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ABSTRACT 

Steady-state creep data are presented for tin tested 

in torsion at temperatures from 100°C to 228°C. Results 

obtained below 210°C verify observations of other investi¬ 

gators. A creep activation energy of 22.5 Kcal/mol in 

this temperature range is determined. Above 210°C, an 

abnormal increase in the steady-state creep rate is ob¬ 

served. Results are discussed in terms of Weertman’s 

dislocation climb mechanism. 

Tertiary-creep data are presented for three tempera¬ 

tures near the melting point. It is observed that the 

strain at which tertiary creep begins is independent of 

stress, though highly temperature dependent. These results 

are discussed in terms of current tertiary-creep and creep- 

fracture theories. 
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INTRODUCTION 

It is generally assumed that most engineering 

materials, such as steel or aluminum, can withstand a 

constant stress at room temperature indefinitely, as long 

as the yield stress Is not exceeded. However, recent 

applications, such as turbine blades and missile nose 

cones, have demanded the use of these materials at higher 

and higher temperatures until a phenomenon called creep 

has become important. Creep may be defined as the time- 

dependent inelastic strain of a material subjected to a 

constant stress. If a metal specimen at some temperature 

T has a stress (T applied to it, the specimen will deform 

and the strain 6 can be plotted as a function of time, t. 

This plot is called a creep curve, Figure 1. 

There are three distinct stages of creep: 

(a) Primary or transient creep, which includes any 

initial strain, is characterized by a decreasing strain 

rate, £,. It usually constitutes only a small fraction of 

the total creep strain. 

(b) The steady-state portion follows transient creep, 

and is so called because £. is constant during this stage. 

(c) Steady-state creep is followed by tertiary creep, 

where fc accelerates until fracture occurs. 

Throughout this discussion, the subscripts P, S, and T 

will denote the primary, steady-state, and tertiary stages 
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of creep, respectively. 

Primary creep has been discussed extensively in the 

literature. If one disregards the initial instantaneous 

strain, the primary creep rate can often be represented 

accurately by the relation 

£p s A t“n, 0 < n 4 1, (1) 

where A is a function of stress and temperature. When 

n - 1, 

£p * £© + A log t. (2) 

This is called logarithmic creep and is applicable to 

rubber, glass, and many metals. At faster creep rates 

and larger strains, n in Equation (1) takes a value closer 

to 2/3, giving a transient strain law of the type 

£P = pt
1^. (3) 

This is "beta-creep" and has been discussed extensively 

by Andrade-1-. 

Steady-state creep has been comprehensively reviewed 

by Dorn^. He expressed the steady-state creep rate for 

metals by the following empirical relations: 

is ~ G(O') exp (-Q/RT) (4) 

G((T) = G’ exp (bcr) for high stresses 
G(c) = G" <jm for low stresses 

where G*, G", and b are structure-sensitive constants, 

Q, = activation energy for creep, R = universal gas constant, 

and T * absolute temperature. The activation energy, Q, 

has been found to have the same value at high temperatures 
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as the activation energy of self diffusion for most metals. 

This indicates a dependence of steady-state creep on the 

diffusion of vacancies. 

A theory by Mott® and Weertman^ explains steady-state 

creep in terms of a dislocation pile-up mechanism. As a 

material is stressed, Frank-Read sources in the material 

are activated, and dislocations move in their slip planes. 

As the dislocations reach barriers, they pile up, creating 

high stresses on the leading dislocations and back stresses 

on the sources. These high stresses cause the leading 

dislocations to ’’climb" over the barriers. A steady-state 

situation is reached in which the number of dislocations 

climbing just equals the number being produced by the 

sources. The barriers to dislocation movement are sessile 

dislocations. Under the influence of temperature and 

stress, dislocations circumvent these obstacles by climbing 

into new slip planes. Such climbing requires the produc¬ 

tion or annihilation of vacancies, so that vacancy diffu¬ 

sion becomes the rate-determining factor. Calculations 

based on this model predict a creep rate at low stresses 

of: 

£s = B tr
m exp (-Q/RT), m~4.6. (5) 

This is in agreement with Equation (4) for low stresses. 

