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Abstract

We study ”nearly orthogonal” lattice bases, or bases where the angle between any basis vector and

the linear subspace spanned by the other basis vectors is greater thanπ

3
radians. We show that a nearly

orthogonal lattice basis always contains a shortest lattice vector. Moreover, if the lengths of the basis

vectors are “nearly equal”, then the basis is the unique nearly orthogonal lattice basis, up to multipli-

cation of basis vectors by±1. These results are motivated by an application involving JPEG image

compression.
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1 Introduction

Lattices are regular arrangements of points in space, and are studied in numerous fields, including coding

theory, number theory, and crystallography [1, 6, 7, 10]. Formally, a lattice is the set of all linear integer

combinations of a finite set of vectors. A lattice basis is a linearly independent set of vectors whose linear

integer combinations span the lattice points. In this paperwe study the properties of lattice bases whose

vectors are “nearly orthogonal” to one another.
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We quantify the closeness to orthogonality of a lattice basis in terms of angles between the basis vectors.

We define a basis to beθ-orthogonal if the angle between a basis vector and the linear subspace spanned

by the remaining basis vectors is at leastθ. A θ-orthogonal basis is deemed to benearly orthogonalif θ is

greater thanπ3 radians.

Our interest in nearly orthogonal lattices stems from an interesting digital image processing problem.

Digital color images are routinely subjected to compression schemes such as JPEG [11]. The various settings

used during JPEG compression of an image—termed as the image’s JPEG compression history—are often

discarded after decompression. For recompression of images which were earlier in JPEG-compressed form,

it is useful to estimate the discarded compression history from their current representation. We refer to this

problem as JPEG compression history estimation (JPEG CHEst). In [9], we show that the JPEG compression

step maps color images into a set of points contained by a collection of related lattices. Further, we show that

the JPEG CHEst problem can be solved by estimating the nearlyorthogonal bases spanning these lattices.

We use some of the results in this paper in a heuristic to solvethe JPEG CHEst problem [9].

In this paper, we derive two simple but appealing propertiesof nearly orthogonal lattice bases.

1. A π
3 -orthogonal basis always contains a shortest non-zero lattice vector.

2. If all the vectors of aθ-orthogonal (θ > π
3 ) basis have lengths no more than

√
3

sin θ+
√

3 cos θ
times the

length of a shortest basis vector, then the basis is the unique π
3 -orthogonal basis for the lattice (up to

multiplication of basis vectors by±1).

Thus, a nearly orthogonal basis is unique if its vectors are nearly equal in length. Gauss [5] proved the

first property for lattices inR2. We prove (slight generalizations of) both properties for lattices inR
n for

arbitraryn.

The paper is organized as follows. Section 2 provides some basic definitions and well-known results

about lattices We formally state our contributions in Section 3 and furnish their proofs in Section 4. Section 5

describes the JPEG CHEst problem, and how our results can be used in a heuristic to solve the problem. We

conclude with some discussions of the limitations of our results in Section 6.

2 Lattices

A latticeL in R
n is the set of all linear integer combinations of a finite set ofvectors, which we assume to

be rational; that is,L = {u1b1 + u2b2 + · · · + umbm |ui ∈ Z} for someb1, b2, . . . , bm in R
n. The set of
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vectorsB = {b1, b2, . . . , bm} is said tospanthe latticeL. A linearly independent set of vectors spanningL
is abasisof L.

A lattice has many bases. Any two basesB1 andB2 of a latticeL have the same number of vectors;

this common number is denoted bydim(L). Further,B1 andB2 are related (when treated as matrices) as

B1 = B2U , whereU is a unimodular matrix; that is, an integer matrix with determinant equal to±1. A

latticeL in R
n is full-dimensional ifdim(L) = n. We consider only full-dimensional lattices in this paper.

The shortest vector problem(SVP) consists of finding a vector in a latticeL with the shortest non-

zero lengthλ(L). Here we refer to the Euclidean norm of a vectorv in R
n as its length and denote it by

‖v‖. SVP is NP-hard under randomized reductions [2], but the decision version of SVP is not known to be

NP-complete in the traditional sense.

Orthogonal bases always contain a shortest non-zero lattice vector. Hence, one approach to finding short

vectors in lattices is to obtain a basis that is close (in somesense) to orthogonal, and then use the shortest

vector in such a basis as an approximate solution to the SVP. Acommonly used measure to quantify the

“orthogonality” of a lattice basis{b1, b2, . . . , bm} is its orthogonality defect[7],
∏m

i=1 ‖bi‖
|det ([b1, b2, . . . , bm]) | ,

with det denoting determinant. The Lovász basis reductionalgorithm [7], often called the LLL algorithm,

obtains anLLL-reducedlattice basis in polynomial time. Such a basis has a small orthogonality defect.

There are other notions of reduced bases due to Minkowski, and Korkin and Zolotarev (KZ) [6]. Minkowski-

reduced and KZ-reduced bases contain the shortest lattice vector, but it is NP-hard to obtain such bases.

