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Abstract

We study "nearly orthogonal” lattice bases, or bases whHereanhgle between any basis vector and
the linear subspace spanned by the other basis vectorsaegtean; radians. We show that a nearly
orthogonal lattice basis always contains a shortest éattector. Moreover, if the lengths of the basis
vectors are “nearly equal”, then the basis is the uniquelyeathogonal lattice basis, up to multipli-
cation of basis vectors by1. These results are motivated by an application involving@Rmage

compression.
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1 Introduction

Lattices are regular arrangements of points in space, andtadied in numerous fields, including coding
theory, number theory, and crystallography [1, 6, 7, 10]rnfadly, a lattice is the set of all linear integer
combinations of a finite set of vectors. A lattice basis isadirly independent set of vectors whose linear
integer combinations span the lattice points. In this papeistudy the properties of lattice bases whose

vectors are “nearly orthogonal” to one another.
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We quantify the closeness to orthogonality of a lattice asierms of angles between the basis vectors.
We define a basis to lieorthogonal if the angle between a basis vector and therligglaspace spanned
by the remaining basis vectors is at le@s® §-orthogonal basis is deemed to hearly orthogonalf 6 is
greater tharf radians.

Our interest in nearly orthogonal lattices stems from aaregting digital image processing problem.
Digital color images are routinely subjected to comprassithemes such as JPEG [11]. The various settings
used during JPEG compression of an image—termed as the '8BriREG compression history—are often
discarded after decompression. For recompression of snagieh were earlier in JPEG-compressed form,
it is useful to estimate the discarded compression histamy their current representation. We refer to this
problem as JPEG compression history estimation (JPEG GHE$9], we show that the JPEG compression
step maps color images into a set of points contained by eatmh of related lattices. Further, we show that
the JPEG CHEst problem can be solved by estimating the negHggonal bases spanning these lattices.
We use some of the results in this paper in a heuristic to shvydPEG CHESst problem [9].

In this paper, we derive two simple but appealing propedfasearly orthogonal lattice bases.

1. A $-orthogonal basis always contains a shortest non-zerackattector.

- T i V3 i
2. If all the vectors of &-orthogonal ¢ > %) basis have lengths no more thm times the
length of a shortest basis vector, then the basis is the emgarthogonal basis for the lattice (up to

multiplication of basis vectors by 1).

Thus, a nearly orthogonal basis is unique if its vectors aalp equal in length. Gauss [5] proved the
first property for lattices ifR2. We prove (slight generalizations of) both properties &itites inR™ for
arbitraryn.

The paper is organized as follows. Section 2 provides sorsie lb@finitions and well-known results
about lattices We formally state our contributions in Sat8 and furnish their proofs in Section 4. Section 5
describes the JPEG CHEst problem, and how our results caselddua heuristic to solve the problem. We

conclude with some discussions of the limitations of ouultsdn Section 6.

2 Lattices

A lattice £ in R™ is the set of all linear integer combinations of a finite setaxtors, which we assume to

be rational; that isf = {u1b; + ugby + -+ - + upbm | u; € Z} for someby, by, ..., by, in R™. The set of
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vectorsB = {by,bs, ..., by, } is said tospanthe latticeL. A linearly independent set of vectors spannifig
is abasisof L.

A lattice has many bases. Any two badgsand B, of a lattice £ have the same number of vectors;
this common number is denoted Bym(L). Further,3; and B, are related (when treated as matrices) as
By = ByU, wherel{ is aunimodular matrix that is, an integer matrix with determinant equakio. A
lattice £ in R™ is full-dimensional ifdim(£) = n. We consider only full-dimensional lattices in this paper.

The shortest vector probleniSVP) consists of finding a vector in a lattig® with the shortest non-
zero length\(£). Here we refer to the Euclidean norm of a vectan R" as its length and denote it by
||v||. SVP is NP-hard under randomized reductions [2], but thés@etversion of SVP is not known to be
NP-complete in the traditional sense.