This model will form the basis for discussion in this 

thesis. 
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There is a dearth of quantitative data on tertiary- 

creep. This stage of creep is usually thought to be a 

process leading to fracture. Most studies of it are 

concerned with the formation and propagation of small 

cracks in the metal, either due to stress concentration 

or void formation through condensation of vacancies. 

Since tertiary creep is primarily a high-temperature phe¬ 

nomenon, most investigations have been limited to tempera¬ 

tures greater than 75$ of the absolute melting temperature, 

and have been restricted to relatively small stresses. At 

present, none of the theories has successfully explained 

the tertiary-creep behavior of metals. 

The purpose of this investigation was to test the 

validity of presently accepted creep concepts at tempera¬ 

tures approaching the melting point. At the same time, 

data on high-temperature tertiary creep were to be collected 

to offer an insight into its mechanism. 

Tin was chosen as the material for this investigation 

primarily for reasons of experimental convenience. Its 

low melting temperature and ready availability are particu¬ 

larly desirable features. Furthermore, creep data for tin 

over wide temperature ranges have been published and permit 

comparison with experimental results obtained in this 

investigation. 
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EQUIPMENT AND PROCEDURE 

Specimens were tested in torsion, thereby eliminating 

variation of cross section during the test. This also 

simplified the maintenance of a uniform temperature along 

the length of the specimen. The specimens were heated in 

a small resistance furnace, Figure 2, which was operated 

at constant current. The furnace was surrounded by a 

constant-temperature oil bath to isolate it from external 

temperature variations. With this equipment it was possible 

to reduce temperature fluctuations to a maximum of 0.3°C 

with less than 0.3°C variation along the entire length of 

the specimen. All temperature measurements were made in 

the center of the specimen with a calibrated copper- 

constantan thermocouple in conjunction with a Leeds and 

Northrup potentiometer. 

A constant torque was applied to the specimen through 

a weight and pulley. The angular deformation, ©, produced 

by the torque was converted into linear motion by a 

micrometer screw. The latter moved the core of a differ¬ 

ential transformer which, in turn, activated a Sanborn 

recorder. This instrument recorded the angle of twist, 

9, as a function of time, t, with a maximum sensitivity 

of 0.05 radian at full scale deflection, 50 mm, on the 

recorder chart. The equipment was calibrated prior to 

each test 
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The specimens were prepared by casting commercial 

tin in steel molds. They were then machined to the 

dimensions given in Figure 2. Spectrographio analysis of 

a number of specimens revealed them to be of 99.30% purity, 

with the following major impurities: 0.51% Pb, 0.09% Sb, 

and 0.06% As. The grain size was approximately 50 grains 

per cm2 before straining. 

In carrying out the experiments the specimens were 

placed into the furnace and allowed to reach the testing 

temperature. The load was applied gradually by hand. 

Test runs lasted anywhere from twenty seconds to one hour. 

Since the results obtained by this method were expressed 

in terms of the angle of twist as a function of time at 

constant torque, it was necessary to convert the data into 

conventional terms of shear stress and strain. Under the 

assumption that the deformation was one of pure torsion, 

an equation was developed (see Appendix) by means of which 

the shear stress at the surface of the specimen could be 

calculated. It was found that a constant torque was very 

nearly equivalent to a constant stress. 
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RESULTS 

In Figure 3, steady-state creep rates at different 

torques are plotted as a function of the reciprocal 

temperature. At temperatures below about 210°C, the 

steady-state creep rates at constant torques followed 

closely the established relation given in Equation (4). 

