh~ sJJ 2 = 0 directly as "vh~ s = 0 

to avoid squaring the condition number of the problem. 

We will discuss other specific circumstances in which the constraint ( 4.3) may be 

ill-conditioned presently, but first, let us reconsider our design criteria for the trial 

step algorithm. We know that we want to choose SQP as the trial step whenever it 

exists and is inside the trust region, and we want to use the 2DCTR subproblem when 

we are far from the solution. In the simple strategy outlined above, we were "far from 

the solution" whenever SQP did not exist or was outside the trust region. Instead, 

suppose we use the distance to the linearized constraint manifold V he Ts+ he = 0 MIN 

to determine if we are "far from the solution." During the solution of problem GQP, 

(see Chapter 3), we obtain S£F, the step to the linearized constraint manifold. Then, 

llsLFII is the distance to this subspace since Theorem 3.2 guarantees that S£F is the 

minimum norm solution of {s: min IIVh~s + hell}- In addition, the fact that S£F is 

not inside the trust region is sufficient to conclude that SQP, if it exists, will not be 

inside the trust region either. 

Using this new notion of "far from the solution," if S£F is inside the trust region, 

then the natural choice for a subproblem is clearly 

QPTR Subproblem ( 4.4) 



rmmm1ze 

subject to 

T I T 
Vxle s + 2s Bes 

Vh?s +he= eMIN 

JJsll ~ ~e, 
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since we know the constraint region is now non-empty. There are two different 

motivations for using the QPTR subproblem in these circumstances. First, it directly 

avoids using the possibly ill-conditioned 2DCTR subproblem when h( xe) = 0, since 

S£F = 0 when h(xe) = 0. Next, the subproblem given in (4.4) is a special case of the 

Vardi subproblem (2.2). Recall that the difficulty with the Vardi subproblem was the 

choice of 0e in the constraint V he Ts + he = 0e, but in this situation, the obvious 

choice is 0e = 0MIN· Furthermore, it has the desirable property that SQP is the 

solution to the QPTR subproblem whenever SQP exists and is inside the trust region. 

So, we will use the QPTR subproblem whenever we know that its feasible set is non­

empty. Specifically, we use JJsLFJJ ~ .8~e as the criterion for choosing the QPTR 

subproblem since this guarantees that the feasible set has a non-empty interior. 

Now we have essentially a three-phase strategy for calculating the trial step. First, 

we will solve problem GQP for either a solution sqp or a descent direction of zero or 

negative curvature, dQP, and the step to linear feasibility, S£F· If SQP is inside the 

trust region, then we take it as our trial step. Otherwise, we choose our subproblem 

based on the distance to linear feasibility, 11s LFJJ. If we are "close" to linear feasibility, 

then we use the QPTR subproblem to calculate the trial step, and if we are "far" 

from linear feasibility, then we use the 2DCTR subproblem as our global strategy. 

In the next section, we will discuss the choice of the two-dimensional subspace and 

the required linear feasibility constant 0e that are needed to complete the specification 

of problem 2DCTR. Once we have determined the linear feasibility constraint ( 4.3) 

the following section is concerned with the circumstances in which this constraint can 

be ill-conditioned and how we will deal with them. 

4.1 Determining the Required Amount of Linear Feasibility 

and the Choice of the Two-dimensional Subspace 

Recall that our constrained trust region subproblem 2DCTR has a linear feasibility 

constraint of the form 

(4.5) 
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and in this section we will discuss how to choose Be, The strategy we use is based on 

the idea that if we choose Be to be equal to II V h? s + he II for some s inside the trust 

region, then we are guaranteed that the feasible set of the form 

( 4.6) 

is non-empty. To preclude the possibility that the feasible set given by ( 4.6) consists 

of a single point, we choose s such that llsll :'.S .8~e- Celis, Dennis and Tapia [1985] 
chose Be to be llv'h/scp + hell where scp = o:eVhehe is the step to the Cauchy 

point for the constraints, i.e., the minimizer inside the trust region {s: lisll :::; .8~e} 
of IIVh/ s + hell along the direction of its negative gradient while Powell and Yuan 

[1986] chose Be to minimize llv'h? s + hell inside a trust region of radius O'~e for 

O<o-:::;l. 

Our choice for Be is based on a dogleg strategy similar to the dogleg approach 

for the solution of the unconstrained trust region subproblem, (Dennis and Schnabel 

[1983]). In unconstrained optimization, the dogleg approximates the solution curve 

s(µ) of the trust region subproblem by a piecewise linear function connecting the 

Cauchy point to the Newton step. If the Newton step is inside the trust region, then 

it is the dogleg point. Otherwise, the dogleg step svL is the point on this polygonal 

arc such that llsv£11 = ~e- The dogleg has the nice property that the value of 

the quadratic model decreases monotonically along the curve from Xe to scp to the 

Newton step. 

We want to determine a dogleg step svL for the quadratic model of the constraints 

IIVh? s + hell 2
• We use the Cauchy point as defined above with a trust region radius 

of .8~e as the first segment of the dogleg. The Cauchy point is determined as follows. 

Calculating the Cauchy Point: (4.7) 

S = _ heTv'heTv'hehe v'h h 
GP he Ty' he Ty' hey' he Ty' hehe e e 

if llscpll > .8~e, then sap = ,i":!ell Sep. 

Now we need the segment of the dogleg step that will play the role that the 

Newton step plays in the dogleg step for unconstrained optimization. We could use 

the Levenberg-Marquardt-type step of Powell and Yuan. However, this choice requires 

the solution of an additional unconstrained trust region subproblem, and we would 

prefer not to incur this computational expense. Instead, recall that we have a step 
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sLF to the linearized constraint manifold '\lh? s + he = 0MIN from the solution of 

problem GQP, and we will use this step in the dogleg strategy to play the role of the 

Newton step. If iisLFII ~ .8~e, then SDL = SLF· If SLF lies outside of the .8 trust 

region, the dogleg step is of the form 

SDL = sep + O.SLF such that llsnLII = .8~e and a 2: 0. (4.8) 

From application of the standard dogleg analysis to the function llv'h? s + hell, we 

know that llv'h/ s + hell decreases as we move along SDL given in (4.8) from s = 0 

to s = SLF· The calculation of the dogleg can be summarized as follows. 

Calculating the Dogleg Step: 

* SDL = SLF 

Else 

* Calculate the Cauchy point from ( 4. 7). 

* svL = sep + O.SLF such that llsv£11 = .8~c and a 2: 0. 

End if 

The details on how to calculate a such that llsep + asLFII = .8~e can be found in 

Dennis and Schnabel [1983]. The dogleg step SDL will be zero only when SLF is zero 

and s = 0 is a linearly feasible point. 

Once we have found the step which will determine the required linear feasibility, 

all that remains is to calculate 0e by 

(4.9) 

where the inclusion of 0MIN simply translates the constraint so that the minimum 

value of jjv'h/ s + he - 0M1NII is zero. 

Now we will consider the choice of the two-dimensional subspace. As indicated 

previously, the first direction we use will be SQP if it exists. If the SQP step does not 

exist, then we will have determined a descent direction of negativP or 7Pro curvature 

inside the null space of v' he T, and we will use this direction dQP as Ll1c first direction. 

For the second direction we will use the step SD£ that determined the required 

linear feasibility. This choice will ensure that the intersection of the two-dimensional 
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subspace with the feasibility region given m ( 4.6) 1s non-empty. Thus, the two­

dimensional subspace will be 

s E span{SQP or dQP; SD£}. (4.10) 

4.2 Ill-conditioning of the Linear Feasibility Constraint 

In this section, we will discuss several situations where the linear feasibility constraint 

( 4.9) may be ill-conditioned. Previously, we used the case h(xc) = 0 to motivate the 

use of the QPTR subproblem when SLF is inside the trust region. If h( Xe) = 0, 

then (4.9) becomes !IV hf sii~ = 0, and to avoid squaring the condition number of the 

problem we would prefer to solve Vhf s = 0 directly. 

A similar situation arises when Vhehe = 0. Notice that this includes the case when 

Xe is a nonlinearly feasible point, i.e. he = 0, but it also includes the situation when 

s = 0 lies in the linearized constraint manifold V he Ts + he = 0 MIN and he =/- 0. 

When V hehe = 0, we can show that V he Ts+ he = 0 MIN is equivalent to V he Ts = 0. 

By definition, 0MIN is the residual of the linear least squares problem VheT s = -he. 

In addition, V hehe = 0 implies that the projection of he onto the column space of 

Vh/ is zero. Thus, 0MIN = he in this case, and VheT s + he = 0MIN reduces to 

V he Ts = 0. In both of these situations, the QPTR subproblem reduces to 

mm1m1ze 

subject to 

T l T 
Vxle S + 2s Bes 

Vh~s = 0 

llsli :::; 6.e · 

( 4.11) 

Since S£F and scp are zero under these circumstances, switching to the QPTR sub­

problem when S£F is inside the trust region avoids the possibility of ill-conditioning 

in the linear feasibility constraint. 

Since the subproblem given in ( 4.11) is a special case of the Vardi subproblem, it 

can be reduced to a lower dimensional unconstrained trust region subproblem. This 

reduction will be discussed in the next section. Then, the resulting unconstrained 

subproblem can then be solved with existing software designed for unconstrained 

trust region algorithms. See, for example, More and Sorensen (1983]. 

Although we have discussed this special case assuming that we have solved the 

quadratic program GQP, notice that if SQP exists and lies inside the trust region, 

then it will be the solution to the subproblem given in ( 4.11 ). Thus, for efficiency, 
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the algorithm will solve the subproblem in ( 4.11) first if it detects V hehe = 0, and in 

this situation, problem GQP does not need to be solved. 

Next, we will discuss two more special situations that lead us to solve a Vardi-type 

subproblem (2.2). The first of these is when the value for Be from ( 4.9) is small, and 

the linear feasibility constraint becomes 

( 4.12) 

This is essentially a translated version of the previous case, and the obvious choice 

would be to switch to a constraint of the form 

( 4.13) 

for numerical conditioning. However, the shortest distance to this linear manifold 

is llsLFII- Since we have already dealt with the case when llsLFII :::; .S~e, it is very 

possible that sLF is outside the trust region and the intersection of the constraint 

(4.13) and the trust region is empty. Instead, using the definition of Be, (4.12) becomes 

If we now remove the norms, we have a constraint of the form 

which has a non-empty intersection with the trust region since lisDLII :::; .S~e- This 

gives us a subproblem of the form 

mm1m1ze 

subject to Vh? s = Vh? SDL 

11s11:::; ~e • 

We have also seen numerical ill-conditioning when 

( 4.14) 

( 4.15) 

and IIVh/ s + he - 0M1NII ~ Be over the entire feasible region of problem 2DCTR. 

Essentially the linearized constraints are not well-scaled in comparison with the trust 

region radius. Then, the linear feasibility constraint is 

IIVh/ S + he - 0M1NII ~ Be 

~ jjVh? SDL + he - 0MINII 

( 4.16) 

( 4.17) 
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and with ( 4.15), 

(4.18) 

Thus, in this situation, we would prefer a subproblem with a constraint of the form 

Vh/ s = Vh/ SDL instead of the 2DCTR subproblem. Inserting this structure into 

the QPTR subproblem yields a subproblem of the form ( 4.14). 

4.3 Solution of Problem QPTR and Related Subproblems 

In this section we will briefly outline the solution of the QPTR subproblem and the 

special cases ( 4.11) and ( 4.14) developed in the last section. Each of these subprob­

lems can be reduced to a lower dimensional unconstrained trust region subproblem. 

We will start with the solution of the simplest one: 

mm1m1ze T 1 T 
V xle S + '.t Bes 

subject to Vh~s = 0 

llsll ~ ~e-

The constraint V he Ts = 0 requires that the solution lie in the null space of V he T. 

Thus, we can writes = Q2 w where Q2 is the orthonormal basis for the null space of 

Vh/ from the orthogonal decomposition of Vhe given in (3.14). With this change of 

variables, the subproblem in ( 4.11) becomes 

mm1m1ze q(w) = (Q2TV xlcf w + twT(Qf B Q2)w 

subject to IJwll ~ ~c, 

( 4.19) 

and the dimension of the resulting unconstrained subproblem will be the dimension 

of the null space of VheT· The trial step is then Sc= Q2w. 

Now we turn our attention to the solution of the QPTR subproblem, 

QPTR Subproblem 

m1mm1ze 

subject to Vh/ s +he= 0MIN 

JJsll ~Lie· 

( 4.20) 



Using the definition of 0MIN given in (3.2), the constraint v'h/ s + he 

becomes 

or 

Using the orthogonal decomposition of '\!he, we can write 
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( 4.21) 

( 4.22) 

where Q1 is an orthonormal basis for the column space of v' he and Q 2 is a basis for 

the null space of v' he T. For subproblem QPTR, the component of the trial step in 

the range space will simply be S£F since SLF is orthogonal to the null space, and so 

s = S£F + Q 2 w2 . Substituting this into ( 4.20) yields an unconstrained trust region 

subproblem of the form 

mm1m1ze q( w2) = ( Q2T'\l xlc + Q2T BsLF f W2 + iwI ( Q[ B Q2)w2 ( 4.23) 

subject to JJw2JI :::; (~c - JJsLFJI). (4.24) 

The form of the trust region constraint ( 4.24) is due to the fact that SLF is orthogonal 

to the null space, and so 

JJsJJ JlsLF + Q2w2JI 

JJsLFJJ + IJQ2w21l 

llsLFII + llw2JJ. ( 4.25) 

We know (~c - JJsLFII) > 0 since JJsLFII :::; .8~c- Thus, subproblem (4.20) requires 

the solution of a standard unconstrained trust region subproblem for w2 , and then 

the trial step is Sc = SLF + Q2w2. 

The solution of ( 4.14) is basically the same except that s DL is not necessarily 

orthogonal to the null space. Since we need this orthogonality so that the trust 

region constraint will separate as in ( 4.25), we compute the portion of SD£ that is 

orthogonal to the null space, i.e., 

DL QT 
WI = 1 SDL · ( 4.26) 

Then, the solution can be written ass= Q1wfL + Q2w2. Substituting this back into 

subproblem ( 4.14) yields an unconstrained trust region subproblem which can then 

be solved for w2, completing the calculation of the trial step in this instance. 
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In our preliminary implementation, we use the subroutine GQTPAR from the 

MINPACK project to solve these unconstrained trust region subproblems for our 

trial step. GQTPAR is based on the algorithm given in More and Sorensen, [1983]. 

4.4 Statement of the Algorithm 

In this section, we will summarize our strategy for calculating a trial step. First, if 

h( xc) = 0 or if he is orthogonal to the column space of Vhf, then the linearized con­

straint manifold contains s = 0. Since the feasible region for the QPTR subproblem 

is guaranteed to be non-empty in these circumstances, we will use this subproblem 

to determine a trial step. Otherwise, we will solve problem GQP for either a solution 

SQP or a descent direction of zero or negative curvature inside the null space of Vhf. 

The step S£F to the linearized constraints will be a by-product of the solution of 

problem GQP. If SQP exists and is inside the trust region, then we will take it as our 

trial step. 

If we did not take SQP as our trial step, we choose a globablization strategy based 

on the distance to linear feasibility, llsLFII- If SLF is inside the "inner" trust region of 

radius .8,6.c, then we use the QPTR subproblem to calculate our trial step. Otherwise, 

we will use the 2DCTR subproblem unless we encounter one of the situations in which 

the constraint IIVh~ s + he - 0M1NII :::; 0c may be ill-conditioned, and we will handle 

these cases as discussed in Section 4.2. 

Algorithm Trialstep: 

1. Given he, V he, the quadratic model, qc( s) 
region radius, .6.c, calculate a trial step Sc. 

2. If ("vhchc = 0) , then 

(a) Solve: 

(b) Return. 

mm1m1ze 

subject to 

qc(s) 

Vh/s = 0 



End if. 

3. ( a) Solve Problem GQP: 

for 

mm1m1ze 

subject to 

qe( S) 

'1h? S +he= 0MIN 

• SLF, the step to the linearized constraints, '7h/ s +he= 0MIN 

• SQP, if such a solution exists, or 
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• dQP a descent direction of zero or negative curvature inside the null 

space of '7 hf, otherwise. 

(b) If ( a solution to problem GQP exists), then 

• solution = true 

Else 

• solution = false 

End if. 

4. If ((solution = true) and (llsQPII :::; ~c)), then 

(a) Sc=SQP 

(b) Return. 

End if. 

5. Calculate the required Linear Feasibility. 

• SDL = SLF 

Else 

• Calculate the Cauchy point for the constraints, sep. 

• Find a such that llsep + asLFII = .8~c 

• SDL =Sep+ O'.SLF 

End if 



(b) Be= llv7h? SDL + he - eMINII 

6. If ((Be is too small), or (Be~ llhc - 0MINII)) then 

(a) Solve: 

mm1m1ze qc( s) 

subject to v7h/s = v7h/svL 

for Sc. 

(b) Return. 