We use the following definitions to quantify the closeness toorthogonality of a basis. By anordered

basis, we mean a basis with a certain ordering of the basis vectors.We represent an ordered basis by an or-

dered set, and also by a matrix whose columns define the basis vectors and their ordering. We use the braces

(., .) for ordered sets (for example,(b1, b2, . . . , bm)), and{., .} otherwise (for example,{b1, b2, . . . , bm}).

For vectorsu, v ∈ R
n, we use bothuT v and〈u, v〉 to denote the inner product ofu andv.

• Weakθ-orthogonality: An ordered set of vectors(b1, b2, . . . , bm) is weaklyθ-orthogonal if fori =

2, 3, . . . ,m, the angle betweenbi and the subspace spanned by{b1, b2, . . . , bi−1} lies in the range

[θ, π
2 ]. That is,

cos−1


 |〈bi,

∑i−1
j=1 λi bi〉|

‖bi‖
∥∥∥
∑i−1

j=1 λi bi〉
∥∥∥


 ≥ θ, for all λj ∈ R with

∑

j

|λj | > 0. (1)
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• θ-orthogonality: A set of vectors{b1, b2, . . . , bm} is θ-orthogonal if every ordering of the vectors

yields a weaklyθ-orthogonal set.

A (weakly)θ-orthogonal basis is one whose vectors are (weakly)θ-orthogonal. Thus, a weaklyθ-orthogonal

basis is assumed to be ordered, whereas aθ-orthogonal basis is not.

In the JPEG CHEst application we describe in Section 5, we will encounter weaklyθ-orthogonal bases

with θ ≥ π
3 . In R

n, Babai [3] proved that an LLL-reduced basis isθ-orthogonal wheresin θ =
(√

2
3

)n

; for

largen this value ofθ is very small. Thus the notion of an LLL-reduced basis is quite different from that of

a weaklyπ
3 -orthogonal basis.

3 Main Results

It is trivial to show that one of the basis vectors in an orthogonal lattice basis is a shortest lattice vector. More

generally, given a lattice basis{b1, b2, . . . , bm}, let θi be the angle betweenbi and the subspace spanned by

the other basis vectors. Then

λ (L) ≥ min
i∈{1,2,...,m}

‖bi‖ sin θi.

Therefore a weaklyθ-orthogonal basis has a basis vector whose length is no more than λ (L) / sin θ; if

θ = π
3 , this bound becomes2 λ(L)√

3
. This shows that nearly-orthogonal lattice bases contain short vectors.

Gauss proved that in two dimensions (2-D) everyπ
3 -orthogonal lattice basis indeed contains a shortest

lattice vector and provided a polynomial time algorithm to determine such a basis; see [14] for a nice descrip-

tion. We first show that Gauss’s result can be extended to higher-dimensional lattices with an appropriate

measure of closeness to orthogonality.

Theorem 1 LetB = (b1, b2, . . . , bm) be an ordered basis of a latticeL. If B is weakly
(

π
3 + ε

)
-orthogonal,

for 0 ≤ ε ≤ π
6 , then a shortest vector inB is a shortest non-zero vector inL. More generally,

min
j∈{1,2,...,m}

‖bj‖ ≤
∥∥∥∥∥

m∑

i=1

uibi

∥∥∥∥∥ for all ui ∈ Z with
m∑

i=1

|ui| ≥ 1, (2)

with equality possible only ifε = 0 or
∑m

i=1 |ui| = 1.

Corollary 1 If 0 < ε ≤ π
6 , then a weakly (π3 + ε)-orthogonal basis contains every shortest non-zero lattice

vector (up to multiplication by±1).

Corollary 2 A π
3 -orthogonal basis contains a shortest non-zero lattice vector.
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Figure 1: (a) The vectors comprising the lattice are denoted by circles. One of the lattice bases comprises two

orthogonal vectors of lengths1 and1.5. Since1.5 < η
(

π

2

)
=

√
3, the lattice possesses no other basis such that the

angle between its vectors is greater thanπ

3
radians. (b) This lattice contains at least twoπ

3
-orthogonal bases. One of

the lattice bases comprises two orthogonal vectors of lengths1 and2. Here2 > η
(

π

2

)
, and so this basis is not the only

π

3
-orthogonal basis.

For a lattice defined by some basisB1, a weaklyπ
3 -orthogonal basisB2 = B1U with U having polynomially

bounded size provides a polynomial-size certificate forλ (L). However, we do not expect all lattices to have

such bases because this would imply that NP=co-NP, assumingSVP is NP-complete. We show in Section 6

that even inR3, there exist lattices that do not have any weaklyπ
3 -orthogonal basis.

Our second observation describes the conditions under which a lattice contains the unique (modulo

permutations and sign changes) set of nearly orthogonal lattice basis vectors.