The activation energy for this temperature range was 

found to have a value of Q, = 22.5 ± 1.0 Kcal/mol. This 

is in good agreement with the findings of several investi¬ 

gators. Frenkel, Sherby, and Dorn5 found Q = 21.0 ± 2.0 

Kcal/mol, while Wiseman, Sherby, and Dorn6 found Q, = 23.0 

Kcal/mol. Weertman and Breen? and Weertman^ whose obser¬ 

vations were made with both polycrystals and single crystals 

of tin, observed Q = 22.0 Kcal/mol. The most recent inves¬ 

tigations of the creep of tin have been made by Bonar and 

Craig8. Their results, however, were obtained at low 

temperatures, where a much lower activation energy is 

usually observed. At temperatures below 210°C, Q, appeared 

to be independent of stress, degree of strain, and tempera¬ 

ture , as is the case with the usual creep behavior of 

metals2. 

At temperatures above about 210°C the results indi¬ 

cated that the Arrhenius-type equation is no longer 

applicable. Judging from the high-temperature portions 

of the curves in Figure (3), the process can no longer be 
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viewed as one having a single activation energy. The 

slope of the curves tends toward very high values as the 

melting point is approached. The only other creep results 

in the high-temperature region with polycrystalline tin 

are those by Breen and Weertman9. The few data collected 

by those authors in the range near the melting point are 

not sufficient to corroborate or contradict the results 

given in Figure 3. 

Creep rates at constant temperatures, as a function 

of stress, are shown in Figure 4. Data for this diagram 

were obtained the curves in Figure 3, since it was 

difficult to repeat tests for different torques at iden¬ 

tical temperatures. By and large, the exponential expres¬ 

sion by Dorn, 

IS = A(T) crm, 

is consistent with the results given in Figure 4. In 

this equation A(T) is a temperature-dependent constant. 

The values for the exponent m varied from 3.6 to 4.4. 

Attempts were made to extend the observations of the 

stress-creep relationship in a more definite way to tempera 

tures even closer to the melting point. This was not 

possible because steady-state creep data could be obtained 

only for very small torques. Higher torques were precluded 

due to the extremely short duration of the high-temperature 

runs. 
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In Figures 5, 6, and 7, actual high-temperature 

creep curves are shown. They all still exhibit a definite 

linear portion. Yet, as the temperature rises, this 

steady-state portion tends to take up an increasingly 

smaller part of the entire creep curve, while the primary- 

creep portion virtually disappears. In the immediate 

vicinity of the melting point (at 228°C, not shown) it 

became very difficult to distinguish between secondary and 

tertiary creep. Tertiary-creep data at lower temperatures 

were sought, but the deformation before reaching tertiary 

creep became excessive, so that the range of validity of 

Equation (Al) in the Appendix was exceeded. 

A striking observation is that the strain at which 

tertiary creep starts, ©T, appears to be independent of 

torque, although it is highly temperature dependent. A 

similar observation was made by Feltham1^ with steel wires 

tested in tension. Andrade11, who worked with lead, 

interpreted tertiary creep as a recrystallization phenomenon. 

He expressed the strain at which recrystallization started 

during creep by 

£R = Ocr1*6, (6) 

where C was a constant independent of temperature. An 

attempt was made in this investigation to determine 

whether recrystallization was actually occuring at the 

onset of tertiary creep. Several specimens were strained 
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in creep to a twist angle just below that at which tertiary 

creep begins, 9>p. They were then carefully cut, polished 

by hand, and etched. Likewise, several specimens were 

strained in creep past polished, and etched. As shown 

in Figure 9, distortion, but not a change in grain size, 

occurred during tertiary creep. From several such examina¬ 

tions it was concluded that the initiation of tertiary 

creep was independent of recrystallization. 