End if 

7. Choose the 2D Subspace. 

• If (solution= true), then 

* {v1,v2} spans {sQp,svd 

Else 

* {v1,v2} spans {dQP,svL} 

End if. 

8. Solve Problem 2DCTR: 

for Sc. 

9. Return. 

10. End. 

mm1m1ze qc( s) 

subject to llv7h~ s + he - eMINII ~ Be 

JJsJJ ~ ~e 

s E span { v1, V2} 
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We point out that this is not the most efficient way to implement the algorithm 

since there will be occasions when problem GQP is solved unnecessarily. For example, 

suppose we solve problem GQP for SQP only to discover that it is outside of the trust 

region, and in addition, suppose that llsLFII ::; .8~c- Then we would use the QPTR 

subproblem to compute the trial step, and the solution of problem GQP would have 

been unnecessary. In our preliminary implementation, however, we are interested 

more in stability than speed, and we view the solution of problem GQP as a diagnostic 

tool. In addition, we will use the curvature information we obtain from problem GQP 

in choosing Lagrange multiplier estimates. Future implementations will address the 

issue of efficiency. 



Chapter 5 

Solution of the Constrained Trust Region 
Subproblem 2DCTR 
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Now that we have specified the two-dimensional subspace and the amount of linear 

feasibility that we will require, in the form of 0c, we are ready to discuss the solution 

of the 2DCTR subproblem. Recall that it is 

2DCTR Subproblem: 

mm1m1ze 

subject to 

T 1 T 
Vxlc s + 2s Bes 

jjVh? S + hcl'2 ~ 0c 

llsll2 ~ ~c 

s E span{sQP or dQp,svL}. 

(5.1) 

(5.2) 

This subproblem consists of the minimization of a non-convex quadratic subject to two 

quadratic constraints in two dimensions. Recently, Dennis, Martinez and Williamson 

[1991] gave a characterization of the solution of the constrained trust region subprob­

lem CDT. Since we will use this characterization as the basis for our algorithm, we 

will state their result. 

Theorem 5.1 Dennis, Martinez, and Williamson [1991]. 

If Sc is a global solution of the CDT subproblem, 

Problem CDT: 

m1n1m1ze 

subject to 

T 1 T 
v'xlc S + 2s Bes 

llv'hcT S + hell ~ 0c 

llsll ~ ~c, 

then either both constraints are binding, IIVh? s+hcll = 0c and llsii = ~c, 

or Sc is a local solution of at least one of the two problems: 

Subproblem TR: (5.3) 



or 

Subproblem LF: 

m1 m m1 ze 

subject to 

mm1m1ze 

subject to 

T 1 T v'xle S + 2s Bes 

llsll::; ~e, 

T 1 T 
v'xle s + 2s Bes 

llv'h? S + hell ::; Be• 

(5.4) 

If any global solution of either (5.3) or (5.4) is feasible for both constraints, 

then it is a global solution of problem CDT. 
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Theorem 5.1 will be our guide in developing an algorithm to solve the 2DCTR 

subproblem. Theorem 5.1 clearly will hold for our subproblem 2DCTR since it is 

a two-dimensional version of the CDT subproblem. This characterization tells us 

that to find the global solution to the 2DCTR subproblem, we must be prepared to 

calculate all of the local solutions to the subproblems TR (5.3) and LF (5.4). The 

subproblem TR (5.3) is obviously the standard unconstrained trust region subprob­

lem. The subproblem LF (5.4) can be transformed into the standard unconstrained 

trust region subproblem by transforming the elliptical constraint into a spherical con­

straint. Algorithms for approximating the global solution of the unconstrained trust 

region subproblem have been well-established. See, for example, Dennis and Schnabel 

[1983]. However, Theorem 5.1 tells us that the global solution to problem 2DCTR 

may be a local, non-global solution to one of the unconstrained subproblems TR (5.3) 

and LF (5.4). We have developed an algorithm to obtain all of the global solutions 

and the non-global solution, if it exists, to the unconstrained trust region subproblem 

of the form (5.3), and this work will be described in Chapter 6. For now, we will 

assume that we can obtain all of the solutions to the subproblems (5.3) and (5.4). 

Using Theorem 5.1 as a guide, we give the following rough outline for the solution 

of the 2DCTR subproblem. 

Outline of the Solution to the 2DCTR Subproblem: 

1. Find all local solutions to subproblem TR given in (5.3). 

2. If any global solution to subproblem TR satisfies llv'hrs +hell::; Be, then it is 

a solution to problem 2DCTR. 
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3. Find all local solutions to subproblem LF given in (5.4). 

4. If any global solution to subproblem LF is inside the trust region, then it is a 

solution to problem 2DCTR. 

5. Determine the points where both constraints are binding. 

6. The solution to problem 2DCTR is the point with the smallest value of the 

quadratic model among: 

( a) The points where both constraints are binding. 

(b) The non-global solution to the subproblem in (5.3), if it exists and satisfies 

llv7h~ S + hell '.S 0c. 

(c) The non-global solution to the subproblem in (5.4), if it exists and is inside 

the trust region. 

When we have a direction of negative curvature inside the null space of v7 he T, ( or 

a direction of zero curvature which is a descent direction for the quadratic model), 

the algorithm will simplify since the trust region constraint must be binding at the 

solution to the subproblem. To understand this point, consider a step s in the two­

dimensional subspace which satisfies the constraint llv7 h~ s + hell :S 0c and is strictly 

inside the trust region, 11.sll < ~c- Now consider taking a step of the form s + adQP 

to the boundary of the trust region, and remember that in this case, dQP is one of 

the directions that defines the two-dimensional subspace. The quadratic model for 

this step is 

q( s + adQP) = q( s) + a(v7 xlT dQP + ST BdQP) + ~ci d~pBdQP . 

If we choose the sign of a such that a(v7 xlT dQP + sIFBdQP) :S 0, then 

q(s + adQP) :'.5 q(s), 

which shows that the trust region constraint must be binding when dQP is a direction 

of negative ( or zero curvature which is a descent direction) inside the null space of 

v7h?. 
Once we know that the trust region constraint is binding, the algorithm will 

simplify because we do not have to solve subproblem LF. To show this fact, suppose 

that it is not true. Suppose that a global solution to subproblem 2DCTR s is a solution 
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of problem LF which lies on the boundary of the trust region, but lies strictly inside 

the linear feasibility region, IIVh/ s + hcll2 < 0c, However, since it is a global solution 

of problem 2DCTR, it must have the smallest value of the quadratic model in the 

region 

q(s):::; q(s) for {s: 11s11 = ~c and IIVh/ s + hcll2:::; 0c} (5.5) 

which includes the points where both constraints are binding. Since dQP is a descent 

direction in this case, the trust region constraint is binding, and any solution to 

problem TR must lie on the boundary of the trust region. But, (5.5) shows that s 
must be a solution to problem TR, which gives us the necessary contradiction. 

We have described our solution procedure for subproblem 2DCTR, and a complete 

outline follows. In the next section, we give some details concerning the conversion 

of the subproblem to two dimensions. After problem TR has been converted to a 

standard two-dimensional unconstrained trust region subproblem, it can be solved by 

the techniques which will be given in Chapter 6. If a global solution to problem TR 

satisfies the linear feasibility constraint, then we take it as the solution. Otherwise, if 

second-order sufficiency holds, we convert problem LF to the standard unconstrained 

trust region form and use the techniques of Chapter 6 to solve it. If a global solution 

to problem LF is inside the trust region, then it will be a solution to Problem 2DCTR. 

Finally, all that remains is to find the points where both constraints are binding, and 

there can be at most four such points. In two dimensions, this merely requires finding 

the roots of a fourth-degree polynomial. 

Solution of Problem 2DCTR: 

1. Given he, v' he, the quadratic model, qc( s) = v' xlc Ts + ½sT Bes, the trust region 

radius, ~c, and the two-dimensional subspace { Vt, v2}, calculate a solution, sc, 

to problem 2DCTR. 

2. Solve Problem TR: 

mm1m1ze 

subject to 

qc(s) 

11s11:::; ~c 

s E span { Vt, v2} 

for all global solutions, STRG, and the local, non-global solution, STRL, if it 

exists. 



3. If ( any STRG satisfies IIVh? STRG + he - 0M1NII ~ 0c ), then 

(a) Sc= STRG 

(b) Return 

End if. 

4. If (Second-order Sufficiency holds), then 

(a) Solve Problem LF: 

mm1m1ze 

subject to 

qc(s) 

llv7h~s + he - 0M1NII ~ 0c 

s E span { v1, V2} 
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for all global solutions, SLFG, and the local, non-global solution, SLFL, if 

it exists. 

(b) If ( any SLFG satisfies llsLFall ~ ~c ), then 

• Sc= S£FG 

• Return 

End if. 

5. Calculate the points where both of the two-dimensional constraints are binding, 

i. e., find scB1, scB2, scB3, and SCB4 such that 

IIVh? S + hell = 0c 

llsll = ~c 

There may be 2, 3 or 4 intersection points. 

6. Determine if problem TR or problem LF has a local, non-global solution which 

satisfies the remaining constraint. 

(a) If ( ( STRL exists) and ( IIVhT STRL + h - 0M1NII ~ 0c) ), then 

• save STRL 



End if. 

(b) If ( ( SLFL exists) and ( llsLFLII ::S ~)),then 

• save SLFL 

End if. 
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7. Sc = argmin{ q( SCB1 ); q( scB2 ); q( SCB3 ); q( SCB4 ); q( STRL ), if STRL was 

saved; q( SLFL ), if SLFL was saved}. 

8. Return. 

9. End. 

5.1 Conversion of Subproblem 2DCTR to two dimensions 

In this section we will discuss the conversion of the 2DCTR subproblem to two di­

mensions. The 2DCTR subproblem is 

2DCTR Subproblem: 

mm1m1ze 

subject to 

T 1 T 
'vxlc s + 2s Bes 

ll'vh/ S + hcll2 :'.S 0c 

IJsJJ2 ::S ~c 

s E span{sQP or dQp,svL}. 

The first step is to orthonormalize the vectors defining the two-dimensional subspace 

to obtain 

span (sQP or dQP; svL) = span (v1, v2). 

Let V denote the matrix whose columns are [v1v2]. We point out that it is possible 

but unlikely that v 1 and v2 are actually the same direction. If this occurs, then we 

will take a step in the direction svL to the boundary of the trust region. 

Given the matrix V, we write the step as s = V z where z E lR,2 will be our new 

variable in the two-dimensional subspace. Then, writing subproblem 2DCTR with 

the new variables yields 

mm1m1ze q2v( z) 

subject to JJ'vh2DT z + hcJl2 ::S 0c 

JJzll ~ ~c 
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where 

q2D(z) 
T 1 T 

'\1 xl2Dz + 2z B2Dz, (5.6) 

'\1 xf2D VT'\1 xle, (5.7) 

B20 VTBcV, (5.8) 
and '\lh2D VT'\lhe. (5.9) 

Then, '\1 xl2D E JR2, B2D E JR2 x 2
, and '\1 h2D E JR2xm. 

5.2 Conversion of Problem LF into Standard Trust Region 

Form 

In this section, we will discuss the conversion of problem LF 

mm1m1ze 

subject to 

into the standard trust region form: 

T 1 T '\1 xle s + 2s Bes 

jj'\lh? S + hell2 :s; Oe 

s E span{sQp,soL}, 

mm1m1ze qLF(Y) 

jjyjj :s; Oc. 

(5.10) 

(5.11) 

Recall that if we need to solve this subproblem, then we know that SQP exists and 

satisfies (-Vh?sQP = he -0M1N)- Using this relation, (5.11) becomes 

Recall that our two-dimensional subspace is 

where V = [v1v2]. Then, we can find a vector ZQP such that VzQP = SQP· The 

determination of ZQP merely depends on the procedure we used to orthonormalize 

{sQp;svL} into {v1 ,v2}. Substituting SQP = VZQP, yields 11Vh2DT(z - ZQP)II :s; Oe 

where '\1 h2D was defined in the previous section. 
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\Ve now replace (z-ZQP) with Uy where U E fil2
x

2
, y E fil2

, and U is orthonormal, 

and U is chosen such that the columns of "vh2DTU are also orthonormal. Thus, 

All that remains is to transform the quadratic model into 

where 

'\l xlLF ("v xl2DTu + ZQPB2DUf 

and ELF - uT B2DU. 

(5.12) 

(5.13) 

Now problem LF has been transformed into a standard unconstrained trust region 

subproblem. We remark, however, that if the columns of '7 h2D, which are v["v he and 

vf"v he, are not linearly independent, the feasible region determined by (5.11) will not 

be a solid ellipse but instead will be the region between two parallel lines. 



Chapter 6 

Solution of the Unconstrained Trust Region 
Subproblem Restricted to Two Dimensions 
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Our goal, to develop a nonlinear programming algorithm, requires us to find an algo­

rithm to solve the two-dimensional constrained trust region subproblem 2DCTR. As 

we have seen, the characterization of the solution to problem 2DCTR, (Theorem 5.1 

restricted to two dimensions), tells us that the solution may be any local solution to 

the standard unconstrained trust region (UTR) subproblem. The unconstrained trust 

region subproblem minimizes a quadratic model of the objective function subject to 

a trust region constraint on the length of the step and is of the form 

Problem UTR: 

m1 m m1 ze 

subject to 

(6.1) 

where the Hessian H is assumed to be symmetric and the trust region radius is 

assumed to satisfy ~ > 0. We use the expression local minimizer to refer to a point 

that has the smallest function value in an open neighborhood intersecting the feasible 

region. By global minimizer, we mean a point in the feasible set where the objective 

function takes on the absolute lowest value. Clearly, all global minimizers are also 

local minimizers. In addition, we will refer to local minimizers which are not global 

minimizers as non-global minimizers. Theorem 5.1 requires us to distinguish between 

global solutions and non-global solutions to problem UTR. \,Vhen we get to the point 

where we are ready to determine if any local solution to the subproblems of the form 

given in (6.1) is the solution to problem 2DCTR, we must treat the global solutions 

and non-global solutions differently. 

This chapter is concerned with finding all of the possible global solutions and 

the non-global solution, if it exists, to the standard unconstrained trust region sub­

problem. This is a daunting task, but recall from Chapter 2 that we have restricted 

our constrained subproblem 2DCTR to a relevant two-dimensional subspace. The 
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original motivation for this restriction centered on the difficulty in minimizing the 

quadratic model over the intersection points of the two quadratic constraints, but in 

two dimensions this becomes easy. We shall see that the restriction to two dimensions 

also makes the problem of finding the local solutions to problem UTR analytically 

and computationally more feasible. Thus, we will assume the restriction to the two­

dimensional subspace holds throughout the remainder of this chapter, i.e., g E JR,2 

and HE m2 x 2
• 

Our approach to solving this problem will break down the analysis into several 

different cases based primarily on the eigen-decomposition of the (2 x 2) Hessian H. 

These cases can be summarized as follows. 

1. g = 0. 

3. v[ g = 0. 

4. vf g = 0. 

5. g-=/- 0, A1 < A2, v[ g-=/- 0, and vf g -=f. 0. 

We will attack each of these cases in this order. We will refer to cases 1, 2, 3 and 4 as 

degenerate cases, and we will show that for these degenerate cases, all of the global 

solutions to problem UTR and the non-global solution, if it exists, can be determined 

analytically. This fact is strongly dependent on the restriction to two dimensions 

and is the primary reason that finding all of the local solutions to problem UTR 

is computationally inexpensive. In the non-degenerate case, we will use a modified 

version of_ the algorithm given in More and Sorensen [1983] to determine the global 

solution to problem UTR. Then we will determine if a non-global solution exists, and 

if it does, we will again use a modified version of the algorithm given in More and 

Sorensen [1983] to find it. 

6.1 Preliminaries 

The unconstrained trust region subproblem UTR is the basis for trust region algo­

rithms for unconstrained optimization. Algorithms for determining an approximation 

to a global solution of problem UTR have been well-established. (See Dennis and 

Schnabel [1983] for a survey of this area.) We are interested in finding not only a 
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global solution but all of the local solutions to problem UTR under the assumptions 

that g E IR,2
, H E m2

x
2

, H is symmetric, and L\ > 0. As mentioned above, we 

will base our analysis on the eigen-decomposition of the Hessian. Since H is real and 

symmetric, we have the real Schur decomposition of H 

(6.2) 

where Q is orthogonal and A1 :S: A2 are the real eigenvalues of H. (See, for example, 

Golub and Van Loan [1983].) The columns of Qare the orthonormal eigenvectors of 

H, and we will denote the eigenvector corresponding to A1 by v1 and the eigenvector 

corresponding to A2 by v2 where 

In addition, we use the notation 

Ct= V1T g and 

We will now give the tools that we will need to characterize the solutions of the 

unconstrained trust region subproblem. Sorensen [1982] gives the following charac­

terization of the global solutions to problem UTR, and similar results can be found 

in Gay [1981]. 

Lemma 6.1 Sorensen [1982], Gay [1981]. 