Theorem 2 LetB = (b1, b2, . . . , bm) be a weaklyθ-orthogonal basis for a latticeL with θ > π
3 . For all

i ∈ 1, 2, . . . ,m, if

‖bi‖ < η (θ) min
j∈{1,2,...,m}

‖bj‖ , (3)

with η (θ) =

√
3

| sin θ| +
√

3| cos θ|
, (4)

then anyπ
3 -orthogonal basis consists of the vectors inB multiplied by±1.

In other words, a nearly orthogonal basis is essentially unique when the lengths of its basis vectors are nearly

equal. For example, both Fig. 1(a) and (b) illustrate 2-D lattices that can be spanned by orthogonal basis

vectors. For the lattice in Fig. 1(a), the ratio of the lengths of the basis vectors is less thanη
(

π
2

)
=

√
3.

Hence, there exists only one (modulo sign changes) basis such that the angle between the vectors is greater

than π
3 . In contrast, the lattice in Fig. 1(b) contains many distinct π

3 -orthogonal bases.
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In the JPEG CHEst application [9], the target lattice bases in R
3 are known to be weakly

(
π
3 + ε

)
-

orthogonal but not
(

π
3 + ε

)
-orthogonal. Theorem 2 addresses the uniqueness ofπ

3 -orthogonal bases, but not

weakly π
3 -orthogonal bases. To estimate the target lattice basis, weneed to understand how different weakly

orthogonal bases are related. The following theorem guarantees that inR3 a weakly
(

π
3 + ε

)
-orthogonal

basis with nearly equal-length basis vectors is related to every weakly orthogonal basis by a unimodular

matrix with small entries.

Theorem 3 LetB = (b1, b2, . . . , bm) andB̃ be two weaklyθ-orthogonal bases for a latticeL in R
m, where

θ > π
3 . LetU = (uij) be a unimodular matrix such that̃BU = B. Define

κ (B) =

(
2√
3

)m−1

×
maxi∈{1,2,...,m} ‖bi‖
mini∈{1,2,...,m} ‖bi‖

. (5)

Then,|uij | ≤ κ (B), for all i andj.

For example, ifB is a weaklyθ-orthogonal basis of a lattice inR3 with
maxm∈{1,2,3}‖bm‖
minm∈{1,2,3}‖bm‖ < 1.5, then the

entries of the unimodular matrix relating another weaklyθ-orthogonal basis̃B to B are either0 or±1.

4 Proofs

4.1 Proof of Theorem 1

We first prove Theorem 1 for 2-D lattices (Gauss’s result) andthen tackle the proof for higher-dimensional

lattices via induction.

4.1.1 Proof for 2-D lattices

Consider a 2-D lattice with a basisB = {b1, b2} satisfying the conditions of Theorem 1. By rotating the

lattice, the basis vectorsb1 andb2 can be expressed as the columns of

‖b1‖ ‖b2‖ cos θ

0 ‖b2‖ sin θ


 ,

with θ the angle betweenb1 andb2. By definition, π
3 ≤ θ ≤ 2π

3 . Any non-zero vectorv in the lattice can be

expressed as

v =


‖b1‖ ‖b2‖ cos θ

0 ‖b2‖ sin θ




u1

u2


 =


u1‖b1‖ + u2‖b2‖ cos θ

u2‖b2‖ sin θ



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whereu1, u2 ∈ Z and|u1| + |u2| > 0. The squared-length ofv equals

‖v‖2 = (u1‖b1‖ + u2‖b2‖ cos θ)2 + (u2‖b2‖ sin θ)2

= |u1|2‖b1‖2 + |u2|2‖b2‖2 + 2u1u2‖b1‖‖b2‖ cos θ

≥ |u1|2‖b1‖2 + |u2|2‖b2‖2 − 2|u1||u2|‖b1‖‖b2‖ cos
π

3

= (|u1|‖b1‖ − |u2|‖b2‖)2 + |u1||u2|‖b1‖‖b2‖ (6)

≥ min
(
‖b1‖2, ‖b2‖2

)
,

with equality possible only if either|u1|+ |u2| = 1 or θ ∈ {π
3 , 2π

3 }. This proves Theorem 1 for 2-D lattices.

4.1.2 Proof for higher-dimensional lattices

Let k > 2 be an integer, and assume that Theorem 1 is true for every(k − 1)-dimensional lattice. Consider

a k-dimensional latticeL spanned by a weakly
(

π
3 + ε

)
-orthogonal basis(b1, b2, . . . , bk), with ε ≥ 0. Any

non-zero vector inL can be written as
∑k

i=1 ui bi for integersui, whereui 6= 0 for somei ∈ {1, 2, . . . , k}.

If uk = 0, then
∑k

i=1 ui bi is contained in the(k − 1)-dimensional lattice spanned by the weakly
(

π
3 + ε

)
-

orthogonal basis(b1, b2, . . . , bk−1). Foruk = 0, by the induction hypothesis, we have
∥∥∥∥∥

k∑

i=1

ui bi

∥∥∥∥∥ =

∥∥∥∥∥

k−1∑

i=1

ui bi

∥∥∥∥∥ ≥ min
j∈{1,2,...,k−1}

‖bj‖ ≥ min
j∈{1,2,...,k}

‖bj‖ .