Orthogonal bases always contain a shortest non-zeroelatictor. Hence, one approach to finding short
vectors in lattices is to obtain a basis that is close (in seamse) to orthogonal, and then use the shortest
vector in such a basis as an approximate solution to the S\andmonly used measure to quantify the

“orthogonality” of a lattice basi$by, bs, . .., by, } is its orthogonality defecf7],

IIZ (1o
|det ([b1, b2, ..., b)) ”

with det denoting determinant. The Lovasz basis redudlgorithm [7], often called the LLL algorithm,
obtains anLLL-reducedlattice basis in polynomial time. Such a basis has a smaiogrdnality defect.
There are other notions of reduced bases due to MinkowstkiKarkin and Zolotarev (KZ) [6]. Minkowski-
reduced and KZ-reduced bases contain the shortest lagaterybut it is NP-hard to obtain such bases.
We use the following definitions to quantify the closenessrtbhogonality of a basis. By aordered
basis we mean a basis with a certain ordering of the basis vedfdesiepresent an ordered basis by an or-
dered set, and also by a matrix whose columns define the latmrs and their ordering. We use the braces
(.,.) for ordered sets (for exampléy, bo, ..., by,)), and{.,.} otherwise (for example{b;, b, ..., by }).

For vectorsu, v € R™, we use both:.” v and(u, v) to denote the inner product afandu.

e Weak#-orthogonality: An ordered set of vector®, b, . .., b,,) is weakly #-orthogonal if fori =
2,3,...,m, the angle betweeb; and the subspace spanned {y, bo, ...,b;—1} lies in the range
[0, 5]. Thatis,

B0 > =P
Ioll [ 32525 2 )

COS

>0, forall A; € Rwith )~ |)[ > 0. (1)
J




e ¢-orthogonality: A set of vectors{b, b, ..., by} is -orthogonal if every ordering of the vectors

yields a weaklyy-orthogonal set.

A (weakly) 6-orthogonal basis is one whose vectors are (weaklyjthogonal. Thus, a weak#rorthogonal
basis is assumed to be ordered, where&®dhogonal basis is not.

In the JPEG CHEst application we describe in Section 5, weentounter weakly-orthogonal bases
with ¢ > %. In R", Babai [3] proved that an LLL-reduced basigi®rthogonal wherein 6 = (@)n for
largen this value off is very small. Thus the notion of an LLL-reduced basis iseditferent from that of

a weaklyz-orthogonal basis.

3 Main Resaults

Itis trivial to show that one of the basis vectors in an ortirag lattice basis is a shortest lattice vector. More
generally, given a lattice bas{$,, b2, ..., b, }, let; be the angle betweén and the subspace spanned by
the other basis vectors. Then

A(L)>  min _||b;] sin6;.
i€{1,2,...,m}

Therefore a weakly-orthogonal basis has a basis vector whose length is no rhare\(£) / sin 6; if

¢ = %, this bound become%f}Tﬁ). This shows that nearly-orthogonal lattice bases contsont sectors.
Gauss proved that in two dimensions (2-D) evérgrthogonal lattice basis indeed contains a shortest

lattice vector and provided a polynomial time algorithm ébetmine such a basis; see [14] for a nice descrip-

tion. We first show that Gauss’s result can be extended toehidimensional lattices with an appropriate

measure of closeness to orthogonality.

Theorem 1 LetB = (by, by, ..., b, ) be an ordered basis of a lattic@. If 5 is Weakly(g + e)—orthogonal,
for0 <e< 5 then a shortest vector i is a shortest non-zero vector i More generally,

m

Z uibi

i=1

for all u; € Z with > Ju,| > 1, 2)
=1

min [|b;]| <
je{1,2,....m}

with equality possible only if =0 or Y-, |u;| = 1.

Corollary 1 If 0 < e < %, then a weakly§ + ¢)-orthogonal basis contains every shortest non-zerodatti

vector (up to multiplication by-1).
Corollary 2 A Z-orthogonal basis contains a shortest non-zero latticearec
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Figure 1: (a) The vectors comprising the lattice are denoted by arcl®ne of the lattice bases comprises two
orthogonal vectors of lengtlisand1.5. Sincel.5 < 7 (g) = /3, the lattice possesses no other basis such that the
angle between its vectors is greater thanadians. (b) This lattice contains at least teorthogonal bases. One of
the lattice bases comprises two orthogonal vectors of lerigand2. Here2 > n (g) and so this basis is not the only

7 -orthogonal basis.