If s* is a (global) solution to problem UTR, then s* is a solution to an 

equation of the form 

(H + µ* I)s* = -g (6.3) 

with µ* ~ 0, µ*(11s*ll 2 
- L\2

) = 0 and (H +µ*I) positive semidefinite. 

We have inserted the qualifier (global) into the statement of Lemma 6.1 for clarity 

since we must make the distinction between global and non-global solutions to prob­

lem UTR. We point out that the conclusion in Lemma 6.1 that (H +µ*I) is positive 

semidefinite at a solution depends strongly on the fact that s* is a global minimizer. 

This can be seen in the proof of Lemma 6.1 in Sorensen [1982] where it is assumed 

that s* has the lowest value of the quadratic model on the boundary of the trust 

region. 

Since Lemma 6.1 only gives necessary conditions for a step to be the global solu­

tions to problem UTR, we give another lemma from Sorensen [1982] stating sufficient 

conditions for a step to be a global minimizer. 



Lemma 6.2 Sorensen [1982]. 

Let µ and s satisfy 

(H + µI)s = -g with (H + µI) positive semidefinite. (6.4) 

(i) Ifµ= 0 and 11s11 :s; ~, thens solves problem UTR. 

(ii) If iisli = ~, then s solves 1/J(s) = min{1/J(w) : llwll 
1/J(w) = gTw + ½wT Hw. 

(iii) Ifµ 2:: 0 and 11s11 = ~, thens solves problem UTR. 

~} where 

If (JI+ µI) is positive definite, then s is unique in each of the cases (i), 

(ii), and (iii). 
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Since Lemmas 6.1 and 6.2 only address global solutions, we will need another tool 

to find a characterization of the non-global solutions. We apply the standard second­

order sufficiency theorem for general nonlinear programming, which can be found in 

Avriel [1976], to problem UTR to obtain the following theorem. 

Theorem 6.1 Second-order Sufficiency. 

If there exists a vector µ. such that 

(H + µ• I)s• 

11s•II 
µ·(~ -11s·II) 

µ• 

and for every z =/:- 0 satisfying 

-

< 

-

> 

-g 

~ 

0 

0' 

zTs•:::::o if 11s•11=~andµ•=O 

zT s• = 0 if 11s•II =~andµ• > 0, 

it follows that 

then s• is a strict local minimizer of problem UTR. 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 



52 

Using these tools, we derive analytical expressions for all of the local solutions 

to problem UTR in the four degenerate cases in the next section. The following 

section is concerned with finding the global solution in the non-degenerate situation. 

In particular, we develop a good initial guess for the iterative procedure that we will 

use. Finally, we derive conditions that will determine if a non-global solution exists 

in the non-degenerate case, and we discuss how to find it if it exists. 

6.2 Characterization of the Solutions for the Degenerate 

Cases 

As indicated at the beginning of this chapter, we will start our analysis with the case 

where g = 0. The following theorem gives the solutions to problem UTR in this 

situation based on the eigenvalue distribution of H. 

Theorem 6.2 Solutions to Problem UTR when g = 0. 

Given g E JR2
, HE JR2

x
2 with H symmetric, and~> 0, let A1 ~ A2 be 

the eigenvalues and { v1 , v2 } be corresponding orthonormal eigenvectors of 

H. 

If (g = 0) and (A1 > 0), then problem UTR has one global solutions* = 0 

with multiplier µ* = 0. 

If (g = 0) and (A1 = 0) /\ (A2 > 0), then problem UTR has an infinite 

number of global solutions of the forms*= av1 for all a E [-~, ~]. 

If (g = 0) and (A1 = A2 = 0), then any point in the trust region is a 

global minimizer for problem UTR, s* = {s: 11s11 ~ ~c}. 

If (g = 0) and (A1 < 0) /\ (A1 < A2 ), then problem UTR has two global 

solutions of the forms~ = ~v1 and s2 = -D.v1 with multiplierµ* = -A1 . 

If (g = 0) and (A1 = A2 < 0), then any point on the boundary of the trust 

region is a global minimizer of problem UTR, s* = {s: 11s11 = ~c}. 

Proof Since g = 0, (H + µ* I)s* = -g has the form 

( 
A1 + µ* 0 ) ( vf s* ) = O. 

0 A2 + µ* vf s* 
(6.12) 
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1. (A1 > 0). 

Since A1 > 0 and A1 :s; A2, the only solution to (6.12) with µ* ~ 0 is s* = 0. 

Complementarity then requiresµ* = 0, and (H +µ*I) is positive definite. Thus, 

from Lemma 6.2, problem UTR has a single global solution s* = 0 with µ* = 0. 

2. (A1 = 0) /\ (A2 = 0). 

In this case, (6.12) reduces to the two equations 

(µ*)vf s* 0 

(A2 + µ*)vf s* - 0. 

(6.13) 

(6.14) 

Since (A2 + µ*) > 0 for all µ* ~ 0, equation (6.14) is only satisfied if s* is 

orthogonal to v2, Since v1 is orthogonal to v 2 and the dimension of the space is 

only two, s* must be of the form av1 for some constant a. Substituting s* = av1 

into equation (6.13) shows that µ* = 0. With this µ*, (H +µ*I) is positive 

semidefinite. Then, Lemma 6.2(i) shows that problem UTR has an infinite 

number of global solutions of the forms*= av1 for all a E (-.6., .6.] withµ* = 0. 

3. (A1 = A2 = 0). 

For this case, equation (6.12) reduces to 

(µ*)v[s* 0 

(µ*)vf s* 0. 

First consider µ* = 0. With this µ*, (H +µ*I) is positive semidefinite, and 

(H + µ* I)s* = -g is satisfied for all s. Application of Lemma 6.2(i) gives an 

infinite number of global solutions of the forms*= {s: iisii:::; .6.}. 

Notice that since (H +µ*I) is also negative semidefinite, every point in the 

trust region is also a global maximum. This is geometrically reasonable since 

the quadratic is completely flat over the entire space in this case. 

4. (A1 < 0) /\ (A2 > 0). 

Equation (6.12) is satisfied for µ* = -A1 and s* = av1 for some constant a, 

and µ* > 0. Since (A2 - A1 ) > 0, (H +µ*I) is positive semidefinite, and 

Lemma 6.2(iii) yields two global solutions s* = .6.v1 and s* = -.6.v1 with 

µ* = -A1. 
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Although equation (6.12) is satisfied with µ = -A2, this cannot correspond to 

a minimizer since µ < 0. 

Equation (6.12) is also satisfied withs= 0, and complementarity would require 

µ = 0. Since (H + µI) is indefinite, Lemma 6.1 shows that s = 0 cannot be 

a global minimizer. It is not a local minimizer either. The quadratic model 

at s = 0 is q(0) = 0. Now consider a step of the form s = c:v1 where c is 

small so that rn1 is inside the trust region. The quadratic model for this step 

is q(rni) = 0.5c:2A1. Since A1 < 0, q(~v1 ) < q(0) for all 0 < c <~,ands= 0 

cannot be a minimum. It is actually a saddlepoint. 

5. (A1 < 0) /\ (A2 = 0). 

Equation (6.12) reduces to 

(A1 + µ*)v'{ s* 0 

(µ*)vf s* - 0, 

and is satisfied by µ* = -A1 > 0 and s* = av1 for some constant a. (H +µ*I) 

is positive semidefinite. Then, Lemma 6.2(iii) yields two global solutions of the 

forms* = ~v1 and s* = -~v1. 

Equation (6.12) is also satisfied by µ = 0 and s = av2 for some constant a. 

(H + µI) is negative semidefinite, and so s = ~v2 and s = -~v2 are global 

max1m1zers. 

Equation (6.12) is satisfied by s = 0. With µ = 0, (H + µI) 1s negative 

semidefinite, and this solution is also a global maximum. 

6. (A1 < A2 < 0). 

Equation (6.12) is satisfied for µ* = -A1 and s* = av1 for some constant a, 

and µ* > 0. Since (A2 - A1) > 0, (H +µ*I) is positive semidefinite, and 

Lemma 6.2(iii) yields two global solutions s* = ~v1 and s* = -~v1 with 

µ*=-Ai. 

Equation (6.12) is also satisfied forµ= -A2 > 0 ands = av2 for some constant 

a, and complementarity would allow a = ~ and a = -~- Since A1 - A2 < 0, 

(H + µI) is negative semidefinite. Lemma 6.2(ii) applied Lu the correspond­

ing maximization problem shows that s = ~v2 and s = -~v2 maximize the 
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quadratic model on the boundary of the trust region. Thus, they cannot be 

m1mm1zers. 

Again, s = 0 satisfies equation (6.12), and complementarity would require µ = 
0. Then, (H + µI) is negative definite, and s = 0 is a global maximum. 

7. (A1 = A2 < 0). 

Equation (6.12) is satisfied for µ* = -A1 > 0 and any s, and (H +µ*I) is 

positive semidefinite. Application of Lemma 6.2(iii) yields an infinite number 

of global solutions of the forms*= {s: 11s11 = ~}. 
The only other step which satisfies (6.12) is s = 0. With µ = 0, (H + µI) is 

negative definite, and s = 0 is a global maximum. 

0 

Now that we have enumerated all the possible solutions when g = 0, we will 

assume g =/- 0 and consider the situation when H has two equal eigenvalues. Again, all 

possible solutions can be determined analytically, and they are given in the following 

theorem. 

Theorem 6.3 Solutions to Problem UTR when (A1 = A2 ). 

Given g E fil2, H E fil2x
2 with H symmetric, and ~ > 0, let A1 ::; A2 be 

the eigenvalues and { v1 , v2 } be corresponding orthonormal eigenvectors of 

H. Assume that llgll =/- 0. Let 

µ+ = -Ai + llrll . (6.15) 

If (A1 = A2 ) and (µ+ ~ 0) where µ+ is given by (6.15), then problem 

UTR has one global solution of the form 

s* = - ( A1 : µ*) g 

where the multiplierµ* = µ+. 

If (A1 = A2 ) and (µ+ < 0) whereµ+ is given by (6.15), then the Newton 

step is inside the trust region, and problem UTR has one global solution 

of the forms* = -(1/ A1)g withµ* = 0. 



Proof In this case, (H + µI)s = -g reduces to 

g 
s-----

- (Ai+µ)' 
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(6.16) 

and this equation is well-defined sinceµ = -A1 is not a solution to (H + µI)s = -g. 

Complementarity requires the trust region constraint to be binding when µ # 0. 

Thus, there are only two solutions to (H + µI)s = -g satisfying 11s11 = L\, and they 

are 

µ+ -Ai+M 
L\ 

(6.17) 

µ_ - -Ai - llrll. (6.18) 

First we will consider whether or not µ+ corresponds to a minimizer. 

Sinceµ+ ~ 0, µ+ can correspond to a minimizer, and µ* = µ+. From (6.16), 

the step must be of the form 

* ~ 
s = -Mg, 

and ( H + µ* I) is positive definite. Lemma 6.2 verifies that s* is the unique 

global minimizer in this case. 

2. (µ+ < 0). 

In this case, µ+ cannot correspond to a minimizer. However, we can show that 

His positive definite sinceµ+ < 0 implies Ai > 0. Withµ* = 0, (6.16) becomes 

* 1 
s = - Ai g, 

and this is the Newton step. From(µ+ < 0), we can show that the Newton step 

is inside the trust region by 

11s*II = fuill < ~­
Ai 

Thus, for this case, the Newton step is the unique global minimizer. 

Now we will consider whetherµ_ can correspond to a minimizer, and we obviously 

need only to consider µ_ 2: 0. In this case, µ_ < -Ai, and t_his implies that (A1 + 

µ_) < 0. Thus, for all µ_ 2: 0, (H + µ_I) is negative definite, and µ_ cannot 

correspond to a minimizer. D 
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\Ve have given all of the possible solutions to problem UTR for the special cases 

g = 0 and A1 = A2 . The next special case we shall consider occurs when g is 

orthogonal to the eigenvector corresponding to the smallest eigenvector. Note that 

this situation will include what More and Sorensen [1983] call the hard case. 

Theorem 6.4 Solutions to Problem UTR when (v'[ g = 0). 

Given g E JR,2, HE lR,2x
2 with H symmetric, and~> 0, let A1 ::; A2 be 

the eigenvalues and { v1 , v2 } be corresponding orthonormal eigenvectors of 

H. Assume that 11911 =/= 0 and A1 =/= A2, Let 

lc2I 
µ+ = -A2+~ (6.19) 

If ( v'[ g = 0) and (A1 > 0) /\ (µ+ ::; 0) whereµ+ is given by (6.19), then the 

Newton step is inside the trust region, and problem UTR has one global 

solution of the forms* = -( c2/ A2 )v2 • 

If ( v[ g = 0) and (A1 > 0) /\ (µ+ > 0) where µ+ is given by (6.19), then 

problem UTR has one global solution of the forms* = -sign( c2)~v2 with 

multiplier µ7 = µ+. 

If ( v'[ g = 0) and (A1 ::; 0) /\ (µ+ > -Ai) whereµ+ is given by (6.19), then 

problem UTR has one global solution of the forms* = -sign( c2 )~v2 with 

multiplierµ* = µ+. 

The following situations are referred to as the hard case in More and 

Sorensen [1983]. 

If ( v'[ g = 0) and (A1 ::; 0) /\ (µ+ = -Ai), where µ+ is given by (6.19), 
then problem UTR has one global solution of the form 

(6.20) 

If ( v'[ g = 0) and (A1 < 0) /\ (µ+ < -At) whereµ+ is given by (6.19), then 

problem UTR has two global solutions of the form 

(6.21) 

(6.22) 



where 

T _ (~2 _ C~ ) ½ 
- (A2 - A1)2 (6.23) 

If ( v[ g = 0 and (A 1 = 0) /\ (µ+ < -Ai) whereµ+ is given by (6.19), then 

problem UTR has an infinite number of global solutions of the form 

s* = - (~:) v2 + (21 - l)rv1 for all I E [O, 1] 

where T is given by equation (6.23). 
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Proof First we will show that µ = -A2 cannot correspond to a minimizer. For 

this case, (H + µI)s = -g reduces to 

(A 1 +µ)v[s* - 0 

(A2 + µ)vf s* 

(6.24) 

(6.25) 

For µ = -A2 , there is no finite s such that equation (6.25) can be satisfied since 

vf g # 0. 

For µ # -A 2 , equations (6.24) and (6.25) require 

(6.26) 

since v1 is orthogonal tog. Unlessµ* = 0, complementarity requires 11s*II = ~- There 

are only two choices ofµ that satisfy the complementarity condition and (6.26), and 

they are 

-A2+ l~I, 

µ_ -A2 _ 1~1. 

First we will show that µ_ cannot correspond to a minimizer. For µ_, 

(
A A hl O ) (H + µ_ I) = Q 1 - 02 - ~ QT 

-~ . 

(6.27) 

(6.28) 

(6.29) 

Since A1 < A2 , (H + µ_I) is negative definite, and /L could only correspond to 

max1m1zers. 

Now consider µ+. 
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1. (A1 > 0). 

(a) (µ+ ::; 0). 

In this situation, the Newton step, s* = -(c2 / A2 )v2 , is in the trust region, 

and µ* = 0. Since µ+ ::; 0, we know that lc2 I ::; A2~, and we can show 

that s* is in the trust region by 

2 

11s*II = ~2
2 ::; ~ 2 -
2 

\,Vith µ* = 0 and A1 > 0, (H +µ*I) is positive definite, and the Newton 

step is the unique global minimizer. 

(b) (µ+ > 0). 

Since A1 > 0 and µ+ > 0, A1 + µ+ > 0, and (H + µ+I) is positive definite. 

Substituting µ* = µ+ into equation (6.26), we have 

where sign(c2 ) = 1 if c2 ~ 0 and sign(c2 ) = -1 if c2 < 0. Since (JI+µ* I) 

is positive definite, s* is the unique global minimizer. 

2. (A1 ::; 0). 

(a) (µ+ > -Ai). 

In this case, A1 ::; 0 implies µ+ > 0. With µ+, (µ+ > -Ai) ensures that 

(JI+µ+/) is positive definite. Thus, as in Case lb, s* = -sign( c2)~v2 is 

the unique global minimizer. 

(b )· (µ+ ::; -Ai). 

This situation is referred to in More and Sorensen [1983] as the hard case. 

It has the characteristic difficulty that 11s(µ) II < ~ for s(µ) satisfying 

(H + pl)s = -g when (H + µI) is positive definite. More and Sorensen 

[1983] prove that solutions to problem UTR are of the form s* = p + rv1 

where 

(H - A1I)p = -g (6.30) 

and T is chosen so that IIP + rv1 II = ~- Notice that the resulting solutions 

still satisfy 

(H - A1/)(p + TV1) = -g. 
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Equation (6.30) reduces to (A2 - Ai)vf s = -vf g, and this gives 

p = -A A V2. 
2 - i 

(6.31) 

There are two values of T that satisfy IIP + Tvi II = ~, and they are 

(6.32) 

(6.33) 

Notice that µ+ :S -Ai implies 

and so the values for T given in (6.32) and (6.33) are well-defined. 

i. (µ+=-Ai). 

