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Abstract

Subdivision schemes for variational splines were introduced in the paper [WWO98]. This
technical report focusses on discussing the mathematical properties of these subdivision
schemes in more detail. Please read the original paper before reading this analysis.

1 Introduction and Review

Variational subdivision schemes were defined by a sequence of subdivision matri-
ces 5, which have to satisfy the fundamental relation

Er41 Sk = Uy Ey, (1)

where F/;, is the energy matrix derived from the finite element basis functions and
U} describes upsampling of coefficients from a coarse to a finer grid by inserting
zeros for an new coefficients.

As the original paper demonstrated, the subdivision matrices S; can be derived
from the energy matrices /75, as a matter of linear algebra. In practice, one would
like to answer several important questions concerning these subdivision schemes.
Do they always converge to a solution? If so, is that solution guaranteed to be a
minimizer of the associated variational problem? In this section, we analyze these
questions.



2 Convergence of the Scheme

A sequence of functions Fy(t), Fi(t), Fi(t), ... uniformly converges to a function
P(t)if

Jim (| Fi(t) = F(t)] = 0.

(Here, the infinity norm of a function is the maximum of its absolute value over
Q) If Fi(t) = pp Bi(t), then the subdivision scheme defined by the matrices Sy is
uniformly convergent if for any set of bounded initial coefficient vector py, the se-
quence of functions Fy(t), Fi (1), F5(t), ... uniformly converges where py41 = Sips.
Uniform convergence necessarily implies that the limit function F'(¢) is continuous.

The key question is: Given the energy matrices Fj, does there exists a sequence
of subdivision matrices S} satisfying equation 1 that define a uniformly convergent
subdivision scheme. We believe the following to be true.

Hypothesis: Given a continuous energy functional £ of order m, there exists a se-
quence of energy matrices Fj; and an associated sequence of subdivision matrices
Sk defining a uniformly convergent subdivision scheme if and only if 2m > d
where d is the dimension of (.

There are several pieces of evidence to support this belief. For example, if 2m > d,
then the space of functions for which the energy functional £ is defined, H,,(€2),
is a subset of the space of continuous functions on (2. (See the Sobolev embedding
theorem [OR76, pp. 79-82].) Since the subdivision matrices 5} reflect the solution
process for the variational problem, the subdivision should naturally converge to
continuous functions. Conversely, if 2m < d, then H,,({2) can contain discontinu-
ous or unbounded functions. Any subdivision scheme for such a space of functions
is necessarily not convergent.

For example, Laplace’s equation is order one and of dimension two. Therefore,
its corresponding solution space H;(R*) contains discontinuous functions. In par-
ticular, (1) may have discontinuous spikes at knots in 7. Close analysis of the
subdivision scheme given in the preceding section shows that the scheme diverges
very slowly to produce spikes of infinite height at the knots of 7. Normalizing
these spikes to interpolate after each step of subdivision produces a sequence of
narrower and narrower spikes that converge to the desired solution.

If the S) define a uniformly convergent subdivision scheme, then the associated
analysis is much more straightforward. If F'(¢) is the limit function associated with
the sequence of solution vectors pg, p1, p2, ..., then there exists a set of basis func-
tions Ny(t) satisfying F'(t) = prNi(t). Since pr+1 = Skpr, these basis functions



are related to the subdivision matrices by:

Nu(t) = Nyt (1) S5 )

If py. is an arbitrary coefficient vector associated with the knot set 7}, then the limit
function associated with py, is

Pk(t) = pka(t).

Note that the basis functions Ny () associated with a convergent subdivision scheme
are not interpolating. Evaluating the functions Py () at knots 7}, yields an interpo-
lation matrix [} satisfying

Pr(Ty) = Lipr.

For example, if po is chosen such that lop, = P(T}), then Py(t) and P(¢) must
agree on 7g. This choice of py forces the final limit function to satisfy the interpo-
lation conditions.

By equation 2, an alternative way of computing the values of N(¢) at T} is to
subdivide the basis functions using 5}, compute the values of the subdivided basis
functions at T}, ,; and downsample using /]. This observation yields the matrix
relation:

Ul Tip1 Sy = 1. (3)

3 The energy matrix for the scheme

Given Fj, and [, the energy matrix for a convergent subdivision scheme is partic-
ularly simple. If P;(¢) = pr. Ni(t), then we claim that the energy function for P()
satisfies

ELPs] = pi (EyIi)ps.

Before proving this fact, we note the following matrix relation. Take the transpose
of both sides of equation 1 and multiply by 75,15},

ST Eyg1 Tiy1 Sy = By UL T4 Sy,
= Py 1y. 4



Applying equation 3 to the right-hand side of the first equation yields equation 4.

Theorem 1 Let the matrices Sy define a uniformly convergent subdivision scheme.
Given a function P;(t) of the form p; N, (1), then the energy of this function satisfies

EIP;) = pl (E;1;)p;.