If ε > 0, then the first inequality in the above expression can hold asequality only if
∑k−1

i=1 |ui| = 1. If

uk 6= 0 andui = 0 for i = 1, 2, . . . , k − 1, then again
∥∥∥∥∥

k∑

i=1

ui bi

∥∥∥∥∥ ≥ ‖bk‖ ≥ min
j∈{1,2,...,k}

‖bj‖ .

Again, it is necessary that|uk| = 1 for equality to hold above.

Assume thatuk 6= 0 andui 6= 0 for somei = 1, 2, . . . , k − 1. Now
∑k

i=1 ui bi is contained in the 2-D

lattice spanned by the vectors
∑k−1

i=1 ui bi andukbk. Since the ordered set(b1, b2, . . . , bk) is weakly
(

π
3 + ε

)
-

orthogonal, the angle between the non-zero vectors
∑k−1

i=1 ui bi andukbk lies in the interval
[

π
3 + ε, 2π

3 − ε
]
.

Invoking Theorem 1 for 2-D lattices, we have
∥∥∥∥∥

k∑

i=1

ui bi

∥∥∥∥∥ ≥ min

(∥∥∥∥∥

k−1∑

i=1

ui bi

∥∥∥∥∥ , ‖ukbk‖
)

≥ min

(
min

j∈{1,2,...,k−1}
‖bj‖ , ‖ukbk‖

)

≥ min
j∈{1,2,...,k}

‖bj‖ . (7)
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Thus, the set of basis vectors{b1, b2, . . . , bk} contains a shortest non-zero vector in thek-dimensional lattice.

Also, if ε > 0, then equality is not possible in (7), and the second part of the theorem follows. 2

4.2 Proof of Theorem 2

Similar to Theorem 1’s proof, we first prove Theorem 2 for 2-D lattices and then prove the general case by

induction.

4.2.1 Proof for 2-D lattices

Consider a lattice with basis vectorsb1 and b2 such that the basis{b1, b2} is weakly θ-orthogonal with

θ > π
3 . Note that inR

2, weakθ-orthogonality is the same asθ-orthogonality. Without loss of generality

(w.l.o.g.), we can assume that1 = ‖b1‖ ≤ ‖b2‖. Further, by rotating the 2-D lattice, the basis vectors can

be expressed as the columns of 
1 ‖b2‖ cos θ̃

0 ‖b2‖ sin θ̃


 ,

with θ̃ ∈ [θ, 2π − θ] the angle betweenb1 andb2. Let
{

b̃1, b̃2

}
denote anotherπ3 -orthogonal basis for the

same 2-D lattice. Using Theorem 1 and its Corollary 1, we infer that{b1, b2} contains every shortest lattice

vector (multiplied by±1), and{b1, b2} and
{
b̃1, b̃2

}
contain a common shortest lattice vector. Assume

w.l.o.g. that̃b1 = ±b1 is a shortest lattice vector. Then, we can write

[
b̃1 b̃2

]
=
[
b1 b2

]

±1 u

0 ±1


 =


1 ‖b2‖ cos θ̃

0 ‖b2‖ sin θ̃




±1 u

0 ±1


 , with u ∈ Z.

To prove Theorem 2, we need to show thatu = 0.

The angle betweeñb1 and±b̃2, denoted by∠
(
b̃1,±b̃2

)
, is given by

∠

(
b̃1,±b̃2

)
= tan−1

(∣∣∣∣∣
‖b2‖ sin θ̃

‖b2‖ cos θ̃ ± u

∣∣∣∣∣

)
.

Since∠

(
b̃1,±b̃2

)
lies in the interval

[
π
3 , 2π

3

]
by construction, we have

tan2
(π

3

)
= 3 ≤ tan2

(
∠

(
b̃1,±b̃2

))

⇔ 3
(
‖b2‖2 cos2 θ̃ + u2 ± 2u‖b2‖ cos2 θ̃

)
≤ ‖b2‖2 sin2 θ̃

⇔ 3u2 ± 6u‖b2‖ cos2 θ̃ + 3‖b2‖2 cos2 θ̃ − ‖b2‖2 sin2 θ̃ ≤ 0. (8)
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The left-hand side of (8) is a quadratic expression inu, sayQ(u). The roots ofQ(u) = 0 are given by

1

6

(
±6‖b2‖ cos θ̃ ±

√(
6‖b2‖ cos θ̃

)2
− 12

(
3‖b2‖2 cos2 θ̃ − ‖b2‖2 sin2 θ̃

))
.

Simplifying further, we obtain the roots ofQ(u) = 0 to be

‖b2‖
(
± cos θ̃ ± sin θ̃√

3

)
.

