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Abstract

Using Simulation to Assess Prediction
Performance Change with Simulated Annealing on

Probability Arrays

by

Jason Deines

Experimental results suggest that significant improvements in forecast performance
can be obtained by applying the simulated anncaling on probability arrays (SAPA)
algorithm to grouped event probability forecasts. Such forecasts are frequently prob-
abilistically incoherent, even when elicited expert subjects. The algorithm corrects
any incoherence within the set of responses from each subject, while at the same time
minimizing the sum of the absolute adjustments made to the original probability
estimates. These adjusted coherent probability estimates appear to yield improved
overall forecast performance, as measured by several different metrics. However, with
the only published results cousisting of several small experiments, definitive conclu-
sions regarding potential forecast improvements in wider applications are difficult to

justify. To address this lack of experimental data, a method for extending the exist-



iii

ing published results using simulation is described, and the SAPA algorithm and its

effects on forecast performance are examined.
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Chapter 1

Introduction

1.1 Description of the Problem

When asked to estimate probabilities of sets future events containing compound or
conditional structures, human respondents frequently give estimates that are prob-
abilistically incoherent. The following example, similar to an example from Deines,
Osherson, Thompson, Tsavachidis and Vardi (2002) [3], illustrates the issues involved.

An individual gives their probability estimates of the following events occurring:

a. Prob(Clinton is re-elected to the Senate in 2006) = 0.75
b. Prob(Giuliani runs for the Senate in 2006) = 0.50
¢. Prob((Clinton is re-elected to the Senate in 2006) and (Giuliani runs for the Senate

in 2006)) = 0.10



The probability of a conjunction of the form p A q is bounded above by the mini-
mum of the individual probabilities of p and q, and bounded below by sum of the
probabilities of p and q minus 1. In this example, if estimates a and b are main-
tained, the bounds dictate that the conjunction of the two estimates must lie on the
interval [0.25,0.50]. The estimate for ¢, 0.10, is therefore inconsistent, and the group
of estimates (a, b, ¢) are probabilistically incoherent. It is important to note that
it is not estimate ¢ alone that is incoherent--the estimates must be considered as a
group. Were one to maintain estimates a and c, for example, the lower bound on the
conjunction of 0.10 would force the estimate for b to be no higher than 0.35 (since
0.75+ 0.35 — 1.0 = 0.10).

Common sense dictates that as the number of interconnected judgments increases,
maintaining probabilistic coherence becomes increasingly difficult. In practice, when
grouped with their probability estimates of the fundamental events, even expert re-
spondents almost always produce some incoherent estimates of the probabilities of
compound or conditional events. This tendency is well-known and has been exten-

sively studied for many ycars [3].

1.2 Methods to Correct for Incoherence

Several methods have been proposed to correct for this incoherence of probability

estimates. These methods fall into two broad categories: on-line and off-line. In an



1 Prob(p A ¢) < min[Prob(p), Prob(g)]
Prob(p A ¢) > Prob(p) + Prob(g) -1

2 Prob(p A =¢) < min[Prob(p), 1 - Prob(g)]
Prob(p A =¢) > Prob(p) - Prob(g)

3 Prob(p V ¢) > max[Prob(p), Prob(g)]
Prob(p V q) < Prob(p) + Prob(q)

4 Prob(p V ~¢q) > max[Prob(p), 1 - Prob(g)]
Prob(p V =¢q) < Prob(p) - Prob(q) + 1

Table 1.1: The four laws governing coherence (from [3], page 48)

on-line incoherence correction method, as the questions are asked of the respondent,
the range of coherent estimates is presented at the same time. For the example
given in 1.1, the subject might be asked to estimate the probability of cvents a and
b. The respondent would be allowed to make an estimate from the full range of
probability [0, 1], since events a and b are stochastically independent. Having given
probability estimates for events a and b, when questioned for an estimate for event c,
the subject would be limited to the range of coherent responses, from 0.25 to 0.50, in
the example,. However, when estimating a large set of events, the order of questioning
could influcnce the cstimates given [3]. In the method just described, the initial,
stochastically independent responses would remain unchanged, with the restrictions
imposed only on those complex or conditional constructs where incoherence might
present itself.

An off-line correction method does not impose such restrictions, and as such could



be considered a superior solution to the problem. Off-line correction also affords
greater flexibility in administering sets of event estimates to human participants. A
paper questionnaire can suffice, with the responses later converted into a machine-

readable format for adjustment by computer.

1.3 Simulated Annealing on Probability Arrays

The simulated annealing on probability arrays (SAPA) algorithm is an off-line method
conceived by Daniel Osherson and first described in Batsell, Brenner, Osherson,
Tsavachidis and Vardi (2002) [1]. Like other off-line methods, SAPA adjusts sets
of estimates to make them probabilistically coherent. A summary of the four proba-
bility laws governing coherence are shown in Table 1.1.

The motivating principle behind the algorithm is straightforward. Adjustments
are made to a given set of probability estimates to bring the set into a coherent
probabilistic state, while simultaneously attempting to minimize the sum of the ab-
solute changes made to the original subject estimates. In essence, SAPA combines
an off-line incoherence correction method with an iterative optimization procedure.
A variety of suitable optimization techniques exist, and before simulated annealing
was adopted, precursors to SAPA used a optimization method based on genetic al-
gorithms. Simulated annealing was ultimately chosen because it was significantly
faster than the genetic algorithms implementation while achieving essentially equiv-

alent results. Speed is frequently cited as one of the benefits of simulated annealing



optimization, so the efficiency improvement is not unexpected. Many references exist
comparing the relative advantages and disadvantages of these and other optimization
methods [4, 6, 10, 13]. Technical details of the algorithm can be found in [8] and will
not outlined in greater detail here.