In this case, T+ = r_ = 0, and s* = p, which extends to the boundary 

of the trust region, is the single global minimizer. 

11. (Ai < 0). 
In this case, there are two global solutions 

s* = p + T + vi and s* = p + T _ vi 

where pis given by (6.31) and T+ and r_ are given by (6.32) and (6.33). 

We can show that they have the same value of the quadratic since 

T 1 2 2 · C2 
q(p+rvi)=av2 g+-(Air +A2a )w1tha=-A A 

2 2 - i 

does not depend on the sign of r. 

m. (Ai = 0). 

In this case, the quadratic reduces to 

) 
T 1 2 

q(p + rvi = av2 g + 2 A2a , 

and it does not depend on T at all. Thus, every step of the form 

p + rv1 for all T has the same value of the quadratic model. Also, 

in this case, µ* = -A1 = 0 implies that the trust region radius is no 
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longer binding, and any step of the form p + rv1 which lies in the trust 

region is a global solution. So we have an infinite number of global 

solutions which can be written as 

s* = p + (21 - l)r+v1 for all, E [0, 1] 

where pis given by (6.31) and r+ is given by (6.32). 

D 

The last special case we shall consider is when g is orthogonal to the eigenvec­

tor corresponding to the largest eigenvalue. The following theorem gives analytical 

expressions for the possible solutions in this situation. 

Theorem 6.5 Solutions to Problem UTR when ( vf g = 0). 

Given g E fil2
, H E fil2

x
2 with H symmetric, and ~ > 0, let A1 :S A2 be 

the eigenvalues and { v1 , v2 } be corresponding orthonormal eigenvectors of 

H. Let c1 = vf g and c2 = vf g. Assume that ll911 =/: 0, A1 =/: A2 and 

vf g =/: 0. Let 

and (6.34) 

If ( vf g = 0) and (A1 ~ 0) A (µ+ :S 0), then the Newton step is inside 

the trust region and problem UTR has one global solution of the form 

s* = -(1/ A1 )g. 

If ( vf g = 0) and (µ+ > 0) whereµ+ is given by (6.34), then problem UTR 

has one global solution of the form s* = -sign(c1)~v1 with multiplier 

µ* = µ+ given in (6.34). 

If ( vf g = 0) and (A1 < 0) A (µ_ > 0) A (µ_ > -A2) where µ_ is given 

in (6.34), then problem UTR has a non-global minimizer of the form 

s* = sign(c1)~v1 with multiplierµ*=µ_. 

Proof First we will show that µ = -A1 cannot correspond to a minimizer. For 

this case, (H + µI)s = -g reduces to 

-v'[g (6.35) 

(6.36) 
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For µ = -A1, there is no finite s such that equation (6.35) 

vf 9-::/ 0. 

can be satisfied since 

For µ -::/ -A1, equations (6.35) and (6.36) require 

( 
v[9 ) 

s = - A1 + µ Vt, (6.37) 

since V2 is orthogonal to 9. Unlessµ* = 0, complementarity requires 11s*II = ~- There 

are only two choices ofµ that satisfy the complementarity condition and (6.37), and 

they are 

-Ai+ l~I, 

-Ai - 1~1. 

Now we will consider ifµ+ and µ_ correspond to minimizers. 

1. (A1 ~ 0). 

(a) (µ+ ~ 0). 

(6.38) 

(6.39) 

Since 9 -::/ 0 and V2 is orthogonal to 9, we know that c1 -::/ 0. Since A1 ~ 0, 

µ+ ~ 0 implies A1 > 0 and 

ic1I < A 
~ - 1· 

Thus, H is positive definite, and the Newton step is 

* 1 s =--9 
A1 

(6.40) 

with multiplierµ* = 0. We can write 9 = C1 V1 + C2V2, and so 11911 = cf+ er 
In this case, 11911 = er We can now show that the Newton step is inside 

. the trust region by 

II *112 = 11911
2 

= Ci < A 2 
s A2 A2 - u . 

1 1 

Therefore, the Newton step is the unique global solution. 

(b) (µ+ > 0). 

Substituting µ+ into equation (6.37) yields 

s* = -
1
::

1
~v1 = -sign(ci)~v1 

with µ* = µ+. Since (H +µ*I) is positive definite, s* corresponds to a 

global minimizer. 
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( c) Consider µ_. 

Since A1 2: 0, µ_ < 0, and soµ_ cannot correspond to a minimizer. 

2. (A1 < 0). 

(a) Consider f-l+. 

Since A1 < 0, we know thatµ+ > 0. As in Case 1(6 ), (H + f-l+I) is positive 

definite, and 

s* = -sign(c1)~v1 

with µ* = µ+ is the unique global minimizer. 

(b) Consider f-l-. 

Clearly, we are only interested in µ_ 2: 0. Using f-l- in equation (6.37) 

yields s = sign(ci)~v1. 

1. Suppose µ_ > 0. 

Then, for Theorem 6.1, all z f= 0 satisfying zT s = 0 can be written as 

z = av2 for all a f= 0. Then, 

(6.41) 

Thus, from Theorem 6.1, when µ_ > 0 and µ_ > -A2 , 

with multiplierµ* = µ_ corresponds to a strict local minimizer. From 

Lemma 6.1, this is not a global minimizer since (H +µ*I) is indefinite. 

11. Suppose µ_ = 0. 

If A2 :::; 0, then (H + µ_I) with µ_ = 0 is negative semidefinite, and 

µ_ = 0 would correspond to a global maximizer. 

Now consider A2 > 0. In this case, H is indefinite and geometrically 

s = sign( ci)~v1 is a saddlepoint for the quadratic model. Thus, we 

will be able to show that s is not a local minimizer by showing that 

the quadratic model decreases as we move inside the trust region along 

the direction v1 from s. The quadratic at s is 

(6.42) 
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Now consider a step s which is slightly inside the trust region from s 
along v1 of the form 

(6.43) 

for some small c > 0. Then, the quadratic evaluated at s is 

(6.44) 

To show that q( s) decreases as we move inside the trust region, we 

must show that q(s) < q(s). Subtracting q(s) from q(s) yields 

q(s) - q(s) 

But, sinceµ_= 0, we know that -A1 ~ = ic1 1, and so, 

q(s) - q(s) = ~A1c
2 < 0. 

Thus, µ_ = 0 does not correspond to a local minimizer. 

(6.45) 

(6.46) 

D 

Thus, we have analytical expressions based on the eigen-decomposition of H for 

all of the possible global solutions and the non-global solution, if it exists, to problem 

UTR for the degenerate cases. The possibilities include a single global solution, two 

global solutions, a global solution and a non-global solution, and an infinite number 

of global solutions. When there are an infinite number of solutions, the shape of the 

solution set can be a line segment, the boundary of the trust region, or every point 

in the trust region. 

6.3 Calculating the Global Solution in the Non-degenerate 

Case 

In this section we will discuss how to find the global minimizer of problem UTR in 

the non-degenerate case. By non-degenerate we mean g =/=- 0, A1 =/=- A2, and g is not 

orthogonal to either eigenvector. 
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In this situation, we know there is a unique global minimizer with multiplierµ* in 

the interval (-A1 , oo ). The solution is the Newton step if it is inside the trust region. 

Otherwise, it is the solution to 

(H + µI)s = -g such that 11s11 = ~ and µ E (-Ai, oo ). (6.47) 

Using the eigen-decomposition of H, we can writes as 

s(µ) = -Q(A + µItIQT g. (6.48) 

With the notation c1 = v[ g and c2 = vf g, (6.48) becomes 

(6.49) 

Adding the trust region constraint yields 

2 2 

) 2 Cl C2 2 
11s(µ II = (Ai+ µ)2 + (A

2 
+ µ)2 = ~ · (6.50) 

Note that s(µ) is well-defined in the sense that there is no finite step satisfying 

(H + µI)s = -g for multipliersµ = -A1 and µ = -A 2 • 

More and Sorensen [1983] give an effective algorithm for determining an approx­

imation to a global solution of the n-dimensional trust region subproblem. Their 

algorithm is a safeguarded Newton's method on the function 

1 1 
-- 1 =0. 
~ ll(H + µI)- 9112 

(6.51) 

Newton's method is very efficient when applied to ( 6 .51) since this nonlinear function 

is almost linear on ( -A1 , oo), and the safeguarding strategy serves to confine the 

steps that Newton's method takes to the interval of interest. We will use a simplified 

version of More and Sorensen's algorithm to find an approximate global solution. 

Their algorithm has an additional level of complexity designed to detect a hard case 

solution of the form p + TV1 . We do not need this feature because the hard case 

occurs when g is orthogonal to v1 , and this is one of the special situations where 

we can calculate the solutions analytically. Since More and Sorensen's algorithm is 

designed to solve the n-dimensional problem, they do not have the luxury of the 

eigen-decomposition of H. In two dimensions, though, the eigen-decomposition of H 

is inexpensive, and we will use this information as much as possible. 
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We define </;(µ) as the following function 

(6.52) 

and we will consider applying Newton's method to it. Given a starting point µ 0 , the 

iterates that Newton's method generates are of the form 

The linear system (H + µ+I)s = -g then determines s(µ+)- As mentioned above, 

</;(µ) is almost linear on the interval (-Ai, oo), and the following lemma gives the 

slope of the line tangent to </;(µ) as µ -+ -Ai from both the right and left sides. We 

will use this information to calculate an initial guess for Newton's method. 

Lemma 6.3 Given g E m-2, H E m.,2 x 2 where H is symmetric, and 

~ > 0, let Ai ::; A2 denote the eigenvalues of H, and let Vi and v2 denote 

corresponding orthonormal eigenvectors. Let ci = v[ g and c2 = vf g. 

Assume that g =f=. 0, Ai < A2 , and that g is not orthogonal to Vi or v2 • Let 

(6.53) 

Then, 

lim <p1 (µ) = - - 1
-

µ-+-A1 I Ci I 
( 6.54) 

and, 

lim ¢/(µ) = -
1 

1
-

1

. 

µ-+-Ai C1 
(6.55) 

Proof First, 

</;(µ) 

and 

Since 

lim ¢/(µ) = lim ¢/(-A1 + c), 
µ-+-A1 e-o-

(6.56) 

(6.57) 



we will consider ¢/(-Ai+ c). 

Thus, 

and so, 

lim ¢/ (-Ai + c) = - -
1

1 

1
. 

e-+O- Ci 

Similarly, from (6.58), 

and so, 

lim ¢/ (-Ai + c) = -
1

1 

1
. 

e-+O+ C1 

The same type of relations can be shown as µ -+ -A2, and they are 

lim </>'(µ) = --
1
-

µ-+-A2 I C2 I 
and, 

lim </>'(µ) = -
1 

1
-

1

• 
µ-+-AI C2 
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0 

(6.59) 

(6.60) 

We now have the slope of</>(µ) asµ-+ -Ai, which is also the slope of the function 

J(µ) = 11s(µ)ll-i. The next lemma shows that the line tangent to J(µ) asµ-+ -Ai 
from both the right and the left is always greater than or equal to ¢(µ ). 

Lemma 6.4 Given g E /R,2
, H E m2

x
2 where H is symmetric, and 

.6. > 0, let A1 ~ A2 denote the eigenvalues of H, and let v1 and v2 denote 



corresponding orthonormal eigenvectors. Let 

- 1 
</>(µ) = ll(H + µJf 1glJ2. 

(6.61) 

Assume that g =/=- 0, A1 < A2, and that g is not orthogonal to v 1 or v 2 • Let 

1-(µ) denote the line tangent to~(µ) asµ--+ -A1 . Then, 

¢>(µ) ~ z-(µ) forµ E (-oo,-A1]. 

Let [+(1-t) denote the line tangent to ¢(µ) asµ--+ -At. Then, 

¢>(µ) ~ z+(µ) forµ E [-A1,oo). 

Proof The line tangent to¢(µ) asµ--+ -A1 is 

Consider ¢(µ) 2: 

( Ci C~ )-l 
(A1 + µ) 2 + (A2 + µ) 2 

(A1+µ)2 ( (A2+µ)2 ) 
d(A2 + µ) 2 + c~(A1 + µ) 2 

(A1+µ) 2 (cJ+cJ(1:::rr 
Thus, 

~(µ)2 ~ (A1 + µ)2 (:i)' 
and so, 

l( ) < IA1 + µI 
'r' µ - Jc1 I . 

Forµ E (-oo, -Ai], IA1 + µI = -(A1 +µ),and so 

:i.( ) < _ ( A1 + µ) 
'r' µ - Jc1 I . 

Thus, 

(6.62) 

(6.63) 
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(6.64) 

(6.65) 

(6.66) 



for µ E (-oo, -Ai]. 

The line tangent to ¢>(µ) as µ --+ -At is 

z+(µ)= l:il (µ+A1). 

Forµ E (-A1, oo ), (µ+Ai) 2: 0, and from (6.65), 

1.( ) < (A1 +µ) 
'/J µ - lcil . 

Thus, 

forµ E (-Ai, oo). 

The point at which the tangent line /+ (µ) = 1 / ~ is 
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(6.67) 

D 

(6.68) 

Let µ* denote the solution to </>(µ) = 0, and recall that µ* corresponds to the global 

solution to problem UTR. Since we know that µ* 2: 0, we will take 

µo = max{0, µ+} (6.69) 

as our starting point. From Lemma 6.4, we know that the tangent line z+(µ) 2: J(µ), 
and this tells us that µ+ ::; µ*. Since µ* 2: 0, we have µ0 ::; µ*. Thus, Newton's 

method started from µ 0 produces a monotonically increasing sequence converging to 

the solution of </>(µ) = 0. We point out that since we know the eigenvalues of H, 

and we k!1ow that our starting iterate is smaller than the solution, we do not need 

the safeguarding feature. The final ingredient we need is the stopping criteria for the 

algorithm. However, we need only test to see if either we have the Newton step, 

(6.70) 

or we have a step that is sufficiently close to the boundary of the trust region, 

(6.71) 

for some tolerance a. Thus, using Newton's method from µ0 given in (6.69), we can 

find the global solution in the non-degenerate case. 
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6.4 Existence and Calculation of the Local Solution in the 

Non-degenerate Case 

Now that we have found the global solution in the non-degenerate case, all that 

remains is to determine if there is a non-global solution and to find it, if it exists. 

Clearly, µ E (-oo, -A 2 ) cannot correspond to a local minimizer since (H + µI) 

is negative definite. Recall that there is no finite s satisfying (H + µI)s = -g for 

µ = -A2 • This leaves the interval (-A2 , -Ai) in which we will search for a local 

minimizer. Note that any local minimizer with µ* in this interval cannot be a global 

minimizer since (H +µ*I) will not be positive semidefinite. If a local solution exists, 

it must satisfy 

(H + µI)s = -g such that 11s11 = ~, µ E (-A2, -Ai) and µ ~ 0. (6. 72) 

Obviously, if A1 ~ 0, then there will not be a local solution. 

Consider the function 

(6.73) 

on the interval (-A2 , -Ai). Dennis, Martinez and Williamson (1991] proved the 

following facts concerning a local solution to problem UTR. 

1. <p(µ) is strictly convex forµ E (-A2 , -Ai), and limµ-+-A;- <p(µ) = oo. 

2. The equation <p(µ) = ~2 has at most two roots in (-A2 , -Ai). 

3. If a non-global solution exists, it must be the largest root of <p(/t) = ~ 2 and 

satisfy <p'(µ) > 0. 

The following theorem gives necessary and sufficient conditions for the equation 

<p(µ) = ~ 2 to have roots in the interval (-A2 , -Ai). 

Theorem 6.6 Given g E IR2
, H E IR2

x 2 where H is symmetric, and 

~ > 0, let A1 :s; A2 denote the eigenvalues of H, and let v 1 and v2 denote 

corresponding eigenvectors. Let c1 = vf g and c2 = vf g. Assume that 

g -/- 0, A1 < A2, and that g is not orthogonal to v 1 or v 2 • Let 

(6.74) 



Then, the equation ll(H + µIt 1gll~ = .6.2 has a solution on the interval 

(-A2, -At) if and only if 

Proof Expanding ip(µ) gives 
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Then, ip(µ) will have a unique minimizer forµ E ( -A2, -At) since it is strictly convex 

on this interval. To find this minimum, we set ip' (µ) = 0. 

(6.75) 

So, ip'(µ) = 0 is equivalent to 

(A1+µ) 3 c2 
1 -

(A2+µ) 3 c2 2 

(A1 + µ) -(jl (A2 + µ) - ( 6. 76) 

Let 

_ (cf)½ a - - -
c~ 

(6.77) 

Then, equation (6.76) becomes A1 + µ = a(A2 +µ),and it is easy to see that 

aA2 - A1 
µo = 1-a 

(6.78) 

where a is given by (6. 77). Notice that µ0 given by (6. 78) is well-defined since 

(1-a)>l. 

This follows from ( 6. 77) and the fact that A1 < A2. Clearly µ0 minimizes ip(µ) since 

ip"(µo) > 0. 