For a lattice defined by some ba#is, a weaklyz-orthogonal basis = B with U having polynomially
bounded size provides a polynomial-size certificate\Mfo£). However, we do not expect all lattices to have
such bases because this would imply that NP=co-NP, assu8vRgs NP-complete. We show in Section 6
that even inR?, there exist lattices that do not have any wedaldprthogonal basis.

Our second observation describes the conditions underhwanilattice contains the unique (modulo

permutations and sign changes) set of nearly orthogonalddiasis vectors.

Theorem 2 Let B = (b1, b2, .., by) be a weakly-orthogonal basis for a latticeC with 6 > . For all
1€1,2,...,m,Iif

bill <m0 i bill 3
bill <n () je{lrg}.r_l_vm}ll il 3)

B V3
|sin @ 4+ /3| cos 6]
then anyz-orthogonal basis consists of the vectorsdmultiplied by-+1.

with 7 (6) (4)

In other words, a nearly orthogonal basis is essentiallgusivhen the lengths of its basis vectors are nearly
equal. For example, both Fig. 1(a) and (b) illustrate 2-Eidas that can be spanned by orthogonal basis
vectors. For the lattice in Fig. 1(a), the ratio of the lersgtii the basis vectors is less tharﬁg) = V3.

Hence, there exists only one (modulo sign changes) badistbatthe angle between the vectors is greater

than3. In contrast, the lattice in Fig. 1(b) contains many didtifieorthogonal bases.



In the JPEG CHESst application [9], the target lattice bageR3 are known to be Weakl)(g + e)—
orthogonal but no(% + e)—orthogonal. Theorem 2 addresses the uniqueneSsoofhogonal bases, but not
weakly g-orthogonal bases. To estimate the target lattice basiaeee to understand how different weakly
orthogonal bases are related. The following theorem gteearthat inR> a Weakly(g + e)—orthogonal
basis with nearly equal-length basis vectors is relatedvéoyeweakly orthogonal basis by a unimodular

matrix with small entries.

Theorem 3 LetB = (by,b2,...,bm) and B be two weakly-orthogonal bases for a lattic€ in R™, where

0 > %. LetU = (u;;) be a unimodular matrix such th&/ = B. Define

2\ maxieqi o my ||bil
K B — e x i 3Ly . (5)
(B) <\/§> min;e 19, my |10l

Then,

uij| < K (B), forall ¢ andj.

For example, if5 is a weakly§-orthogonal basis of a lattice iR with 2Xmet2abml 5 han the

min,, e {1,2,3} [[bm ||

entries of the unimodular matrix relating another weaklyrthogonal basis to B are eithel0 or +1.

4 Proofs

4.1 Proof of Theorem 1

We first prove Theorem 1 for 2-D lattices (Gauss’s result) et tackle the proof for higher-dimensional

lattices via induction.

41.1 Proof for 2-D lattices

Consider a 2-D lattice with a basi® = {b;,b.} satisfying the conditions of Theorem 1. By rotating the

lattice, the basis vectots andb, can be expressed as the columns of

1B2]l [[b2f cos 6
0 ||b2]|siné

with 6 the angle betweeby, andb,. By definition,Z < 0 < %’r Any non-zero vector in the lattice can be

expressed as
1b1]]  ||b2|| cos O |uq uq]|by ]| + uzl|b2]| cos 8

0 ||bo|lsin® | |uq uzl|ba]| sin 6



whereu;, us € Z and|u;| + |uz| > 0. The squared-length efequals

[0 = (wi]br]| + ual|ba|| cos 8)* + (ua|bo| sin 6)?

= Jua PlIoa]l? + [u2f?[[b2]|* + 2uruz|br][[|b2 || cos

> JurPloa]? 4 Juz b2 = 2[u [[usl[[b1 | [[b2]] COS%

= (Jualllball = ualllb2]1)? + fua |lual b1 ][5z (6)
min (|[b1[|?, [|b2]|*) ,

v

with equality possible only if eitheju; | + [uz| = 1 or 6 € {Z, 2L}, This proves Theorem 1 for 2-D lattices.