Logic suggests that the minimization of total change is a desirable characteristic,
under the assumption that experts, even if providing estimates that are incoherent
when taken as a group, are likely to have insight on the level of individual event
estimates [3]. It follows that an incoherence correction method should attempt to
disrupt these initial probability estimates as little as possible, while still attaining
the goal of coherence. Potentially more intriguing, however, are the findings from
cxperimental results that the resulting coherent cstimates gencrated by SAPA yicld
superior forecasting performance when compared to their incoherent counterparts
[3, 1]. If true, the algorithm would be potentially useful in numerous applications
involving groups of experts forecasting sets of of future events.

Unfortunately the published experimental results have several significant limita-
tions, making justification for large-scale experimental evaluation or for applied use
difficult on the basis of these results alone. The experimental results published were
generally of a proof-of-concept nature—to illustrate the behavior and application of
the algorithm to an easily definable problem. This is entirely reasonable approach
given the time frames and goals for academic research. In contrast, rigorous, long-

term experiments require far more effort, resources, and time, and may yield no



marginal benefit over simpler experiments for research purposes. The lack of such
rigorous experimental results, however, limits what inferences can be made about the
forecast performance benefits of SAPA. Conversely, without compelling evidence that
conducting large-scale experimentation is worth the investment involved, it is unlikely
such experiments will be undertaken.

Of the six sets of experimental results published, only two, both involving eco-
nomic events, could be considered typical to what one might encounter in a business
or public-policy application. The remaining experiments focused on such things as
predicting aspects of the outcome of sporting events [1]. Another limitation is that the
experiments generally did not involve subjects likely to have above-average insight
in the topic arca of interest. Most participants were undergraduate students with
no particular specialization or area of expertise, although in some cases at least a
percentage of the experimental participants possessed expertise in the subject area of
interest. Finally, most predictive time frames were short, with the longest experiment
running for three months. This experiment, referred to as “Finance” in [3], was also
the most comprehensive of those published. The structure and participant responses
of the Finance cxperiment formed the basis of gencrating experimental results via
simulation, which enabled more extensive examination of SAPA performance under

a variety of controlled subject response conditions.



Chapter 2

Analysis Using Simulated Hybrid

Experiments

2.1 Methodological Basis

Using computer simulation to generate and run experimental results to test SAPA
has several advantages over human subject experimentation. Simulated experiments
take only seconds to run, require little effort once the simulation code is written, and
the subject responses can be modified in a controlled fashion. This speed and control
allows examination of the algorithm using large numbers of repeated trials, under a
variety of response conditions. Such a volume of results and control is not possible
using experiments with human participants.

The following outlines a general framework for testing SAPA by utilizing repeated



simulation. The simulation generates an arbitrary array of events, along with cor-
responding outcomes. Sets of questions are created from the base event array to
férm a questionnaire, and for each simulated subject, the questionnaire responses are
generated according to algorithmic guidelines. The set of completed questionnaires is
analyzed to determine the base performance of the simulated group. Finally, SAPA is
applied to the batch of simulated data, and the SAPA-adjusted results are analyzed
for comparison purposes. The process can be repeated an arbitrary number of times,
changing parameter values as desired.

This approach, termed the ”pure” simulation model, has two significant difficul-
ties in practice. The first is that a thorough simulation implementation would be
complex and have many free parameters. Important parameters to consider include
the number of events, the number of questions, the structure of the questions and
of the questionnaire, and the number of subjects. Beyond this there would be a
number of additional parameters controlling the simulated subject responses, such as
relative expertise (how likely the subject is to achieve a relatively low forecast error
score by some performance measure), and the probability of incoherence on complex
constructs. To cnsure stable results and for confidence in any inferences made, the
simulation would have to be run repeatedly with the same parameters, and there may
be a wide range of parameters of interest. A complete simulated analysis, therefore,
may still take a long time to complete. This is not a weakness of the simulation

technique per se, but proper application of a pure simulation for analyzing the SAPA



algorithm would still require considerable effort and time.

The second problem is best categorized as a philosophical issue. One could argue
that results from repeated simulation, based on randomized values controlled by a set
of parameter values, would not accurately demonstrate how human participants would
respond in a real application situation. In essence this revisits the concern regarding
the numerous parameters that must be identified and appropriately controlled as
part of the simulation. The argument is extended in a philosophical sense, however,
effectively stating that it is impossible to completely identify and control all the
relevant parameters, and that the simulation would not capture all of the nuances in
response that would be present in human subjects. While true, it is a criticism that
can be leveled at almost any attcmpt at modcling system behavior, whether involving
human participants or not. Generalizations and approximations of systems, often
surprisingly crude ones, can still yield useful information.

There is, however, a variation on the pure simulation paradigm that has advan-
tages in both problem areas, when compared with the pure simulation model as
described. Rather than generate all the of the response data for the simulation us-
ing paramctcrized random variables, this method, termed the “hybrid” simulation
method, starts instead from an existing experimental data set actually administered
to human participants. The method uses the human subject response data as a basis
for the randomized perturbations of responses that are used in the simulation trials.

With human responses as its underlying basis, the method is potentially more
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likely to incorporate subtle interrelationships between the individual estimates within
a set of events than pure randomized data. This requires the structure of event sets
used in the experiment to be utilized unchanged, however, and thus greatly simplifies
the simulation problem. By constraining the structure of the experimental format to
that administered to human subjects, the need to generate the experimental structure
by simulation is eliminated.