To satisfyQ(u) ≤ 0, u must lie between the roots ofQ(u) = 0. Hence,

|u| ≤ ‖b2‖
∣∣∣∣∣

(
± cos θ̃ ± sin θ̃√

3

)∣∣∣∣∣

≤ ‖b2‖
| sin θ̃| +

√
3| cos θ̃|√

3

=
‖b2‖
η
(
θ̃
) .

Note thatη (θ) is an increasing function ofθ for π
3 ≤ θ ≤ π

2 . Hence we have

|u| ≤ ‖b2‖
η
(
θ̃
) ≤ ‖b2‖

η (θ)
< ‖b1‖ = 1.

Sinceu ∈ Z and|u| < 1, u = 0. This proves Theorem 2 for 2-D lattices.

4.2.2 Proof for higher-dimensional lattices

LetB andB̃ be twon×n matrices defining bases of the samen-dimensional lattice. We can writeB = B̃U

for some integer unimodular matrixU = (uij). Using induction onn, we will show that ifB is weakly

θ-orthogonal withπ
3 < θ ≤ π

2 , if the columns ofB satisfy (3), and ifB̃ is π
3 -orthogonal, theñB can be

obtained by permuting the columns ofB and multiplying them by±1. Equivalently, we will show every

column ofU has exactly one component equal to±1 and all others equal to0 (we call such a matrix asigned

permutation matrix).

Assume that Theorem 2 holds for all(n − 1)-dimensional lattices withn > 2. Let b1, b2, . . . , bn denote

the columns ofB and let̃b1, b̃2, . . . , b̃n denote the columns of̃B. Since permuting the columns of̃B does not

destroyπ
3 -orthogonality, we can assume w.l.o.g. thatb̃1 is B̃’s shortest vector. From Theorem 1,b̃1 is also a

shortest lattice vector. Further, using Corollary 1,±b̃1 is contained inB. Assume thatbk = ±b̃1 for some
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k ∈ {1, 2, . . . , n}. Then

B = B̃




u11 . . . u1k−1 ±1 u1k+1 . . . u1n

...

U ′
1 0 U ′

2

...




(9)

Above,U ′
1 is a(n− 1)× (k − 1) sub-matrix, where asU ′

2 is a(n− 1)× (n− k) sub-matrix. We will show

thatu1j = 0, for all j ∈ {1, 2, . . . , n} with j 6= k. Define

Br =
[

bk bj

]
, B̃r =

[
b̃1

∑n
i=2 uij b̃i

]
. (10)

Then, from (9) and (10),

Br = B̃r


 ±1 u1j

0 1


 .

SinceBr andB̃r are related by a unimodular matrix, they both define bases of the same 2-D lattice. Further,

Br is weaklyθ-orthogonal with||bj || < η (θ) ||bk||, andB̃r is π
3 -orthogonal. Invoking Theorem 2 for 2-D

lattices, we can infer thatu1j = 0. It remains to be shown thatU ′ = [U ′
1 U ′

2] is also a signed permutation

matrix, where

B′ = B̃′U ′,

with B′ = [b1, b2, . . . , bk−1, bk+1, . . . , bn] andB̃′ =
[
b̃2, b̃3, . . . , b̃n

]
. Observe thatdet(U ′) = det(U) =

±1. BothB′ andB̃′ are bases of the same(n−1)-dimensional lattice asU ′ is unimodular.B̃′ is π
3 -orthogonal,

whereasB′ is weaklyθ-orthogonal and its columns satisfy (3). By the induction hypothesis,U ′ is a signed

permutation matrix. Therefore,U is also a signed permutation matrix. 2

4.3 Proof of Theorem 3

Theorem 3 is a direct consequence of the following lemma.

Lemma 1 LetB = (b1, b2, . . . , bm) be a weaklyθ-orthogonal basis of a lattice, whereθ > π
3 . Then, for

any integersu1, u2, . . . , um,

∥∥∥∥∥

m∑

i=1

uibi

∥∥∥∥∥ ≥
(√

3

2

)m−1

× max
i∈{1,2,...,m}

‖uibi‖ . (11)
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Lemma 1 can be proved as follows. Consider the vectorsb1 andb2; the angleθ between them lies in the

interval
(

π
3 , 2π

3

)
. Recall from (6) that

‖u1b1 + u2b2‖2 ≥ (|u1| ‖b1‖ − |u2| ‖b2‖)2 + |u1||u2|‖b1‖‖b2‖.

Consider the expression(y − x)2 + yx with 0 ≤ x ≤ y. For fixedy this expression attains its minimum

value of
(

3
4

)
y2 whenx = y

2 . By settingy = |u1| ‖b1‖ andx = |u2| ‖b2‖ w.l.o.g, we can infer that

‖u1b1 + u2b2‖ ≥
√

3

2
max

i∈{1,2}
‖uibi‖.