4.1.2 Proof for higher-dimensional lattices

Let k£ > 2 be an integer, and assume that Theorem 1 is true for ¢keryl)-dimensional lattice. Consider
a k-dimensional latticeC spanned by a weakl{z + ¢)-orthogonal basigby, by, . . . , by), with € > 0. Any
non-zero vector irC can be written aile u; b; for integersu;, whereu; # 0 for somei € {1,2,... k}.

If up =0, thean:1 u; b; is contained in thé¢k — 1)-dimensional lattice spanned by the weakfy + ¢)-

orthogonal basi$b;, bo, . .., by—1). Foru, = 0, by the induction hypothesis, we have
k k—1
ibi|| = i bi|| > i bal| > . bl
ZZ:;U ;u je{lg,l.l.l.}k—uu il = {{1}2171.1“7,?}” ill

If € > 0, then the first inequality in the above expression can holdgaslity only ifzf:‘f lu;| = 1. If

ur #0andu; =0fori=1,2,...,k— 1, then again

k
> uih
i=1

Again, it is necessary that,| = 1 for equality to hold above.

> b > min
J

bill -
) 7"'7k} H ]H

Assume thaty, # 0 andu; # 0 for somei = 1,2,...,k — 1. Now Zle u; b; is contained in the 2-D
lattice spanned by the vectoys: ' u, b; anduyby,. Since the ordered séiy, b, . .. , by,) is weakly (% + ¢)-
orthogonal, the angle between the non-zero vec.‘j@frgl1 u; b; anduyby, lies in the interval[% + €, %“ — e] .

Invoking Theorem 1 for 2-D lattices, we have

k k-1
Zui bi|| > min( Zuibi , Hukka)
i=1 i=1
> mi i bill ) llurb
> win (i sl )
> min bill . 7
> iy Q
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Thus, the set of basis vectdis,, bo, . . . , bi. } contains a shortest non-zero vector in th@imensional lattice.

Also, if € > 0, then equality is not possible in (7), and the second patietiieorem follows. O

4.2 Proof of Theorem 2

Similar to Theorem 1’s proof, we first prove Theorem 2 for 2aliCes and then prove the general case by

induction.

421 Proof for 2-D lattices

Consider a lattice with basis vectobs and b, such that the basiéb;, b2} is weakly #-orthogonal with
¢ > %. Note that inR?, weak#-orthogonality is the same #sorthogonality. Without loss of generality
(w.l.o.g.), we can assume that= ||b;|| < ||b2|. Further, by rotating the 2-D lattice, the basis vectors can

be expressed as the columns of
1 ||ba|| cos 6
0 |||l sind 7

with 6 € [0, 27 — 6] the angle betweeb, andb,. Let {51,32} denote anothek-orthogonal basis for the
same 2-D lattice. Using Theorem 1 and its Corollary 1, weritifat{b,, b2} contains every shortest lattice
vector (multiplied by+1), and{b,,b2} and {51,32} contain a common shortest lattice vector. Assume

w.l.o.g. thatEl = #4b; is a shortest lattice vector. Then, we can write

- +1 wu 1 |lbg)jcos| |£1 w _
|:bl bQ:| = [bl bg] = - , Withu € Z.
0 =1 0 |bzl|sin@| | 0O +£1

To prove Theorem 2, we need to show that 0.

The angle betweely, and=b,, denoted by (51, i@), is given by

£ (51282 = e ( ) |

SinceZ (31, :]:52> lies in the interval[g, %’T] by construction, we have

||b2]| sin 6
||b2]| cos 6 + u

2(T\ _a ~ 2 T4
tan <3) 3 < tan (4<b1,:|:b2>)
@3<Hb2\|20052§+u2j:2u\|b2||cos2§> < |bo|?sin? @
& 3u® £ 6u|by|| cos®  + 3|ba||? cos? 6 — ||ba|?sin?d < 0. (8)



The left-hand side of (8) is a quadratic expression,isay@(u). The roots of(u) = 0 are given by

1 - 2 ~ -
8 (iﬁ”bg” cosf £ \/(6Hb2H cos 9) —12 (3”62”2 cos? § — ||ba]|? sin? 9)) .

Simplifying further, we obtain the roots 6§(u) = 0 to be

Iboll (icoséi Sme).