The hybrid simulation method also affords an established, baseline reference to
compare the performance of the SAPA algorithm before and after changes to the
response data are made. Since a known performance standard has already been es-
tablished from the human subject experiment, this known starting point can be used
to make various controlled altcrations in the data, from which performance measure-
ments can be repeatedly taken. For example, if the characteristics of the actual human
subject data indicate poor forecast performance, and hence likely no real expertise
or insight, this can be corrected using several approaches. Since the true outcome
of the events is known, post-hoc adjustments can be made to the human subject es-
timates, thereby yielding better forecast performance. Making these changes allows
the performance of the simulated subjects to be adjusted as desired, allowing the

performance of SAPA to be studied under various experimental conditions.
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2.2 Implementation Details

As previously mentioned, the hybrid simulation technique used the Finance experi-
ment data set as the basis for all simulated input and resulting SAPA results. The
author was largely responsible for creating the set of 30 event questions that formed
the experiment, which was designed with several goals in mind. The target audience
was sccond-ycar MBA students at Rice University in Houston, Texas. It was rca-
soned that by participating in a full-time MBA program and by the corresponding
self-selection and curriculum exposure, the second-year MBA students would likely
demonstrate a higher-than-average level of knowledge and expertise regarding the eco-
nomic and financial events under consideration. In addition, between their first and
second years in the MBA program, almost all students participate in a summer intern-
ship, frequently with a Houston-based company. This factor was also incorporated
in the event selection process, and questions involving specific company performance
emphasized businesses based locally. The expectation was that at least a few par-
ticipants would encounter questions involving the prospects of companies with which
they had recent first-hand experience, and it was also more likely that the participants
would have greater familiarity with local companies in general. A list of the 30 event
variables that were used for the generated questionnaires can be found in Appendix
A.

As a performance incentive, the subjects with the best forecast results were to be

awarded prizes at the end of the forecast period. The criteria for forecast performance
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was explained to all participants beforehand, and was defined as the mean squared
error between the forecast probabilities and actual outcomes. The exepected forecast
period was to be six months long, from 1 October 2001 through 31 March 2002,
meaning that the subjects were to give their estimates effective as of 1 October 2001,
and the performance of the predictions would be measured as of 31 March 2002.
Economic and financial data are generally considered “noisy,” and evidence of true
future insight into overall trends would be more apparent the longer the forecast
horizon used. In addition, many economic performance measures are only reported
on a monthly basis, so even after six months, an event based upon an economic
indicator might be determined from the outcome of only six data observations. A
longer time period would have been desirable, but logistically it was not practical to
combine a longer period with the desired performance incentives. Even extending to
a nine-month period, for example, would take the end date to 30 June 2002, by which
time the second-year MBA students would have graduated, making prize distribution
considerably more difficult.

Several issues arose to confound the initial design goals, and may have adversely
affected the cxperimental results. The terrorist attacks of 11 September 2001 created
tremendous uncertainty regarding short and medium-term impact to the econornic
and business climate, only weeks before the start of the prediction period on 1 October
2001. In a desire to produce results as quickly as possible, initially the time horizon

for the forecasts was only one month in duration, despite the experimental design
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assumptions. Given the uncertainty from the terrorist attacks, however, the time
horizon was extended to three months, with the period of interest running from 1
October 2001 to 31 December 2001. Nevertheless, this was likely still too short a
prediction window. Finally, the scandal involving the most prominent Houston-based
firm at the time, Enron, unfolded during the forecast period. Given Enron’s stature
in the local economy and the large numbers of Rice University MBA interns and
graduates the company hired, Enron was an obvious corporate subject to include in
the question pool. Since the vast majority of professional security analysts failed to
predict the difficulties Enron would face in the latter months of 2001, in retrospect

Enron was a poor choice to include as an event topic for the experiment.!

2.3 Performance Metrics

The primary forecast performance measurement reported for the published experi-
mental results is the “quadratic penalty” ([11], cited in [3]). It is a measurement of
squared error from the true outcome value, and is computed as follows. The proba-
bility forecast for an event is designated as Prob. For events that occur (the event is
true), Outcome is equal to 1; for events that do not occur (the event is false), Outcome
is correspondingly equal to 0. In all but conditional events, the quadratic score is

simply (OQutcome - Prob)?, or the squared error. For error scores of conditional events,

! Another Houston-based company, Compaq, was initially included as well. It was removed shortly

before the experiment began because of an unexpected buyout offer from Hewlett-Packard.
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however, if the conditioning event does not occur, the question has no inherent mean-
ing, and the question is discarded from the set of responses. If the conditioning event
does occur, the quadratic score for the conditional question is scored in the same
manner given above. The sum of all the resulting quadratic score values is divided
by the number of retained responses, giving the average quadratic score, equivalent
to the mean squared error. For results generated by hybrid simulation, the more
statistically common term “squared error” and “mean squared error” (MSE) will be
used, but the value is computed in an identical fashion as the quadratic penalty, and
the corresponding average value of “mean quadratic penalty” or “mean quadratic
deviation” (MQD).

The other measure of a subject’s forecast performance utilized in the published
results is called the “slope.” (In [1], the same measure is called the “discrimination
index” and [3] cites a discussion of the measure found in Chapter 3 of Yates [12].)
For a given subject’s set of probability estimates, the slope is calculated as follows:

(mean estimate for “true” events) - (mean estimate for “false” events)

The rationale for the measure is that if a subject, on average, assigns higher
probability cstimatcs to outcomes that occur than to thosc that do not, this indicates
some discrimination ability between the two types of outcomes. Positive values are
therefore considered an indication of insight. A typical example might have a mean
estimate of true outcomes of 0.6, and a mean estimate of false outcomes of 0.4,

resulting in a slope of 0.2.
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There are some potential difficulties with the use of slope as a measure of per-
formance, however. First, taken in isolation, it is difficult to interpret the potential
significance of a given slope value. A small positive value averaged across all sub-
jects might be shown to be statistically significant greater than 0, and thus arguably
demonstrate insight, but it is difficult to ascertain how high this value must get be-
fore insight of practical significance is shown. Second, although not a problem in
the experiment examined here, when applied to a relatively small set of events, it is
possible that only very few will fall into a particular outcome. This could happen
either by chance, poor questionnaire design, or a combination of the two, and the
forecast performance regarding these few events could affect the resulting slope value
disproportionatcly.