SinceB is weakly θ-orthogonal, the angle betweenukbk and
∑k−1

i=1 uibi lies in the interval
(

π
3 , 2π

3

)
for

k = 2, 3, . . . ,m. Hence (11) follows by induction. 2

We now proceed to prove Theorem 3 by invoking Lemma 1. Define∆ =
(√

3
2

)m−1
. For anyj ∈

{1, 2, . . . ,m}, we have

‖bj‖ =

∥∥∥∥∥

m∑

i=1

uij b̃i

∥∥∥∥∥ ≥ ∆ max
i∈{1,2,...,m}

∥∥∥uij b̃i

∥∥∥ ≥ ∆ min
i∈{1,2,...,m}

‖b̃i‖ max
i∈{1,2,...,m}

|uij|.

SinceB and B̃ are both weaklyθ-orthogonal withθ > π
3 , mini∈{1,2,...,m} ‖b̃i‖ = mini∈{1,2,...,m} ‖bi‖.

Therefore,

∆ max
i∈{1,2,...,m}

|uij | ≤
‖bj‖

mini∈{1,2,...,m} ‖b̃i‖
≤

maxi∈{1,2,...,m} ‖bi‖
mini∈{1,2,...,m} ‖bi‖

= ∆κ (B) .

Thus,|uij | ≤ κ (B), for all i andj. 2

5 JPEG Compression History Estimation (CHEst)

In this section, we review the JPEG CHEst problem that motivates our study of nearly orthogonal lattices,

and describe how we use this paper’s results to solve this problem. We first touch on the topic of digital

color image representation and briefly describe the essential components of JPEG image compression.

5.1 Digital Color Image Representation

Traditionally, digital color images are represented by specifying the color of each pixel, the smallest

unit of image representation. According to the trichromatic theory [13], three parameters are sufficient

to specify any color perceived by humans.1 For example, a pixel’s color can be conveyed by a vector

1The underlying reason is that the human retina has only threetypes of receptors that influence color perception.
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w
RGB

= (w
R
, w

G
, w

B
) ∈ R

3, wherew
R

, w
G

, andw
B

specify the intensity of the color’s red (R), green (G),

and blue (B) components respectively. Callw
RGB

the RGB encoding of a color. RGB encodings are vectors

in the vector space where the R, G, and B colors form the standard unit basis vectors; this coordinate system

is called the RGBcolor space. A color image withM pixels can be specified using RGB encodings by a

matrixP ∈ R
3×M .

5.2 JPEG Compression and Decompression

To achieve color image compression, schemes such as JPEG first transform the image to a color encoding

other than the RGB encoding and then performquantization. Such color encodings can be related to the

RGB encoding by acolor-transformmatrix C ∈ R
3×3. The columns ofC form a different basis for the

color space spanned by the R, G, and B vectors. Hence an RGB encodingw
RGB

can be transformed to the

C encoding vector asC−1w
RGB

; the imageP is mapped toC−1P . For example, the matrix relating the

RGB color space to the ITU.BT-601Y CbCr color space is given by [12]




w
Y

w
Cb

w
Cr


 =




0.299 0.587 0.114

−0.169 −0.331 0.5

0.5 −0.419 −0.081







w
R

w
G

w
B


 . (12)

The quantization step is performed by first choosing a diagonal, positive (non-zero entries are positive),

integerquantizationmatrix Q, and then computing the quantized (compressed) image fromC−1P asPc =
⌈
Q−1C−1P

⌋
, whered.c stands for the operation of rounding to the nearest integer.JPEG decompression

constructsPd = CQPc = CQ
⌈
Q−1C−1P

⌋
. LargerQ’s achieve more compression but at the cost of

greater distortion between the decompressed imagePd and the original imageP .

In practice, the image matrixP is first decomposed into different frequency componentsP =

{P1, P2, . . . , Pk}, for some k > 1 (usually k = 64), during compression. Then, a com-

mon color transformC is applied to all the sub-matricesP1, P2, . . . , Pk, but each sub-matrix

Pi is quantized with a different quantization matrixQi. The compressed image isPc =

{Pc,1, Pc,2, . . . , Pc,k} =
{⌈

Q−1
1 C−1P1

⌋
,
⌈
Q−1

2 C−1P2

⌋
, . . . ,

⌈
Q−1

k C−1Pk

⌋}
, and the decompressed im-

age isPd = {CQ1Pc,1, CQ2Pc,2, . . . , CQkPc,k}.

During compression, the JPEG compressed file format stores the matrixC and the matricesQi’s along

with Pc. These stored matrices are utilized to decompress the JPEG image, but are discarded afterwards.

Hence we refer to the set{C,Q1, Q2, . . . , Qk} as thecompression historyof the image.
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5.3 JPEG CHEst Problem Statement

This paper’s contributions are motivated by the following question: Given a decompressed imagePd =

{CQ1Pc,1, CQ2Pc,2, . . . , CQkPc,k} and some information about the structure ofC and theQi’s, can we

estimate the color transformC and the quantization matricesQi’s? As {C,Q1, Q2, . . . , Qk} comprises

the compression history of the image, we refer to this problem as JPEG CHEst. An image’s compression

history is useful for applications such as JPEG recompression [4, 8, 9].

