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Abstract

Subdivision schemes for variational splines were introduced in the paper [WW98]. This
technical report focusses on discussing the mathematical properties of these subdivision
schemes in more detail. Please read the original paper before reading this analysis.

1 Introduction and Review

Variational subdivision schemes were defined by a sequence of subdivision matri-
ces which have to satisfy the fundamental relation

(1)

where is the energy matrix derived from the finite element basis functions and
describes upsampling of coefficients from a coarse to a finer grid by inserting

zeros for an new coefficients.

As the original paper demonstrated, the subdivision matrices can be derived
from the energy matrices as a matter of linear algebra. In practice, one would
like to answer several important questions concerning these subdivision schemes.
Do they always converge to a solution? If so, is that solution guaranteed to be a
minimizer of the associated variational problem? In this section, we analyze these
questions.



2 Convergence of the Scheme

A sequence of functions , , , ... uniformly converges to a function
if

(Here, the infinity norm of a function is the maximum of its absolute value over
.) If , then the subdivision scheme defined by the matrices is

uniformly convergent if for any set of bounded initial coefficient vector , the se-
quence of functions , , , ... uniformly converges where .
Uniform convergence necessarily implies that the limit function is continuous.

The key question is: Given the energy matrices , does there exists a sequence
of subdivision matrices satisfying equation 1 that define a uniformly convergent
subdivision scheme. We believe the following to be true.
Hypothesis:

¯
Given a continuous energy functional of order , there exists a se-

quence of energy matrices and an associated sequence of subdivision matrices
defining a uniformly convergent subdivision scheme if and only if

where is the dimension of .

There are several pieces of evidence to support this belief. For example, if ,
then the space of functions for which the energy functional is defined, ,
is a subset of the space of continuous functions on . (See the Sobolev embedding
theorem [OR76, pp. 79-82].) Since the subdivision matrices reflect the solution
process for the variational problem, the subdivision should naturally converge to
continuous functions. Conversely, if , then can contain discontinu-
ous or unbounded functions. Any subdivision scheme for such a space of functions
is necessarily not convergent.

For example, Laplace’s equation is order one and of dimension two. Therefore,
its corresponding solution space contains discontinuous functions. In par-
ticular, may have discontinuous spikes at knots in . Close analysis of the
subdivision scheme given in the preceding section shows that the scheme diverges
very slowly to produce spikes of infinite height at the knots of . Normalizing
these spikes to interpolate after each step of subdivision produces a sequence of
narrower and narrower spikes that converge to the desired solution.

If the define a uniformly convergent subdivision scheme, then the associated
analysis is much more straightforward. If is the limit function associated with
the sequence of solution vectors , , , ..., then there exists a set of basis func-
tions satisfying . Since , these basis functions
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are related to the subdivision matrices by:

(2)

If is an arbitrary coefficient vector associated with the knot set , then the limit
function associated with is

Note that the basis functions associated with a convergent subdivision scheme
are not interpolating. Evaluating the functions at knots yields an interpo-
lation matrix satisfying

For example, if is chosen such that , then and must
agree on . This choice of forces the final limit function to satisfy the interpo-
lation conditions.

By equation 2, an alternative way of computing the values of at is to
subdivide the basis functions using , compute the values of the subdivided basis
functions at and downsample using . This observation yields the matrix
relation:

(3)

3 The energy matrix for the scheme

Given and , the energy matrix for a convergent subdivision scheme is partic-
ularly simple. If , then we claim that the energy function for
satisfies

Before proving this fact, we note the following matrix relation. Take the transpose
of both sides of equation 1 and multiply by ,

(4)
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Applying equation 3 to the right-hand side of the first equation yields equation 4.

Theorem 1 Let the matrices define a uniformly convergent subdivision scheme.
Given a function of the form , then the energy of this function satisfies

Proof: Given the initial vector , let subsequent vectors be defined by the sub-
division process:

for . If the are the approximate solution produced by the finite elements,
, then these functions uniformly converge to by hypothesis.

Since this convergence is uniform, their corresponding energies are also conver-
gent.

Subtracting from both sides of this equation yields

By equation 4,

for all . Pushing inside the limit yields

(5)

We conclude by showing that righthand side of this equation converges to zero.

By the construction, , are the values of the limit function sampled at the knots
. Due to uniform convergence of the subdivision scheme, the coefficient vectors
uniformly converge to the values of the limit function sampled at . There-

fore, also uniformly converges to zero. Since is bounded, the
righthand side of equation 5 converges to zero. Therefore, the theorem holds.

This theorem can be extend to include the continuous inner product used in defining
. In particular, the th entry of is the inner product of the th and th basis
function in . This extension allow a simple characterization of those functions
that minimize .
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4 Minimization of the energy functional

Let denote the span of the basis functions defined by the subdivision
scheme. Since the energy functional is defined for the basis function ,

. Due to their definition through subdivision, the are nested,

We claim that is exactly the space of minimizers of over the knots .

To show this fact, we construct a multi-resolution expansion in terms of the for
a function in . Define the complimentary spaces satisfying

consists of those functions in that vanish at the knots of the coarser
space . A function can be written as a combination of a function
in and a residual function in such that

Therefore, the space can be written as the sum of the spaces and ,

The beauty of this particular multi-resolution expansion is that the spaces and
are orthogonal with respect to inner product associated with ,

Theorem 2 If and , then

Proof: Since is in , can be written as . Subdividing once,
can also be expressed as . Since ,

can be written as . As noted in the previous section, the continuous inner
product satisfies:
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Taking the transpose of equation 1 and multiplying both sides by yields

Substitution in the previous equation yields that

Since is in , vanishes on . An equivalent interpretation is that
sampling on and downsampling to also yields zero. In matrix terms,
this condition is . Therefore, the inner product above is zero.

Consider the function written as the infinite expansion

(6)

where and . Due to the bi-linearity of the inner product, the
energy of satisfies

By theorem 2, the inner product of and is zero. Likewise, the inner product
of and is zero when . Therefore,

Based on this equation, it is clear that the minimumenergy function that agrees with
on is simply , i.e. the function defined by the subdivision scheme.

In fact, this observation allows fast reconstruction of the minimum energy function
that agrees with on . This function is simply the truncation of the
infinite expansions of at level ,
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Since for , agrees with on . We intend to explore
the multi-resolution aspect of this idea more completely in a future paper.
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