The following hypothetical example underscores the caution that must be exer-
cised when considering the slope value alone as a measure of forecast performance. In
this example a subject has responded with a mean estimate of true events of 0.9, and
a mean estimate of false events of 0.7. As defined, the slope would therefore equal
0.2, which for the purposes of the example is stipulated as statistically significantly
greater than 0, thercfore indicating insight. Yet the subject is clearly heavily biased
towards positive forecasts. The argument in support of the slope as a performance
measure is that despite this bias, there is still discrimination between true and false
events, so insight is evident. An overall bias in the estimates is nevertheless undesir-

able, however, and examination of the slope measure alone would not indicate that
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such a bias existed.

Another common error measure is mean absolute deviation (MAD), computed as
the absolute value of the forecast from the outcome. The MAD measure is not cited
in the published performance results, and Osherson indicated that MAD has certain
deficiencies as an accuracy measure in this experimental context, and therefore perfor-
mance analysis utilizing it was not performed [7]. Nevertheless, since MAD provides
an additional benchmark with a straightforward definition, for the simulated results

MAD error measures were also analyzed and are given for comparison purposes.



Chapter 3

Analysis

3.1 Published Results and Verification

Details of the experimental results from the Finance experiment are discussed in three
published articles [3, 8, 9]. The results from the Finance experiment were first pub-
lished in [3] in 2002. As might be expected given the variety of issues confounding
the experiment, the forecasting performance of the participants was poor. The MSE
across all 47 subjects, before application of SAPA, is 0.314, with a standard deviation
of 0.077. After optimization with SAPA, the MSE was reduced to 0.285, with a stan-
dard deviation of 0.076 [3]. This improvement after SAPA is stated as significant by
correlated t-test, giving [#(46) = 7.6, p < 0.001]. Applying the simulation implementa-
tion to the unadjusted subject response values gives similar results, with an MSE after

SAPA of 0.287, and a standard deviation of 0.072. A paired-sample ¢-test performed

17
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on the original subject MSE values and those after applying the simulation SAPA
implementation confirms the published test values, with #(46) = 6.91, p < 0.001.

Results are also given for the “slope” measure of forecast accuracy. The average
slope for the raw estimates across the 47 subjects is 0.053, with a standard deviation of
0.130. These values are stated as reliably greater than zero [#(46) = 2.81,p < 0.01]. As
with MSE, application of SAPA improves the slope error measure, increasing the value
to 0.115, with a standard deviation of 0.129. This difference is stated as reliable by
a correlated t-test [£(46) = 8.46, p < 0.001]. Applying the simulation implementation
again confirms the published values, yielding a slope value of 0.107, with a standard
deviation of 0.1294, and by a paired-sample ¢-test, #(46) = 7.24, p < 0.001.

The most detailed description of the SAPA algorithm’s construction and parame-
ter space can be found in [9], and the parameter values used for application of SAPA
in the simulation studies were identical to the recommendations in the article. SAPA
results obtained using both the original code and the simulation implementation al-
ways gave similar results for a given response set, and examination of internal results
as the algorithm was in progress were also verified as effectively identical. Finally,
several complete code comparisons were made by hand between the original code and
the simulation code to confirm algorithmic consistency. Given the non-deterministic
nature of the optimization algorithm used in SAPA, identical results are extremely
unlikely, but the results from the two implementations were consistently statistically

equivalent.
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3.2 Inferences from Published Results

Based upon the results just discussed and the tests of statistical significance per-
formed, it is claimed that application of SAPPA improves forecast accuracy on the
Finance experimental data [3, 8, 9]. In a statistical sense the claim may be valid, but
it is hard to justify on several pragmatic levels.

The chain of reasoning for the improved results with SAPA rests completely on
its primary distinctive attribute compared with other off-line incoherence correc-
tion schemes—that is, the iterative optimization process that minimizes the absolute
changes made to the initial subject responses [1]. This is a logical goal if there is
insight or expertise to preserve on an individual-estimate level. However, in the ab-
sence of any conclusive evidence of insight, it is unclear why applying SAPA would
result in improved forecast performance.

In the Finance experiment, the average forecast error measures for the subject
group demonstrate a low level of insight at best. By the MSE measure, the group
of subjects indicates no evidence of insight or expertise. A constant response of 0.50
for every question would result in a MSE of 0.25, since for the two possible Quicome
states of 0 or 1, (Outcome — 0.5)% = 0.25. 0.25 can therefore be considered a “zero-
insight” boundary for the MSE measure, since this score is achievable regardless of
insight or knowledge. As mentioned earlier, MSE for the initial forecast estimates for
all subjects is 0.314, with a standard deviation of 0.077, and is significantly higher

than the 0.25 boundary level by t-test. Even after application of SAPA, the improved
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group average MSE equals 0.285, with a standard deviation of 0.076. The improved
values remain significantly greater than 0.25 by a ¢-test, with #(46) = 3.476, p < 0.005.

In contrast to the MSE values, initial subject insight can be claimed using slope as
a measure, since the zero-insight boundary with the slope measure lies at zero. The
average raw slope scores were reliably higher than zero, as discussed in the previous
section, and were significantly improved after adjustment by SAPA. Nevertheless, the
small magnitude of the slope score, even after SAPA adjustment, does not make a
strong argument in support of subject insight.

Based upon the published results of the MSE and slope performance measures of
the subjects in the Finance experiment, there is conflicting evidence in support of
subject insight or cxpertisc, and whatever insight demonstrated by the subject group
must be considered low, at best. Logically, there is no reason to expect forecast
performance improvements via an incoherence correction mechanism that attempts
to approximate the original subject probability estimates as closely as possible, as
SAPA does, since the subject estimates are so poor to begin with. Yet the forecast
performance measures do show a statistically significant improvement after applying
SAPA to the incohcerent cstimates. Closer examination of forccast performance using

the simulation code implementation provides a likely explanation for this behavior.
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3.3 Simulation Results from Original Response Data

In addition to the MSE and slope performance measures, the MAD error measure of
forecast error was also recorded in the simulation implementation of SAPA. The MAD
error measure, which is not reported with the published results, has a zero-knowledge
boundary of 0.50. Assuming an equal probability of true and false outcomes and
responscs and random responses between 0 and 1, the MAD score is cqual to the
expectation of a uniform[0, 1] random variable, 1/2.

