
RICE UNIVERSITY 

Essays in Mechanism Design 

by 

J ung Sook You 

A THESIS SUBMITTED 
IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE 

Doctor of Philosophy 

APPROVED, THESIS COMMITTEE: 

Herve w G~rge A 
Peterkin Professor of Economics 

~$:=:A 
Simon Grant, Lay Family 
Professor of Economics 

Anna Bogomolnaia, Associate 
Professor of Economics 

Moshe Y. Vardi, Karen Ostrum 
George Professor in Computational 
Engineering 

HOUSTON, TEXAS 
AUGUST 2010 



ABSTRACT 

Essays in Mechanism Design 

by 

J ung Sook You 

This thesis addresses problems in the area of mechanism design. In many settings 

in which collective decisions are made, individuals' actual preferences are not publicly 

observable. As a result, individuals should be relied on to reveal this information. 

We are interested in an important application of mechanism design, which is the 

construction of desirable procedures for deciding upon resource allocation or task 

assignment. 

We make two main contributions. First, we propose a new mechanism for allocat­

ing a divisible commodity between a number of buyers efficiently and fairly. Buyers 

are assumed to behave as price-anticipators rather than as price-takers. The proposed 

mechanism is as parsimonious as possible, in the sense that it requires participants to 

report a one-dimensional message (scalar strategy) instead of an entire utility func­

tion, as required by Vickrey-Clarke-Groves (VCG) mechanisms. We show that this 



11 

mechanism yields efficient allocations in Nash equilibria and moreover, that these 

equilibria are envy-free. Additionally, we present distinct results that this mechanism 

is the only simple scalar strategy mechanism that both implements efficient Nash 

equilibria and satisfies the no envy axiom of fairness. The mechanism's Nash equi­

libria are proven to satisfy the fairness properties of both Ranking and Voluntary 

Participation. 

Our second contribution is to develop optimal VCG mechanisms in order to as­

sign identical economic "bads" (for example, costly tasks) to agents. An optimal VCG 

mechanism minimizes the largest ratio of budget imbalance to efficient surplus over 

all cost profiles. The optimal non-deficit VCG mechanism achieves asymptotic bud­

get balance, yet the non-deficit requirement is incompatible with reasonable welfare 

bounds. If we omit the non-deficit requirement, individual rationality greatly changes 

the behavior of surplus loss and deficit loss. Allowing a slight deficit, the optimal in­

dividually rational VCG mechanism becomes asymptotically budget balanced. Such 

a phenomenon cannot be found in the case of assigning economic "goods." 
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Chapter 1 

Introduction 

1.1 Vickrey-Clarke-Groves Mechanisms 

This thesis deals with an important application of mechanism design, which is the 

construction of procedures for deciding upon resource allocation or task assignment. 

We denote by N = { 1, · · · , n} the set of agents, and assume that there are at least two 

agents. We focus on the special class of environments in which agents have quasi-linear 

preferences. Each agent i E N has a private monetary valuation on consumption xi· 

There is a monetary transfer ti E R between each agent i and the mechanism. Agent 

i may need to pay some money to the mechanism or the mechanism may subsidize the 

agent. The net utility of each agent i E N has the following quasi-linear preference: 

(1.1) 

1 
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The efficient allocation (of resources) is defined to be an allocation x such that: 

x E argmax L ui(xi) 
xEX iEN 

(1.2) 

where X is the set of feasible allocations. A direct revelation mechanism1 is strategy­

proof (dominant strategy incentive compatible) if for every agent, truth telling is a 

dominant strategy equilibrium of the mechanism. 

In social choice environments with quasi-linear preferences and private valuations, 

a group of mechanisms derived from the seminal work of Vickrey (1961), Clarke (1971) 

and Groves (1973) consists of mechanisms whose allocation rules select the efficient 

and strategy-proof outcome. Green and Laffont (1977, 1979) discovered that any 

direct revelation mechanism satisfying those two properties is a member of Vickrey-

Clarke-Groves mechanisms (VCG mechanisms). Holmstrom (1979) proved that VCG 

mechanisms are unique on restricted domains which are smoothly connected, in par-

ticular convex domains (Suijs (1996) and Carbajal-Ponce (2007) investigated further 

into the uniqueness of VCG mechanisms). 

After collecting reported valuations u from agents, a VCG Mechanism selects 

resource allocation x such that: 

(1.3) 

1 A mechanism is a direct revelation mechanism if the strategy each agent reports is his valuations 
on all possible allocations 



and implements the following payment scheme for each i E N: 

ti ( u) = - L uj ( x j ( u)) + hi ( u_i) 
#i 

where hi(·) is an arbitrary function of u-i· 

Therefore, agent i's net utility for VCG mechanisms is: 

ui(xi(ui,u-i)) + L::uj(xj(ui,u-i))- hi(u-i)· 
#i 

3 

(1.4) 

(1.5) 

Since hi depends only on the messages u_i sent by other agents, agent i tries to 

maximize ui(xi(ui, u_i)) + Lj-:~i Uj(Xj(ui, u_i)) by choosing Ui· This expression has 

a maximum, maxxEX ui(xi) + L#i uj(xj)· Agent i can achieve this maximum by 

reporting his true utility function ui according to expression (1.3). Truth telling is 

a dominant strategy for every agent, and therefore, VCG mechanisms select efficient 

allocation x ( u). 

Despite satisfying strong incentive compatibility and efficiency, VCG mechanisms 

can be too complicated to be of use in some cases (Nisan and Ronen, 2007), and are 

not guaranteed to be budget balanced (Green and Laffont (1979)). These difficulties 

of VCG mechanisms have recently led economists and computer scientists to search 

alternative mechanisms (Johari and Tsitsiklis (2007), Maheswaran and Basar (2006), 

Yang and Hajek (2006a, 2006b)), or to identify particular VCG mechanisms minimiz­

ing budget imbalance (Bailey (1997), Deb, Gosh and Seo (2002), Green et a1.(1976), 

Green and Laffont (1979), Guo and Conitzer (2009), Zhou (2007), Moulin (1986), 

Deb and Seo (1998)). 

As we explain in detail in Chapter 2, when a resource is divisible (for example, 
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electricity in power grid), agents' reporting utility functions to a VCG mechanism 

implies that each agent should submit an infinite number of valuations to describe 

his utility function. Therefore, the communication between every agent and the 

mechanism requires exponential growth of effort which probably causes an extra cost 

to the agent (Rothkopf (2007)). Additionally, computation of the efficient allocation 

and payment is almost intractable (NP-hard) in VCG mechanisms when a resource 

is divisible (Nisan and Ronen, (2007), Rothkopf (2007) ). 

On the other hand, when objects to be allocated are identical and indivisible, 

implementing VCG mechanisms would not cause informational burden on agents. 

However, we still face the fact that every VCG mechanism cannot be budget bal­

anced at all profiles. If a VCG mechanism generates a budget surplus, then it needs 

to be given away to a passive residual claimant in order to preserve the incentive com­

patibility of a VCG mechanism. In case of budget deficit, the residual claimant must 

finance the mechanism using outside monetary source. Interpreting the budget im­

balance of a mechanism as its implementation cost, Chapter 3 focuses on minimizing 

budget imbalance in the original VCG mechanisms. 

1.2 Divisible Commodity Allocation and Scalar 

Strategy Mechanisms 

For the problem of allocating a divisible commodity where the total amount of the 

resource is R > 0, the monetary value of agent i's resource share Xi E [0, R] is 

represented by a utility function, ui, that is strictly increasing, concave, and smooth. 

For the case of a divisible resource, the amount of information each agent should 
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report to a VCG mechanism is infinitely dimensional. As a class of alternative mech­

anisms to complicated VCG mechanisms, scalar strategy mechanisms have received 

intense attention from computer scientists, interested in designing network capacity 

allocation mechanisms. Kelly (1997) and Kelly et al. (1998) have proposed network 

bandwidth allocation algorithms, where participants submit scalar bids, and then the 

algorithms achieve efficiency under price taking behavior. 

Since every agent is required to submit only a one-dimensional message in scalar 

strategy mechanisms, strategy-proofness is no longer achievable incentive compati­

bility. Instead, we are interested in Nash incentive compatibility of scalar strategy 

mechanisms, that is, the scalar strategy mechanism always induces aN ash equilibrium 

in which the resource is allocated efficiently for a given preference profile. Adopting 

Nash incentive compatibility, for the uniform price model in Kelly (1997), the recent 

literature has focused on its efficiency loss under price anticipating behavior (Mah­

eswaran and Basar (2005), Johari and Tsitsiklis (2004) and Hajek and Yang (2004)). 

For multi-price models, Kelly et al. (1998) provided the original idea of a mech­

anism that maximizes total surrogate utilities, and this has inspired the following 

multi-price scalar strategy mechanisms: VCG-like mechanisms by Johari and Tsit­

siklis (2007); g-mechanisms by Maheswaran and Basar (2006) and Yang and Hajek 

(2006a); and VCG-Kelly mechanisms by Yang and Hajek (2006b). These mechanisms 

have been proven to implement efficient Nash equilibria. Among multi-price scalar 

strategy mechanisms, VCG-like mechanisms in Johari and Tsitsiklis (2007) have the 

most general form and thus, we will study VCG-like mechanisms in Chapter 2. 
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1.2.1 VCG-like Mechanisms 

VCG-like mechanisms use one-dimensional message (scalar strategy) spaces and dif­

ferentiated unit prices. They are similar in both spirit and form to the VCG mecha-

nisms except that each individual reports a one-dimensional message, rather than his 

entire utility function. 

A VCG-like mechanism first requires each agent i to report a nonnegative 

real number ()i which selects a surrogate utility function u(·, ()i) from a given single 

parameter family of functions. The set of surrogate utility functions is the same for 

all agents. After the profile of messages () is collected, VCG-like mechanisms choose 

the resource allocation x such that: 

and the payment scheme t designed similarly to VCG mechanisms such that: 

ti(()) = - L u(xi(()), ()i) + hi(()_i) for all i E N 
#i 

(1.6) 

(1.7) 

where hi(·) is an arbitrary function of ()-i· Thus, the net utility of agent i is written 

as: 

ui(x(e)) + L u(xi(e), ei)- hi(e-i)· 
#i 

(1.8) 

According to expression (1.6), VCG-like mechanisms choose the resource allo­

cation to maximize the sum of surrogate functions, while VCG mechanisms try to 

maximize the sum of reported utility functions as written in expression (1.3). By 
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comparing equation (1.4) and equation (1.7), we notice that both payment schemes 

for VCG mechanisms and VCG-like mechanisms are similarly designed, except that 

VCG mechanisms determine one's payment based on others' reported utility func­

tions, whereas VCG-like mechanisms decide one's payment based on surrogate func­

tions (or scalar strategies) chosen by others. 

As VCG-like mechanisms use the similar idea to that of VCG mechanisms, we 

can anticipate that VCG-like mechanisms would achieve some type of incentive com­

patibility and efficiency, but cannot be budget balanced at all profiles. In VCG-like 

mechanisms, agents select their surrogate functions equating their true marginal utili­

ties with marginal price in such a way that the VCG-like mechanisms achieve efficient 

allocations in Nash equilibria. VCG-like mechanisms are indeed shown to be the only 

scalar strategy mechanisms which achieve efficient allocations for a given utility pro­

file under regularity assumptions, but we also show that it is not possible for them 

to be budget balanced at all profiles in Chapter 2. 

1.2.2 Scalar Strategy Mechanisms and No Envy Axiom 

Our investigation into VCG-like mechanisms will reach further to consider fairness 

properties of VCG-like mechanisms. For multi-price mechanisms such as VCG-like 

mechanisms, buyers may dislike price discrimination and thus become more sensi­

tive to fairness issues. No envy (envy-freeness) axiom is a persuasive standard of 

fairness since each participant is maximally satisfied with his resource share and pay­

ment compared to what others receive and pay (Foley (1967), Thomson (2007)). A 
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mechanism is envy-free (or a mechanism satisfies no envy) if: 

u·(x·) - t· > u·(x ·) - t · 2 2 2- 2 J J (1.9) 

holds for all pairs in N at equilibrium allocations x and payment t, given a vector of 

utility functions u. 

For the problem of allocating heterogeneous indivisible objects, Papai (2003) 

identifies a class of envy-free VCG mechanisms when utilities are superadditive.2 For 

the same problem, Yengin (2008) characterizes a class of VCG mechanisms satisfying 

envy-free and egalitarian-equivalence axioms on restricted domains.:{ 

However, for the problem of allocating a divisible resource, finding the com-

plete set of efficient and envy-free mechanisms in quasi-linear environments poses a 

problem. Moulin (2008) discusses that efficient cost sharing demand mechanisms for 

divisible commodities cannot reach no envy. 

Maskin (1999) and Fleurbaey and Maniquet (1997) show that, for preferences 

satisfying monotonic closedness4 , the no envy axiom is satisfied if an allocation rule 

is Nash implementable in addition to satisfying equal treatment of equals. Unfor-

tunately, quasi-linear preferences are not monotonically closed, rendering Maskin's, 

and Fluerbaey and Maniquet's promising results inapplicable. Likewise, Zhang (2005) 

and Feldman et al (2005) have studied a modified version of the no envy axiom, c-

2 Utilities are superadditive if the utility of a set of objects is at least the sum of the utilities of 
any combination of bundles of objects that it contains. 

3 Egalitarian equivalence requires a mechanism to choose those allocations such that each agent 
is indifferent between a common reference and his assigned resource share with payment. 