V3
To satisfyQ(u) < 0, u must lie between the roots 6f(u) = 0. Hence,
~  sinf
ul < ||b +cosf+ —
| sin 6] + v/3| cos 0]
< b
V3
b2

1(9)
Note thatn () is an increasing function df for 7 < 0 < 5. Hence we have

b b
H 2” < H 2” < HbIH -1

1 (5) —n(0)

Sinceu € Z and|u| < 1, w = 0. This proves Theorem 2 for 2-D lattices.

|ul

4.2.2 Proof for higher-dimensional lattices

Let B andB3 be twon x n matrices defining bases of the samdimensional lattice. We can wriié = BU
for some integer unimodular matriX = (u;;). Using induction om, we will show that if 5 is weakly
g-orthogonal withs < 6 < 7, if the columns of53 satisfy (3), and i3 is z-orthogonal, therB can be
obtained by permuting the columns Bfand multiplying them byt-1. Equivalently, we will show every
column ofU has exactly one component equaltid and all others equal @ (we call such a matrix signed
permutation matrix

Assume that Theorem 2 holds for &ll — 1)-dimensional lattices with, > 2. Letb;, bo, ..., b, denote
the columns o3 and leth;, bo, . . . , b, denote the columns @. Since permuting the columns Bfdoes not
destroyz-orthogonality, we can assume w.l.0.g. thats B's shortest vector. From Theorem,is also a

shortest lattice vector. Further, using Corollarw;’iov,l is contained inB. Assume thab, = igl for some



ke {1,2,...,n}. Then
uir ... Ulk—1 +1 Ulk+1 --- Uln

B=B E 9)

Above,U; isa(n — 1) x (k — 1) sub-matrix, where ag} is a(n — 1) x (n — k) sub-matrix. We will show

thatu;; =0, forall j € {1,2,...,n} with j # k. Define

Br = |: bk bj } ) gr = [51 2?22 uijgi ] . (10)
Then, from (9) and (10),
BT _ gr +1 Uiy .
0 1

SinceB, andB, are related by a unimodular matrix, they both define basdseadame 2-D lattice. Further,
B, is weakly §-orthogonal with||b;|| < 7 () ||b]|, andB, is z-orthogonal. Invoking Theorem 2 for 2-D
lattices, we can infer that;; = 0. It remains to be shown that’ = [U] Uj] is also a signed permutation
matrix, where

B =B,
with B = [b1, ba, ... b1, brsis ... by] andB’ = [52,53,...,54. Observe thatlet(U’) = det(U) =
+1. Both 3’ andB3’ are bases of the sare—1)-dimensional lattice a8 is unimodular.3’ is §-orthogonal,
wheread3’ is weakly#-orthogonal and its columns satisfy (3). By the inductiopdtyesislU’ is a signed

permutation matrix. Therefor@] is also a signed permutation matrix. O

4.3 Proof of Theorem 3

Theorem 3 is a direct consequence of the following lemma.

Lemmal LetB = (by,bs,...,by,) be a weaklyp-orthogonal basis of a lattice, whete > %. Then, for
any integersuy, us, . . . , U,
m m—1
3
S wiby| = V3 X max |ugbi|. (11)
— 2 i€{1,2,....m}
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Lemma 1 can be proved as follows. Consider the vedipandb,; the anglef between them lies in the

interval (3, 2¢). Recall from (6) that

lurby + uabs|® > (jua| |1 ]| — |uz] [[ba]])* + [ua||uz][|by||[[b2]]-
Consider the expressiay — ac)2 + yx with 0 < x < y. For fixedy this expression attains its minimum
value of (2) y? whenz = 4. By settingy = |u1|||b1|| andz = |us| [|b2|| w.l.0.g, we can infer that

V3
lluiby + ugbs|| > > ig%i};} [luibi]).

Since B is weakly §-orthogonal, the angle betweenb;, and Zf;ll u;b; lies in the interval(g, %’r) for
k=2,3,...,m. Hence (11) follows by induction. O

m—1
We now proceed to prove Theorem 3 by invoking Lemma 1. Define- (@) . For anyj €

{1,2,...,m}, we have
m ~ ~ ~
ol = | Db 28 e Jb]| 28 im0 e
Since 3 and B are both weaklyd-orthogonal withd > T, minjcgy oy [[bi]] = mingegio oy [15:]-
Therefore,
b, max; b;

i€{1,2,...,m} mini€{172,m7m} HbZH mlnie{l,Z,...,m} ||bZH

Thus, |u;;| < & (B), for all i andj. O

5 JPEG Compression History Estimation (CHESst)

In this section, we review the JPEG CHESst problem that ms/aur study of nearly orthogonal lattices,
and describe how we use this paper’s results to solve thislgmo We first touch on the topic of digital

color image representation and briefly describe the esd@atnponents of JPEG image compression.