The average MAD for all subjects raw estimates is 0.483, with a standard deviation
of 0.0697. This is not reliably different from 0.50 by ¢-test [£(46) = —1.174, p = 0.088],
and consequently does not demonstrate significant subject insight. Nevertheless, af-
ter applying SAPA, the adjusted estimates again improve, to the point where they
arc rcliably lower than 0.50. The adjusted average MAD is 0.458, with a standard
deviation of 0.0654, and by ¢-test, {(46) = —4.381,p < 0.001. Once again, by the
MAD measure there is little evidence to support overall group insight, yet applica-
tion of SAPA to the estimates yields a small but significant forecast performance
improvement.

That SAPA adjustment was able to make small but statistically significant im-
provements in the average error measures, despite the poor quality of subject forecasts
in the Finance experiment, might cause one to conclude that SAPA can extract per-
formance improvements under even the most challenging of circumstances. However,

the additional measurement capabilities in the simulation implementation of SAPA,
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ftaration Step 1
i [ Mean | Std Dev. |

'ﬁ_' N__| Winmum | W
100]  0.232444) 0. 0.239 0.00267'
MAD 100 041 0.43508! 0.42561 0.00:

MSE 100] 0210 0.232633] _ 0.222991] _ 0.003695
|siope 100]  0.144161]  0.183388  0.1610: 0.007488
iteration Step 25

N__] Minimum % mwm_%__um__}_sybe_v
100 01 0.18418 0.173431] __ 0.003444)
MAD 100]  0.432 0457133  0.444430]  0.004601
MSE 100 0.25406: 0.2847471 0. 0.00571
isiope 100] 0.1 0.158072] __ 0.1307 0.008373}
lteration Step 50
Iﬁ N 06| Minimum_ | Maximum _ Moan Std. Dev.
it 1 0.11 0.122724] __ 0.11950 0.00128
IMAD 100} om% 0 0.452 0.00:
MSE 100]  0.279 0.291 0. 0.60264;
siope 100]  0.107046]  0.120425]  0.117818]  0.005105
iteration Step 100
N Minimum Maximum dean Std. Dev.
'L 1 0.092891 .0906471] 009471 0.000
MAD 1001 0450 4501671 0.454616  0.001
MSE 100]  0.279869 .280610)  0.285104  0.001
siope 100] 0104621]  0.122251]  0.114298]  0.003158

Figure 3.1: SAPA results after iteration steps on raw data.

along with the capability to make controlled changes in initial subject estimates,
provide evidence that suggest this is not the case. The performance gains noted in
publication are likely the result of the incoherence correction alone, and not becuase
of the unique approximation optimization aspect of SAPA.

Evidence for this conclusion is found by examination of the measures of fit and
forecast accuracy at each optimization iteration in SAPA, rather than simply com-
paring measures of accuracy before SAPA and after the final optimization iteration.
(150 iteration steps were used for all results, the same value used in the original SAPA
code implementation.) 100 simulation trials were performed with different random-

ized starting values for the SAPA algorithm, with each trial applying SAPA to the
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Mean S.D.] MSE. tldff p|
fit1 - fit150] _0.148384] 0.0027 [S_‘l_l 0.000270] 549.43 g8  0.0000
MAD1 - MAD150] -0.020255] 0.004017] 0.000402} -72.82 98] 0.0000
MSE1 - MSE150] -0.061826] 0.003980} 0.00039__8[ -155.34 99(  0.0000!
slope1 - slope150] 0.047240] 0.008292] 0.000829] 56.97 98]  0.0000

Figure 3.2: Paired-comparison t-test for fit, MSE, MAD, and slope, 100 trials.

original subject responses. As can be seen in Figure 3.1, although the mean fit mea-
sure declines as expected as the optimization progresses starting at at first iteration,
as the fit improves and more closely approximates the original subject estimates, the
forecast error measures move in the direction opposite from that desired. The MAD
and MSE measures increase, and the slope measure decreases. The measure of co-
herent fit to the original responses is at its worst after the first iteration—over 100
trials, the mean fit is 0.2397 after the first iteration. The mean value of MAD, MSE
and slope, however, all attain their best respective values after the first iteration.

Since cvery iteration results in coherent adjusted cstimates, as this is an algorith-
mic constraint, the coherent estimate approximations resulting from the first iteration
serve as a starting point for assessing the level of fit for subsequent coherent approx-
imations. The simulated annealing optimization plays no role in the initial coherent
estimate approximations—the coherent approximations are computed using a sepa-
rate method, based upon either randomized starting values and the initial incoherent
cstimatces, or upon the previous iteration state, as appropriate. Additional details on
the method can be found in [8].

It appears that the improvements in forecast performance evident when applying

SAPA to the original subject estimates arise from the initial incoherence correction,
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fit MAD MSE slope__ |
K3 Pearson Gorrelation 1 -917 -926 885
Sig. (2-tailed) .000 .000 .000
MAD Pearson Correlation =917 1 973 -.991
Sig. (2-tailed) .000 .000 .000
MSE  Pearson Correlation -926 973 1 -.949
Sig. (2-tailed) .000 .000 .000
slope  Pearson Correlation 885 -991 -949 1
Sig. (2-tailed) 000 .000 000

Figure 3.3: Corrclation between fit, MAD, MSE and slope by itcration, 100 trials, raw data.

and that the SAPA algorithm running to completion only provides an improvement in
that the coherent estimate fit optimization does not completely eliminate the initial
forecast performance improvements realized after the first iteration. For the original
subject responses, the mean performance measures across all subjects are MAD =
0.48229, MSE = 0.31418, and slope = 0.05324. Over 100 simulation trials, after the
initial iteration of SAPA, the mean MAD declines to 0.42562, the mean MSE declines
to 0.22299, and the mean slope increases to 0.16104. Upon completion of the final
iteration, however, all the values have worsened: the mean MAD is 0.45487, the mean
MSE is 0.28482, and the mean slope is 0.11380. Performing a pairwise comparison
between the respective measures at the first and last iteration shows a statistically
significant difference in fit and all three forecast error measures (p < 0.001 in every
case), as shown in Figure 3.2.