Thus, we have established that µ0 is the unique global minimizer of ip(µ) for 

µ E (-A2, -Ai), and consequently, 

ll(H + µolf 1gll 2 < ll(H + µJf 1gll 2 for allµ E (-A2, -Ai) withµ =f. µo, (6.79) 
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From this, it is obvious that c.p(µ) will intersect the horizontal line ~ 2 if and only if 

D 

The next theorem gives conditions that are necessary and sufficient for a local 

minimizer to exist in the interval (-A2, -Ai). 

Theorem 6.7 

Given g E JR,2, H E m2
x

2 where H is symmetric, and ~ > 0, let Ai < 
A2 denote the eigenvalues of H, and let Vi and v2 denote corresponding 

orthonormal eigenvectors. Let ci = vf g and c2 = vf g. Assume that 

g =/= 0, Ai < A2, and that g is not orthogonal to vi or v2. Let µ0 be given 

by (6. 74), and let 

I Ci I 
µ_ = -Ai - -X- and µ1 = max(O, µo). (6.80) 

If (µ 0 < 0), then problem UTR has a non-global solution on the interval 

(-A2,-Ai) if and only if 

(6.81) 

If (µo 2:: 0), then problem UTR has a local minimizer on the interval 

(-A2, -Ai) if and only if 

(6.82) 

Furthermore, the non-global solution, if it exists, is contained in the in­

tervalµ* E [µ1, µ_]. 

Proof Let µ* denote the multiplier contained in (-A2, -Ai) which corresponds to 

a non-global minimizer, if one exists. 

1. ONLY IF: Showµ* exists implies either condition (6.81) or condition (6.82). 

From Theorem 6.6 and the fact that µ0 is not a minimizer, we know µ* E 

(µ 0 , -Ai). Sinceµ* must be greater than or equal to zero, then Ai < 0. 
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(a) (µo < 0) 

In this case, we have µo < 0 ::S µ* < -Ai. Since ll(H + µI)-igll 2 is strictly 

increasing on the interval [µo, -Ai), and ll(H + µ* I)-igll 2 = 6.2
, we have 

which gives us the desired result. 

(b) (Ito 2 0). 

In this case, we have 0 ::S µ0 < µ* < -Ai. Since ll(H + µI)-igll 2 is strictly 

increasing on the interval [µ 0 , -Ai), and ll(H + µ* I)-igll 2 = 6.2 , we have 

which gives us the desired result. 

2. IF: Show that conditions (6.81) and (6.82) implyµ* exists. 

We know that a local solution must be a non-negative root of the equation 

(6.83) 

From Theorem 6.6 we know that (6.83) will have roots in the interval (-A2 , -Ai) 

if and only if 

(6.84) 

where /lo is given by (6.74). 

(a) (µo < 0). 

Since (µo < 0) and Ai < 0, we have µ0 < 0 < -Ai, Theorem 6.6, together 

with ll(H)-igll 2 ::S 6.2, and the fact that ll(H + µI)-igll 2 --+ oo as µ --+ 

-A1i, shows that there existsµ* E (0, -Ai) such that ll(H + µ* I)-igll 2 = 
6.2, which is the local minimizer. 

(b) (µo 2 0). 

In this case, we do not actually need Ai < 0 since it follows from µ 0 2 0. 

Theorem 6.6, together with ll(H + µ0 I)-igll 2 < 6.2, and the fact that 

ll(H + µJ)-igll 2 --+ oo as µ --+ -A1i, shows that there exists µo 2 0 

and µ* E (µ0 , -A1) such that ll(H + µ* Itigll 2 = ~2, which is the local 

mm1m1zer. 
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From the definition of µ1 and the above arguments, we knowµ, ~ µ*. The constant 

µ_ given in (6.80) is the point where the tangent line z-(µ) intersects the trust region 

constraint. From Lemma 6.4, we know 1-(µ) ?::'.: ll(H + µJ)- 1gll-1 forµ E (-A2 , -Ai), 

and this implies µ* ~ µ_. Therefore, µ* E (µ1, µ_], if it exists. 

D 

From Theorem 6.7, we can use the following logic to determine whether or not a 

non-global solution exists. 

Existence of a Non-global Solution: 

If (A1 < 0), then 

If (µ0 < 0), then 

If (IIH-1gll 2 ~ L\2
), then 

A non-global solution exists on (µ 1, µ_ ). 

Else 

No non-global solution exists. 

End if 

Else 

If (ll(H + /to/)-1911 2 < L\2
), then 

A non-global solution exists on (µ1, µ_ ). 

Else 

No non-global solution exists. 

End if 

End if 

Else 

No non-global solution exists. 

End if 

Once we have determined that a local solution exists, we use essentially the same 

algorithm we used to find the global solution in Section 6.3. We start the algorithm 

with µ0 = µ_, and since we know µ* ~ µ_, Newton's method produces a monotoni­

cally decreasing sequence converging to the solution of </>(µ) = 0. Since the Newton 
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step is not a possibility, we only need the stopping criteria to test that the step is 

sufficiently close to the boundary of the trust region, 

(6.85) 

for some tolerance O". Thus, using Newton's method fromµ_, we can find the non­

global solution in the non-degenerate case if we have determined that it exists. 

6.5 Statement of the Algorithm 

The following statement of the algorithm first summarizes the analytical expressions 

for the solutions to problem UTR in the four degenerate cases. These degenerate 

cases are g = 0, A1 = A2 , g orthogonal to v1 , and g orthogonal to Vz. Then, we give 

the details concerning the iterative procedures we use to find approximations to the 

global solution and the local, non-global solution, if it exists, in the non-degenerate 

case. This includes conditions to determine if the local solution exists. 

Algorithm UTR: 

1. Given g E IR..2, H E m2
x

2 where H is symmetric, and ~ > 0, find the global 

solutions, s; and s;*, and the local solution, si, to problem UTR. 

2. Calculate the eigen-decomposition of H. Let A1 ~ A2 denote the eigenvalues, 

and let v1 and v2 denote corresponding orthonormal eigenvectors. 

3. If (g = 0), then 

(a) If (A1 > 0), then 

s* = 0 g 

µ* = 0 

Else 

If (A1 = 0), then 

If (A2 > 0), then 

s; = (2, - 1 )~ v1 for , E [0, 1] 

Else 

s;={s:llsll~~} 
End if 



Else 

If (A1 = A2 ), then 

s;={s:11s11=~} 
Else 

s; = ~ V1 

s;* =-~Vt 

µ*=-Ai 
End if 

End if 

End if 

(b) Return. 

End if 

(a) µ+=-Ai + (11911/~) 
(b) If(µ+ ~ 0), then 

a= ~/11911 
s; = -a 9 

µ* = µ+ 

Else 

s; = -(1/ Ai) 9 

µ* = 0 

End if 

(c) Return. 

End if 

5. Calculate c1 = vf 9 and c2 = vf 9. 

6. If (vf 9 = 0), then 

(a) µ+ = -A2 + (I c2 I/~) 
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(b) If (Ai > 0), then 

If(µ+ > 0), then 

s; = -sign( c2) ~ v2 

µ* = µ+ 

Else 

s; = -(cif A2) V2 

µ* = 0 

End if 

Else 

If(µ+ > -Ai), then 

s; = -sign(c2) ~ V2 

µ* = µ+ 

End if 

If(µ+ = -Ai), then 

a= -c2/(A2 - Ai) 

s; = av2 

End if 

If(µ+ < -Ai), then 

If (Ai -/- 0), then 

a = -c2/(A2 - Ai) 

p = av2 

T = V~2 - a2 

s; = p + T V1 

s;* = p - TVt 

Else 

b = -c2/A2 

r=J~2-b2 

s; = bv2 + (21 - l)rvi for I E [0, 1] 

End if 

End if 

End if 
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(c) Return. 

End if 

7. If (vf g = 0), then 

(a) µ+ = -Ai+ (I c1 I/ t::.) 
(b) If (Ai ~ 0), then 

If(µ+ > 0), then 

s; = -sign(ci)t::.vi 

µ* = µ+ 

Else 

s; = -(1/ Ai) g 

µ* = 0 

End if 

Else 

s; = -sign( ci )t::.vi 

µ* = /l+ 

µ_=-Ai -(I Ci I /t::.) 
If ( (IL 2 0) and (µ_ > -A2) ), then 

si = sign(ci)t::.vi 

µi = µ_ 

End if 

End if 

(c) Return. 

End if 

8. Iterative Method to determine the global solution withµ* E (-Ai,oo): 

µ+=-Ai + (I Ci I /t::.) 
µo = max(0, /t+) 

k=O 

(a) Solve (H + µkl)P = -g for p 
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(b) Check Convergence Criteria: 

If ( (I ~ - JIPll l:s; a-~) or (IIPII :s; ~ and µk = 0) ), then 

s; = p 

µ* = µk 

GoTo 9. 

End if 

( c) Take a Newton step: 

a= cU(Ai + µk) 3 + c~/(A2 + µk) 3 

µk+i = µk + (IIPIJ 2 /a) ((~ - JJpJJ)/ ~) 
(d) k=k+I 

(e) GoTo 8a. 

9. Determine if there is a local solution with µj E (-A2, -Ai), 

If (Ai < 0), then 
1 

a= -(cifc~)3 

µo = ( aA2 - Ai)/(1 - a) 

µ1 = max(0, µo) 

µ_ = -Ai - (I Ci I / ~) 
If (µo < 0), then 

If (IJH-1glJ 2 :s; ~2
), then 

A non-global solution exists on (µ1, µ_). 

Else 

A non-global solution does not exist. 

Return. 

End if 

Else 

If (IJ(H + µoJ)-igJJ 2 < ~ 2
), then 

A non-global solution exists on (µ1,µ_). 

Else 

A non-global solution does not exist. 
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Return. 

End if 

End if 

Else 

A non-global solution does not exist. 

Return. 

End if 

10. Iterative Method to determine the local solution with µj E (µ1, µ_ ). 

µo = µ_ 

k=O 

(a) Solve (H + µk/)P = -g for p 

(b) Check Convergence Criteria: 

If (I ~ - IIPII I::; a~), then 

sj = p 

µj = µk 

Return. 

End if 

( c) Take a Newton step: 

a= cV(A1 + µk) 3 + c~/(A2 + µk) 3 

µk+l = µk + (IIPll 2 /a) ((~ - IIPII)/ ~) 
(d) k=k+l 

(e) GoTo 10a. 

11. End. 
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6.5.1 Accuracy in the Trust Region Subproblems 

In this section, we will consider how accurately we need to solve the two-dimensional 

trust region subproblems 

Problem TR: m1mm1ze qc(s) 

subject to 11s11:::; ~c 

s E span { V1, V2} 

and 

Problem LF: m1 m m1 ze q 
subject to ll\7h? S + he - 0M1NII :::; 0c 

s E span{v1,v2}. 

In unconstrained optimization, the trust region subproblem is usually not solved to 

any great accuracy. See, for example, Dennis and Schnabel [1983). Since the trust 

region radius is never increased or decreased by a factor smaller than 2, it is reasonable 

to ask only that a solution to the unconstrained trust region subproblem, s(µ), satisfy 

I ~c - 11s(µ)II 1:::; <7t. ~c (6.86) 

whens(µ) is not the Newton step. Typically, <7t. E (.1, .5). 

Constrained optimization problems, on the other hand, are complicated by the 

interaction between the objective function and the constraints and thus require more 

care in the determination of <7 A· In the course of calculating a trial step, there are four 

situations where we will need to use a test like (6.86). These situations are deciding if 

a step is an acceptable solution to problem TR, determining if a solution to problem 

TR satisfies the required linear feasibility, deciding if a step is an acceptable solution 

to problem LF, and determining if a solution to problem LF satisfies the trust region 

constraint. 

First consider finding an approximate solution to problem TR. Recall that we 

defined the required amount of linear feasibility, IIVhcTs + he - 0M1NII :::; 0c, based 

on a trust region of .8~c to insure that the intersection of this constraint with the trust 

region constraint yields a feasible region containing more than a single point. Suppose 

that srR is an approximate solution to problem TR and that it is not the Newton 
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step. How accurately do we need to compute this approximate solution? Clearly, if 

the exact solution to this subproblem satisfies the required linear feasibility, we would 

like our approximate solution to also satisfy it. This suggests that we choose a~ < .2 

to insure that the approximate solution will lie outside of the .8 trust region. For 

this implementation, we have chosen a conservative a~ = .05. A conservative choice 

for a~ will not noticeably affect the amount of computation since we are solving only 

two-dimensional subproblems. 

Once we have calculated an approximate solution srR to problem TR, we now 

want to determine if this solution satisfies the required linear feasibility. The obvious 

test is 

(6.87) 

where a0 = a~. However, our strategy for updating the penalty constant requires 

(6.88) 

Condition (6.88) can be enforced by choosing a0 in (6.87) as 

(6.89) 

where O < 1 < l. For example, 1 = 0.95 . 

We must also enforce (6.88) when deciding if a step is an acceptable approximate 

solution to problem LF when the solution is not the Newton step. To accomplish 

this, we use a0 given by (6.89) in 

The more liberal, but unsymmetric test 

is also sufficient. Once we have a solution to problem LF, we will use (6.86) to 

determine if this solution also satisfies the trust region constraint. 
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Chapter 7 

The Nonlinear Programming Algorithm 

In this chapter, we will discuss the remaining ingredients in our nonlinear program­

ming algorithm. We have presented the solution of our trust region subproblem and 

the calculation of a trial step. Now we must consider how to evaluate the trial step. 

This requires the choice of a merit function, the determination of the penalty pa­

rameter in the merit function, and the calculation of Lagrange multiplier estimates. 

Although we will discuss the choice of each of these components separately, they are 

all interrelated. 

Finally, after we have presented the entire algorithm, we will give a few of the 

details about our preliminary implementation of the algorithm. Then we will give 

numerical results for this implementation, and we will compare it to other available 

nonlinear programming codes. 

7.1 The Choice of a Merit Function 

The merit function plays an important role in trust region algorithms. It is used to 

decide whether the step obtained from the subproblem gives a new iterate that is a 

better approximation to the solution x. than the current iterate. The merit function is 

used to accept or reject the trial step and to update the radius of the trust region. The 

choice of a merit function in trust region algorithms for unconstrained optimization is 

obvious; simply use the objective function. However, in constrained optimization the 

situation is more complex. Any measure of improvement must balance improvement 

in the objective function with improvement in the constraint error. Thus, an effective 

merit function for a constrained optimization algorithm will include a weighted com­

bination of the objective function and the error in the constraints. Given a particular 

form of merit function, it is often the choice of the weights that is one of the most 

difficult and elusive tasks in the implementation of the algorithm. 
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Vardi [1980), [1985] and Byrd, Schnabel and Schultz [1987] choose the £1 penalty 

function 
m 

</>1(x) = f(x) + LPi I hi(x) I 
i=l 

for the merit function. Both of these applications require that the penalty constants 

(weights) Pi be sufficiently large. 

Celis, Dennis and Tapia [1985] and Powell and Yuan [1986] choose for the merit 

function the augmented Lagrangian 

L(x, ,\) = f(x) + ,\Th(x) + ph(xf h(x). 

However, they made different choices for the Lagrange multipliers,\ and the penalty 

constant p. 

Powell and Yuan choose for the multipliers in the augmented Lagrangian the least 

squares multipliers 

(7.1) 

which is the least squares solution to V xl(x, ,\) = 0. With this choice of multipliers, 

the augmented Lagrangian becomes a function of x alone and becomes what Powell 

refers to as the Fletcher exact penalty function, Tapia [1983]. However, it has the 

computational disadvantage of requiring the evaluation of Vh(x+) and computation 

of the QR factorization of V h( x+) for every trial step. This work will be wasted if 

the step is not accepted. Powell and Yuan also require p to be sufficiently large and 

define it iteratively so that it attains this goal. 

El-Alem [1988] also used the augmented Lagrangian as the merit function to prove 

global convergence of the CDT algorithm. However, given a trial step sc, he made 

the following choice for the multiplier update: 

(7.2) 

Following Celis, Dennis and Tapia [1985] and El-Alem [1988], we will use the aug­

mented Lagrangian as the merit function in our algorithm. The multipliers that 

we will use incorporates both the least squares multipliers (7.1) and the multipliers 

given by (7.2), and they can be interpreted as an efficient implementation of the least 

squares multipliers. 
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7 .2 Choice of Lagrange Multiplier Estimates 

In this section we will discuss the choice of the Lagrange multipliers and the numerical 

experimentation that led to this choice. Our strategy was forced on us by some 

interesting behavior we observed in situations when negative curvature existed inside 

the null space of \7 he T. This caused us to treat the three roles of the Lagrange 

multipliers separately. The multipliers are used in deciding whether or not to accept 

the step, in testing for convergence, and in building a new quadratic model for the 

next iteration. 