Proof: Given the initial vector p;, let subsequent vectors p;, be defined by the sub-
division process:

PE = SkSk_l...S]‘pj.

for k > j.Ifthe F(¢) are the approximate solution produced by the finite elements,
pr Bi(1), then these functions uniformly converge to F'(¢) = P;(¢) by hypothesis.
Since this convergence is uniform, their corresponding energies are also conver-
gent.

E[P)] = lim E[F] = lim py Eyp.

k— 00

Subtracting p? E; I;p; from both sides of this equation yields
/A R B i}

EIP] = pj Ejlip; = (lim pg Expr) — pf ELp;.

By equation 4,

pl E;Lip; = pf Exlips

for all £ > ;. Pushing pjT E;I;p; inside the limit yields

EP) —plEjlip; = Jim i Er(pr — Lupr). 5)

We conclude by showing that righthand side of this equation converges to zero.

By the construction, /;py, are the values of the limit function sampled at the knots
T}.. Due to uniform convergence of the subdivision scheme, the coefficient vectors
pr uniformly converge to the values of the limit function sampled at 7}. There-
fore, ||px — Ixpk|| also uniformly converges to zero. Since ||px ||~ is bounded, the
righthand side of equation 5 converges to zero. Therefore, the theorem holds. O

This theorem can be extend to include the continuous inner product used in defining
E. In particular, the :5th entry of K} I} is the inner product of the :th and jth basis
function in Ny (). This extension allow a simple characterization of those functions
that minimize £.



4 Minimization of the energy functional

Let V) denote the span of the basis functions Ni(¢) defined by the subdivision
scheme. Since the energy functional £ is defined for the basis function N (¢), Vi C
H.,(£2). Due to their definition through subdivision, the V} are nested,

Vo C o C Vi C Vi C oo C Hi(Q).

We claim that V4 is exactly the space of minimizers of £ over the knots 7j.

To show this fact, we construct a multi-resolution expansion in terms of the V}, for
a function P(¢) in H,, (). Define the complimentary spaces W, satisfying

W, = span{Rk(t) - Vk_|_1|Rk(Tk) = 0}
W} consists of those functions in V;; that vanish at the knots 7}, of the coarser

space V;. A function P(t¢) € Vj4 can be written as a combination of a function Py
in V;, and a residual function B in W}, such that

Pp(Ty) = P(T),
Ri(Ty)=0.
Therefore, the space V4,1 can be written as the sum of the spaces V; and Wy,

Vigr = Vi + Wi

The beauty of this particular multi-resolution expansion is that the spaces V; and
W, are orthogonal with respect to inner product associated with &,

(F,G) = / S e DiF(8))(DG()) .

Theorem 2 If P, € V}, and R), € Wy, then
Proof: Since P;(t) is in Vi, Py(t) can be written as p, Ni(¢). Subdividing once,
Pyi(t) can also be expressed as (Sipr ) Np+1(t). Since Ri(t) € Wi € Vigr, Ri(t)

can be written as r; N1 (¢). As noted in the previous section, the continuous inner
product satisfies:

(Py, Ri) = pf ST Ergr Ly



Taking the transpose of equation 1 and multiplying both sides by ;. yields

ST B Inpy = ERUT gy,

Substitution in the previous equation yields that
(P, Ri) = p{ ExU[ Ipars.
Since Ry(t) is in Wy, Ry (t) vanishes on Tj. An equivalent interpretation is that

sampling R (¢) on Ty41 and downsampling to 7}, also yields zero. In matrix terms,
this condition is U, kT I;117; = 0. Therefore, the inner product above is zero. O

Consider the function P(¢) written as the infinite expansion

P) = Ra(t) + Y Rilt), ©

where Py(t) € Vp and R;(t) € W;. Due to the bi-linearity of the inner product, the
energy of P(t) satisfies

E[P]=(P, P),
:<PO+§:Ri7PO+§:Ri>7

= <P07 P0> + QZ<P07 Ri> + ZZ<R“ Rj>.

By theorem 2, the inner product of Fy and R; is zero. Likewise, the inner product
of R; and R; is zero when 1 # j. Therefore,

E[P]=(Fo, Fo) + Z<RivRi>7

= &P+ Y E[R],

Based on this equation, it is clear that the minimum energy function that agrees with
P(t) on Ty is simply Py(?), i.e. the function defined by the subdivision scheme.

In fact, this observation allows fast reconstruction of the minimum energy function
that agrees with P(¢) on 7}. This function P4(t) is simply the truncation of the
infinite expansions of P(t) at level k,



Since R;(Ty) = 0 fori > k, P.(t) agrees with P(t) on T),. We intend to explore
the multi-resolution aspect of this idea more completely in a future paper.
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