4 Let X denote an agent's consumption set with typical elements a, b, .... , and R denote the domain 
of admissible preferences over X. We define Monotonic Closedness as follows: vk, k' E R, \Ia, bE X 
such that aPb, 3R~' E R, Vc EX, (i) ak'c =} aR"c, (ii)bRc =} bR"c, and (iii)""' (ai"b). 
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approximate envy-freeness5 , but their results are only applicable to cases of multiple 

resource allocation. Finding a closed form solution to describe the general structure 

of efficient and envy-free mechanisms is a challenging task for the problem of divisible 

resource allocation. 

1.2.3 Simple Envy-Free Mechanism 

Because there is no literature that studies fairness implication of scalar strategy mech­

anisms, the main contribution of Chapter 2 is bringing the focus on fairness to this 

problem arena, and presenting the Simple-Envy-Free mechanism (SEF mechanism) 

and its properties. 

The SEF mechanism is constructed in the following way. Resource allocation is 

determined to be proportional to strategies: xi = :~ R, and the payment scheme ti 

assigned to each i is linear in agent i's strategy ()i: ti = ()i()N\i - S_i where ()N = 

L:iEN ()i > 0, ()N\i = ()N- ()i, and s_i = L:ui e;. Therefore, in Simple Envy-Free 

Mechanism (SEF mechanism}, agent i's net utility from submitting ()i is: 

If we set a surrogate function of a VCG-like mechanism to be u(xi, ()i) = -fJ:R 
and set residual payment scheme properly, we can see that this VCG-like mechanism 

is the SEF mechanism. 

To maximize the net utility, every agent i equates his marginal utility to marginal 

5 c-approximately envy-free is defined as follows: let p(x) = minih ~;~:;~. When p(x) ~ 1, the 
allocation x is known as an envy-free allocation. We call a mechanism c-approximately envy-free if 
for any x, p(x) ~c. 
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pnce. This is written in the first order condition u~(xi) = (0~) 2 for every agent i and 

we can see easily that an equilibrium allocation is efficient. The SEF mechanism not 

only allocates the commodity efficiently, but also fairly in the sense of no-envy. We 

first plug into inequality (1.9) the forms of allocation rule Xi = :~ R and payment 

scheme ti = ()J)N\i - S_i of SEF mechanism. Then, by writing ()i = x;~N and using 

equilibrium condition u~(xi) = 0}, inequality (1.9) is written as: 

u·(x·) - u·(x ·) > (x·- x ·)u'(x·) 22 2J- 2 J22' 

This holds true because of the concavity of utility functions. The SEF mechanism also 

satisfies other desirable fairness axioms such as ranking and voluntary participation. 

1.3 Multiple Tasks Assignment and Asymptotically 

Budget Balanced VCG Mechanisms 

There are mainly two ways to approach the problem of minimizing the budget im-

balance of VCG mechanisms. First, we weaken the incentive criterion from dominant 

strategy and use Bayesian assumptions for the distribution of utility functions. Then, 

we can calculate the expected budget imbalance (Bailey (1997)).6 For the problem of 

provisioning public goods, Deb, Gosh and Seo (2002), Green et al.(1976) and Green 

and Laffont (1979) give the asymptotic behavior of the expected budget imbalance 

under the pivotal mechanism (Vickrey Auction), and Zhou (2007) provides the same 

for the problem of private good exchange. 

6 1n both the public good provision problem and the bilateral trading problem, there exists no 
budget balanced mechanism that is Bayesian-incentive compatible, efficient, and individually rational 
(Laffont and Maskin (1979) and Myerson and Satterthwaite (1983)). 
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Second, we can maintain dominant strategy incentive compatibility, so that we 

assume no prior and approach the problem using the worst case analysis. The Op­

erations Research and Computer Science literatures commonly use the worst case 

analysis, and it is often referred to as competitive analysis (e.g., Tennenholtz (2001)). 

The worst case analysis plays a central role in the algorithmic approach to mechanism 

design. Anshelevich et al. (2004), Koutsoupias and Papadimitriou (1999), Porter et 

al. (2004), Roughgarden and Tardos (2002) use the worst case analysis to evalu­

ate the competitiveness of Nash equilibrium behavior in congestion problems on a 

network. Chen and Zhang (2005), Johari and Tsitsiklis (2004, 2007), Sanghavi and 

Hajek (2004), Yang and Hajek (2005) adopt the worst case analysis in one-dimensional 

cost sharing problems. Moulin and Shenker (2001) as well as Roughgarden and Sun­

dararajan (2006a, 2006b)) use it to discuss the tradeoff between budget balance and 

allocative efficiency for (group) strategy-proof cost sharing mechanisms. Goldberg 

et al.(2001, 2006) and Aggarwal et al.(2005) as well as Hartline and McGrew (2005) 

design worst case profit maximizing mechanisms. 

As precedents in the economic literature that use the worst case analysis on VCG 

mechanisms, Moulin (1986) as well as Deb and Seo (1998) investigate the pivotal 

mechanism in the worst scenario for a public good provision problem, and Moulin 

and Shenker (2001) do the same for a cost sharing problem. Guo and Conitzer (2009) 

and Moulin (2009, 2010) construct asymptotically budget balanced VCG mechanisms 

in the worst case scenario. 
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1.3.1 Indivisible Economic "Bads" and VCG Mechanisms 

In the case of assigning identical economic "bads" (for example, performing a costly 

task and locating waste disposal facilities) we will see in Chapter 3, each agent is 

required to take at most an object. m of the n agents should perform m identical 

tasks together where 1 :::; m :::; n- 1. Each agent i, i E N can perform a task with 

cost ci, which is private information. We denote by c*k the kth lowest cost among 

c1, · · · , Cn· 

Given a cost profile c, efficient cost for performing m tasks is the minimal cost 

T m (c) = L::;=l c*k. VCG mechanisms assign tasks to a subset of m agents whose total 

cost to perform m tasks together is minimal. Agent i's net disutility Vi in a VCG 

mechanism is written as: 

where hi is an arbitrary function. 

A typical example of VCG mechanisms is the pivotal mechanism. We denote by 

vt(c) the net utility of agent i under the pivotal mechanism. Agent i's net utility 

in the pivotal mechanism is simplified as V:P (c) = ci if Ci :::; c*m or V:P (c) = c*m if 

ci ;:::: c*(m+l). If agent i's cost consists of efficient cost, he will pay only his own cost. 

If agent i's cost is greater than mth smallest cost, he will pay the mth smallest cost. 

If we rewrite the function hi(c-i) as hi(c-i) = -Tm-1 (c_i) - r(i; c_i), where 

r(i; c_i) is a redistribution scheme for agent i, the general form of VCG mechanisms 



13 

is given as: 

Our VCG mechanisms ask the residual claimant to first run the pivotal mech­

anism. Then, the residual claimant distributes a suitable rebate to each agent if 

there is a budget surplus, or charges agents of additional tax if there is a deficit. 

With this interpretation, we write the budget imbalance of a VCG mechanism with 

a redistribution scheme r as: 

n n 

~(c, r) = ps(c)- L r(i; c_i) = (n- m)c*m- L r(i; c_i) 
i=l i=l 

where ps( c) is the budget surplus of the pivotal mechanism at cost profile c. 

1.3.2 Efficient Surplus and Optimality 

As we mentioned earlier, the budget imbalance is considered as implementation cost. 

On the other hand, drawing on the concept of opportunity cost, we notice that imple-

menting a VCG mechanism actually saves costs when performing tasks. To perform 

tasks, a VCG mechanism will spend the efficient cost while a random assignment, 

as the primitive benchmark, will spend average cost. The saved cost garnered by 

the VCG mechanism is the difference between the average cost and the efficient cost. 

Thus, we define efficient surplus ( es) as follows: 

es(c) = mL ci- Tm(c). 
n 

iEN 
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The performance of VCG mechanisms can be fairly compared when we compute 

for each mechanism the implementation cost relative to generated efficient surplus as 

implementation gain. We adopt the worst case analysis to measure the performance 

of a VCG mechanism. Unlike the previous literature, however, we differentiate budget 

surplus and budget deficit, by considering their different natures such that the former 

is wasted money and the latter is borrowed money from the outside of the mechanism. 

Thus, we define the worst case budget surplus as the largest ratio of budget surplus 

to efficient surplus, and the worst case budget deficit is defined accordingly. With 

these definitions, we can identify the set of feasible pairs of worst case budget surplus 

and worst case budget deficit. 

The ratio of budget surplus to efficient surplus is bounded by A such as: 

A= sup ~(c) 
cERN es(c) 

+ 

and the absolute ratio of budget deficit to efficient surplus is bounded by f-L such as: 

J-L = sup 
cER!j. 

~(c) 
---

es(c)" 

Since we desire to decrease worst case ratios, we can order pairs of a worst case 

surplus and a worst case deficit by a relation of dominance in a two-dimensional space, 

and will eventually find the frontier of the feasible set. These minimal undominated 

pairs on the frontier are called optimal pairs, and a VCG mechanism generating 

an optimal pair is said to be an optimal mechanism. This definition of optimality 

from optimal frontier is more general than the optimality from efficiency loss (the 

largest ratio of absolute budget imbalance to efficient surplus), thus we provide a 
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broad framework to analyze VCG mechanisms. 

1.3.3 Optimal Thadeoffs between Surplus and Deficit 

The main point of Chapter 3 is that once we differentiate budget surplus and budget 

deficit, and impose individual rationality as a natural fairness requirement, optimal 

mechanisms for "goods" and the optimal mechanisms for "bads" behave very differ­

ently. The striking asymmetry resides in the asymptotic behavior of the optimal pairs 

of surplus and deficit under individual rationality for the case of "bads". 

For the problem of assigning economic "goods," whether or not we impose indi­

vidual rationality does not change the relationship between budget surplus and budget 

deficit on the optimal frontier. For the case of economic "goods," a mechanism satis­

fies individual rationality if no agent suffers a net loss as a result of participating, i.e., 

Vi 2:: 0 for all i. We can easily check that for the case of economic "goods," unit worst 

case surplus can only be replaced with unit worst case deficit, regardless of individual 

rationality. 

In the case of economic "bads," individual rationality is defined differently. A 

mechanism satisfies individual rationality if participation in the mechanism brings 

each agent a smaller net loss than the loss he would experience in an anarchistic state 

where everyone performs one task on his own, i.e., Vi ::; ci for all i E N. The different 

interpretations of individual rationality for the case of economic "goods" and the case 

of "bads" turn out to affect the behavior of optimal tradeoffs between budget surplus 

and budget deficit. 

The case of assigning a single "bad" has a unique feature that does not exist 
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for the case of multiple "bads." When we compute the optimal pairs of surplus and 

deficit of any individually rational VCG mechanism and the corresponding optimal 

mechanisms, there exist only two optimal individually rational mechanisms. One is 

the pivotal mechanism whose worst case (relative) budget surplus is infinite (A = oo) 

but generates no budget deficit. For the other, its worst case (relative) budget deficit 

is 1 (f.-l = 1) with no budget surplus, and its linear redistribution scheme is r*(c-i) = 

n~ 1 (c-i)*1 for all i E N. On the contrary, for the case of multiple "bads," we can find 

an infinite number of optimal individually rational mechanisms. This result differs 

from the outcome of allocating economic "goods" in that there are always infinitely 

many optimal pairs for any number of economic "goods." 

For the case of multiple "bads," 2 ::; m::; n -1, we find that the optimal frontier 

of any anonymous and individually rational VCG mechanism is given as: 

A* * n,m + f-ln,m = 1 
A(n, m) B(n, m) 

where 

(n-1) 
A(n m)- m-1 · ' - "\""'m-2 (n-2) ' 

L.....tk=O k 

(n-1) 
B(n, m) = l:m-3 (n-2) + ~ l:n-2 (n-2) · 

k=O k n-m k=m-1 k 

We observe that limn--+oo A(n, m)/ m~ 1 = 1 and limn--+oo P(n, m)/G(n, m) = 1 where 

P(n, m) = !i~::\ and G(n, m) = m(mn~),~n- 2 • If we do not allow any deficit, the 

optimal mechanism converges to the pivotal mechanism (the worst case surplus of 

the pivotal mechanism is m~ 1 ) and its surplus loss diverges inn. On the other hand, 

we can see that for a fixed m, the function P( n, m) is strictly decreasing in n and 
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converges exponentially fast to zero inn. This implies that as more agents participate, 

a very minute amount of deficit can replace unit surplus. By allowing a slight deficit, 

we can almost achieve budget balanced VCG mechanisms. This result of extremely 

asymmetric tradeoffs between optimal surplus and deficit stands in stark contrast to 

the outcome of assigning economic "goods." 



Chapter 2 

Envy-Free and Incentive 

Compatible Division of a 

Commodity 

We will investigate the problem of allocating a perfectly divisible object between a 

finite number of buyers. Examples of divisible commodity allocation can be found in 

auctions of Treasury notes (Back and Zender (1993), Keloharju, Nyborg and Rydqvist 

(2005)), the sale of communication network capacity (Kelly et al. (1998)), the design 

of electricity markets (Green and Newbery (1992), Ausubel (2006)) and auctions for 

spectrum licenses (Levin (1966)). Auctioning pollution permits (Cramton and Kerr 

(2002)) can be another interesting case where we can study the problem of allocating 

a divisible commodity. 

We assume that each buyer has quasi-linear preferences and participates in a 

game defined by a mechanism. Each participant submits a one-dimensional bid (also 

18 
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known as a message or a signal) to the mechanism. Once all bids have been collected, 

the mechanism determines both the allocation of a resource and the payment scheme 

for each participant. This mechanism is called a scalar strategy mechanism. Nash 

equilibrium points are considered to be predictors of the behavior of agents. 