After we have a trial step Sc, we want to use the information we have about the 

model at the current point to calculate a multiplier update .&le, and we will use the 

trial multiplier ,\+ = Ac + Mc to decide whether or not to accept the step. The 

multiplier update we first tested is the update which is obtained as a least squares 

solution of 

(7.3) 

and the resulting -X+ is then the least squares solution to \7 xl(xc, Ac+ Mc) = 0. This 

is the multiplier update that El-Alem (1988] used to prove the global convergence of 

the original CDT algorithm. We will denote this update by ~M for model multi­

pliers since they use only the current model information. This update has some nice 

properties. First, if sc is the SQP step, then Mc is the SQP multiplier !1AQP that we 

obtained during the solution of problem GQP. If Sc = 0, then the multiplier update 

(7.3) is equivalent to the multiplier update given by (7.1) evaluated at Xe. Thus, the 

multiplier update (7.3) varies smoothly between the multiplier update given by (7.1) 

and the QP multipliers. 

Numerical experience indicates that using the trial multipliers determined from 

(7.3) to d_ecide whether to accept the step, to test for convergence, and as the multi­

pliers in the quadratic model at the iteration works well when second-order sufficiency 

holds. However, in an effort to improve the observed performance and robustness of 

the algorithm, we use different trial multipliers when second-order sufficiency does 

not hold. To motivate our choice of multipliers in this situation, consider problem 

GQP when second-order sufficiency does not hold. When we have a descent direction 

of negative or zero curvature for the quadratic model inside the null space of \7 h~, 

the quadratic model is unbounded below on the feasible region (linearized constraint 

manifold). Thus, the linearized constraints are active, but not binding in the sense 

that moving off of the constraints will not give further decrease in the quadratic 
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model. This interpretation led us to set E:\c = 0 when second-order sufficiency does 

not hold for problem GQP. 

This strategy usually works well, but it has one subtle flaw. Numerical experience 

has shown that the algorithm could obtain the solution x. at which second-order 

sufficiency would hold if it had the correct multipliers >. •. However, with the current 

estimates of the multipliers that were obtained from the model, the algorithm may not 

recognize that it has the solution. This situation occurs when the reduced Hessian at 

x. with the current multipliers is not be positive definite. When the reduced Hessian 

is not positive definite, this strategy will use ~c = 0, and the correct multipliers A* 

will not be obtained. Without the correct multipliers, the convergence test cannot 

recognize the solution. In fact, the algorithm with this choice of multipliers exhibited 

this unacceptable behavior on several of the test problems. 

To overcome this difficulty, we use a two-step approach to updating the multipliers. 

First we use information we have about the model to find trial multipliers to use in 

accepting the step and updating the trust region radius. (The procedure for evaluating 

the step and updating the trust region will be discussed in a later section.) If we do 

not accept the step, then we will reduce the trust region and calculate another trial 

step from ( Xe, Ac)- If we accept the step, then we will calculate function information 

at the new point, v7h(x+) and v7 f(x+), to test for convergence and to prepare for the 

next iteration. Once we have this new function information, we will use it to obtain 

a better estimate of the new Lagrange multipliers A+ to use in the convergence test. 

The second multiplier update ~Ac is chosen to be the least squares solution to 

(7.1 ), 

(7.4) 

and then the new multipliers are 

(7.5) 

Unlike Powell and Yuan [1986), the work needed to solve for the least squares mul­

tipliers will not be wasted if the step is rejected, since we have already accepted the 

step and need v7h(x+) and its factorization for the next iteration. 

Tables 7.1 and 7.2 give the numerical test results for each choice of the multipliers 

discussed above. All of the conditions under which these tests were done are identical 

to the numerical testing conditions that will be described in the section on numerical 

results. Section 7.7 is primarily concerned with comparing our algorithm to other 
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available codes. The test problems are all from Hock and Schittkowski [1981], and 

the problem numbers refer to the numbers given there. Tables 7.1 and 7.2 do not 

include the test problems for which second-order sufficiency held at every iteration, 

and for which all versions of the algorithm behaved identically. 

The first set of columns in the tables are the results for the versions of the algo­

rithm using a single multiplier update at each iteration, i. e., A+ = ,\+ = Ac + K:\c. - -The column labelled .6.Ac = .6.AM always took the multiplier update to be the least 

squares solution to (7.3). The column labelled K:\c = 0 used K:\M except when 

second-order sufficiency did not hold, and then K:\c was set to 0. In several cases, 

this version of the algorithm failed to find a solution. 

The second set of columns are the results for the versions of the algorithm using a 

two-step approach to computing the multipliers. The columns labelled K:\c = 0 and - -.6.Ac = .6.AM correspond to the same choices as before for the first trial update which 

is used to evaluate the step. Then, if the step is accepted, .6.Ac is computed to be 

the least squares solution of (7.1), and the new multipliers are A+ =Ac+ E>:c + .6.Ac. 
These strategies for computing the Lagrange multipliers are detailed in following 

outline where the choices for the first update are ( a, b) and to update a second time 

or not using the least squares multipliers is determined by choices c or d. 

Calculating Lagrange Multiplier Estimates: 

1. Given Ac, Sc, V xl(xc, Ac), Vhc, and Be, calculate A+· 

2. If(sc=SQP),Then 

Else 

If (Second-Order Sufficiency Holds), Then 

Solve Vhc.6.A = -(Bcsc + Vxl(xc,Ac)) for K:\c 
Else 

a. K:\c = 0, or 

b. Xt solves Vhc.6.A = -(Bcsc + V xl(xc, Ac)) 

End if 

End if 
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4. Evaluate the step. 

5. If (Step is accepted), Then 

c. A+ = >.+, or 

d. A+ =~++~Ac where ~Ac solves Vh(x+)~A = - [v f(x+) + Vh(x+)>.+] 

End if 

Notice from Tables 7 .1 and 7 .2 that the two-step approach is usually more efficient 

than the single update based only on the model information. This is reasonable since 

the two-step approach uses the newest function information to calculate the new 

multipliers. 

It is interesting to note that the choice of multipliers influenced which solution the 

algorithm converged to. For the problems for which different versions of the algorithm 

converged to different local solutions, the solution that was found is indicated by the 

Roman numeral i, ii, iii or iv in Table 7.3, and a list of these solutions can be found 

in Appendix A. 

For the problems that encountered zero or negative curvature, the version of the 

algorithm which sets the only multiplier update to 0 in this situation failed to find 

the solution for a significant number of the test problems, as mentioned earlier, and 

so we will not consider this version further. 

Each of the three remaining multiplier strategies should be evaluated for robust­

ness and efficiency. Both of the two-step approaches have only four failures but the 

two single-update strategies each have many more failures. Interestingly, the algo­

rithms did not fail for the same problems, and in fact, at least one of the methods 

successfully solved each problem listed. To consider efficiency, we can compute the 

average number of iterations and function evaluations per problem. The average 

number of iterations per problem is 30.1 for the single update with ~c = ~M, 25.6 

for the two-step multiplier strategy using ~c = 0 and 31. 7 for the two-step strategy 

using .&:\c = .&:\M. Similarly, the average number of function evaluations per problem 

is 40.1 for the single update with &:\c '= &:\M, 35.3 for the two-step m11ltiplier strat­

egy using &:\c = 0 and 41. 7 for the two-step strategy using &:\c = E:\M. Given these -considerations, we slightly prefer the two-step multiplier strategy using ~Ac = 0, and 

we will use it to state the algorithm in the remainder of this work. 
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Table 7.1 Multiplier Test Results 

Problem Starting Point # Iterations ( # Function Evaluations) 
A+= Ac+ ~Ac A+ = Ac + ~Ac + ~Ac 

~Ac= 0 ~Ac= ~AM ~Ac= O ~Ac= ~AM 
6 -1.2 1 F 14(26) 14(26) 14(26) 

-2 4 F 17(27) 17(28) 17(28) 
-6 5 F 8(9) 8(11) 8(11) 
-12 10 F 16(22) 8(10) 8(10) 
-10 10 F 15(23) 7(9) 7(9) 
-10 0 F 12(18) 14(21) 14(21) 
20 20 7(9) 7(9) 12(19) 12(19) 

7 -35 -40 22(28) 23(31) 26(31) 26(31) 
26 5 -5 5 28(32) 26(31) 27(31) 29(35) 

50 -50 50 34( 41) 28(29) 28(29) 28(29) 
450 -370 645 39(52) 38(52) 34(35) 34(35) 
-0.3 2.1 -2.1 21(25) 21(24) 21(25) 21(24) 

27 2 2 2 F 17(26) 16(26) 16(26) 
1 4 2 F 10(15) 9(13) 9(11) 
1 3 4 F 11(14) 23(31) 25(38) 
1 4 4 F 11(18) 20(29) 29(44) 
-4 -2 -1 11(17) 13(22) 13(17) 13(17) 
20 20 20 131(154) 105(149) 105(143) 105(143) 
5 -10 8 41(59) 31(51) 28( 42) 33(53) 
15 -9 3 F F 53(82) 185(246) 
-2 6 -11 13(19) 10(15) 12(17) 12(17) 
10 5 7 F F 54(82) 108(143) 
23 -19 38 122(155) 104(142) 98(125) 98(125) 

39 2 2 2 2 F 13(16) 15(17) 15( 17) 
-10 -10 10 10 16(24) 16(26) 16(21) 16(21) 
20 20 20 20 F 32( 41) 38(54) 38(54) 
-3 2 3 7 13(19) 13(19) 10(14) 10(14) 
5 0 -5 0 F 14(17) 13(19) 13(19) 
-3 -5 7 9 16(25) F 15(20) 15(20) 
-2 -4 6 2 14(20) 18(29) 14(21) 14(21) 
20 49 63 -9 46(76) 40(59) 36( 49) 36( 49) 
4 -5 9 36 31( 43) 31(43) 41(51) 41(51) 
40 2 4 -5 38(52) 66(82) 78(113) 78(113) 
0 0 0 0 F 8(14) 11(18) 11(18) 

F Failed to converge. 
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Table 7.2 Multiplier Test Results 

Problem Starting Point # Iterations ( # Function Evaluations) 
A+= Ac+ ~Ac A+ = Ac + ~Ac + ~Ac 

~Ac= 0 ~Ac= ~AM ~Ac= 0 ~Ac= ~AM 

40 .8 .8 .8 .8 F F 3(4) 3(4) 
-1-1-1-1 9(12) 16(22) 9(13) 10(15) 
-2 -4 -4 -2 F 156(222) 14(20) 14(20) 
1 0 -1 0 7(10) 7(11) 7(10) 6(7) 
-2 -4 6 2 F F F 17(25) 
0 -0.5 1 0 11(14) 10(13) 8(10) 7(9) 
8 8 8 8 F 13(20) 12(19) 12(19) 
3 2 4 7 9(13) 9(13) 8(9) 8(9) 
30 29 -39 3 F 96(113) 116(172) 66(96) 
5 3 -100 -10 101(129) F 77(120) 69(90) 

42 10 10 10 10 8(9) 8(9) 7(8) 8(9) 
100 -100 30 -70 F 11(14) 12(16) 12(16) 

60 -10 40 9 18(24) 18(24) 15(17) 15(17) 
100 100 -100 F 18(19) 18(19) 18(19) 

77 2 2 2 2 2 8(10) 8(10) 9(11) 9(11) 
10 10 10 10 10 21(23) 21(23) 23(25) 23(25) 
20 20 20 20 20 26(27) 26(27) 24(26) 24(26) 
4 3 7 -5 -3 F 33( 43) F F 
-1 3 -0.5 -2 -3 F 35(51) F F 
12 13 14 15 7 19(22) 19(22) 20(23) 20(23) 
-2 -2 -2 -2 -2 F F 108(143) 310(370) 
-5 -5 -5 -5 -5 F F 50(80) F 
32719 18(26) 17(25) F F 
-1 2 5 0 6 F 269(295) 19(27) 97(117) 
0 0 0 0 0 F 10(18) 9(16) 9(16) 

78 -20 15 20 -10 -10 F F 13(19) 13(20) 
50 50 50 50 50 F 43(64) 24( 41) 23(38) 
-10 10 10 -10 -10 F 16(29) 8(9) 8(9) 
0 0 1 1 1 7(11) 6(10) 6(10) 6(10) 

79 10 10 10 10 10 11(12) 11(12) 10(11) 10(11) 
-2 -2 -2 -2 -2 28(35) 16(23) 10(13) 10(13) 
-3 2 6 -7 9 15(16) 15(16) 19(24) 18(21) 
40 -30 50 -80 20 F 51(80) 20(29) 16(21) 

F Failed to converge. 
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Table 7.3 Multiplier Test Results 

Problem Starting Point Solution Found 

A+= Ac+ ~Ac A+ = Ac + ~Ac + ~Ac 
~Ac= 0 ~Ac= ~AM ~Ac= 0 ~Ac= ~AM 

26 5 -5 5 11 11 11 11 

50 -50 50 I I I I 

450 -370 645 I I I I 

-0.3 2.1 -2.1 I 11 I I 

40 .8 .8 .8 .8 F F I I 

-1-1-1-1 I I I I 

-2 -4 -4 -2 F 11 11 11 

1 0 -1 0 11 11 11 11 

-2 -4 6 2 F F F I 

0 -0.5 1 0 I I 11 11 

8 8 8 8 F I I I 

3 2 4 7 I I I I 

30 29 -39 3 F 11l 11 11 

5 3 -100 -10 
... 

F lll 11 11 

60 -10 40 9 I I I I 

100 100 -100 F 11 11 11 

77 2 2 2 2 2 I I I 1 

10 10 10 10 10 I I I I 

20 20 20 20 20 11 I 11 11 

4 3 7 -5 -3 F 11 F F 
-1 3 -0.5 -2 -3 F 11 F F 
12 13 14 15 7 1 I I 1 

-2 -2 -2 -2 -2 F F 
... ... 
lll lll 

-5 -5 -5 -5 -5 F F I F 
3 2 7 1 9 11 11 F F 
-12506 F 11 11 11 

00000 F I I I 

78 -20 15 20 -10 -10 F F 
... ... 
Ill lll 

50 50 50 50 50 F ... 
lll 11 11 

-10 10 10 -10 -10 F lll I I 

0 0 1 1 1 11 11 11 11 

79 10 10 10 10 10 I I 1 I 

-2 -2 -2 -2 -2 
... ... ... . .. 
lll lll lll lll 

-3 2 6 -7 9 1 1 11 11 

40 -30 50 -80 20 F IV IV IV 

F Failed to converge. 

i,ii,iii,iv Solution found; See Appendix A. 
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7 .3 Choosing the Penalty Constant 

The global convergence theory of the original CDT algorithm, El-Alem [1988], requires 

that the sequence of penalty constants, {po, p1 , p2 , ... } , be nondecreasing and that the 

predicted reduction in the merit function at each iteration be at least as much as a 

fraction of Cauchy decrease in IIVh? s + hell, El-Alem [1988] gives a scheme for 

updating the penalty constant to achieve these objectives. In his scheme, the penalty 

constant is updated before every step is evaluated. However, numerical experience has 

shown that success of the algorithm depends on keeping the penalty constant as small 

as possible. Thus, we have modified the penalty constant given in El-Alem [1988] 

slightly. We will update the penalty constant Pc to Pc before we evaluate each step, 

and, if we accept the step, then we will keep the updated penalty constant, P+ = Pc· 
However, if we do not accept the step, we will not keep the update, and P+ = Pc· 

This strategy is designed to keep the penalty constant from becoming unnecessarily 

large in situations where we must calculate several trial steps while reducing the trust 

region radius before we find an acceptable step. The penalty constant update depends 

on the predicted reduction in the merit function predc which is given by (7.8). We 

use the following strategy for updating the penalty constant. 

Updating the Penalty Constant: 

Given a small, fixed constant f3 > 0 and p0 > 0, at each iteration: 

' Pc= Pc 
Else 

End if 

If (Step is Accepted), Then 

P+ = Pc 
Else 

P+ = Pc 
End if 
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Notice that this strategy requires that we predict a reduction in the model of the 

constraints, 

(7.6) 

to insure that the sequence of penalty constants is nondecreasing. If condition (7 .6) 

does not hold, then it is possible that the updated penalty constant Pc could be 

negative. If the trust region subproblem was solved exactly, then (7.6) will hold. 

However, in practice, the subproblem is only solved approximately, and care must be 

taken to ensure (7.6) holds. See Section 6.5.1 which concerns the accuracy in the trust 

region subproblems for more details. In addition, a necessary property of the merit 

function is that it must predict improvement for some s unless Xe is optimal. This 

property holds if the penalty constant is sufficiently large and the predicted reduction 

in the model of the constraints is positive. 