Significant corrclations of the opposite sign to that desired arc also apparent be-
tween the fit measure and the respective forecast performance measures. Figure 3.3
shows a bivariate correlation analysis on 15,000 observations for the four measures,

recorded from each of the 150 iterations per trial, with 100 simulation trials.
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MAD after SAPA on raw data.

Figure 3.5
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Figure 3.6: MSE after SAPA on raw data.
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Figure 3.7: Slope after SAPA on raw data.
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Mean | N | SD __|

"Par1 ongMAD 482290 | 100 | 000000

sapaMAD .454863 100 001483

Pair2  origMSE 314183 100 | .000000

sapaMSE .284799 100 001546

Pair 3 origSiope 053241 100 .0000C0

sapaSlope -113820 100 | .003079

Paired Differences
95% C. 1.

Mean S. D. Lower Upper t df Sig. (2-tail)
Pair1  origMAD - sapaMAD 027427 .001493 027130 027723 183.685 1] 0000
Pair2  origMSE - sapaMSE 020385 | .001546 | .029078 | .029691 190.044 99 .0000
Pair3  origSlope - sapaSlope -.060578 003079 | -.061189 | -.059967 | -196.725 99 .0000

Figure 3.8: Paircd-difference t-test statistics for raw response data.

Finally, contour plots of the measures afford a visualization of the overall trends.
In Figure 3.4, the fit of the coherent estimates is plotted against the iteration step
and simulation trial. Across all simulation trials, the fit consistently improves (the
value of fit declines) as the optimization progresses, as expected. Looking at the
trends of the MAD, MSE, and slope measures (Figures 3.5, 3.6, and 3.7), however,
show the accuracy measures worsening as the optimization proceeds. Although the
MAD, MSE and slope measures have considerably more trial-to-trial variation than
the fit measure, the overall trend is readily apparent. The highest forecast accuracy is
achieved in the early iterations of SAPA. Once the fit measure has stabilized close to
the minimum value, usually around iterations 60 to 70, the accuracy measures have
all deteriorated from their earlier values by a significant degree.

These findings are not surprising, and are in fact consistent with the rationale
behind the SAPA design. It makes sense that if there is little to no information content

to preserve in the incoherent responses, there is no reason to expect any benefit to
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be realized from attempting to preserve those estimates as closely as possible when
correcting for incoherence.

There is, however, some apparent benefit afforded from the initial coherence cor-
rection step, and this behavior has been noted in the existing literature. In [3], work
by de Finetti from 1974 is cited, including a theorem that states that a set of in-
coherent estimates over a set of absolute events (excluding conditional events) can
always be replaced by a set of coherent estimates that have lower forecast errors,
regardless of the outcome states. In the same work, de Finetti outlines a method
to generate coherent approximations to a set incoherent estimates that will result in
a lower quadratic penalty (MSE) in all states. However, this method, as with the
theory, is not applicable to sets containing conditional cvents [5, 3]. Since the Finance
experiment involved estimates of 12 conditional events out of the 46 total, the theo-
rem is not directly applicable, nor can di Finetti’s method be applied. Later work by
Bernardo and Smith from 1994 [2] (and also cited in [3]) extended de Finetti’s theo-
rem to certain sets of estimates involving conditional events, although this extension
is not possible for every possible set of estimates [3].

Despite this limitation, the theory suggests that in many cascs, corrected coherent
estimates can attain superior forecast error measures. This supports the conclusion
that it is the correction for incoherence, produced by the initial coherent approxima-
tions to the subject estimates after the first SAPA iteration, that is the source of the

improved forecast performance measures in the published experimental results.
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3.4 Simulation Results from Perturbed Data

Since the mean subject estimates from the Finance experiment demonstrate little to
no insight regarding the set of events forecast, the simulation results showing that
the SAPA optimization works contrary to improving forecast performance is not sur-
prising. Such findings are consistent with the theoretical basis of the algorithm, and
this consistency could be further confirmed by applying SAPA to subject cstimatces
with significantly higher, or lower, levels of insight. This is the central difficulty the
simulation technique was designed to overcome. If the subject estimates from the
Finance experiment could be modified in some way to change the resulting insight or
expertise level of the participants, applying SAPA to those revised subject estimates
might lend additional support for the algorithm’s design rationale.

If the initial incoherent estimates arc significantly accuratc when cvaluated indi-
vidually, it makes sense to preserve that accuracy as much as possible when correct-
ing for incoherence. Under such circumstances, one would expect that as the SAPA
coherent approximations fit more closely to the original estimates, the forecast per-
formance would be better when compared with a coherence correction mechanism
that does not attempt such a fit. The initial coherent approximation forecast per-
formance measures, calculated after the first iteration of the optimization procedure,
can serve for comparison purposes. These initial estimates should be comparatively
poor, improving as the coherent approximation estimates more closely fit the origi-

nal responses. Conversely, if the initial subject estimates are significantly inaccurate,
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in a manifestation of “reverse” insight, the opposite should be true. As the coher-
ent approximations fit more closely to the lower-insight estimates, the performance
measures should worsen.