Among scalar strategy mechanisms, we are particularly interested in multi-price 

mechanisms, VCG-like mechanisms. The VCG-like mechanisms use one dimensional 

message spaces and differentiated unit prices. They are similar in both spirit and 

form to the Vickrey-Clarke-Groves mechanisms (VCG mechanisms, Green and Laffont 

(1979)) except that each individual reports a one-dimensional message, rather than 

his entire utility function. Therefore, the VCG-like mechanisms have an advantage: 

the informational burden is lower in VCG-like mechanisms compared to the size of 

information in VCG mechanisms, since the latter requires agents to report infinite 

dimensional vectors in divisible commodity allocation. 

The basic idea behind VCG-like mechanisms is that each agent selects a surra-

gate utility function from a set of scalar parametrized functions. The mechanisms 

determine resource shares to maximize the sum of surrogate utilities with payment 

rules designed similarly to VCG mechanisms. Agents select their surrogate functions 

equating their true marginal utilities with marginal price in such a way that the 

VCG-like mechanisms achieve efficient allocations in Nash equilibria. 

Our goal is to investigate the fairness and budget balance properties of the VCG­

like mechanisms, and to eventually design a scalar strategy mechanism that will 

achieve allocative efficiency, Nash incentive-compatibility, and no envy fairness. 1 For 

multi-price mechanisms such as VCG-like mechanisms, buyers may dislike price dis-

1The no envy axiom is a central standard of fairness in mechanism design theory (Foley (1967), 
Thomson (2007)). 
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crimination and thus become more sensitive to fairness issues. 2 An important issue 

is whether a mechanism's implemented allocation is fair enough to meet every in­

dividual's need for justice. No envy (envy-freeness) axiom is a persuasive standard 

of fairness since each participant is maximally satisfied with his resource share and 

payment compared to what others receive and pay. In addition, for mechanisms that 

are not concerned with maximizing revenue, it is often desirable to keep as small a 

budget imbalance as possible, so that the side payment collected or subsidized by a 

mechanism is perceived as a cost of implementation. 

First, we will provide a characterization of VCG-like mechanisms such that they 

are the only scalar strategy mechanisms which achieve efficient allocations for a given 

utility profile (Theorem 1). This is in contrast to the result of inefficiency of scalar 

strategy mechanisms with a uniform price (Johari (2004), Johari and Tsitsiklis (2004), 

Yang and Hajek (2004)). Uniform price scalar strategy mechanisms fail to implement 

efficient allocations for some utility profiles and therefore, they do not satisfy the 

no envy property.3 In addition, we will discuss both no envy and budget balance of 

VCG-like mechanisms. Example 1 demonstrates that many VCG-like mechanisms 

fail no envy property. Proposition 3 shows that VCG-like mechanisms are never 

budget-balanced. It is well-known that no VCG mechanism results in balanced budget 

(Green and Laffont (1979)), and we will show that VCG-like mechanisms inherit this 

property.4 

In Section 2.3, we will construct a VCG-like mechanism that not only implements 

2In 2000, Amazon engaged in price discrimination but stopped its pricing variations since the 
company received complaints from DVDTalk members (Perloff (2004)). 

3 The Appendix (Proposition 10) shows that no uniform pricing scalar strategy mechanism with 
proportional allocations is efficient or envy-free. 

4VCG mechanisms that are almost budget-balanced have just started to be designed. For exam­
ple, see Moulin (2008, 2009). 
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efficient Nash equilibria, but also satisfies the no envy axiom. Furthermore, this mech­

anism involves simply-formed payment rules and satisfies the Ranking and Voluntary 

Participation properties. We call this mechanism the Simple Envy-Free mechanism 

(SEF mechanism) (Theorem 2, Theorem 3). The SEF mechanism is a VCG-like 

mechanism in which each agent's resource share is proportional to his signal, and the 

payment to each agent is linear in his signal. Proposition 2 shows that no envy prop-

erty is stronger than efficiency in the environment of quasilinear utilities. Using this 

result, we can identify the SEF mechanism without considering efficiency. Therefore, 

we characterize the SEF mechanism as a scalar strategy mechanism with proportional 

shares, no envy, and symmetric marginal price (Proposition 5, Proposition 6). 

Every VCG-like mechanism has at least one efficient Nash equilibrium for every 

utility profile, but it may also have multiple equilibria with inefficient equilibria for 

some utility profiles. These properties are discussed in detail within the concrete 

context of the SEF mechanism (Example 3, Example 4). The SEF mechanism may 

have inefficient equilibria only when every agent except one submits a zero strategy. 

We can eliminate these inefficient equilibria, assuming the Inada condition such that 

there are at least two agents whose marginal utilities at zero shares are infinite.·5 In 

Section 2.3.4, we will discuss what happens to the SEF mechanism if we drop the Inada 

condition. Proposition 7 computes the worst case of relative efficiency of the SEF 

mechanism when agents are required to submit only positive strategies. Proposition 8 

shows that engaging two virtual players in the game guarantees approximate efficiency 

without the Inada condition. 6 

The remainder of the paper is organized in the following manner. We will de-

5 This statement holds for all VCG-like mechanisms. 
6 This idea is suggested by Yang and Hajek (2006). 
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scribe the model and VCG mechanisms in Section 2.1. In Section 2.2, we will in­

troduce VCG-like mechanisms. In Section 2.2.1, we will provide a characterization 

of VCG-like mechanisms as efficient scalar strategy mechanisms. In Section 2.2.2, 

we will discuss the properties of VCG-like mechanisms in terms of both fairness and 

budget balance. We will show that many of them fail the no envy test and all of 

them fail to be budget-balanced. In Section 2.3, we will construct the SEF mecha­

nism and discuss its incentive compatibility, fairness properties, and the size of budget 

imbalance in great detail. The SEF mechanism satisfies other axioms such as Rank­

ing and Voluntary Participation and is both efficient and envy-free. Two different 

characterizations of the SEF mechanism are illustrated in Section 2.3.3. In Section 

2.3.4, we drop the Inada condition which enables VCG-like mechanisms to have only 

efficient equilibria. We suggest two methods that would improve efficiency of the 

SEF mechanism without the condition. In the final section, we qualify the need for 

future research to identify a general class of envy-free VCG-like mechanisms, and to 

construct VCG-like mechanisms with the smallest budget imbalances. All proofs are 

gathered in Appendix 2.5. 

2.1 Model 

We are interested in allocating a fixed amount of a divisible resource to a finite number 

of agents. There is a center that possesses a resource and the total amount of the 

resource is R > 0. Let n ~ 2 be the number of agents, and let the set of agents be 

denoted as N = { 1, · · · , n}. 

Let xi be the resource share of agent i and x = (x1 , • • · , Xn)· A resource allocation 
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x is Jeasible if it belongs to the set X = { x : I:iEN xi ::; R, xi ;:::: 0 for all i E N}. 

When agent i receives his resource share, the monetary value of the share 1s 

represented by a utility function, ui, that is continuous, strictly increasing, concave, 

and continuously differentiable on [0, +oo). Let ui(O) = 0 for each i E N. Denoted 

by U, the set of utility functions satisfies the aforementioned properties. Let u = 

(ul, · · · , Un) and U E Un. 

The center tries to maximize the sum of agents' utilities (economic surplus) 

through the allocation of a resource. When a resource allocation determined by 

the center maximizes the economic surplus, the allocation is efficient. 

Efficiency: If given u E un' a resource allocation X is chosen to be 

then the resource allocation x is said to be efficient. 

In addition to an allocatable resource, there can be a money transfer (side pay­

ment) between agents and the center. A transfer of money from agent ito the center 

is denoted by ti E R. ti > 0 means that agent i pays lti I amount of money to the 

center. Likewise, ti < 0 means that the center subsidizes agent i by granting lti I 

amount of money to him. A vector of transfers is denoted by t = (t1, · · · , tn)· 

We will focus on the special environments in which agents have quasilinear pref-

erences. Agent i's net utility function Pi takes the quasilinear form 
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For all i E N, agent i's resource share, xi, and money transfer, ti, are decided 

by the center. Once the center knows the utility functions for all agents, it tries to 

achieve its main goal, "efficiency" for given u E Un. 

However, utility functions u E un of agents are mostly unknown to the center. To 

achieve desired outcomes, the center has to set up a message process (a mechanism) 

through which relevant information is collected. Let 8i denote the set of messages 

that agent i can send to the center. Each agent i E N selects am-dimensional message 

(Ji from ei = {(Jil (Ji E R~}. Let(} be a vector ((Jl, 0 0 0 '(Jn) E e where e = xiEN ei. 

Let e_i = Xj-!iej and (J_i = ((Jl,··· ,(Ji-l,(Ji+l,··· ,en)· 

A mechanism F assigns to each message (} a solution (x, t) = F((J) such that x 

is a vector of feasible allocations and t is a vector of money transfers. If a mech-

anism requires agents to submit m-dimensional messages, the mechanism is called 

m-dimensional strategy mechanism. In addition, if each agent submits his entire 

utility function, i.e., 8i = U for all i E N, a mechanism F is a direct (revelation) 

mechanism. 

Among direct mechanisms, the Vickrey-Clarke-Groves mechanisms (VCG mech­

anisms) are proven to be the only mechanisms in which agents report their utility 

functions truthfully in dominant strategy equilibrium7 and allocations are efficient. 

VCG Mechanisms: Given a vector of reported utility functions u E un, VCG 

7The strategy profile()* = (Bi, · · · , ()~) is a dominant strategy equilibrium of mechanism F if, for 
all i E N and all ui E U, 



mechanisms select resource allocation x such that 

and choose payment scheme for each i E N such that 

ti(u) =- L uj(xj(u)) + hi(u-i) 
#i 

where hi(·) is an arbitrary function ofu_i· 

Therefore, agent i's net utility for VCG mechanisms is 

ui(xi(ui, u_i)) + L uj(xj(ui, u_i))- hi(u-i). 
#i 
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(2.1) 

VCG mechanisms are strategy-proof and efficient. 8 Since hi depends only on themes­

sages u_i sent by other agents, agent i tries to maximize ui(xi( ui, u_i) )+ 2::#i uj(xj( ui, u_i)) 

by choosing ui· This expression has a maximum, maxxEX ui(xi) + 2::#i uj(xj)· Agent 

i can achieve this maximum by reporting his true utility function ui according to 

expression (2.1). Truth telling is a dominant strategy for every agent. Therefore, 

VCG mechanisms select efficient allocation x( u). 

A problem with VCG mechanisms is that when a resource is perfectly divisible, 

each individual should report a function which is in infinite dimensional space. In 

8 A direct revelation mechanism F is strategy-proof (or dominant strategy incentive compatible) 
if for all i E N and all ui E U, truth telling is a dominant strategy equilihrium of the mechanism. 
That is, for all i EN, all u E un, and all u~ E U, 
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this case, the informational demand is too high, so the VCG mechanism is very 

difficult to use. Instead, we can consider a mechanism whose informational request is 

quite low, while it still maintains the spirit of the VCG mechanism. In the following 

section, we will introduce scalar strategy mechanisms in which each agent reports a 

one-dimensional message (scalar strategy). 

2.2 VCG-like Scalar Strategy Mechanisms 

A scalar strategy (one-dimensional strategy) mechanism requires each agent i to 

submit a one-dimensional bid ()i such that ()i E [0, +oo). It collects these bids, 

() = (B1 , · · · , Bn) and decides the resource allocation as well as the payment scheme for 

each participant. Therefore, a scalar strategy mechanism consists of a triple (8, x, t) 

where 8 is the set of allowable strategies of the form()= (B1 , · · • , Bn) with ()i E R+, 

i E N, x is the allocation vector, and t is the payment scheme. Each agent i's net 

utility is written as ui(xi(B)) - ti(B). Since agent i's net utility is determined by ()i 

and ()_i, agent i's net utility is denoted by Pi(()i, ()_i) where ()i is his message and ()_i 

is a vector of messages submitted by others. 

Within the class of all scalar strategy mechanisms, this paper discusses VCG-like 

scalar strategy mechanisms (VCG-like mechanisms). 
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2.2.1 Basic Idea and Characterization of VCG-like Mecha-
. n1sms 

A VCG-like mechanism imitates VCG mechanisms as follows: first the mechanism 

requires each agent i to report a one-dimensional signal (Ji E [0, oo) which selects a 

surrogate utility function u(·, fJi) from a given single parameter family of functions, 

l1 = { u( ·, Bi) I Bi E [0, oo) }. The set of surrogate utility functions l1 is the same for all 

agents. If (Ji = 0, then u(xi, fJi) = 0. 

We assume that for all i E N, given a positive real number fJi, u(xi, Bi) is strictly 

concave, strictly increasing, continuous and continuously differentiable for xi > 0. In 

addition, for every 'Y E (0, oo) and Xi > 0, there exists a (Ji > 0 such that u'(xi, Bi) = 'Y· 

The last assumption about u implies that all the functions in l1 can cover the 

spaceR!+ whose single element is (xi, "f). Because of this property of u, each agent 

i can express his marginal utility at any amount of resource by selecting (Ji· 

Once the mechanism collects fJ, i.e., u = (u(·, fJ1 ), · · · , u(·, Bn)), it chooses the 

resource allocation x E X that maximizes the sum of surrogate utilities, LiEN u(xi, Bi) 

for the given fJ. The VCG-like mechanism sets its payment scheme analogously to 

the payment scheme of VCG mechanisms, such that each agent's payment depends 

on both the sum of surrogate utilities of other agents (except his surrogate utility) 

and an arbitrary function of strategies submitted by other agents. 