An attempt was also made to observe grain boundary 

sliding. Several specimens were marked lightly with a 

razor blade on their surface and then strained in creep 

by various amounts. Microscopic analysis revealed no 

gross grain boundary sliding. 
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DISCUSSION 

The steady-state creep data discussed in the results 

are best explained in terms of Weertman’s dislocation- 

climb model. Results obtained at temperatures below 210°C 

verify observations of other investigators. The B term 

in Weertman’s Equation (5) is slightly temperature-dependent, 

so that the data of Figure 3 should actually be replotted 

to account for this temperature-dependence. According to 

Weertman’s original equation, B is inversely proportional 

to G3T, where G is the shear modulus and T is the absolute 

temperature. Foster12 has given data for the elastic 

modulus, E, of tin as a function of temperature. Assuming 

that E/G is independent of temperature, a correction factor, 

(G/Go)3 (T/Td), may be obtained from these data. GQ is 

just a convenient reference value of the shear modulus at 

T0 = 373°K. This correction factor was multiplied by the 

creep rates given in Figure 3, and the results were plotted 

in Figure 10. The only significant change in the data 

was a lowering in the activation energy from 22.5 Kcal/mol 

to 21.2 Kcal/mol. 

Steady-state creep rates obtained at temperatures 

above 210°C exhibit a departure from ordinary creep 

behavior. The unusual increase in the creep rate near 

the melting point may suggest a breakdown of the barriers 

holding the dislocation pile-ups. Stroh1^ proposes that 
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sessile dislocations might break down under the combined 

effects of high temperature and stress. Should this occur 

to a portion of the barriers, the effective length of 

piled-up groups of dislocations would increase. According 

to Weertman’s formulation, the creep rate should be 

proportional to the square of this length, so that the 

breakdown of sessile dislocations would enhance the creep 

rate. Due to the uncertainty of this hypothesis, a 

quantitative analysis is not justified. 

In Weertman’s analysis, the vacancy diffusion 

coefficient is a rate-determining factor. An unusual 

increase in this coefficient near the melting point could 

account for the high-temperature data of Figure 3. Such 

an increase is unlikely, however, as indicated by the work 

of Eckert and Drickamer^. They studied the self-diffusion 

rate of indium near the melting point, and observed an 

increase only within 1°C of the melting temperature. 

The possibility that impurity atoms might be cluster¬ 

ing at grain boundaries so as to cause there a lowering 

of the melting temperature was considered. Weinberg and 

Teghtsoonian15 showed, however, that 0.4fo Pb impurity in 

tin lowers the grain-boundary melting temperature only 

about 1°C. This work, plus the absence of any observable 

grain-boundary slip on the surface of the specimens used 

in this investigation, make such a possibility unlikely. 
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Many investigators have observed that tertiary creep 

is accompanied by the presence of small micro-cracks 

along grain boundaries normal to the tensile stress direc¬ 

tion,, This has led to the proposal of many models of 

tertiary creep based on crack formation and crack propaga¬ 

tion. Buffington and Cohen^-® contend that a high stress 

concentration is necessary for void formation. Such 

stress concentrations may be found at grain boundaries. 

Kochendorfer17 has provided a mechanism for the formation 

of cracks based on dislocations alone. In his theory, 

dislocations are forced together during the loading of 

the specimens, opening cracks during the beginning of 

creep. On the other hand, Crussard and Friedel18 have 

chosen to explain the mechanism in terms of vacancies alone. 

Small cracks, initiated during primary creep, grow by the 

addition of vacancies, which diffuse to the cracks. When 

a critical size is reached, the crack propagates through 

the material. More recently, Hull and Rimmer19 have 

developed a theory of crack failure based on vacancy 

diffusion along grain boundaries. They adopt a Griffith- 

crack^® criterion which leads to the following expression 

for the time to rupture as a function of stress: 

tr~F(T)/o--P, (7) 

where F(T) is a function of temperature, cT= externally 

applied stress, and P = hydrostatic pressure. These 
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authors present data for copper that corroborate their 

theory over a limited stress and temperature range. 

In this investigation, small cracks were observed 

along grain boundaries after tertiary creep. In order to 

determine whether the Hull-Rimmer mechanism of vacancy 

diffusion was the prevailing one, a curve of log t^ vs. 

log <r was plotted from the data of Figure 5. The slope 

was found to be constant and equal to -4.7. Comparison 

with Equation (7) shows that tip is much more stress-depend¬ 

ent than it would be for a vacancy mechanism. 