5.1 Digital Color Image Representation

Traditionally, digital color images are represented byc#pag the color of each pixel, the smallest
unit of image representation. According to the trichromaktieory [13], three parameters are sufficient

to specify any color perceived by humansEor example, a pixel's color can be conveyed by a vector

1The underlying reason is that the human retina has only tyges of receptors that influence color perception.
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Whep = (e, w,,w,) € R3, wherew,,, w,, andw,, specify the intensity of the color’s red (R), green (G),
and blue (B) components respectively. GaJl,,, the RGB encoding of a color. RGB encodings are vectors
in the vector space where the R, G, and B colors form the stdnafdt basis vectors; this coordinate system
is called the RGR:olor space A color image withM pixels can be specified using RGB encodings by a

matrix P € R3*M

5.2 JPEG Compression and Decompression

To achieve color image compression, schemes such as JPEtEfisform the image to a color encoding
other than the RGB encoding and then perfaquantization Such color encodings can be related to the
RGB encoding by @olor-transformmatrix C € R3*3. The columns olC form a different basis for the

color space spanned by the R, G, and B vectors. Hence an R@8irga can be transformed to the

RGB

C encoding vector a§'~'w, . ,; the imageP is mapped taC~1P. For example, the matrix relating the

RGB color space to the ITU.BT-6L.CbC'r color space is given by [12]

w,, 0.209 0587  0.114 | |w,
w,, | = [-0.169 —0.331 0.5 w, | - (12)
w,, 0.5  —0.419 —0.081| |w,

The quantization step is performed by first choosing a diay@ositive (non-zero entries are positive),
integerquantizationmatrix @, and then computing the quantized (compressed) imagedtot asP, =
[Q~'C~1P|, where[.] stands for the operation of rounding to the nearest inte#fREG decompression
constructsP; = CQP. = CQ [Q~'C~'P|. LargerQ's achieve more compression but at the cost of
greater distortion between the decompressed infygnd the original imagé .

In practice, the image matrix’ is first decomposed into different frequency componehRts=
{P, Py, ... P}, for somek > 1 (usually ¥ = 64), during compression. Then, a com-
mon color transformC is applied to all the sub-matrice®;, P, ..., P,, but each sub-matrix
P, is quantized with a different quantization matrig;. =~ The compressed image i, =
{Per, Pooy... . Py} = {[QTTCTIP ], [Q3'CR] ..., [Q.'C~1P, ]}, and the decompressed im-
age isPy = {CQ1P.1,CQ2F:2,...,CQr P}

During compression, the JPEG compressed file format stbeesaitrixC' and the matrice§);’s along
with P.. These stored matrices are utilized to decompress the JPBGe| but are discarded afterwards.

Hence we refer to the s¢tC, Q1,Q2, ..., Qi } as thecompression historgf the image.
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5.3 JPEG CHEst Problem Statement

This paper’s contributions are motivated by the followingestion: Given a decompressed imagt =
{CQ1P.1,CQ2F;2,...,CQLP. 1} and some information about the structure@fand the@®;’s, can we
estimate the color transfor@ and the quantization matriceg;'s? As {C,Q1,Q2,...,Qk} comprises
the compression history of the image, we refer to this probds JPEG CHEst. An image’s compression

history is useful for applications such as JPEG recompaddi, 8, 9].