VCG-like Mechanisms: For (} collected, VCG-like mechanisms choose the 

resource allocation x such that 

(2.2) 



and the payment scheme t such that 

ti(e) =- L u(xj(e), ej) + hi(e-i) for all i EN 
#i 

where hi(·) is an arbitrary function of e-i· 

Therefore, agent i's net utility in VCG-like mechanisms is 

ui(xi(B)) + L u(xj(e), ej)- hi(e_i) 
#i 

where hi(·) is an arbitrary function of e-i· 
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As expressed in (2.2), a VCG-like mechanism determines the vector of resource 

shares X for given e, and thus, agent i's resource share Xi, i E N is a function of e. 

Since X = x(B) maximizes L-iEN u(xi, ei), the first order conditions give u'(xi, ei) = 

u'(xj, Bj) for i =/= j, i,j E N, and Bi, Bj > 0. Plugging xi = xi(B) for all i E N 

into the previous expression, we can write agent i's marginal surrogate function as 

u'(xi(B), Bi) = g(B) for all i E N. Therefore, when a VCG-like mechanism provides a 

set of surrogate utility functions z1, the mechanism specifies the function g(B). 

In order to predict the behavior of agents, we will use Nash equilibrium to express 

incentive compatibility. We denote agent i's net utility by Pi(B) to emphasize that 

his resource share xi and payment scheme ti depend on his report ei and reports by 

others e -i. He tries to maximize his net utility by selecting ei based on unilateral 

decision making. We define a Nash equilibrium as follows. 

Nash Equilibrium: e is a Nash equilibrium if and only if, for every i E N, 

Pi(Bi, e_i) ?. Pi(B~, e_i) for every B~ E R+· 
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A Nash equilibrium () is an efficient equilibrium if the resource allocation x( ()) 

is efficient. A mechanism is an efficient mechanism if for each u E un, every Nash 

equilibrium is efficient (unfortunately, there is no efficient scalar strategy mechanism 

which implements dominant strategy equilibriumY) 

Now, we will characterize the VCG-like mechanisms in Theorem 1. We show that 

among scalar strategy mechanisms that determine the resource share x according to 

(2.2), VCG-like mechanisms are the only mechanisms in which there exists an efficient 

Nash equilibrium. 10 

Theorem 1. Let a scalar strategy mechanism determine an allocation vector x 

according to (2.2). Assume that for every i E N, the net utility function Pi(()) is 

concave in ()i· Then, the scalar strategy mechanism has an efficient Nash equilibrium 

for each u E un if and only if it is a VCG-like mechanism. 

As Theorem 1 states, VCG-like mechanisms achieve efficient Nash equilibria. We 

can explain the reason in the following way. 

Agent i, i EN chooses his strategy ()ito maximize his net utility ui(xi(())) -ti(()). 

His optimal strategy ()i given () -i is determined by the first order condition: u~ (xi ( ())) · 

8~0~0 ) = 8~J:l. That is, agent i chooses his strategy ()i such that his utility increases 

from a change in his strategy ()i to equal his payment increased from a change in 

his strategy ()i· This first order condition is rewritten as u~(xi) = 8~J:) / 8~0~0). The 

expression in the right hand side is the ratio of the additional amount of money agent 

i has to pay for the additional units of the good agent i receives when he increases 

his strategy ()i· The term 8~J:l j 8~i0~0 ) can be interpreted as marginal price for the 

9This is shown in the Appendix (Proposition 9). 
10Moulin (2008) characterizes cost sharing mechanisms which guarantee the existence of surplus 

maximizing Nash equilibrium demands. 
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divisible good agent i faces at equilibrium. 

VCG-like mechanisms set the same marginal price for all agents such that ati(O) 
80i 

/ 8~0:0) = g(O) where g(O) = u'(xi, Oi) for all i E N. Therefore, agent i selects an 

equilibrium strategy ei satisfying u~(xi) = u'(xi, ei). Notice that efficient allocations 

are essentially determined by marginal utilities in first order conditions such that 

u~(xi) = A for xi > 0 for all i E N. For the efficient allocation x*, each agent i 

chooses 07 satisfying u~(x7) = u'(x7, 07). Using surrogate utility functions and prop-

erly designed payment schemes, VCG-like mechanisms extract the information of true 

marginal utilities at an efficient allocation and therefore achieve efficient equilibria. 

The main goals of a mechanism are typically achieving efficiency, incentive com-

patibility, and fairness. When there are side payments from agents to a mechanism, 

the size of the budget imbalance could present a concern for the center. We will 

discuss the fairness and budget imbalance of VCG-like mechanisms in the following 

subsections. 

2.2.2 Fairness and Budget Balance of VCG-like Mechanisms 

We will mainly consider no envy (envy-freeness) as a central fairness concept in this 

subsection. A mechanism is envy-free, or satisfies no envy, if no agent envies others in 

every equilibrium. Agent i doesn't envy agent j if his own equilibrium allocation of 

resource and payment gives net utility at least as high as his net utility from the case 

in which he receives agent j's share and payment allocation instead. The envy-free 

state of agent i compared against agent j is written as ui(xi) - ti ~ ui(xj) - tj at 

equilibrium allocations. 
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Envy-Freeness (No Envy): If ui(xi)- ti 2:: ui(xj)- tj holds for all pairs inN 

at equilibrium allocations x and payment t, given a vector of utility functions u E un, 
the mechanism is envy-free (or the mechanism satisfies no envy). 

Proposition 1 provides a necessary and sufficient condition for mechanisms to be 

envy-free in quasilinear environments. 

Proposition 1. An allocation mechanism with side payment is envy-free if and 

only if it satisfies the following no envy condition: Given u E un, at every equi-

librium allocation and payment ( x, t), for every i E N and all j =f. i, if x j =f. xi, 

for Xi > 0 

for xi= 0, 

The no envy condition conveys efficiency. That is, if a mechanism is envy-free, 

then it is efficient. 11 

Proposition 2. An envy-free allocation mechanism with side payment is effi-

cient. 

Remark. The reverse statement is not true. Unless A = ::=:;1 for all i, j E N 

and i =f. j where A is the market clearing price for price taking buyers, an efficient 

allocation is not necessarily envy-free. 

No envy is a stronger property than efficiency, so it follows that many VCG-like 

11 Svensson (1983) provided a statement analogous to our Proposition 2. He studied the problem 
of allocating indivisible commodities with sidepayment when each agent gets at most one indivisible 
good. He noted that envy-freeness implies efficiency when the number of agents is equal to the 
number of indivisible objects. Alkanet al. (1991) extended this observation, allowing any number 
of people and objects. 
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mechanisms fail the no envy test as in the following example. 

Example 1. Envious VCG-like mechanisms: select a VCG-like mechanism with 

u(xi, Oi) = Oi lnxi for all i E N. Then, xi = ~0°. R and !!Ei = Rof.\i [u~(x·) - f!.Jy_] 
N 8()i ()N t t R 0 

Suppose ON\i =/= 0. The first order condition of the equilibrium is u~(xi) =~if xi> 0 

and u~(xi) :::; ~ if Xi = 0. Applying the no envy condition, we have ;::=;j = 0;_ for 

xi > 0. Thus, no envy holds if and only if 

The left hand side of the equation is additively separable w.r.t. Oi and Oj, so that its 

cross derivative, 82 (hi(oat;;o~j(O-j)) should be zero. However, the right hand side's cross 

derivative w.r.t. Oi and Oj is (Oj - Oi)/0~ =/= 0. Therefore, with the surrogate utility 

function u(xi,Oi) = Oilnxi, the VCG-like mechanism is not envy-free. Likewise, we 

can show that with u(xi, Oi) = Oifti, the VCG-like mechanism generates envy among 

agents. 

When the sum of payments made by agents at an equilibrium is positive, the 

mechanism produces revenue. We do not assume that the center has an objective to 

achieve when spending the residual money. To eliminate possible manipulations by 

the center or by the participants, the revenue cannot be a desirable income of the 

center or be paid back to agents. It should be burnt or wasted by the benevolent 

center. In the other case, the mechanism needs financial inflow from an outside source 

if the sum of payments is negative. It is a burden for the center to acquire money 

inflow to subsidize agents. Therefore, it is good to have no revenue or no financial 

inflow. We will discuss what happens in VCG-like mechanisms in terms of money 

waste or money inflow. 
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Given u E un, The budget imbalance of a mechanism is denoted by .0.(u). When 

a mechanism charges each agent i of ti, the budget imbalance is 

.0.(u) = L ti(e) 
iEN 

where e is a vector of equilibrium strategies. If .0.(u) > 0 for every u, the mechanism 

has a budget surplus; if .0.( u) = 0 for every u, it is budget balanced; for the case of 

.0. ( u) < 0 for every u, it has a budget deficit. 

As VCG mechanisms fail to be budget balanced, 12 we will show that VCG-like 

mechanisms cannot achieve budget balance. 

Proposition 3. Every VCG-like mechanism fails to be budget balanced. 

The mechanism we propose in the next section is a VCG-like scalar strategy 

mechanism. Since its payment scheme has a very simple form and the mechanism 

is envy-free, we call the mechanism the Simple Envy-Free (SEF) mechanism. The 

efficiency of the SEF mechanism will be discussed in great detail. Its fairness and 

budget imbalance will be given concrete descriptions. 

2.3 The SEF Mechanism 

In this section, we will introduce an envy-free VCG-like mechanism, the SEF mecha­

nism, and discuss its properties. The SEF mechanism is constructed in the following 

way. Resource allocation is determined to be proportional to strategies, so that the 

allocation to individual i is Xi = :~ R where eN = 2.:::iEN ei > 0. If eN = 0, then 

12Refer to Green and Laffont (1979). 
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Xi = 0 for all i E N. The payment scheme ti assigned to each i is ti = 0/}N\i- s_i 

where ()N\i = ()N- ()i,s = ~iENo;, and s_i =s-o;. Additionally, let O'jy = (ON)2 . 

Payment made by some agents can be negative, which means that they are subsidized 

by the mechanism. 

Simple Envy-Free Mechanism: In the Simple Envy-Free mechanism (SEF 

mechanism), agent i's net utility from submitting ()i is 

For all i E N, if we set a surrogate function of a VCG-like mechanism to be 

u(xi, ()i) = -tR for Xi, ()i E R++ and residual payment scheme to be h(O-i) = 

-O'fv\i- S_i where O'fv\i = (ON\i) 2 , we can see that this VCG-like mechanism is the 

SEF mechanism. 

There is a caveat when we use the SEF mechanism. The identities of participants 

should be known to the mechanism. Otherwise, as we can see in the following example, 

some agents can benefit from submitting shill bids. 

Example 2. If two agents i and j can shield their identities pretending to be one 

agent, they merge their bids to be 0 = ()i + ()j and then submit it to the mechanism. 

Under this bid, they receive x = 9 / Rand pay t = 0 · ()N\i i- S-i-j jointly. Here 
+ N\i,j ' 

Since x = Xi + Xj, the resource share that the agents i and j receive jointly by 

submitting the merged bid is equal to the sum of their original shares. The total 
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payment originally made by two agents is 

ti(ei, e_i) + tj(ej, e_j) = ei(ej + eN\i,j)- e;- s-i-j + ej(ei + eN\i,j)- e;- s-i-j 

= (Oi + (}i)(}N\i,j + 2(}i(}i- e;- OJ- 2S_i-i 

= i- ( (}i - (}i )2 __.: B-i-i 

and this gives i- ti(Oi, (}_i)- ti((}j, (}_i) = (Oi- (}i) 2 + B-i-i 2:: 0. This implies that 

by merging their bids, agents i and j may jointly pay more than the sum of their 

original payments although they receive the same shares. Thus, merging bids is not 

profitable. However, by the same logic, splitting bids is profitable. 

Therefore, the mechanism should prevent identity shielding. For this reason, we 

assume that the number of agents and their identities are known to the mechanism. 

2.3.1 Incentive Compatibility 

The efficiency property and examples discussed in this section hold for all VCG-like 

mechanisms. We will use a concrete form of the SEF mechanism in order to make it 

easier to discuss these aspects. 

To see if a Nash equilibrium exists for this mechanism, we first consider a case 

where every agent submits a bid of 0 to the mechanism. If agent 1 changes his strategy 

from 0 to E such that E > 0, then his net utility becomes u1 (R), which is positive, 

while his net utility is 0 when staying with 01 = 0. Thus, (} = (0, · · · , 0) is not a Nash 

equilibrium. 

There could be an equilibrium in which only one agent submits a positive strategy, 

while the other agents return zeros, but typically this equilibrium is inefficient as we 
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will see in the following example. 

Example 3. Inefficient equilibria: let n = 2 and R = 1. Suppose u1 (x1) = ax1 

and u2(x2) = bx2 for 0 < a < b. At an efficient allocation, agent 1 receives nothing 

and agent 2 should receive 1. As a result, the efficient surplus is b. However, there 

are multiple equilibria where agent 1 receives everything and agent 2 gets nothing. 

Assume that agent 1 reports E > 0 and agent 2 reports 0. Agent 1 does not have any 

incentive to change his strategy since he receives all of the resource but pays nothing. 

Agent 2 does not have any incentive to change his strategy if his net utility decreases 

by submitting a positive number. This is the case when 

that is, b ~ E2. Therefore, (E, 0) is a Nash equilibrium if E > v'b, however, the 

allocation is inefficient. 