5.4 Near-Orthogonality and JPEG CHEst

The columns ofCQiPc,i lie on a 3-D lattice with basisCQi becausePc,i is an integer matrix. The estimation

of CQi comprises the main step in JPEG CHEst. Since a lattice can have multiple bases, we must exploit

some additional information about practical color transforms to correctly obtainCQi from CQiPc,i. Most

practical color transforms aim to represent a color using anapproximately rotated reference coordinate

system. Consequently, most practical color transform matricesC (and thus,CQi) can be expected to be

almost orthogonal. We have verified that allC ’s used in practice are weakly
(

π
3 + ε

)
-orthogonal, with

0 < ε ≤ π
6 .2 Thus, nearly orthogonal lattice bases are central to JPEG CHEst.

5.5 Our Approach

Our approach is to first estimate the productsCQi by exploiting the near-orthogonality ofC and to then

decomposeCQi into C andQi. We will assume thatC is weakly
(

π
3 + ε

)
-orthogonal,0 < ε ≤ π

6 .

5.5.1 Estimating the CQi’s

LetBi be a basis of the latticeLi spanned byCQi. Then, for some unimodular matrixUi, we have

Bi = CQiUi. (13)

If Bi is given, then estimatingCQi is equivalent to estimating the respectiveUi.

Thanks to our problem structure, the correctUi’s satisfy the following constraints. Note that these

constraints become increasingly restrictive as the numberof frequency componentsk increases.

1. TheUi’s are such thatBiU−1
i is weakly

(
π
3 + ε

)
-orthogonal.

2In general, the stronger assumption ofπ

3
-orthogonality does not hold for some practical color transform matrices.
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2. The productUiB−1
i BjU−1

j is diagonal with positive entries for anyi, j ∈ {1, 2, . . . , k}.

This is an immediate consequence of (13).

If in addition,Bi is weakly
(

π
3 + ε

)
-orthogonal, then

3. The columns ofUi corresponding to the shortest columns ofBi are the standard unit vectors times±1.

This follows from Corollary 1 because the columns of bothBi andCQi indeed contain all shortest

vectors inLi up to multiplication by±1.

4. All entries ofUi are≤ κ(Bi) in magnitude.

This follows from Theorem 3.

We now outline our heuristic.

(i) Obtain basesBi for the latticesLi, i = 1, 2, . . . , k. Construct a weakly
(

π
3 + ε

)
-orthogonal basisB`

for at least one latticeL`, ` ∈ {1, 2, . . . , k}.

(ii) Computeκ(B`).

(iii) For every unimodular matrixU` satisfying constraints1, 3 and4, go to step (iv).

(iv) For U` chosen in step (iii), test if there exist unimodular matrices Uj for eachj = 1, 2, . . . , k, j 6= `

that satisfy constraint2. If such a collection of matrices exists, then return this collection; otherwise

go to step (iii).

For step (i), we simply use the LLL algorithm to compute LLL-reduced bases for eachLi. Such bases

are not guaranteed to be weakly
(

π
3 + ε

)
-orthogonal, but in practice, this is usually the case for a number of

Li’s. In step (iv), for each frequency componentj 6= `, we compute the diagonal matrixDj with smallest

positive entries such that̃Uj = B−1
j B`U−1

` Dj is integral, and then test whether̃Uj is unimodular. If not,

then for the givenU`, no appropriate unimodular matrixUj exists.

The overall complexity of the heuristic is determined mainly by the number of times we repeat step

(iv), which equals the number of distinct choices forU` in step (iii). This number is typically not very large

because in step (i), we are usually able to find some weakly
(

π
3 + ε

)
-orthogonal basisBl with κ < 2. In fact,

we enumerate all unimodular matrices satisfying constraints 3 and4 and then test constraint1. (In practice,

one can avoid enumerating the various column permutations of a unimodular matrix). Table 1 provides

the number of unimodular matrices satisfying constraint4 alone and also constraints3 and 4. Clearly,
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Table 1: Number of unimodular matrices satisfying constraints3 and4 for smallκ.

κ constraint4 constraints3 and4

1 6960 5232

2 135408 43248

3 1281648 197616

4 5194416 513264

5 20852976 1324272

constraints3 and4 help us to significantly limit the number of unimodular matrices we need to test, thereby

speeding up our search.

Our heuristic returns a collection of unimodular matrices{Ui} that satisfy constraints1 and2; of course,

they also satisfy constraints3 and4 if the correspondingBi’s are weakly
(

π
3 + ε

)
-orthogonal. From the

Ui’s, we computeCQi = BiU−1. If constraints1 and2 can be satisfied by another solution{U ′
i}, then it

is easy to see thatU ′
i 6= Ui for everyi = 1, 2, . . . , k. In Section 5.5.3, we will argue (without proof) that

constraints1 and2 are likely to have a unique solution in most practical cases.