Several methods to perform adjustments to the original subject responses were
implemented and examined, and the results from repeated simulation trials for each
of the methods were consistent and similar to the simple adjustment method outlined
here. Two parameter values are chosen, level and rate, each with a range between
0 and 1 inclusive. For each subject response, adjustments are made at random in
proportion to the rate parameter; if rate is 0.5, approximately 50% of the responses
will be adjusted (or perturbed). Perturbed responses are then adjusted by generating
a unform random number between 0 and level, and adding or subtracting that value
from the existing estimate to bring the result closer to the true, correct outcome. If
the response is not perturbed, the original subject estimate is left unchanged. For
example, if an event comes true (an outcome of 1), and the initial subject estimate is
0.3, a random valne (for example, 0.443) would be added, resulting in a new estimate
of 0.743, significantly closer to the correct value. Conversely, false outcomes would
have the random value subtracted from the cxisting cstimate. When the sum or
difference of the existing estimate and the random value exceed 0 or 1, the new
estimate is set at 0 or 1, respectively. A new set of adjusted estimates is generated
for each simulation trial, with SAPA applied ‘to each set.

For the results examined here, rate was set to 1, and level was set to 0.5, meaning



. Mean N S.D._ |

Pair1  origMAD 277187 | 100 002373

sapaMAD 278053 100 003811

Pair2  origMSE 145158 100 | .002047

sapaMSE 131347 100 003146

Pair3  origSlope 460688 100 005010

sapaSiope 460855 100 .007685

Paired Differences
95%C. L.
Mean S.D. Lower Upper t df | Sig. (2-tail) |

Pair1  origMAD - sapaMAD -000868 | . 71 | -.001438 | -.000297 -3.017 99 .0032
Pair2  origMSE - sapaMSE 013811 002346 013345 | .014276 58.869 99 .0000
Pair 3 origSlope - sapaSlope -.000170 005876 | -.001335 000986 -288 a9 7736

Figure 3.9: Paired-difference t-test statistics for data perturbed towards correct.
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Figure 3.10: SAPA fit, perturbed towards correct, level 0.3, rate 1.0.
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MAD after SAPA, perturbed towards correct, level 0.5, rate 1.0.

Figure 3.11
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MSE after SAPA, perturbed towards correct, level 0.5, rate 1.0.

Figure 3.12
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Figure 3.13: Slope after SAPA, perturbed towards correct, level 0.5, rate 1.0.

Mean N S.D. |
Bar1  ongMAD 695168 | 100 | .002659
sapaMAD 575580 100 .002298
Pair2 ongMSE 555355 100 003516
sapaMSE 422630 100 003241
Pair3  origSlope -.375903 100 .005623
sapaSlope -.125326 100 | .004880

Paired Differences
95% C. 1.
Mean_ S. D. | Lower Upper et df Sig. (2-tail
Pair1  ongMAD - sapaMAD 119587 | .002531 .119085 120090 | 472.484 89 .0000
Pair2 origMSE - sapaMSE 132725 | .003402 .132050 133400 | 390.148 89 0000
Pair3  origSlope - sapaSlope -250577 | 005522 | -251673 | -249481 | -453.767 99 0000

Figure 3.14: Paired-difference t-test statistics for data perturbed towards incorrect.
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Figure 3.15: SAPA fit, perturbed towards incorrect, level 0.5, rate 1.0.
150 -
100 -
8
[
2
50
0 -
[] L] Ll ] 1] T
0 20 40 60 80 100
Trial

Figure 3.16: MAD after SAPA, perturbed towards incorrect, level 0.5, rate 1.0.
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Figure 3.18: Slope after SAPA, perturbed towards incorrect, level 0.5, rate 1.0.
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that for each simulation trial, every estimate (since rate = 1) was perturbed by a
uniform random variable between 0 and 0.5, and the results are presented in the form
of plots similar to those used with the unadjusted estimates previously. In Figures
3.10, 3.11, 3.12, and 3.13, the perturbations were made in the direction of the correct
outcome. The plots show the fit, MAD, MSE, and slope measures, respectively.

With the perturbations made towards the correct outcome, the initial incoherent
forecast performance measures will improve. As shown in the upper table of Fig-
ure 3.9, the measures for the set of improved estimates are: MAD, mean 0.2772,
standard deviation 0.0024; MSE, mean 0.1452, standard deviation 0.0020; and slope,
mean 0.4607, standard deviation 0.0050. All are significant improvements over the
unadjusted valucs. If the optimization aspect of the SAPA approximation is providing
any benefit, one should see evidence of improving error measures as the fit becomes
better. MAD and MSE should both decline, and the slope should increase.

This is indeed what happens. Figure 3.10 shows the fit improving through itera-
tions 70 to 80, and stabilizing thereafter. Correspondingly, by the same point in the
iteration cycle Figure 3.11 shows the MAD declining to approximately 0.28, Figure
3.12 shows the MSE dcclining to approximately 0.14, and Figurc 3.13 shows the slope
increasing to approximately 0.45. In each case the behavior is consistent with the
goal of minimizing coherence adjustments to the initial insightful estimates.

The perturbation is then applied in reverse with the results shown in Figures 3.15,

3.16, 3.17, and 3.18, with the perturbations made away from the correct outcome.
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The worsened estimates should have significant poorer forecast performance measures
compared with the unadjusted estimates, and this is confirmed by the upper table in
Figure 3.14. It follows that as the coherent estimates improve and achieve a closer
fit to these initially poor estimates, there should be a corresponding worsening of
forecast performance.

Again the results are consistent with expectations. Figure 3.15 shows the fit
improving and stabilizing in much the same manner as the with the improved esti-
mators. Figures 3.16 and 3.17 show MAD and MSE increasing to approximately 0.58
and 0.42, respectively, and Figure 3.18 likewise shows the slope declining to a value
of approximately -0.10.