Using the same logic as in the previous example, we can identify all inefficient 

equilibria for the SEF mechanism. Note pj(O, O_i) = ~ ( uj(O)- ~) where O_i is (n-1) 

dimensional vector withE> 0 for i'th coordinate and zero for others. pj(O, O_i) :::; 0 if 

and only if J Ruj(O) :::; E. Therefore, (0, · · · , 0, · · · , E, 0, · · · , 0) is a Nash equilibrium 

if and only if E ;:::: max#i J Ruj(O). This type of Nash equilibrium, where one agent 

i receives all of the resource, is inefficient unless his utility function has the property 

such as u~(R) ;:::: uj(O) for all j =1- i. 

Looking at the structure of inefficient equilibria, we make the following interpre­

tation. As long as every other agent j E N, j =1- i has finite uj(O), agent i has an 

opportunity to take the entirety of the resource, resulting in an inefficient equilibrium. 
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Thus, to prevent an inefficient equilibrium, for each agent i E N, there should be at 

least one other agent j =/:. i with uj(O) = +oo. From this example, we can make the 

following assumption which ensures that there are at least two agents whose strategies 

are positive. This assumption is commonly used in macroeconomics for production 

functions and is called the Inada condition. However, we do not assume that the 

limits of the derivatives of utility functions towards positive infinity are 0. 

Inada Condition: u~(O) = oo for at least two agents. 

The Inada condition excludes all inefficient equilibria in which one agent receives 

all of the resource. When there are at least two agents receiving positive shares, any 

Nash equilibria in the SEF mechanism are efficient. We prove below that the SEF 

mechanism has Nash equilibria and that all of its Nash equilibria are efficient. 

Theorem 2. Every Nash equilibrium of the SEF mechanism is efficient. 

Since we only assume concavity of utility functions, the SEF mechanism can 

have multiple efficient equilibria in the following example. When utility functions are 

strictly concave, there is a unique efficient equilibrium. 

Example 4. Multiple efficient equilibria: consider a case with two agents. If 

each agent's utility function has a constant slope over a part of the domain, there can 

be multiple equilibria. Let u1 and u2 have the same constant slope over [x1, ~] and 

[~, x2], respectively, where x1 + x2 = R. Then, u~ (x1) = u~(x2), and x = (x1, x2) is 

a Nash equilibrium allocation. Therefore, there are a pair of equilibrium strategies 

fh,02 which satisfy x1 = £h~92 R and x2 = 91~92 R. Likewise, if Q1 E [x1, ~]and 

Q2 E [~,x2] with Q1 + Q2 = R, we again have u~(Q1 ) = u~(Q2 ), and there is a pair 

of equilibrium strategies ()~ and ()~ which satisfies Q1 = 0, 9+1.0, R and Q2 = 0, 9+29, R. We 
1 2 1 2 

can find infinitely many equilibria in this example. 
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2.3.2 Fairness and Budget Balance 

We will examine whether the SEF mechanism satisfies desirable fairness properties 

and will measure the size of budget imbalance. In addition to the no envy concept, we 

will introduce two additional fairness concepts, Ranking and Voluntary Participation. 

If an agent receives a bigger share of the resource than the other agents, he has to 

pay a greater amount than the others. This primitive notion of fairness is represented 

as Ranking (RK). 

Ranking: A mechanism satisfies Ranking if xi < Xj implies ti < tj for any 

i,j EN, i #- j at every equilibrium. 

Individuals are not forced to participate in the mechanism if they would be made 

worse off by participating. There is neither punishment nor discrimination between 

participants and non-participants, so that agents are free to choose whether or not 

they will participate in the game. If equilibrium allocations satisfy this property, the 

mechanism is said to satisfy Voluntary Participation (VP). We assume that xi = ti = 

0 if agent i doesn't participate, that is, he doesn't submit any bid. Then, Voluntary 

Participation is expressed as follows. 

Voluntary Participation: A mechanism satisfies Voluntary Participation if 

each agent i E N has net utility Pi(e) which is nonnegative at equilibrium e. 

The following result shows that the SEF mechanism is not only envy-free but 

also satisfies the two aforementioned fairness properties. 

Theorem 3. The SEF mechanism (i) satisfies Ranking, (ii) achieves Voluntary 

Participation, and (iii) guarantees no envy. 

Remark. Voluntary Participation and Ranking hold without the Inada condi-
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tion, but no envy holds only with the Inada condition. As in Example 3, let ( E, 0) be 

a Nash equilibrium for u1 (x) =ax, u2 (x) = bx and 0 < a < b. At this equilibrium, 

x 1 = 1, x2 = 0 and t1 = 0, t2 = -E2 . Plugging in the no envy condition, we get 

u~ (x1) = t:2 and u~(x2 ) ::; t:2 . This implies a ~ b which contradicts a < b. Therefore, 

this equilibrium allocation is not envy-free. Consequently, we maintain the Inada 

condition in this section. 

Though the SEF mechanism satisfies useful fairness properties as well as effi­

ciency, it can generate a budget deficit and the center may need financial inflow to 

subsidize some agents. 

Proposition 4. The SEF mechanism yields a budget deficit which can range 

from 0 to R>..(n- 1), where >.. is the market clearing price for price taking buyers. 

When every agent submits the same strategy,()= (a,··· ,a), the mechanism's budget 

is balanced. 

2.3.3 Characterizations of the SEF Mechanism 

We will show that the SEF mechanism is characterized by the combination of alloca­

tions, determined in proportion to the agents' strategies, as well as no envy fairness 

under the Inada condition. We provide two characterizations according to different 

properties of the payment scheme. 

Characterization A 

The first characterization assumes that an agent's payment is linear in his own strat­

egy. 
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Property Al. There are at least two agents. The set of strategies 8 equals R~, 

and the allocation is proportional to the submitted strategies: xi = :~ R if () =I= 0 and 

Xi = 0 if () = 0. 

Property A2. The symmetric payment by agent i is the sum of a variable price in 

()i and a fixed price independent of ()i: ti(()) is linear in ()i, i.e., ti(()) = a(()_i).()i+f3(()_i)· 

Property AS. For any utility profiles u1, · · · , Un such that each ui 1s strictly 

increasing, concave, continuous and continuously differentiable for all i E N, the 

mechanism is envy-free. 

Proposition 5. The SEF mechanism is the only scalar strategy mechanism 

satisfying Properties Al-AS up to affine transformations. 

Property Al makes computation much easier. Almost all scalar strategy mech­

anisms that have been developed so far use this proportional form for resource al­

location. For the case of uniform price scalar strategy mechanisms, this form of 

proportional resource shares can be derived by assuming concavity of net utilities 

( J ohari and Tsitsiklis ( 2007)). 

Now we drop the Property A2 of linear payment scheme and provide another 

characterization of the SEF mechanism. 

Characterization B 

Recall that VCG-like mechanisms set a marginal price function g(()) where g(()) = 

u'(xi, ()i) for all i E N and g is a positive and continuous function. Instead of linear 

payment schemes, we consider symmetric marginal price functions. 

Property Bl. There are at least two agents. The set of strategies 8 equals R~, 
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and the allocation is proportional to the submitted strategies: xi = :~ R if f) =1- 0 and 

Xi = 0 if f) = 0. 

Property B2. Marginal price, g( e), is a function of the sum of strategies, therefore 

Property B3. For any utility profiles u 1, · · · , Un such that each ui is strictly 

increasing, concave, continuous and continuously differentiable for all i E N, the 

mechanism is envy-free. 

Proposition 6. The SEF mechanism is the only scalar strategy mechanism 

satisfying Properties B1-B3 up to affine transformations. 

Remark. If we assume that g(e) = l::iEN fi(ei) or g(e) = f(f)N) where eN = 

rriEN f)i' the no envy with proportional allocation results in g( e) = cl log eN. However' 

we cannot easily adopt g( e) = c1 log eN since g( ·) may not be positive. 

2.3.4 Efficiency without the Inada Condition. 

Without the Inada condition, we observed that the SEF mechanism could yield in­

efficient equilibria. Recall that the Inada condition has to have at least two agents 

whose equilibrium strategies are positive. We now introduce two methods to replace 

the Inada condition. Since any alternative assumptions other than the Inada condi­

tion may result in an inefficient equilibrium, we introduce an efficiency index to gauge 

the efficiency loss. 
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The worst-case relative surplus of a mechanism is a real number such that 

where E(u) is the set of equilibrium allocations and x* is an efficient allocation, given 

u EUn. 

The worst-case analysis is commonly used in computer science and operation 

research. There are also precedents in economic literature. For example, Moulin 

(1986) uses it to discuss the pivotal mechanism in the public good provision problem. 

Moulin and Shenker (2001) is an example of worst-case analysis in a cost sharing 

problem. 

Without the Inada condition, it is easy to see that the worst-case relative surplus 

is 0. For instance, let u 1(x) = ax and u2 (x) = bx for 0 < a < b. An inefficient 

equilibrium has a surplus of a and a relative surplus is ajb. As a gets closer to 0, the 

worst-case relative surplus converges to 0. 

Recall that inefficient equilibria can occur when all agents except one submit 

zero bids. In order to prevent the extreme case mentioned above, the mechanism 

may restrict strategies to be strictly positive (Method A) or introduce two virtual 

players whose utilities satisfy the Inada condition (Method B). 

Method A. Restricted Strategies 

Method A imposes a positive lower bound on strategies. Each agent can select(} from 

[t:, oo) for a positive real number E. We will show that using Method A, the worst-case 

relative surplus increases from 0 to 1/n for the case of n participants. First we need 
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to determine the shape of the equilibria under the restriction. 

Lemma 1. Let n = 2 and let the efficient equilibrium strategy be denoted by 

(8i, 82). If 8i ~ 82, the adjusted equilibrium (81, 82) with a lower bound E satisfies 

81 ~ 82. If8i ~ E ~ 82 or8i ~ 82 ~ E, the adjusted equilibrium has the form of(c,82) 

for 82 ~E. 

Applying the same logic that we used for the proof of Lemma 1, we can find the 

adjusted equilibrium for the case of n agents. 

By Lemma 4 of Johari and Tsitsiklis (2004), the worst-case relative surplus occurs 

with linear utility functions. Therefore, computing the worst-case relative surplus for 

linear utility functions is enough to calculate the worst-case relative surplus of the 

SEF mechanism. 

Proposition 7. The worst-case relative surplus of the SEF mechanism improves 

from 0 to 1/n when we impose a positive lower bound on strategy sets. 

Under Method A, the SEF mechanism may have inefficient equilibria, so it cannot 

be envy-free. However, Voluntary Participation and Ranking still hold. 

Method B. Virtual Players 

The mechanism can ensure that the equilibria are efficient by introducing two virtual 

players. These virtual players have infinite marginal utilities at zero shares, so the 

Inada condition is satisfied. This idea is suggested by Yang and Hajek (2006). They 

showed approximate efficiency for a group of VCG-like mechanisms where every agent 

has a strictly concave utility function. We apply their idea to the case of concave 

utilities and use different utility functions for virtual players. 
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Let us describe this idea in detail. A VCG-like mechanism introduces two virtual 

players whose utility functions are Un+ 1 (xn+l) = WE~ and Un+2(xn+2) = (1 -

w)E~, respectively for E > 0 and 0 < w < 1. These virtual players choose 

their strategies Bn+l ;:::: 0 and Bn+2 ;:::: 0 to maximize their net utilities. Let BE = 

( B1, · · · , Bn, Bn+l, Bn+2) be the extension of B including the virtual players' strategies 

and let xE = (xi,··· ,xn,Xn+I,Xn+2)· We can prove that in this E-extended game, 

equilibrium strategies for the first n players are converging to efficient equilibrium 

strategies in the game without virtual players, as virtual players have negligible utility 

functions. 

Proposition 8. (Yang and Hajek (2006)) Let e =limE--tO BE and let the vector of 

the first n elements of B be denoted by B. Then the limit, B exists and B is the efficient 

equilibrium of the original game without virtual players. 

By introducing negligible virtual players, the mechanism achieves approximately 

efficient and envy-free equilibria. 

2.4 Conclusion. 

We showed that VCG-like mechanisms are the only scalar strategy mechanisms which 

achieve efficient Nash equilibria for the problem of allocating a divisible commodity. 

Furthermore, we identified the SEF mechanism as a VCG-like mechanism that is 

envy-free and uses a linear payment scheme. In the future, properties of VCG-like 

mechanisms need to be studied in-depth. We could also consider finding other envy­

free mechanisms among VCG-like mechanisms. Designing an efficient scalar strategy 

mechanism with the smallest budget imbalance should be our most pressing concern. 
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2.5 Appendix 

Proof of Theorem 1. We first prove "only if'' part. Fix u E un and let K = {i E 

Nl (}i = 0} for a vector of strategies,(} for given u. Fori E N\K, the scalar mechanism 

returns a unique vector of allocations x at given (} such that u'(xi, (}i) = ).((}). Let 

f(xi, (}) = u'(xi, (}i)-).((}). Assuming).((}) and u'(xi, (}i) are continuously differentiable 

in (}, f is continuously differentiable and 81~~:,B) = u"(xi, (}i) < 0 for all xi, (}i > 0. 

By the implicit function theorem, there exists a unique continuously differentiable 

function Xi ( (}). Furthermore, the feasibility condition of :L:iEN Xi ( (}) = R assures that 

Xi is not a constant function of (} -i. 