Numerical experience indicates that the algorithm does not perform well when the 

penalty constant becomes too large. We have found that it is advantageous to 'restart' 

the algorithm when the penalty constant becomes large. After we have accepted the 

step, we reset the penalty parameter to p0 if P+ > PMAX, and for this implementation, 

we set PM.4X = 1 x 106
• 

The values of the constants that we use in our implementation of this penalty 

constant strategy are Po= 1.1, /3 = 0.1, and PMAX = 1 x 106
• 

7.4 Evaluating the Step and Updating the Trust Region 

Radius 

Once we have all of the ingredients in the merit function, we are ready to evaluate 

the trial step Sc. To measure improvement, we compare the actual reduction in the 

augmented Lagrangian from the current iterate (xc, Ac) to the new iterate (x+, X+), 

aredc - L(xc, Ac) - L(x+)+) 

l(xc, Ac) - l(x+, Ac) - (:\+ - Ac) Th+ (7.7) 

+Pc (llhcll 2 
- llh+ll 2

) 

to the predicted reduction, 

(7.8) 
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If the agreement between the actual and predicted reduction is reasonable and the 

step gives at least a small amount of decrease, i. e., 

aredc 
0 < 'f/1 ~ -d-

pre c 

where 'T/t E (0, 1) is a small, fixed constant, then the point x+ =Xe+ Sc is accepted 

and >-+ is computed from (7.4). Otherwise, we will reject the step and set x+ = Xe 

and >-+ = >-c- We will compute a shorter step by decreasing the trust region radius 

by ~+ = a 2llscll where O < a 2 < 1. Consider, for example, a 2 = 0.5. This has the 

effect of halving the trust region, or if the step lies strictly in the interior of the trust 

region, then ~+ would be set to half the length of this step. 

Once the step is accepted, we update the trust region radius by comparing the 

actual and predicted reduction in the merit function. Namely, if the agreement is 

poor, 
aredc 

'f/1 ~ --d- < 'f/2 , 
pre c 

where 'f/2 E ( 'f/t, 1) is a fixed constant, then the radius of the trust region is decreased 

by the rule~+= a 2 llscll where O < a:-2 < 1. However, if the agreement is very good, 

aredc 
T/3 5:: --d-' 

pre c 

where 'f/3 E ('f/2, 1) is a fixed constant, then we possibly increase the radius of the trust 

region by 

where ~MAX is the maximum allowable trust region radius and a:-3 > 1. 

The values of the trust region constants that we use in our implementation are 

'f/1 = 0.001, 'f/2 = 0.25, 'f/3 = .75, 0:'2 = 0.5, 0:'3 = 2.0, and ~MAX = 20~o- We 

experimented with several choices for ~ 0 ; the length of the Cauchy step for the 

constraints, the distance to the linearized constraint manifold, !isLFII, and 1.5llsLFII­

These results can be found in Tables 7.4 and 7.5, and they are summarized at the end 

of Table 7.5. Surprisely, the most conservative choice, llscpll, was the most efficient. 

Unfortunately, as in unconstrained optimization, the behavior of the algorithm is 

sensitive to the choice of the initial trust region radius. In the future, we plan to 

consider the strategy of internal doubling when we update the trust region radius as 

a way of increasing efficiency, Dennis and Schnabel [1983]. 
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Table 7.4 Effect of the Initial Trust Region Radius 

Problem Starting Point # Iterations ( # Fune Evaluations) 
llscpll I llsLFII I 1.5llsLFII 

6 -6 5 8(11) 8(11) 11(15) 
-12 10 8(10) 8(10) 17(26) 
-10 10 7( 9) 7( 9) 9(12) 
-10 0 14(21) 14(21) 124(170) 
20 20 12(19) 12(19) 478(843) 

7 20 20 18(22) 18(23) 18(23) 
-15 6 17(21) 17(21) 15(17) 
23 -10 17(20) 17(20) 22(27) 
-35 -40 26(31) 26(31) 18(21) 

9 -10 10 6(7) 6(7) 3(4) 
26 5 -5 ,5 27(31) 27(31) 26(33) 

-26 20 20 25(26) 25(26) 17(18) 
450 -370 645 34(35) 33(34) 33(34) 

27 2 2 2 16(26) 16(26) 18(23) 
1 4 2 9(13) 9(13) 14(27) 
1 3 4 23(31) 23(31) 26(41) 
1 4 4 20(29) 20(28) 24(32) 
1 1 1 11(15) 11(15) 12(16) 
-10 -10 -10 28(37) 28(37) 24(33) 
20 20 20 105(143) 107(146) 80(111) 
5 -10 8 28(42) 26( 42) 29(44) 
15 -9 3 53(82) 53(82) 29(44) 
-2 6 -11 12(17) 12(17) 16(21) 
10 5 7 54(82) 55(78) 48(78) 
23 -19 38 98(125) 98(125) 73(99) 

. 39 2 2 2 2 15(17) 15(17) 10(14) 
0 2 0 0 5(6) 5(6) 5(7) 
-10 -10 10 10 16(21) 20(27) 23(37) 
20 20 20 20 38(54) 62(85) 39(58) 
-3 2 3 7 10(14) 16(20) 10(13) 
5 0 -5 0 13(19) 16(21) 17(19) 
-11 8 -2 9 13(15) 347(666) 28(38) 
-3 -5 7 9 15(20) 14(22) 13(21) 
-2 -4 6 2 14(21) 31(35) 13(20) 
20 49 63 -9 36( 49) F 171(284) 
4 -5 9 36 41(51) 38( 51) 29(42) 
40 2 4 -5 78(113) 210(335) 180(283) 

F Failed to converge. 
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Table 7.5 Effect of the Initial Trust Region Radius 

Problem Starting Point # Iterations ( # Fune Evaluations) 
llscpJJ I JJsLFII I 1.5IJsLFII 

40 -1-1-1-1 9(13) F 8(13) 
-2 -4 -4 -2 14(20) 24(38) 12(19) 
-2 -4 6 2 F 16(24) 24(34) 
0 -0.5 1 0 8(10) 8(10) 11(16) 
8 8 8 8 12(19) 10(11) 10(14) 
3 2 4 7 8(9) 16(23) 9(14) 
30 29 -39 3 116(172) 13(18) 17(33) 
5 3 -100 -10 77(120) 58(88) 69(109) 

42 1 2 3 4 6(7) 5(6) 5(6) 
25 -30 -10 9 9(10) 8(10) 10(14) 
100 -100 30 -70 12(16) 12(14) 12(15) 

60 0 0 0 11(17) 11(17) 9(14) 
10 10 10 11(12) 11(12) 12(13) 
-20 -20 -20 13(14) 13(14) 12(13) 
-10 40 9 15(17) 15(17) 17(21) 

77 1 1 1 1 1 6(9) 6(9) 8(11) 
10 10 10 10 10 23(25) 22(27) 17(18) 
20 20 20 20 20 24(26) 24(27) 23(29) 
4 3 7 -5 -3 F 93(113) F 
-1 3 -0.5 -2 -3 F 134(165) F 
12 13 14 15 7 20(23) 18(20) 21(22) 
-2 -2 -2 -2 -2 108(143) 108(143) 161(192) 
-5 -5 -5 -5 -5 50(80) F 75(93) 
-12506 19(27) 35( 47) 31( 43) 
0 0 0 0 0 9(16) 9(16) 10(18) 

78 -20 15 20 -10 -10 13(19) 10(18) 10(18) 
50 50 50 50 50 24( 41) 18(33) 25(39) 
-10 10 10 -10 -10 8(9) 7(8) 7(8) 
0 0 1 1 1 6(10) 7(12) 6(11) 

79 10 10 10 10 10 10(11) 9(10) 17(23) 
-2 -2 -2 -2 -2 10(13) 11(15) 9(12) 
3 5 5 5 5 9(10) 10(11) 14(17) 
-3 2 6 -7 9 19(24) 12(13) 12(13) 
40 -30 50 -80 20 20(29) 61(102) 45(78) 

Totals 1769(2276) 2254(3261) 2458(3620) 
Averages 25.3(32.5) 32. 7( 4 7.3) 35.1(51.7) 
Failures 3F 3F 2F 

F Failed to converge. 
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7 .5 Statement of the Algorithm 

Now that we have discussed each piece of the merit function and the strategy for 

accepting the step and updating the trust region, we can fit all of these pieces together 

into the following nonlinear programming algorithm. 

The Nonlinear Programming Algorithm: 

1. Initialization: 

(a) Given x0 , obtain ho, Vho, Jo, VJo, and the constants Po, PMAX, /3, E, 

0 < a 2 < 1, a3 > 1, and O < 1}1 < 1}2 < 173 < 1. 

(b) Calculate Ao from V h0 A = - V Jo. 

(c) Calculate ~o = max{llscpll, 1.5}. 

(cl) ~MAX= max{20~o, 10.0}. 

2. Calculate a trial step Sc, 

3. X+ =Xe+ Sc, 

4. Calculate the Lagrange multiplier update. 

If (sc = SQP), then 

~=~AQP 

Else 

If (Second-Order Sufficiency Holds), then 

Solve Vh(xc)~A = -(Bcsc + V xl(xc, Ac)) for .S3:c 
Else -~Ac= 0 

End if 

End if 

5. Get f+ = J(x+) and h+ = h(x+)-

6. Calculate the Predicted Reduction: 

predc = -Vxl?sc - ~s?Bcsc -Mf(hc + Vh?sc) 

+Pc (llhcll 2 
- llhc + Vhc T Scll 2

) . 



7. Update the Penalty Constant: 

Given a small fixed constant /3 > O; 

If (predc 2: ½Pc(llhcll 2 
- llhc + "vh? scll 2 )),then 

Pc= Pc 

Else 

predc = - "v xlc T Sc - ~Sc T Bcsc - ~ ( he + "v he T Sc) 

+Pc (llhcll 2 
- llhc + "vh? Scll 2

) • 

End if 

8. Calculate the Actual Reduction: 

9. Evaluate the Step and Update the Trust Region: 

(a) Given constants O < a2 < 1, a3 > 1, and O < T/1 < T72 < 1, 

(b) If ( aredc < 11 ) then 
predc ·tl ' 

Do not accept the step: 

x+ = Xe 

-X+ = Ac 

Reduce the trust region radius: 

~+ = a2llscll 
End if 

(c) If (11 < aredc < 11 ) then 
·,1 - predc - ·12 ' 

Accept the step. 

Reduce the trust region radius: 

~+ = a2llscll 
End if 

(d) If (11 < aredc) then 
' 13 - predc ' 
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Accept the step. 

Possibly increase the trust region radius: 

~+ = min{ ~MAX, max{ ~c, a31iscll}} 

End if 

(e) If (Step Not Accepted), then 

P+ = Pc 

f+ = fc, h+ = he, "\lf+ = "\lfc, "\lh+ = "\lhc, and B+ = Be 

Go To 2. 

Else 

P+ = Pc 

If (P+ > PMAX ), P+ = Po 

End if 

10. Get "\1 f + = "\1 J( x+) and "\1 h+ = "\1 h( x+) 

11. Update the Lagrange Multipliers: 

(a) Solve "\lh+~). = -"\lf+ - "\lh+ (>.c + &Xe) for ~).c 
(b) A+= Ac+ &>;c + ~).c 

12. Test for Convergence: 

Solution found, Stop. 

Else 

Get B+ = B(x+, >-+)­

Go To 2. 

End if 

7.6 Implementation Details 
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We have given the constants that we need to evaluate the step, update the trust 

region, and determine the penalty constant, and we will now give the initialization 
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procedures and the stopping criteria that we use in the preliminary implementation 

of the algorithm. Given a starting point x 0 , we use the least squares solution to 

Vh(xo).-\ = -Vf(xo) 

for the initial multipliers .-\0 . 

As discussed in Section 7.4, we choose the initial trust region radius to be the 

length of the Cauchy step for the Gauss-Newton model of the constraints. Since the 

Cauchy step from x 0 could be zero, we use 

~o = max{llscpll, 1.5}. 

We would prefer a choice of ~o that comes from the problem instead of some absolute 

constant like 1.5, and in the future, we will perhaps consider some fraction of the 

length of the initial SQP step. 

Finally, we consider (x+, .-\+) to be an acceptable solution based on the stopping 

criteria 

where e = 1 x 10-5
• In addition, we consider the algorithm to have failed if it does 

not converge to a solution in 500 iterations or if the trust region radius falls below 

1 x 10-12 • This part of our preliminary implementation, the stopping criteria, the 

trust region constants, and the restarting of the penalty constant, for example, have 

been rather arbitrarily set and will need further work in the future. 

7. 7 Numerical Results 

In this section we report the numerical results for the preliminary implementation 

of our trust region algorithm NLPTR in order to evaluate its effectiveness. For com­

parison, we give results for two SQP approaches: NPSOL by Gill, Murray, Saunders, 

and Wright [1986], and DNCONG by Schittkowski [1986], which is available in the IMSL 

MATH/LIBRARY. Both NPSOL Version 4.02 and DNCONG were tested using the default 

stopping criteria and analytic gradient information for both the objective function and 

the constraints. The maximum number of iterations allowed was 500, and all tests 

were performed in double precision on a Sun 4. 

The problems we tested are from Hock and Schittkowski (1981] and will be ref­

erenced by the number given there. These problems are given in an appendix along 
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with possible constrained local minimizers and the function value at these points. The 

first starting point listed is the standard starting point from Hock and Schittkowski 

[1981]. 
In order to study the robustness of the algorithm, we tested each problem from 

several starting points. The results are reported in Tables 7.6, 7.7 and 7.8 with 

a summary at the end of Table 7.8. The numbers in the columns labeled NPSOL, 

DNCONG and NLPTR indicate the number of iterations that each algorithm required 

for convergence when convergence was achieved, and the letter F indicates that the 

algorithm failed to converge. The numbers in parenthesis indicates the number of 

function evaluations required, i. e.,the number of objective function evaluations or the 

number of constraint evaluations. The number of iterations provides some insight into 

the difficulty of the problem. Also, the difference between the number of iterations 

and the number of function evaluations indicates how difficult it was for the algorithm 

to find acceptable steps for that problem. The gradient evaluations that both NLPTR 

and DNCONG required is equivalent to the number of iterations, while NPSOL required 

one gradient evaluation for each function evaluation. 

The number of iterations required for convergence does not provide an accurate 

comparison of the efficiency of each of the algorithms for a variety of reasons. One 

of the most significant of these is that NLPTR uses exact Hessian information while 

NPSDL and DNCONG do not. In addition, our algorithm is still in the preliminary 

implementation stage, and it has not been refined for efficiency. 

The quality we are really interested in is robustness, and these results show that 

our algorithm is significantly more robust than DNCONG and NPSOL. \Ve point out 

that DNCONG failed on a number of problems because the line search could not find an 

acceptable step with the allowed number of function calls. The default for the function 

evaluations allowed during the line search is 5, and the IMSL routine will not let the 

user override this default. Finally, each of the algorithms did not always converge to 

the same solution, and we have tabulated the solutions which each algorithm found 

in Table 7.9. 



Table 7.6 Convergence Results 
Problem Starting Point 

6 -1.2 1 
-12 10 
-10 10 
-10 0 
20 20 

7 22 
20 20 
-15 6 
23 -10 
-35 -40 

8 2 1 
20 10 
-50 -50 

9 0 0 
-10 10 

26 -2.6 2 2 
000 
-1 -1 -1 
1 -1 1 
5 -5 5 
-26 20 20 
50 -50 50 
30 35 40 
450 -370 645 
-0.3 2.1 -2.1 

27 222 
1 4 2 
1 3 4 
1 4 4 
-4 -2 -1 
1 1 1 
-10 -10 -10 
20 20 20 
5 -10 8 
15 -9 3 
-2 6 -11 
10 5 7 
23 -19 38 

F Failed to converge. 

t Too many function calls in Line Search. 

t Reached maximum number of Iterations. 

# Iterations (# Fune Evaluations) 
NPSOL DNCONG I NLPTR 

13(20) 9(10) 14(26) 
8(11) 12(12) 8(10) 
9(12) 16(24) 7(9) 
11(30) 12(14) 14(21) 
11(14) 11(12) 12(19) 
11(17) 10( 11) 7(8) 
22(34) Ft 18(22) 
31(59) 16(19) 17(21) 
24(39) 22(28) 17(20) 
26( 41) 28(37) 26(31) 

-

6(10) 5(5) 5(7) 
6(8) 6(6) 6(7) 

F F F 
5(9) 6(6) 4(5) 
5(9) 8(9) 6(7) 

40( 44) 20(22) 17(18) 
42( 49) 10(14) 18(20) 
41(44) 19(20) 19(20) 
57(78) 17(19) 19(21) 
77(105) 31(32) 27(31) 
46(56) 30(30) 25(26) 
95(150) 62(71) 28(29) 
51(70) 30(32) 20(21) 

104(150) Fi 34(35) 
43(51) 22(24) 21(25) 
18(29) 21(27) 16(26) 
22(33) 23(30) 9(13) 
21(29) 20(22) 23(31) 
27(44) 25(30) 20(29) 
22(28) 37(61) 13(17) 
25(35) 21(28) 11(15) 
64(85) 65(108) 28(37) 
20(33) 441(1254) 105(143) 
28(48) 24(25) 28(42) 
47(74) 273(740) 53(82) 
29(51) 28(36) 12(17) 
18(31) 110(266) 54(82) 
27( 45) 70(101) 98(125) 
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Table 7. 7 Convergence Results 
Problem Starting Point 

39 2222 
0200 
-10 -10 10 10 
20 20 20 20 
-3 2 3 7 
-118-29 
-3 -5 7 9 
-2 -4 6 2 
20 49 63 -9 
4 -5 9 36 
40 2 4 -5 
0000 

40 .8 .8 .8 .8 
-1-1-1-1 
-2 -4 -4 -2 
1 0 -1 0 
-2 -4 6 2 
0 -0.5 1 0 
8888 
3247 
30 29 -39 3 
5 3 -100 -10 

42 1 1 1 1 
10 10 10 10 
25 -30 -10 9 
100 -100 30 -70 
-50 -75 40 100 

60 222 
1112 13 
000 
10 10 10 
20 20 20 
27 29 38 
-20 -20 -20 
1 1 1 
-10 40 9 
-45 11 87 
100 100 -100 

F Failed to converge. 

t Too many function calls in Line Search. 

t Reached maximum number of Iterations. 

max Converged to a maximum. 