5.5.2 Splitting CQi into C and Qi

Decomposing theCQi’s into C andQi’s is equivalent to determining the norm of each column ofC because

theQi’s are diagonal matrices. Since theQi’s are integer matrices, the norm of each column ofCQi is an

integer multiple of the corresponding column norm ofC. In other words, the norms of thejth column

(j ∈ {1, 2, 3}) of differentCQi’s form a sub-lattice of the 1-D lattice spanned by thejth column norm ofC.

As long as the greatest common divisor of thejth diagonal values of the matricesQi’s is 1, we can uniquely

determine thej-th column ofC; the values ofQi follow trivially.

5.5.3 Uniqueness

Does JPEG CHEst have a unique solution ? In other words, is there a collection of matrices

(C ′, Q′
1, Q

′
2, . . . , Q

′
k) 6= (C,Q1, Q2, . . . , Qk)

such thatC ′Q′
i is a weakly

(
π
3 + ε

)
-orthogonal basis ofLi for all i ∈ {1, 2, . . . , k}? We believe that

the solution can be non-unique only if theQi’s are chosen carefully. For example, letQ be a diagonal
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matrix with positive diagonal coefficients. Assume that fori = 1, 2, . . . , k, Qi = λiQ, with λi ∈ R and

λi > 0. Further, assume that there exists a unimodular matrixU not equal to the identity matrixI such

thatC ′ = CQU is weakly
(

π
3 + ε

)
-orthogonal. DefineQ′

i = λiI for i = 1, 2, . . . , k. ThenC ′Q′
i is also a

weakly
(

π
3 + ε

)
-orthogonal basis forLi. Typically, JPEG employsQi’s that are not related in any special

way. Therefore, we believe that for most practical cases JPEG CHEst has a unique solution.

5.5.4 Experimental Results

We tested the proposed approach using a wide variety of test cases. In reality, the decompressed imagePd

is always corrupted with some additive noise. Consequently, to estimate the desired compression history,

the approach described above was combined with some additional noise mitigation steps. Our algorithm

provided accurate estimates of the image’s JPEG compression history for all the test cases. We refer the

reader to [8, 9] for details on the experimental setup and results.

6 Discussion and Conclusions

In this paper, we presented some interesting properties of nearly orthogonal lattice bases. We chose to

directly quantify the orthogonality of a basis in terms of the minimum angleθ between a basis vector and

the linear subspace spanned by the remaining basis vectors.We defined such a basis to be nearly orthogonal

whenθ > π
3 radians. Our main result is that a nearly orthogonal latticebasis always contains a shortest

lattice vector. Further, we also investigated the uniqueness of nearly orthogonal lattice bases. We proved

that if the basis vectors of a nearly orthogonal basis are nearly equal in length, then the lattice essentially

contains only one nearly orthogonal basis.

Our results were motivated by a fascinating digital color imaging application called JPEG compression

history estimation (JPEG CHEst). Given a digital color image, JPEG CHEst aims to estimate the settings

used during previous JPEG compression operations. These operations make the color image coefficients

conform to a lattice. The settings are encoded in a nearly orthogonal basis spanning the lattice. We use

some of the results in this paper to design an effective heuristic for JPEG CHEst.

Our definition of nearly orthogonal bases is probably too strong for general applications because there
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exist lattices with noπ3 -orthogonal bases. Consider the latticeL spanned by the basis

B =




1 0 1
2

0 1 1
2

0 0 1√
2




. (14)

It is not difficult to verify that[1 0 0]T is a shortest lattice vector. Thus,λ(L) = 1. Now, assume thatL
possesses a weaklyπ3 -orthogonal basis̃B = (b1, b2, b3). Let θ1 be the angle betweenb2 andb1, and letθ2

be the angle betweenb3 and the subspace spanned byb1 andb2. Sinceb1, b2 andb3 have length equal to 1,

det(B̃) = ‖b1‖ ‖b2‖ ‖b3‖ | sin θ1| | sin θ2| ≥ sin2 π

3
=

3

4
. (15)

Butdet(B) = 1√
2

< det(B̃), which shows that the latticeL with basisB in (14) has no weaklyπ3 -orthogonal

basis. Thus lattices that contain a nearly orthogonal basisare somewhat special.

We pose two questions related to our work. First, is a shortest vector of a maximally orthogonal (in

terms ofθ-orthogonality or other measures such as orthogonality defect) lattice basis a solution of the SVP?

Second, how do lattice reduction algorithms perform when the lattice is known to contain a nearly orthogonal

basis? Note that currently we understand only the “worst-case” performance of lattice reduction algorithms

such as the LLL algorithm. Lattices with nearly orthogonal bases could be used to gauge the “best-case”

performance of such algorithms.
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