5.4 Near-Orthogonality and JPEG CHEst

The columns o”'Q); P, ; lie on a 3-D lattice with basi€’Q); becausé’. ; is an integer matrix. The estimation
of CQ; comprises the main step in JPEG CHEst. Since a lattice canrhailtiple bases, we must exploit
some additional information about practical color transfe to correctly obtair©'Q; from CQ; P, ;. Most
practical color transforms aim to represent a color usingagproximately rotated reference coordinate
system. Consequently, most practical color transform inegC' (and thus,C'Q);) can be expected to be
almost orthogonal. We have verified that élis used in practice are weaklfZ + ¢)-orthogonal, with

0<e<L %.2 Thus, nearly orthogonal lattice bases are central to JPEESCH

5.5 Our Approach

Our approach is to first estimate the product9; by exploiting the near-orthogonality @f and to then

decompos&’Q); into C and@;. We will assume thaf’ is Weakly(g + e)—orthogonaI,O <e< g

55.1 EstimatingtheCQ;’s
Let B; be a basis of the lattic&; spanned by’();. Then, for some unimodular mati%, we have
B; = CQ;U;. (13)

If B; is given, then estimating'Q); is equivalent to estimating the respecti¥e
Thanks to our problem structure, the corrétis satisfy the following constraints. Note that these

constraints become increasingly restrictive as the nurobiequency componentsincreases.

1. Theld;’s are such thaBBii4; " is weakly(Z + €)-orthogonal.

2In general, the stronger assumptionzebrthogonality does not hold for some practical color tfama matrices.
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2. The producUiBi‘lBjuj‘l is diagonal with positive entries for anyj € {1,2,...,k}.

This is an immediate consequence of (13).
If in addition, 3; is weakly (% + ¢)-orthogonal, then

3. The columns d¥; corresponding to the shortest columnd®fare the standard unit vectors timed .
This follows from Corollary 1 because the columns of bthand C'Q); indeed contain all shortest

vectors inC; up to multiplication by+1.

4. All entries ofi4; are < x(B3;) in magnitude.

This follows from Theorem 3.
We now outline our heuristic.

(i) Obtain bases; for the latticesC;, i = 1,2, ..., k. Construct a weaklyZ -+ ¢)-orthogonal basis,

for at least one lattic€,, ¢ € {1,2,... k}.
(i) Computex(By).
(iii) For every unimodular matrig/, satisfying constraint$, 3 and4, go to step (iv).

(iv) For i, chosen in step (iii), test if there exist unimodular masitg for each; = 1,2,...,k,j # ¢
that satisfy constrair?. If such a collection of matrices exists, then return thileotion; otherwise

go to step (iii).

For step (i), we simply use the LLL algorithm to compute LLéduced bases for eagh). Such bases
are not guaranteed to be Wealélig' + e) -orthogonal, but in practice, this is usually the case foumber of
L;'s. In step (iv), for each frequency compongni ¢, we compute the diagonal matrix; with smallest
positive entries such thaij = Bj_lBgué_le is integral, and then test Whetrﬁy is unimodular. If not,
then for the giverd/,, no appropriate unimodular matix; exists.

The overall complexity of the heuristic is determined maiby the number of times we repeat step
(iv), which equals the number of distinct choices &frin step (iii). This number is typically not very large
because in step (i), we are usually able to find some We@(lsy e)—orthogonal basi8; with k < 2. In fact,
we enumerate all unimodular matrices satisfying condsaiand4 and then test constraitt (In practice,
one can avoid enumerating the various column permutatib@sumimodular matrix). Table 1 provides

the number of unimodular matrices satisfying constrdirgglone and also constrainsand 4. Clearly,
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Table 1: Number of unimodular matrices satisfying conetsst and4 for small .

k || constraintd | constraints3 and4
1 6960 5232

2 135408 43248

3 1281648 197616

4 5194416 513264

5 || 20852976 1324272

constraints3 and4 help us to significantly limit the number of unimodular meés we need to test, thereby
speeding up our search.

Our heuristic returns a collection of unimodular matri¢&s} that satisfy constraintsand2; of course,
they also satisfy constraintsand4 if the corresponding3;’s are Weakly(g + e)—orthogonal. From the
U;'s, we computeCQ; = B4, If constraintsl and2 can be satisfied by another soluti¢@!}, then it
is easy to see thét] # U; for everyi = 1,2,... k. In Section 5.5.3, we will argue (without proof) that

constraintsl and2 are likely to have a unique solution in most practical cases.