A vector of efficient allocations for u is denoted by xu. Due to the assumptions 

about u, for every i EN\ K, there exists (Jf > 0 such that ui(xi) = u'(xi, {}f) where 

xi > 0 and for i E K, ey = 0 where xi = 0. The vector of strategies (} yielding 

efficient allocations should be eu. 

Recall that a vector of strategies (} is a Nash equilibrium if and only if 

Given(}, the mechanism allocates the entirety of the resource, so :L:iEN\K xi((}) = 

R h ld h ld Th c · E N\K 8xi(B) _ 8(-L,#i,jEN\Kxj(B)) __ "' 8xj(B) 
S OU 0 . US, 10r Z , 8Bi - 8Bi - L....!j-j.i,jEN\K 8Bi · 

At the efficient allocation xu (which satisfy u~(xi) = uj(xj)) and the strategy eu 
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corresponding to xu, we have 

When eu is an Nash equilibrium, we should have 

This relation should hold for an arbitrary u E un and then we have 

~ _,( . e.). axj(e) _ ati(e) 
~ u xJ' J ae. - ae. · 

jof-i,jEN\K ~ ~ 

Therefore, the payment scheme for i E N \ K is 

jof-i,jEN\K #i 

The last equality holds since u(xi, ei) = 0 for ei = 0. For i E K, Xi = 0 and the 

mechanism determines x(e) to maximize ~iEN\K u(xi, ei) where ~iEN\K Xi = R. 

Thus, for j -1= i, Xj(e) = Xj(e-i) and ti(e) = ti(O, e_i)· Thus, we can write ti(e) = 

- ~#i u(xj, ej)+hi(e_i)· We conclude that the mechanism is a VCG-like mechanism. 

Now we prove "if' part. We can use the argument of Lemma 1 in Johari and 

Tsitsiklis (2007). First we show that e is a Nash equilibrium if and only if for all 

i EN, 

(2.3) 
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The optimal value of (2.3) is an upper bound to agent i's net utility without hi(e-i)· 

Given e, if (2.3) holds for all agents, then their net utilities are maximized so that e is a 

Nash equilibrium. For the sake of contradiction, assume that given a Nash equilibrium 

e, (2.3) is not satisfied for some agent i. The problem (2.3) has an optimal solution, 

x* since X is compact and x* -I- x(e). Then, x* satisfies the first order conditions such 

that u~(x:) = A for x; > 0, u~(x:) ::; A for x; = 0 and u'(xj, ej) =A for j E N \ K. 

For i E N \ K, let agent i choose e~ > 0 such that u~ ( x;) = u' ( x;, e~). Then, x* is 

also a solution (2.2) when a strategy vector is (e~, e_i)· Since the solution of (2.2) is 

unique for given (e~, e_i), we have x* = x(e~, e_i)· Then, we have 

#i #i 

= ui(xi(e~, e_i)) + 2::: u(xj(e~, e_i), ej)- hi(e_i) 
#i 

which contradicts that e is a Nash equilibrium. 

Finally we prove that the VCG-like mechanism has an efficient equilibrium. For 

a vector of efficient allocations x*, each agent i, i E N chooses ei > 0 such that 

u~(x:) = u'(x;, ei) for x; > 0 or selects ei = 0 for x; = 0. Since (2.2) has a unique 

solution fore, we have x* = x(e). By the same logic, x*(= x(e)) is also a solution of 

(2.3). Therefore, we conclude that e is a Nash equilibrium .• 

Proof of Proposition 1. Given u E un, let the mechanism have equilibrium 

allocation and payment (x, t). If xi < Xj, by definition, no envy holds if and only if 

ui(xi)- ui(xj) ~ ti- tj and uj(xj)- uj(xi) ~ tj- k This is equivalent to 

Xj- Xi 



48 

By the concavity of ui E U, for Xi < Xj we have ui(x;;:=~;(xJ) ::; u~(xi)· Considering a 

case in which ui(xi):=ui(xJ) = u'(xi), agent i is envy-free if and only if u'(x·) < ti-tJ . 
Xt XJ 1, 2 2 - Xi-Xj 

Likewise, for another equilibrium allocation where xi >'Xj, agent i is envy-free if and 

only if u~(xi) 2:: ;;:=!;J. If xi = Xj, no envy holds if and only if ti = tj. Thus, agent i 

is envy-free if and only if u~(xi) = ;':=; for xi > 0 and u~(xi) ::; ;':=; for xi = 0. • 
'L J 'l. J 

Proof of Proposition 2. Let a mechanism satisfy the no envy condition. Given 

u E un, let (x, t) be an equilibrium allocation and payment. For any pair of i,j EN, 

i =/: j, we have ;;:=;J = ;~:=;i so that at allocations xi, Xj > 0, we have u~(xi) = uj(xj)· 

If x j = 0, then we have uj ( x j) ::; u~ (Xi). It is easy to see that this is the first order 

condition for efficient allocations. • 

Proof of Proposition 3. An agent i's net utility in a VCG-like mechanism is 

Pi(e) = ui(xi) + L u(ej, xj)- hi(e-i), 
#i 

so his payment is ti(B) = - I::#i u(Bj, xj) + hi(B-i) at an equilibrium e and corre­

sponding allocation x. The mechanism's budget is 

iEN iEN #i iEN 

Budget balance means that I::iEN hi(B-i) = I::iEN I::#i u(Bj, Xj) holds for any pair of 

equilibrium strategies e. 

Suppose that there exist au which yields budget balance. Let n = 2. Without 

loss of generality, we can assume that x 1 > 0, x 2 > 0 at equilibrium allocations. 

equilibrium strategies e and corresponding allocations X. Equilibrium strategies e 
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vary as utility profiles u vary. Thus, the right hand side of this equation should be 

additively separable in Bl and B2. We assume that for i = 1, 2, u(Bi, Xi) is twice 

differentiable in Bi· Therefore, budget balance implies 

82[u(B1, xi)+ u(B2, x2)] 
oB1oB2 = o. 

The partial derivative of il in Xi, u'(Bi, xi) is denoted by fl(o,1)(Bi, xi) fori= 1, 2. Recall 

that the equilibrium condition is written as fl(o,1)(B1, x1) = fl(o,1)(B2, x2) = g(B). 

Now we have 

o(u(Bl, xl) + u(B2, x2)) 

oB1 

The last equality holds since Xl (B) + X2 (B) = R. Likewise, we have 8~2 ( il( Bl' Xl) + 

u(B2 , x2)) = fl(l,o)(B2, x2). Because 80~;02 = 80~;01 , budget balance holds if and only if 

This is equivalent to fl( 1 , 1 )(B1 ,x 1 )~~~ = fl(l,l)(B2 ,x2 )~~~ = 0. We proved that xi is a 

differentiable function of B, so ~~~ and ~~~ cannot be zero. Thus, the budget balance 

requests fl(1,1)(B1, xi) = fl(1,1)(B2, x2) = 0. This implies that for i = 1, 2, u(xi, Bi) is 

additively separable in Xi and Bi, that is, we should have u(Bi, Xi) = j(Bi) + k(xi) 

for some functions f and k. Then, for i = 1, 2, u'(Bi, xi) = 8~~;). This violates an 

assumption about il of VCG-like mechanisms such that for every 1 E (0, oo) and 

Xi > 0, there exists Bi > 0 s.t. u'(xi, Bi) =I fori= 1, 2. Therefore, there is no il that 
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satisfies the budget balance. • 

Proof of Theorem 2. The net utility of agent i with strategy ()i when others 

submit () -i is 

Note that for each agent i, ()N\i =1- 0. Agent i tries to maximize Pi(()i, ()_i) for a 

given ()_i where Pi is continuous and concave in ()i· Therefore, the first order condi-

tions (FOC) are the sufficient and necessary condition to find Nash equilibria. The 

conditions are 

0 if ()i > 0 

< 0 if ()i = 0. 

Since ()N\i > 0, these conditions equal 

u~(:~ R) 
O'Jv 

if ()i > 0 
R 

u~(:~ R) 
()2 

< N if ()i = 0. 
R 

Let IL = ~ and xi= -J;R for ViE N. Then the FOC can be rewritten as 

IL if Xi > 0 



Thus, (} is a Nash equilibrium if and only if for all i E N, we have 

u~(xi) = f.1 if xi > 0 

u~(xi) ~ f.1 if Xi = 0 
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where f.1 = i, Xi = I; R, and EiEN xi ~ R. We know that an allocation, x*, is 

efficient if and only if it satisfies x* E argmaxxEX EiEN ui(xi)· Since EiEN ui(xi) is 

continuous in x and X is compact, efficient allocations exist. Also, EiEN ui(xi) is 

concave, so the necessary and sufficient first order conditions are 

A if x: > 0 

u~ ( x;) < A if x; = 0 

where A> 0. We can show that f.1 =A. 

For the sake of contradiction, suppose that 11 > A. We denote an equilibrium 

allocation by x and an efficient allocation by x*. Choose i such that Xi > 0. Then, 

u~(xi) = f.1 > A ~ u~(xi). This implies Xi < x;, so R- Xi = E#i Xj > R- x; = 

E#i xj. If this is the case, there should be j =/=- i such that Xj > xj and we have 

uj(xj) ~ uj(xj). Since xj ~ 0, we have Xj > 0 and 11 = uj(xj) ~ uj(xj) ~ A. Hence, 

f.1 ~ A and this contradicts the previous assumption. Therefore, 11 = A. We conclude 

the two FOC's are indeed the same, so that (} is Nash if and only if x = x(B) is an 

efficient allocation. The existence of efficient allocations also guarantees the existence 

of Nash equilibria. Therefore, Nash equilibria exist and they are efficient, as desired . 

• 
Proof of Theorem 3. (i) Suppose that Xi ~ Xj, which is equivalent to (}i ~ (}i· 
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Remember that ti = ()/}N\i- S-i· Then, 

(ii) Since Pi(()i, ()_i) is concave in ()i, it is sufficient to check if Pi(O, ()_i) ~ 0. We 

see Pi(O, ()_i) = S_i > 0 and so VP holds. 

(iii) By the no envy condition from Proposition 1, no envy holds if and only if 

::=;j = u~(xi) at equilibrium allocations. For the SEF mechanism, u~(xi) = i and 

it is easy to check that the no envy condition holds. • 

Proof of Proposition 4. The mechanism collects LiEN ti and we have 

iEN iEN iEN 

(Lei? - n I: e; ::; o. 
iEN iEN 

The second to last inequality holds due to the Cauchy-Schwartz inequality. Thus, the 

SEF mechanism yields a budget deficit. 

There is a i EN with Xi> 0 and so u~(xi) = i-

BD = ~u~(xi) I: xi- Ru~(xi) = ~>.[Lx;- ~2 ]. 
iEN iEN 
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Observations: 

(a) If ui = Uj for all i -1= j and i,j EN, then (Ji = (Jj for all i -1= j and xi=~ for 

all i E N. Then it is easy to check that the mechanism has a balanced budget. 

(b) Note that the supremum of LiEN x7 for x E X is achieved at the extreme 

points of x EX. Then, we have 

n R2 n R2 
ED= -A[L xz- -] :::; -A(R2 - -) = AR(n- 1). • 

R .N n R n 
~E 

Proof of Proposition 5. With these assumptions, agent i's net utility is 

Pi((Ji, (J_i) = uiU~ R) - 9i((J) - h((J_i)· Pi is concave in (Ji since gi is linear in (Ji· 

(J is an Nash equilibrium if and only if we have 

u~(:~ R/;ii R g~((J) if (Ji > 0 

1 (!.!._R)(JN\i R < g:(e) if (Ji = 0 
U~ (J N (JJv • 

where g~ ( (J) = 8~J;). With xi = :~ R, these FOC conditions equal 

u~(xi) I ( ) eJ.v if (Ji > 0 gi (J eli 
N\i 

u~(xi) < I ( ) eJ.v if (Ji = 0. gi (J eli 
N\i 

The mechanism is envy-free, so every Nash equilibrium is efficient. We should have 

I ( ) eJ.v A= gi (J -(J R 
N\i 

where A is the market clearing price for price taking buyers and A > 0. Since gi((J) = 
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Bia(B-i) + f3(B-i) for a(B-i) > 0, g~(B) = a(B-i)· Again, A= a(B-i) o:tc for all i E N 

implies a(B-i) = k(}N\i where k is a positive constant. Thus, ti = k(}N\i(}i + f3(B-i) + 

The envy-free condition holds if and only if :i=;. = u~(xi)· That is to say, no 
' J 

envy holds if and only if 

k ((}N\i(}i- (}N\i(}i) (}N + [h(B-i)- h(B-i) + f3(B-i)- f3(B-i)J (}N 
(}i - (}i R (}i - (}i R 

k(}N (}N((}i- (}i)- (Br- BJ) + [h(B-i)- h(B-i) + f3(B-i)- f3(B-i)J (}N 
R Bi - Bi (}i - Bi R 

k (}N ["' Bl] + [h(B-i)- h(B-i) + f3(B-i)- f3(B-i)] (}N 
R ~ ().- (). R 

l#iJ t J 

for any i =I= j such that i,j EN. This is equivalent to 

and again, in the same way, to 

Then, h(B-i) + f3(B-i) = -kS_i +"(where"( is an arbitrary constant. Therefore, we 

have ti = k(}i(}N\i - kS_i + "f· • 

Proof of Proposition 6. Recall u~(xi) = ~~:~~~: = g(B) for every i E N. 

If agent i's resource share Xi is determined proportionally to his strategy (}i, then 
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(e) Re 1oi g(t, e_i) ( ) 
ti = N\i ( e )2 dt + f3 e_i . 