Despite the confirmation of behavior consistent with the algorithm’s design ratio-
nale, the results indicate that the the forecast performance improvement seen with
the unadjusted values is significantly reduced or eliminated entirely when applied to
subject estimates demonstrating conclusive levels of insight. Comparing the results
for the improved estimates in the lower table of Figure 3.9 with the cofresponding
values for the unadjusted estimates in the lower table of Figure 3.8, only the improve-
ment in MSE remains significant, with the mean improvement considerably lower in
value. In contrast, the results for the worsened estimates in Figure 3.14 show even
higher levels of improvement. Although not conclusive, the results suggest that when
applied to sets of estimates from subjects with true expertise, the coherent estimates

generated by SAPA are unlikely to yield significant performance improvements.



Chapter 4

Conclusions

4.1 Summary of Findings

Overall, the simulation results indicate that the design logic for SAPA is sound.
Minimization the total adjustment made to the original incoherent responses does
appear to effectively preserve insight or expertise, compared with the initial coherent
appro;cimations before the iterative optimization is performed. It is unlikely, however,
that applying SAPA to responses from true experts will result in any significant
improvement in forccast performance. When applicd to cstimates with lower levels
of insight, significant forecast performance improvements are realized, but not to a

sufficient degree that the resulting improved estimates would have any practical value.
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4.2 Practical Considerations

Even if SAPA did yield forecast performance improvements with expert data, it is
unclear whether or not SAPA could be used in an applied setting to improve forecast
performance and afford better decision-making. There are several issues to consider
that complicate the possible use of a SAPA-type mechanism in an applied capacity
in business or government.

First, the questionnaire format used in the SAPA experiments is an extremely
artificial construct. The construction of the event sets which the subjects are asked
to estimate essentially guarantees probabilistic incoherence, and is hardly typical of
how opinions or judgments are elicited in practice. The insight of the simulated
subjects can be numerically manipulated for the purposes of analysis. It is possible,
however, that cven the best human cxperts may not be ablc‘ to cxpress their insight
effectively using a SAPA questionnaire format. Potential evidence that this may be
a problem is that the MBA students who participated in the Finance experiment
were indistinguishable as a group in their forecast performance from the other, “non-
expert” subjects [7]. This could be explained by the length of the forecast time
horizon used, which may have been too short for insight to manifest itself, but the
concern remains.

Bias in the event structures used to elicit estimates is another potential problem.
With event constructs that involve qualification against an arbitrary fixed metric, as

opposed to a relative one, setting the metric unrealistically can result in making the
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estimate too “easy.” This results in high levels of apparent insight into an event that
is almost certain to occur or not occur. For example, if the stock price performance of
Microsoft is of interest, asking for an estimate regarding the probability of “Microsoft
outperforms the S&P 500 over the next 12 months” is free of bias—the event is
a comparison between two relative measures, the performance of Microsoft’s stock,
and of the market in general. However, asking for an estimate of the probability
of “Microsoft’s stock price will increase by at least 100% over the next 12 months”
is effectively meaningless. The likelihood of a very large capitalization stock like
Microsoft doubling in price in one year is extremely low. Most subjects familiar with
the financial markets will realize this, and respond accordingly. The unlikely event
(as defined by the question) does not occur, and the majority of subjects will get a
low error score as a result, but this apparently high level of insight is of no practical
value.

Finally, assuming insightful and meaningful estimates about future events can be
obtained for use with SAPA, problems may arise integrating the results with the
overall decision-making framework. The problem manifests itself when attempting to
decide on an action based upon probabilistic information, since decisions and actions
are frequently binary in nature and cannot be made proportionately. Using a “0 -
1” binary scoring mechanism for error measurement might be a useful extension to

explore performance in an applied context.
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4.3 Possible Future Research

There are several potential extensions to the simulation model. Adding the capabil-
ity for finer control over the type and degree of change made to the initial subject
estimates may provide additional information beyond the results obtained from the
simple adjustment methods used here. The addition of other measures of performance
may yicld further insight regarding the practical applications of SAPA. In addition
to the binary measure, another possibility would be to track “high confidence” esti-
mates separately and examining how their performance characteristics are altered by
SAPA. High confidence would be suggested by an estimate sufficiently close to 0 or
1, and could be regarded as comparatively more persuasive and easier to utilize in an
applied context.

Finally, cxamining the performance of SAPA variants, such as forming an aggre-
gate judge for generating forecast estimates [3], would likely be worthwhile, as thei
published results suggest that additional performance improvements may be possible
using such approaches. Utilization of such extensions may yield additional perfor-

mance gains, but additional examination is required.



Appendix A

Finance experiment variables

jum—y

The Standard & Poor’s 500 Index increases.

The Standard & Poor’s 500 Index outperforms the NASDAQ Composite Index.
The NASDAQ Composite Index increases.

General Electric’s stock price increases.

Reliant Energy’s stock price increases.

Exxon Mobil’s stock price increases.

Enron’s stock price outperforms Reliant Energy’s stock price.

El Paso Corp’s stock price increases.

® ® NS e W N

Enron’s stock price increases by greater than 10%.

[y
e

Wal-Mart’s stock price increases.

[y
st

. Amazon.com’s stock price increases.

[
[\

. Sears Roebuck’s stock price increases.

[
w

. Wal-Mart’s stock price outperforms Amazon.com’s stock price.

fu—ry
N

. The U.S. prime lending rate increases.

ot
o

. The price of crude oil decreases by more than 10%.
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19.
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23.
24.
25.
26.
27.
28.
29.
30.
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U.S. 30-year fixed mortgage rates decrease.

The U.S. retail sales rate increases.

The U.S. Consumer Confidence Index increases.

The annualized U.S. Consumer Price Index inflation rate increases.
The U.S. unemployment rate increases.

Continental Airlines’ stock price increases.

United Parcel Service’s stock price increases.

Exxon Mobil’s stock price outperforms United Parcel Service’s stock price.
General Motors’ stock price increases.

IBM'’s stock price increases.

Dell’s stock price outperforms Sun Microsystems’ stock price.
Intel’s stock price increascs.

Microsoft’s stock price increases by more than 10%.

Dell’s stock price outperforms IBM’s stock price.

Dell’s stock price outperforms Apple Computer’s stock price.
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