55.2 Splitting CQ; into C and Q);

Decomposing th€’Q);'s into C and@);’s is equivalent to determining the norm of each columi'dfecause
the Q;’s are diagonal matrices. Since thg's are integer matrices, the norm of each columi'qj; is an
integer multiple of the corresponding column norm(f In other words, the norms of thgh column
(j € {1,2,3}) of differentC'Q;’s form a sub-lattice of the 1-D lattice spanned by jtiecolumn norm of”.
As long as the greatest common divisor of fitle diagonal values of the matricés’s is 1, we can uniquely

determine the-th column ofC; the values ofy); follow trivially.

5.5.3 Unigueness

Does JPEG CHEst have a unique solution ? In other words, lis theollection of matrices

(C,Q1, Q% .-, QL) # (C,Q1,Q2,..., Qr)

such thatC'Q; is a weakly (3 + ¢)-orthogonal basis of; for all i € {1,2,...,k}? We believe that

the solution can be non-unique only if tlig’s are chosen carefully. For example, @tbe a diagonal
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matrix with positive diagonal coefficients. Assume thatdfce 1,2,...,k, Q; = \;Q, with \; € R and
A; > 0. Further, assume that there exists a unimodular matmot equal to the identity matriX such
thatC’ = CQU is weakly (% + ¢)-orthogonal. Defing); = \;I fori = 1,2,...,k. ThenC'Q} is also a
weakly (g + e)—orthogonal basis foL;. Typically, JPEG employ§);’s that are not related in any special

way. Therefore, we believe that for most practical caseszJEHESst has a unique solution.

5,54 Experimental Results

We tested the proposed approach using a wide variety ofasstsc In reality, the decompressed im&je

is always corrupted with some additive noise. Consequetttlgstimate the desired compression history,
the approach described above was combined with some asiditimise mitigation steps. Our algorithm
provided accurate estimates of the image’s JPEG comprebstory for all the test cases. We refer the

reader to [8, 9] for details on the experimental setup andgltses

6 Discussion and Conclusions

In this paper, we presented some interesting propertiesaiflyn orthogonal lattice bases. We chose to
directly quantify the orthogonality of a basis in terms of tminimum angle) between a basis vector and
the linear subspace spanned by the remaining basis veferdefined such a basis to be nearly orthogonal
when¢ > % radians. Our main result is that a nearly orthogonal lattiasis always contains a shortest
lattice vector. Further, we also investigated the uniqaered nearly orthogonal lattice bases. We proved
that if the basis vectors of a nearly orthogonal basis ardynequal in length, then the lattice essentially
contains only one nearly orthogonal basis.

Our results were motivated by a fascinating digital coloagimg application called JPEG compression
history estimation (JPEG CHEst). Given a digital color imagPEG CHESst aims to estimate the settings
used during previous JPEG compression operations. Thesatmms make the color image coefficients
conform to a lattice. The settings are encoded in a nearhyogdnal basis spanning the lattice. We use
some of the results in this paper to design an effective suifor JPEG CHESt.

Our definition of nearly orthogonal bases is probably toorgjrfor general applications because there
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exist lattices with nd;-orthogonal bases. Consider the latti€espanned by the basis

10 3
B=|01 3 |- (14)

1

00 ]

It is not difficult to verify that[1 0 0]7 is a shortest lattice vector. Thus(£) = 1. Now, assume thaf
possesses a weakfy-orthogonal basi® = (b1,be,b3). Let 6, be the angle betwedn andb,, and letd,

be the angle betwedn and the subspace spannedbhyandb,. Sinceb,, by andbs have length equal to 1,

%3 . . . om 3
det(B) = ||by | ||b2]| |b3]| | sin 61] | sin B3] > sin? =1 (15)

Butdet(B) = % < det(B), which shows that the latticé with basis3 in (14) has no weakly -orthogonal
basis. Thus lattices that contain a nearly orthogonal lzmsisomewhat special.

We pose two questions related to our work. First, is a shoviastor of a maximally orthogonal (in
terms off-orthogonality or other measures such as orthogonalitgafefattice basis a solution of the SVP?
Second, how do lattice reduction algorithms perform whendlttice is known to contain a nearly orthogonal
basis? Note that currently we understand only the “worsetaerformance of lattice reduction algorithms
such as the LLL algorithm. Lattices with nearly orthogonatés could be used to gauge the “best-case”

performance of such algorithms.
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