0 t + N\i 

When the equilibrium allocation is envy-free, we have u~(xi) = ~;=;j for Vi, j E 

N, i =/= j. This equation is the same as g(e) ~;=~ · 0!{. Thus, envy-free Nash 

implementation holds if and only if we have 

for every i =/= j E N. 

Assume g(e) = g(eN)· We want to find a function g(e) and (3(e-i) satisfying the 

following equation: 

(e ) = eN [e . f 0
i g(t + eN\i) dt _ e . f 0

j g(t + eN\j) dt + (3(e-i)- (3(e-j)] 
g N ei- ej N\t lo (t + eN\i) 2 N\J lo (t + eN\j) 2 R . 

(2.4) 

Multiplying both sides by (ei- ej)jeN and fixing eN\i,j as c, the equation is written 

as 

0 = (ei- ej) · g(ei + ej +c) _ (e- +c) f 0
i g(t + ej +c) dt + (e +c) {0

j g(t + ei +c) dt 
e i + e j + c J J o ( t + e j + c) 2 t J o ( t + e i + c) 2 

f3(e-i)- f3(e-j) 
R 

Assume that marginal price g( e) is twice-differentiable. Differentiating the previous 
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equation with respect to ()i and ()j, we have 

Since we do not consider the case of ()i = ()j, this is equivalent to 

The solution of this equation should be g(x) = a1x2 + a2 for constants a1 > 0 and a2. 

Without loss of generality, set a 2 = 0. Inserting g(x) = a 1x 2 into the equation (2.4), 

we have Ra1(()I- eJ) = (3(()-i)- (3(()-j) and (3(()-i) = -Ra1S_i + a0 for a constant 

ao. • 

Proof of Lemma 1. Note that for the efficient equilibrium ( ()i, ()~) such that 

()i::;; ()~,We have u~(l/2)::;; U~(r/J+*B.) = (()i + ()~) 2 = u;( 8•8+28.)::;; u;(1/2). If ()i 2: E 
1 2 1 2 

and ()~ 2: E, the efficient strategy will be the adjusted equilibrium and ()1 ::;; ()2 . When 

()i ::;; E ::;; ()~ or ()i ::;; ()~ ::;; E, we can prove that the adjusted equilibrium has the form 

Let ()1 = E. Agent 2 responds with ()2 such that u; C!~2 ) = ( E + ()2?. If this ()2 ::;; E, 

i.e., u;(1/2) ::;; 4£2 , agent 2 likes to play E. If u~(1/2) ::;; 4£2 , agent 1 doesn't have an 

incentive to change his strategy from E. Thus, if u~(l/2) ::;; 4E2 and u;(1/2) ::;; 4£2 , 

then (E, c) is a Nash equilibrium. If agent 2 responds to agent 1's strategy E with 

()2 2: E, i.e., u;(1/2) 2:4£2, agent 1 still plays E as u~C;eJ::;; (c+()2)2. Thus, (c,e2) is 

a Nash equilibrium if 

(2.5) 
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Note that u~ (1/2) :S u~ C_;82 ) :S u;C!~2 ) ::; u;(l/2) and the solution fh exists for the 

equation (2.5). However, if we let ()2 = E and ()1 > E, applying the same logic as before 

leads to u~ (1/2) > u;(1/2), which is contradictory to the condition from the efficient 

equilibrium. Therefore, the adjusted equilibrium is ( E, ()2) for ()2 :2 E. • 

Proof of Proposition 7. Suppose that every agent has a linear utility function. 

Let n = 2. Let u1 = ax and u2 = bx for 0 < a < b. Agent 1's net utility is 

P1 = a 81 ~82 - ()1 ()2 + ()~ and agent 2' s net utility is P2 = b 81 ~82 - ()1 ()2 + ()i. The first 

order condition for an interior solution is ()1 + ()2 = yl(i for agent 1 and ()1 + ()2 = vb for 

agent 2, respectively. The equilibrium strategy (()i, ()2) without lower bound cannot 

satisfy both first order conditions, so we cannot have ()i :2 E and ()2 :2 E. Suppose 

that ()i :2 E and ()2 ::; E. Since the net utility function is concave, agent 2 will play E 

and agent 1 will play ()1 = yl(i - E for yl(i > E. Then, agent 2 will adjust his strategy 

according toe; = vb- ()1 = vb- ( yl(i- E). We want E to be an equilibrium strategy 

for agent 2, so that e; ::; E holds. This is equivalent to vb ::; yl(i and contradicts 

a < b. Therefore, ()i :2 E, ()2 ::; E cannot happen for the case where a < b to have an 

adjusted equilibrium. 

We can instead think of the case where ()i ::; E and ()2 :2 E. Since the net utility 

function is concave, agent 1 will play E when lower bound E is imposed on his strategy 

set. Then agent 2 will change his strategy to be ()2 = vb- E. Note that from ()2 :2 E, 

we have b :2 4E2. Thus, if b :2 4E2, (E, v'b- E) is a unique Nash equilibrium; and so 

is (E, E) otherwise. The worst-case relative surplus is infa,b aE+~c;:-E) = 0.5 forb :2 4E2 

and infa,b aibb = 0.5 otherwise. Therefore, the worst-case relative surplus is 0.5 for 

n = 2. 

Applying the same logic as n = 2 case, we can prove that for utility functions, 
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U1 (x) = a1x, · · · , Un(x) = anx such that a1 < · · · < an, there is an equilibrium 

(E, · · · , E, Ja;;,- (n- 1)c) where Ja;;,- (n- 1)E;::: E. The relative economic surplus 

(res) is 

E(al +···+an-d+ an(Ja;;,- (n- l)c) 

anJa;;, 

"\XT h . f 1 (n-l)E F vve ave Ill a 1 , ... ,an-l res = - ~ . rom 
yan 

worst-case relative surplus is ..!.. • 
n 

Ia;; > nE, 1 - (n-l)c > ..!. and the Y '-"n ya;; n 

Proof of Proposition 8. Note that u~+ 1 (0) = u~+2 (0) = oo. In theE-extended 

game, en+l > 0, en+2 > 0 and the first order conditions of the equilibria are for each 

i EN, 

1 WE (1-w)E 
ui(xi(E)) = J = J =>.(c) if xi > 0, 

2 Xn+I(E) 2 Xn+2(E) 

u~(O) ~>.(c) if xi= 0. 

Suppose >.(c) is not strictly increasing in E, i.e., for 0 < E1 < E2, >.(ci) ;::: >.(c2). 

Then, it is easy to check that xi(EI) ~ xi(E2) for all i E N, Xn+I(E1 ) < Xn+I(E2), 

and Xn+2(EI) < Xn+2(E2)· This contradicts the fact that LiEN Xi+ Xn+l + Xn+2 = R 

for any E > 0. Thus, >.(c) is strictly increasing in E. In addition, notice that ). ;::: 

miniEN u~(R) > 0. Since >.(c) is strictly monotone and bounded from below, we have 

limt-to>.(c) = >. > 0. In addition, we get limc-+OXn+I(E) = 0 and limc-+OXn+2(E) = 0. 

Since u~(xi) is decreasing in xi for all i EN, xi( E) is strictly increasing as E approaches 

0 and it is bounded above by R > 0. Thus, xi(E) converges to Xi· Therefore, the 

solution (x(E), >.(E)) of the above FOC converges to the solution (x, >.) of the efficient 

allocation's FOC. • 
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Proposition 9. There is no efficient scalar strategy mechanism which imple­

ments a dominant strategy equilibrium. 

Proof. We will show the nonexistence for the simplest case of n = 2. Remember 

that a scalar mechanism implements efficient equilibrium if and only if, for a given 

utility profile u E U, each equilibrium () with an equilibrium allocation x( ()) satisfies 

the first order condition for efficient equilibria, 

u~(xi(e)) = g(()) for all i EN 

where g is a continuous and nonnegative function. The function g determines prop­

erties of the scalar strategy mechanism. 

Suppose that a scalar strategy mechanism M (g) implements efficient dominant 

strategy equilibrium. Given the mechanism M(g), for every pair of utility profiles 

(u1 , u 2 ), there is a corresponding pair of dominant strategy equilibrium (01 , ()~). 01 

should be a best response of agent 1 to every ()2 E R+, that is, we have 

Likewise, 02 should be a best response of agent 2 to every 01 E 8, that is, we have 

To use simple notations, we will denote u~ by f and u~ by h. Then, f and hare 

·functions of ()1 and ()2 , i.e., f = f(() 1 , ()2 ) and h = h(()1 , ()2)· As a pair of utility profiles 

u E U2 can be chosen arbitrarily, we can say that there are a set F and a setH such 
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that 

F {f(x, y): f is continuous and nonnegative} 

H { h( x, y) : h is continuous and nonnegative}. 

Denoting x = B1, y = B2, x* = rf1 and y* = rf2, equations ( 1) and ( 2) are rewritten as 

follows: 

f(x*, y) 

h(x, y*) 

g(x*,y) for every y E Y 

g(x, y*) for every x E X 

(3) 

(4) 

where X = Y = [0, +oo) and X x Y are the domains of functions f and h. In 

addition, we should have 

f(x*, y*) = h(x*, y*) (5). 

The equations (3)-(5) should hold for any pair off and h from F and H, respectively. 

Note that x* andy* depend on the choice off and h, but g is fixed by the mechanism. 

Let us choose three pairs of (h, h!), (h, h2) and (h, h3 ) from F and H. There 

are corresponding dominant strategy equilibrium pairs: (x1, Yl), (x2, Y2) and (x3, Y3), 

respectively. According to equation (5), we have 

h (x1, yl) = h1 (x1, yl) = g(x1, y!), 

h(x2, Y2) = h2(x2, Y2) = g(x2, Y2), 

h(x3, Y3) = h3(x3, Y3) = g(x3, Y3)· 
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Notice that the function g(x, y) should have same values at each point (x1 , y2 ), (x1 , y3), 

(x2, yl), (x2, Y3), (x3, yl), and (x3, Y2), so we have 

h (X 1 ' Y2) = h2 (X 1 ' Y2) = g (X 1 ' Y2)' 

h1 (x2, Y1) = !2(x2, Y1) = g(x2, Y1), 

!1(x1,y3) = h3(x1,y3) = g(x1,y3), 

f2(x2, Y3) = h3(x2, Y3) = g(x2, Y3), 

h1 (x3, yl) = /3(x3, Y1) = g(x3, Y1), 

f3(X3, Y2) = h2(x3, Y2) = g(x3, Y2)· 

Taking x1, x2, X3, Y1, Y2, and Y3 as unknown variables to solve, we have 6 

unknown variables with 9 equations. Considering that f and h are arbitrarily selected, 

a function g cannot exist in this situation. • 

Proposition 10. Neither uniform pricing scalar strategy mechanism with pro­

portional allocations is efficient or envy-free. 

Proof. Under a uniform pricing scalar strategy mechanism, agent i's net utility 

is ui ( :~ R) - p( B):~ R where p( B) is the uniform price. The first order equilibrium 

condition is u'(x·) = p(B) + ap(O) 0N°i for every i E N. For an equilibrium B to be 
2 2 {)(}i (}N\i 

efficient, 8:~o) ~No, = g(B) for every i EN and a continuous function g. Then, we have 
' N\• 

for every i E N where (3 is a continuous function. 

We show that this equation cannot hold for n = 2. For the sake of contradiction, 
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suppose that it holds for the case of two agents. We have 

From the second and third equations, we have 

This equation should hold for any 01 , 02 E [0, oo) and the left hand side is additively 

separable in 01 and 02 . The cross derivative of the right hand side is 

and it should be zero where 91(01,02) = 89~~~02 ) and 92 (01,02 ) = 89~~~02 ). Solving the 

equation such that the cross derivative of the right hand side equals zero, we have 

9(0) = k 0&-:B:2 for a constant k > 0. However, with this function 9, 01 f~2 «~~e:))dt 

and 02 J~1 «~~~~) dt do not converge. Therefore, there does not exist a 9 function that 

allows the uniform pricing mechanism to be efficient. Finally, due to the no envy 

condition, we can conclude that if a mechanism is not efficient, then it fails to be 

envy-free. • 



Chapter 3 

Optimal VCG Mechanisms to 

Assign Multiple Tasks 

There exist m undesirable objects (or "bads") which are identical and which need to 

be allocated to n, n > m strategic agents. Cries of NIMBY greeting waste disposal fa­

cilities represents a problem of allocating economic bads (Kunreuther and Easterling 

(1996)). Each agent is required to take at most an object. For the problem of assigning 

economic bads, the seminal Vickrey-Clarke-Groves (VCG) mechanisms (Generalized 

Vickrey Auction) achieve both allocative efficiency and incentives by way of money 

transfer. They are uniquely characterized by strategy-proofness1 and allocative effi­

ciency (Green and Laffont (1977, 1979), Suijs (1996), Holmstrom (1979)). However, 

it is not possible for VCG mechanisms to be budget balanced at all valuation profiles 

(Green and Laffont (1979)). If there is a budget surplus, then it needs to be discarded 

by a benevolent residual claimant in order to preserve the incentive compatibility of 

1 A mechanism is said to he strategy-proof if truth telling is a dominant strategy for every agent. 

63 
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a VCG mechanism. In case of budget deficit, the residual claimant must finance the 

mechanism. Interpreting any budget imbalance as a mechanism implementation cost, 

our aim is to design VCG mechanisms that minimize the budget imbalance. 2 

If we weaken the incentive criterion from dominant strategy, we can use Bayesian 

assumptions for the distribution of utility functions, and therefore calculate the ex­

pected budget imbalance (Bailey (1997)). 3 For the problem of provisioning public 

goods, Deb, Gosh and Seo (2002), Green et a1.(1976) and Green and Laffont (1979) 

give the asymptotic behavior of the expected budget imbalance under the pivotal 

mechanism (Vickrey Auction), and Zhou (2007) provides the same for the problem of 

private good exchange. If we wish to maintain dominant strategy incentive compat-

ibility, we assume no prior and approach the problem using the worst case analysis. 