# Iterations (# Fune Evaluations) 
NPSOL I DNCONG NLPTR 

12(16) 12(14) 15(17) 
2(4) 3(3) 5(6) 

37(65) 37( 44) 16(21) 
20(25) 20(22) 38(54) 
29(52) 16(17) 10(14) 
25(36) 49(81) 13(15) 
32(.54) 44(67) 15(20) 

94(233) 31(39) 14(21) 
21(26) 26(33) 36(49) 
25( 44) 24(33) 41(51) 

119(320) 23(28) 78(113) 
2(4) 3(3) 11(18) 

6(10) 6(6) 3(4) 
46(135) 36(59) 9(13) 
30(56) 16(23) 14(20) 
12(15) 26(33) 7(10) 
27(38) 24(29) Fl 

F Ft 8(10) 
23(33) 40(64) 12(19) 
28(48) 30(49) 8(9) 
26( 40) Fmax 116(172) 

51(120) 38(60) 77(120) 
7(12) 9(11) 3(4) 
12(18) 10(11) 7(8) 
15(26) 17(18) 9(10) 
18(28) 23(25) 12(16) 
16(23) 29(36) 11(12) 
8(12) 10(11) 7(8) 
22(29) 18(23) 11(12) 
20( 42) 20(29) 11(17) 
18(32) 19(23) 11(12) 
21(31) 17(20) 13(14) 
22(30) 23(24) 15(16) 
24(36) 20(22) 13(14) 
8(14) 8(9) 6(8) 

66(124) 42(59) 15(17) 
25(34) 49(60) 18(19) 
29(39) F 18(19) 
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Table 7 .8 Convergence Results 

Problem Starting Point 

77 22222 
1 1 1 1 1 
10 10 10 10 10 
20 20 20 20 20 
-3 -3 3 9 0 
-1 8 3 3 0 
4 3 7 -5 -3 
12 13 14 15 7 
-2 -2 -2 -2 -2 
-5 -5 -5 -5 -5 
3 2 7 1 9 
-1250 6 
00000 

78 -2 1.5 2 -1 -1 
-20 15 20 -10 -10 
50 50 50 50 50 
-1 1.5 2 -1 -2 
-10 10 10 -10 -10 
0 0 1 1 1 

79 22222 
1 1 1 1 1 
10 10 10 10 10 
-2 -2 -2 -2 -2 
35555 
-3 2 6 -7 9 
40 -30 50 -80 20 

Totals 
Averages 
Failures 

F Failed to converge. 

t Too many function calls in Line Search. 

t Reached maximum number of Iterations. 

max Converged to a maximum. 

# Iterations ( # Fune Evaluations) 
NPSOL I DNCONG NLPTR 

14(21) 15(16) 9(11) 
13(20) 13(17) 6(9) 

F 61(73) 23(25) 
F 120(178) 24(26) 
F 26(27) 10(11) 

15(23) 20(25) 8(9) 
F 39( 40) F 
p 70(94) 20(23) 
F 41(55) 108(143) 
F pt 50(80) 
F 56(72) F 

192(366) pt 19(27) 
24(44) 31(47) 9(16) 
10(15) 8(8) 4(5) 
39(55) 38(60) 13(19) 

108(273) Fmax 24(41) 
14(23) 11(13) 5(6) 
13(18) 13(13) 8(9) 

p pmax 6(10) 
10(13) 9(10) 4(5) 
9(11) 8(8) 4(5) 
21(32) 19(21) 10(11) 
20(39) 25(37) 10(13) 
17(24) 15(18) 9(10) 
22(39) 32(33) 19(24) 
77(115) 44(48) 20(29) 

2768(4710) 3092(5186) 2007(2667) 
30.4(51.8) 33.6(56.4) 20.5(27.2) 

llF lOF 4F 
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Table 7.9 Solutions Found 
Problem Starting Point Solution Found 

NPSOL DNCONG I NLPTR 

8 45 60 11 11 11 

9 -10 10 I I 11 

26 -1 -1 -1 11 11 11 

5 -5 5 I I 11 

50 -50 50 I 11 I 

450 -370 645 I F I 

-0.3 2.1 -2.1 11 11 I 

40 -1-1-1-1 11 11 I 

-2 -4 -4 -2 11 11 11 

1 0 -1 0 11 11 11 

-2 -4 6 2 ... F IV 111 

0 -0.5 1 0 F F 11 

8 8 8 8 
... 

11 Ill I 

3 2 4 7 11 I 1 

30 29 -39 3 1 F 11 

5 3 -100 -10 1 11 11 

60 -20 -20 -20 11 11 11 

100 100 -100 11 F 11 

77 10 10 10 10 10 F I 1 

20 20 20 20 20 F 
... 
111 11 

-3 -3 3 9 0 F 11 11 

-18330 11 11 11 

4 3 7 -5 -3 F 1 F 
12 13 14 15 7 F I 1 

-2 -2 -2 -2 -2 F 
... ... 
lll lll 

-5 -5 -5 -5 -5 F F 1 

3 2 7 1 9 F 1 F 
-1 2 5 0 6 1 F 11 

78 -20 15 20 -10 -10 ... ... 
111 1 111 

50 50 50 50 50 1 F 11 

0 0 1 1 1 F F 11 

79 -2 -2 -2 -2 -2 
... . .. 
Ill 11 111 

-3 2 6 -7 9 V I 11 

40 -30 50 -80 20 
... 

11 111 IV 

F Failed to converge. 
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Chapter 8 

Concluding Remarks 

In summary, we have developed a trust region algorithm to solve the equality con­

strained optimization problem. Our goal was to develop a robust algorithm which 

can handle lack of second-order sufficiency away from the solution, and our numerical 

results show that we have achieved this goal. We gave an algorithm for solving the 

quadratic programming problem which handles rank degeneracy in the gradient of 

the constraints in a natural way and provides a direction of zero or negative cur­

vature inside the null space of \lh(xf when the solution to the quadratic program 

does not exist because second-order sufficiency does not hold. Our trust region algo­

rithm is based on the restriction of the original CDT trust subproblem to a relevant 

two-dimensional subspace, and we give an algorithm for solving our trust region sub­

problem. As part of the solution of our trust region subproblem, we had to develop a 

method to determine all of the global solutions, and the non-global solution, if it ex­

ists, to the standard unconstrained trust region subproblem in two dimensions. Our 

analysis of this problem led to analytical expressions for the solutions in a number of 

degenerate cases, and an algorithm to find the solutions in the non-degenerate case. 

In the non-degenerate case, we derived necessary and sufficient conditions for the exis­

tence of a non-global solution to the unconstrained trust region subproblem. Finally, 

we investigated the role of the Lagrange multipliers when second-order sufficiency did 

not hold.· 
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Appendix A 

Test Problems 

The following test problems can be found in Hock and Schittkowski [1981]. Second­

order sufficiency holds at the points x* given below unless otherwise noted. 

• Hock and Schittkowski 6 

mm1m1ze (1 - x1)2 

subject to 10(x2 - xi) = 0 

x. = (1.0, 1.of; J(x*) = 0.0 

• Hock and Schittkowski 7 

mm1m1ze ln(l + Xi) - x2 

subject to (1 + xi) 2 + x~ -, 4 = 0 

x. = (0.0, v3.0f; J(x.) = -Jf.o 

• Hock and Schittkowski 8 

mm1m1ze -1.0 

subject to Xi+ x~ - 25.0 = 0 

X1 X2 - 9.0 = 0 

i. x* = ( 4.60159, 1.95584f; J(x.) = -1.0 

ii. x* = (1.95584, 4.60159f; J(x*) = -1.0 

iii. x* = (-4.60159, -1.95584?; J(x.) = -1.0 

iv. x. = (-l.95584,-4.60159?; f(x*) = -1.0 

• Hock and Schittkowski 9 

mm1m1ze sin(Il xif 12) cos(Il x2/l6) 

subject to 4x1 - 3x2 = 0 



z. x* = (-3.0, -4.0f; J(x*) = -0.5 

zz. x. = (9.0, 12.0f; J(x.) = -0.5 

m. x. = (-15.0, -20.0f; J(x.) = -0.5 

• Hock and Schittkowski 26 

mm1m1ze (x1 - x2)2 + (x2 - x3)4 

subject to (x; + l)x1 + Xj - 3 = 0 

1. x* = (1.0, 1.0, 1.of; J(x*) = 0.0 

11. x* = (-1.809, -1.809, -l.810f; J(x.) = 0.0 

• Hock and Schittkowski 27 

mm1m1ze 0.0l(x1 - 1)2 + (x2 - xi)2 

subject to x1 + x~ + 1 = 0 

x. = (-1.0, 1.0, a.of; f(x*) = 0.04 

• Hock and Schittkowski 39 

mm1m1ze -xi 

subject to X2 - xf - x~ = 0 

2 2 0 X1 - X2 - X4 = 

x. = (1.0, 1.0, 0.0, a.of; J(x.) = -1.0 

• Hock and Schittkowski 40 

mm1m1ze -x1x2x3x4 

subject to xf + x~ - 1 = 0 

xfx4 - X3 = 0 

x! - X2 = 0 

z. x* = (0.7937,0.7071,0.5297,0.8409f;J(x.) = -0.25 

zz. x* = (0.7937,0.7071,-0.5297,-0.8409f;J(x.) = -0.25 

iii. x* = (0, 1.0, 0, I.Of; J(x.) = 0.0; (Reduced Hessian is zero). 
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iv. x. = (0, 1.0, 0, -1.0f; J(x.) = 0.0; (Reduced Hessian is zero). 

• Hock and Schittkowski 42 

mm1m1ze (x1 - 1)2 + (x2 - 2)2 + (x3 - 3)2 + (x4 - 4)2 

subject to x 1 - 2 = 0 

x; + x~ - 2 = 0 

x. = (2, 2, 0.848528, l.13137f; J(x.) = 13.8579 

• Hock and Schittkowski 60 

mm1m1ze (x1 - 1)2 + (x1 - x2)2 + (x2 - X3)4 

subject to x 1 (1 + x~) + Xj - 4 - 3\/'2 = 0 

i. x. = (1.105, 1.197, l.535f; f(x.) = 0.0326 

ii. x. = (0.0986, -0.895, -l.6519f; J(x.) = 2.189 

• Hock and Schittkowski 77 

mm1m1ze (x1 - 1)2 + (x1 - x2)2 + (x3 - 1)2 + (x4 - 1)4 + (x5 - 1)6 

subject to XiX4 + sin (x4 - x5 ) - 2\/'2 = 0 

X2 + XjX~ - 8 - y'2 = 0 

i. x. = (1.166, 1.182, 1.380, 1.506, 0.6109f; J(x.) = 0.2415 

ii. x. = (-1.029, -1.017, 1.355, 1.760, 0.4531f; f(x.) = 4.603 

iii. x. = (1.089, 1.178, -1.281, 1.748, 0.8912f; J(x.) = 5.533 

iv. x. = (-0.9896, -0.9142, -1.3028, 1.8932, 0.4975f; f(x.) = 9.909 

• Hock and Schittkowski 78 

mm1m1ze X1X2X3X4X5 

subject to Xi+ x~ + x~ + x~ + x~ - 10 = 0 

X2X3 - 5X4X5 = 0 

Xi+ X~ + 1 = 0 

i. x. = (-1.717, 1.596, 1.827, -0.7636, -0.7636f; J(x.) = -2.920 
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ii. x* = (-1.717, 1.596, l.827,0.7636,0.7636f; J(x*) = -2.920 

iii. x* = (-0.6991,-0.8700,-2.790,-0.6967,-0.6967f; f(x*) = -0.8236 

• Hock and Schittkowski 79 

mm1m1ze (x1 - 1)2 + (x1 - x2) 2 + (x2 - X3) 2 + (x3 - X4) 4 + (x4 - x5)4 

subject to x1 + x~ + x~ - 2 - 3V2 = 0 

X2 - x; + X4 + 2 - 2V2 = 0 

X1X5 - 2 = 0 

i. x* = (1.191, 1.362, 1.473, 1.635, l.679f; f(x*) = 0.0788 

ii. x* = (-0.7662, 2.667, -0.4682, -1.619, -2.610f; J(x*) = 27.45 

iii. x* = (-2.702,-2.990,0.1719,3.848,-0.7401f; f(x*) = 649.1 

iv. x* = (2.718, 2.033, -0.848, -0.486, 0. 736f; f(x*) = 13.96 

v. x* = (-1.247, 2.422, 1.175, -0.2132, -l.604f; f(x*) = 27.52 



111 

Bibliography 

[l] Mordecai Avriel. Nonlinear Programming: Analysis and Methods. Prentice-Hall. 

Inc., 1976. 

[2] R. H. Byrd, R. B. Schnabel, and G. A. Schultz. A trust region algorithm for 

nonlinearly constrained optimization. SIAlvl J. Numer. Anal., 24, 1987. 

[3] R. H. Byrd, R. B. Schnabel, and G. A. Schultz. Approximate solution of the 

trust region problem by minimization over two-dimensional subspaces. Math. 

Prog., 40(3), 1988. 

[4] M. R. Celis, J. E. Dennis, and R. A. Tapia. A trust region strategy for equality 

constrained optimization. In Numerical Optimization. SIAM, 1985. 

[5] Maria Rosa Celis. A Trust Region Strategy for Nonlinear Equality Constrained 

Optimization. PhD thesis, Rice University, 1985. 

[6] J.E. Dennis, Mahmoud El-Alem, and R. A. Tapia. Numerical experience with a 

polyhedral norm version of the Celis-Dennis-Tapia trust-region algorithm. Tech­

nical report, Rice University. In preparation. 

[7] J. E. Dennis, J. M. Martinez, and K. A. Williamson. An algorithm based on 

a convenient trust-region subproblem for nonlinear programming. Technical re­

port, Rice University, 1991. 

[8] J.E. Dennis, Jr. and Robert B. Schnabel. Numerical Afethods for Unconstrained 

Optimization and Nonlinear Equations. Prentice-Hall, Inc., 1983. 

[9] Mahmoud El-Alem. A Global Convergence Theory for the Celis-Dennis-Tapia 

Trust Region Algorithm for Constrained Optimization. PhD thesis, Rice Univer­

sity, 1988. 

[10] D. M. Gay. Computing optimal locally constrained steps. SIAM J. Sci. Stat. 

Comput., 2, 1981. 



112 

[11] Philip E. Gill, Walter Murray, Michael A. Sanders, and Margaret H. Wright. 

User's guide for NPSOL (version 4.0): A Fortran package for nonlinear program­

ming. Technical report, Stanford University, 1986. 

[12] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization. 

Academic Press, 1981. 

[13] G. H. Golub and C. F. Van Loan. !vfatrix Computations. The Johns Hopkins 

University Press, 1983. 

[14] Willi Hock and Klaus Schittkowski. TEST EXAMPLES FOR NONLINEAR 

PROGRAMMING CODES, volume 187 of Lecture Notes in Economics and 

Mathematical Systems. Springer-Verlag, 1981. 

[15] Jorge J. More and D. C. Sorensen. Computing a trust region step. SIAM J. Sci. 

Stat. Comput., 4(3), 1983. 

[16) M. J. D. Powell and Y. Yuan. A trust region algorithm for equality constrained 

optimization. Technical report, University of Cambridge, 1986. 

[17] D. C. Sorensen. Newton's method with a model trust region modification. SIAA;f 

J. Numer. Anal., 19(2), 1982. 

[18) J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, 

1980. 

[19] R. A. Tapia. An introduction to the algorithms and theory of constrained opti­

mization, 1983. Unpublished notes. 

[20) A. Vardi. Trust region strategies for unconstrained and constrained minimization. 

PhD thesis, Cornell University, 1980. 

[21] A. Vardi. A trust region algorithm for equality constrained minimization: Con­

vergence properties and implementation. SIAM J. Numer. Anal., 22(3), 1985. 

(22] Y. Yuan. A dual algorithm for minimizing a quadratic function with two 

quadratic constraints. Technical Report DAMTP-NA3, University of Cambridge, 

1988. 

[23] Y. Yuan. On a subproblem of trust region algorithms for constrained optimiza­

tion. Math. Prog., 47, 1990. 



113 

[24] Yin Zhang. Computing a Celis-Dennis-Tapia trust region step for equality con­

strained optimization. Technical report, Rice University, 1988. 