The data of Figures 5-7 suggest that strain is an 

important parameter. An attempt to explain these data in 

terms of a pile-up mechanism follows: The specimen is 

stressed and begins to creep. The rate-determining factor 

is dislocation climb. Each element of creep strain is due 

to one dislocation’s climbing over one barrier. At low 

stresses, however, grain boundaries offer an insurmountable 

barrier to climb13*21. Hence, dislocations start piling 

up on slip planes at grain boundaries, causing a high stress 

concentration there. This stress may become large enough 

to propagate existing microcracks. When this happens, the 

material able to withstand the applied load is reduced, 

so that the effective applied stress is increased. 

Eventually this- leads to catastrophic creep and failure. 

A check on the validity of this proposed mechanism 

was made by creeping specimens to a strain just below ©ip, 



15 

reversing the torque, and observing the strain at which 

tertiary creep was initiated, Figure 8. When the torque 

was reversed, a high initial creep rate was observed. This 

could be due to the unpiling of the dislocations. As the 

strain crossed the zero point, all trace of the previous 

creep had disappeared, and the specimen went on into 

tertiary creep at the same ©ip as in an ordinary test. 

An analysis by Stroh22 lends itself well to this 

formulation. Stroh considers the stress produced by a 

pile-up of n dislocations at an obstacle. This pile-up 

causes a stress concentration large enough to propagate a 

crack whenever n > n*, n* being given by 

n* = 12s/bcr. (8) 

In this equation, s - surface tension = 685 dynes/cm for 

tin at 215°C28, u = applied shear stress, in dynes/cm2, 

and b = Burgers vector ■ 3 x 10“8 cm. Stroh*s analysis 

was chosen since the cracks observed in this investigation 

were parallel to the grain boundaries. A similar analysis 

was made by Gilman28 for cracks parallel to the slip plane. 

If it is assumed that the number of dislocations piling up 

at a grain boundary is proportional to the strain, and if 

the steady-state strain rate is taken proportional to d4, 

an equation may be found giving the time at which rupture 

occurs to be inversely proportional to d5. This is in good 

agreement with the data of Figure 5. 



16 

The major objection to this theory is that an absurdly 

large pile-up would be necessary to cause fracture. For a 

typical applied stress, 250 psi, Equation (8) gives n* = 

16,000 dislocations. The length of such a pile-up, calcu¬ 

lated from Stroh’s analysis, would be about 0.5 cm! If the 

surface energy, s, is taken as the grain boundary surface 

energy, rather than the bulk surface energy, a slightly 

reduced value for n* would undoubtedly be obtained. The 

pile-up, however, would still be exceedingly large. 

Theoretical interpretations of tertiary creep proposed 

by various authors have fallen into two categories. The 

first, based on void formation by vacancy migration, leads 

to an incorrect stress dependence. The second, which takes 

stress concentrations due to dislocation pile-ups into 

account, at least in the case of tin, leads to unreasonably 

large pile-ups. Further theoretical work, possibly based 

on a completely different approach, will be necessary to 

explain the experimental observations of this investigation. 
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CONCLUSIONS 

1. Commercial tin has a steady-state creep activation 

energy of 22.5 Kcal/mol at temperatures from 100°C 

to 210°C. 

2. At temperatures approaching the melting point, the 

simple Arrhenius-type equation is no longer applicable. 

3. The strain at which tertiary creep starts is independ¬ 

ent of stress, though it is highly temperature depend¬ 

ent. 

4. None of the current theories adequately describe the 

tertiary creep mechanism. 
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APPENDIX 

The following derivation is credited to Mr. J. R. 

Baker, formerly a graduate student of The Rice Institute. 

The results are similar to those obtained by Ludwik2^ from 

the theory of plasticity. 

Consider a section of the cylindrical portion of the 

specimen. At a given temperature, the shear stress at a 

distance r from the axis, and due to a torque “U, is 0^.. 

During steady-state creep at a constant temperature it is 

assumed that (Tr is a function only of r and the creep 

rate 9. It is further assumed that planes perpendicular 

to the specimen axis remain plane during deformation. 

Therefore, since the ends of the specimen are rigidly 

constrained and rotated, there must be at least one cross 

section of the specimen where the strain is given by 

6 = r9/L, L being the specimen length. Therefore, the 

following formula can be used to compute the strain rate. 

The total torque on the specimen is given by 

rb 
X = 2TT ) o~r r

2 dr, 
J a 

where a and b are the inner and outer radii of the 

cylinder. Since o*r = (Tr(r,9), the following partial 

derivatives may be formed: 

o o , 

6 3 rO/L (Al) 

(A3) 
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/j*v\ _ / 7>av\/ it \ m ©> ^av 
l ie \ zi J( ^r/g L 

Combining (A3) and (A4), one obtains 

/^\ r / tov\ 
l 3© }r 6 \ T) V / S 

Hence from (AS), 

MIX - 2TTJ[b(^)« 
to both sides of (A6) gives 

+ 31 = 2Tr£(-~)§ r
3dr ■+ 6TT J' <rY r

zdr 

- PP <*- 

= 21T [crb b
3- ^a3]^ (A7) 

where cr^ and are the stresses evaluated at the outer 

and inner surfaces of the specimen. Equation (A7) may be 

put into the following form: 

x 9 + 31 
CTb- <& (Q/bf (A8) 

Since the stress cra near the axis of the specimen cannot 

exceed the stress CT^ on an outer fiber, and since 

(a/b)3« 1, 0^(a/b)3 may be neglected compared to <Xb<, 

This gives the formula used to compute the stresses shown 

in Figure 3: 

Adding 31 

9 
VC 
■&Q 

(A4) 

(A5) 

(A6) 
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cr = crb 
+ 3T 

2rrb* (A9) 

Tests were run at different values of T and T so 

that a curve of T vs. In 6 could be plotted. The slope 

gives the first term in the numerator of Equation (A9). 

At a given torque, it was observed that was essentially 

constant and had a value close to 1.0 lb-in. Any variation 

in the stress computed for a given torque in this manner 

was negligible so it was concluded that a constant torque 

gave a constant stress at all temperatures tested. 
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Symbol 

cr 
e 
i 

z 

9 
o 

9 

Q 

R 

T 

r 

a 

b 

L 

9<p 

SYMBOLS 

Description Units 

stress 

strain 

strain rate 

torque 

angle of twist 

torsional creep rate 

activation energy 

universal gas constant 

absolute temperature 

radius (variable) 

specimen inner radius 

specimen outer radius 

specimen length 

strain at which tertiary 
creep starts 

psi 

l/sec 

lb-in 

radian 

rad/sec 

cal/mol 

1.986 cal/mol-°K 

°K 

inch 

0.0703 inch 

0.2250 inch 

0.8750 inch 

radian 
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FIGURE I! A TYPICAL CREEP CURVE 
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FIGURE 2: TORSIONAL CREEP TESTING 
MACHINE AND SPECIMEN 
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FIGURE 3! STEADY-STATE CREEP RATES AT DIFFERENT TORQUES 
AS A FUNCTION OF TEMPERATURE 

TEMPERATURE (°C) 
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FIGURE 4: LOGARITHMIC PLOT 

OF STEADY-STATE CREEP 
RATE VS. STRESS 

TORQUE (lb-in) 



FIGURE 5! DATA AT 215° C 
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FIGURE 6: DATA AT 220° C 
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FIGURE 7: DATA AT 224° C 



FIGURE 8: REVERSED TORQUE DATA 
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FIGURE 9: GRAIN STRUCTURE AFTER CREEP 

STEADY-STATE CREEP 215°C 

TERTIARY CREEP 215°C 
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FIGURE 10: LOG (TG3£) VS. I/T FOR DIFFERENT TORQUES 

TEMPERATURE (°C) 