Moulin (1986) as well as Deb and Seo (1998) investigate the pivotal mechanism in the 

worst scenario for a public good provision problem, and Moulin and Shenker (2001) 

do the same for a cost sharing problem. Goldberg et a1.(2001, 2006) and Aggarwal et 

a1.(2005) as well as Hartline and McGrew (2005) design worst case profit maximizing 

mechanisms. 

Favoring the prior-free above Bayesian approach, we will adopt the worst case 

analysis. We will measure the performance of a VCG mechanism with the worst 

ratio of budget imbalance to efficient surplus over all utility profiles. This index is 

called efficiency loss of the VCG mechanism. Efficiency loss is interpreted as the 

worst implementation cost relative to the created benefit in the mechanism. When a 

2 Parkes et al. (2001) and Faltings (2005) construct budget balanced mechanisms forsaking effi­
ciency or strategy-proofness. 

3In both the public good provision problem and the bilateral trading problem, there exists no 
budget balanced mechanism that is Bayesian-incentive compatible, efficient, and individually rational 
(Laffont and Mas kin ( 1979) and Myerson and Satterthwaite ( 1983)). 
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mechanism has a minimal efficiency loss among a group of mechanisms, it is said to 

be optimal, and its efficiency loss is called optimal efficiency loss. 4 We will develop 

optimal VCG mechanisms in the problem of allocating bads. 5 

The main results are presented in Section 3.2. We not only compute optimal 

VCG mechanisms, but also conduct basic tests of fairness as well. For the basic 

fairness tests, we will adopt unanimity upper bound and individual rationality. If 

a mechanism guarantees each participant a net loss smaller than the loss he would 

experience under random assignment, the mechanism satisfies unanimity upper bound. 

A mechanism is said to be individually rational if participation in the mechanism 

brings each agent a smaller net loss than the loss he would experience in an anarchistic 

state where everyone performs one task on his own. Our intention is to show that 

the optimal mechanisms for "goods" and the optimal mechanisms for "bads" behave 

very differently when we require individual rationality. 

The most relevant articles to our problem have been written by Moulin (2009) 

and Guo and Conitzer (2009). They investigate the problem of assigning multiple 

"goods" and develop optimal VCG mechanisms using the worst case analysis. The 

resulting optimal VCG mechanisms significantly improve upon the previous in Cavallo 

(2006). 6 

4 Apt et al.(2008) and Guo and Conitzer (2008a) use a different concept of optimality. Their 
optimal mechanisms are defined to be undominated. A VCG mechanism dominates another if it 
always charges less payment against each agent. 

5 As an application of VCG mechanisms to the assignment problem of identical economic bads, 
Porter, Shoham and Tennenholtz (2004) provide an equity test called k-fairness and develop a 3-Fair 
mechanism. Moulin (2010) discusses tradeoffs between efficiency and k-fairness. He constructs a 
VCG mechanism which guarantees each participant a fair share of the qth highest valuation and 
minimizes the efficiency loss in the allocation problem of a single object. 

6 Cavallo (2006) constructs a VCG mechanism to redistribute some of the payment hack to the 
agents in a way that will not affect incentives. For the instance of a single object auction, Cavallo's 
mechanism redistributes to agent i ~ times the second highest hid among bids other than his own 
bid. 
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For the problem of assigning economic goods, Moulin (2009) makes two interest­

ing points. The first being that the optimal loss of any non-deficit VCG mechanism 

is strictly smaller than the optimal loss of any individually rational and non-deficit 

VCG mechanism. Thus individual rationality plays a role when m ~ 2. Both indices 

converge exponentially fast to zero in n if the scarcity ratio !!:! is less than 1 and as 
n 2' 

Jn if r;: ~ ~. Their behavior, however, is quite different if r;: > ~. The optimal loss, 

excluding individual rationality, still converges fast to zero in n, while the optimal 

loss under individual rationality does not converge to zero in n. 

Secondly, Moulin (2009) points that whether or not deficit is allowed does not 

make an essential difference in total optimal loss. The optimal loss of any VCG 

mechanism (allowing deficit) is about one-half (saying exactly, between ~ and 
+n-1 

~) of the optimal loss of any non-deficit VCG mechanism. He conjectures that this 

property still holds true even if individual rationality is imposed. 

' 
On the other hand, Guo and Conitzer (2009) use the worst ratio of budget im-

balance to the budget surplus of the pivotal mechanism to measure performance. 

Although their design goal is different from the goal in Moulin (2009), their non-

deficit optimal mechanism is the same as the non-deficit and individually rational 

optimal mechanism in Moulin (2009). Individual rationality is irrelevant in Guo and 

Conitzer (2009), since their non-deficit optimal mechanism remains the same even if 

we impose individual rationality. 

In addition, the optimal loss of any non-deficit VCG mechanism in Guo and 

Conitzer (2009) equals the optimal loss of any non-deficit and individually rational 

VCG mechanism in Moulin (2009). This demonstrates that the non-deficit optimal 

VCG mechanism in the former fails asymptotic budget balance altogether when the 
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scarcity ratio is greater than one-half. In addition, according to Guo and Conitzer 

(2009), when m = n-1, the pivotal mechanism will always be optimal among all VCG 

mechanisms. This is undesirable since the efficiency loss of the pivotal mechanism 

is always greater than 1. In addition, similarly to Moulin's findings, allowing deficit 

does not essentially change the optimal loss for Guo and Conitzer (2009) either. 7 

In the problem of assigning "bads", we show that the performance measurement 

suggested by Guo and Conitzer (2009) fails to be in use for all m, m < n. If we 

measure the performance of a mechanism and find the optimal mechanism according 

to the standards in Guo and Conitzer (2009), it rarely redistributes the surplus of 

the pivotal mechanism for every m, m 2::: 2. For m = 1, the pivotal mechanism is 

optimal, therefore there is no redistribution. Thus, the optimal mechanism is far from 

achieving Guo and Conitzer's original objective of redistributing the surplus of the 

pivotal mechanism. We can predict that this optimal mechanism will have a large 

efficiency loss since the pivotal mechanism generates the largest efficiency loss among 

all non-deficit and individually rational VCG mechanisms. This point is shown in 

detail in Appendix 3.4.1. 

In Section 3.2.1, we compute the optimal efficiency loss .\~,m of any non-deficit 

VCG mechanism and its corresponding optimal mechanism for all m and n. For both 

m = 1 and m = n -1, the worst case surplus in the optimal mechanism never exceeds 

2n~3 of efficient surplus (Theorem 1.1 and Theorem 1.3). Form, 2 ::::; m ::::; n- 2, the 

optimal efficiency loss of any non-deficit VCG mechanism vanishes fast at exponential 

speed in n: .\~,m ~ m~';;_2 (Theorem 1.2). This tells that efficiency loss works well 

as a performance index for the problem of assigning "bads". In addition, similarly 

7The optimal loss with no deficit >..0 and the optimal loss allowing deficit f-LG in Guo and Conitzer 
(2009) relate as follows: for m :S n - 2, ~ = 2_\_ 0 and ~ converges to ! in n given m. 
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to the problem of assigning economic goods, Proposition 1 shows that whether we 

require non-deficit property or not, has no bearing on the total optimal efficiency loss 

in the problem of assigning economic bads as well. 

Section 3.2.2, however, shows that the non-deficit property is incompatible with 

preliminary tests of welfare bounds. Proposition 2 shows that the unanimity up­

per bound test fails under the non-deficit constraint. The non-deficit constraint also 

makes the pivotal mechanism the uniquely optimal individually rational VCG mech­

anism (Corollary 1). 

Interestingly, if the non-deficit constraint is abandoned, individual rationality 

becomes greatly significant to our problem. We compute the optimal pairs of surplus 

loss ..\~ n and deficit loss J.L~ n of any individually rational VCG mechanism and the 
' ' 

corresponding optimal mechanisms for all n and m. 

Theorem 2.1 shows that when assigning a single bad, there exist only two optimal 

individually rational mechanisms. This result differs from the case of multiple bads 

in which we can find an infinite number of optimal individually rational mechanisms. 

For the case of a single bad, the pivotal mechanism is optimal and non-deficit, but 

generates infinite efficiency loss. In contrast, another optimal VCG mechanism does 

not generate any surplus and its efficiency loss due to deficit is 1. The optimal surplus 

loss is infinite times the optimal deficit loss. 

Theorem 2.3 shows that to assign multiple bads, m :2: 3, we can find an infinite 

number of optimal pairs of surplus and deficit loss of any individually rational VCG 

mechanisms. The optimal pairs of surplus loss ..\~ m and deficit loss p,~ m consist of 
' ' 

a frontier such that ..\~ m/A(n, m) + p,~ m/ B(n, m) = 1 where A(n, m) > B(n, m) 
' ' 

for all n and m. The asymptotic behavior of the ratio B(n, m)/A(n, m) such that 
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B(n, m)/A(n, m) ~ (m-~;,~n 2 implies that as more agents participate, a very minute 

amount of deficit loss can replace unit surplus loss. The deficit becomes much more 

inexpensive than surplus as the number of agents increases. By allowing a slight 

deficit, we can almost achieve budget balanced VCG mechanisms. This result stands 

in stark contrast to the outcome of assigning economic goods. For the case of economic 

goods, regardless of individual rationality, unit surplus loss can only be replaced with 

unit deficit loss. Theorem 2.2 also provides similar results form= 2. 

All proofs are gathered in Appendix 3.4.2. 

3.1 The Model 

Let N = { 1, · · · , n} be the set of agents. m of the n agents should perform m identical 

tasks together. The tasks are undesirable, and thus, they are economic "bads" which 

are costly to agents. Every agent is equally responsible and is liable for at most one 

task. It is assumed that 1 ~ m ~ n- 1 (if n = m, everyone performs a task) and 

that a monetary transfer occurs. 

Each agent i, i E N can perform a task with cost ci, which is private information. 

Performing a task causes agent i disutility ci. Let c = (c1, c2,· · · , en)· Given a cost 

profile c E R~, the vector c* E R~ is the permutation of c whose coordinates are 

arranged increasingly: 

Let c_i = (c1, · · · , ci_1, ci+1, · · · , en)· We denote by (c_i)*k the kth lowest cost among 
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c1, · · · ,ci-1, ci+l, · · · , Cn. Given a cost profile c E 1?/:, efficient cost for performing 

m tasks is the minimal cost T m (c) = L~=l c*k. 

VCG mechanisms assign tasks to a subset of m agents whose total cost to perform 

m tasks together is minimal. And each VCG mechanism is defined by n arbitrary 

real-valued functions ti on RZ\{i}. The function ti(c-i) represents a monetary transfer 

from agent i to the mechanism given a cost profile c. Agent i's net disutility Vi in a 

VCG mechanism is written as: 

Every VCG mechanism is efficient since an allocation determined by the mecha­

nism always minimizes the total cost to perform m tasks.8 It is strategy-proof since 

every agent is always better off when he reveals his private information truthfully. 

Holmstrom (1979) proves that VCG mechanisms are the only strategy-proof and al-

locatively efficient mechanisms in our model. 

We use .6. to denote the budget imbalance of a VCG mechanism as follows: 

iEN iEN 

Given a cost profile c ERr:_, if .6.(c) = 0, then we have a balanced budget, if .6.(c) > 0, 

a budget surplus exists, and if .6.(c) < 0, a budget deficit is indicated. 

Among VCG mechanisms, the pivotal mechanism (the Vickrey auction) is a 

benchmark mechanism (Green and Laffont (1979)). In the pivotal mechanism, each 

8 The objects go to the agents with the highest valuations in the case of (desirable) "goods", the 
lowest disutilities in the case of bads. 
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agent i's net disutility equals "efficient cost to perform m tasks - efficient cost to 

perform (m- 1) tasks with agent i ignored." If agent i is ignored, other agents force 

agent i to perform one task and allocate residual ( m - 1) tasks efficiently among 

themselves. This implies ti(c-i) = -Tm_1(c-i)· Thus, the net disutility under the 

pivotal mechanism is written as: 

vt(c) = Tm(c)- Tm-1(c-i) for all i and C. (3.1) 

We can simplify equation (3.1) as vt(c) = Ci if Ci ~ c*(m-1) or vt(c) = c*m if Ci ~ c*m. 

Given cost profile c E Rf_, the pivotal mechanism generates a budget surplus of: 

ps(c) = L Vt- Tm(c) = (n- m)c*m. 
iEN 

Whether a mechanism under our consideration generates budget surplus or not, 

it is convenient to write the function ti(c-i) as ti(c-i) = -Tm_1 (c-i)- r( i; c_i), where 

r(i; c_i) is a redistribution scheme for agent i. Thus, the general form of VCG 

mechanisms is given as: 

Vi( c)= Tm(c)- Tm-1(c-i)- r(i; c_i) = vt(c)- r(i; C_i) for all c E Rf_. 

Interpreting budget imbalance as an implementation cost, our VCG mechanisms ask 

the residual claimant to first run the pivotal mechanism. Then, the residual claimant 

distributes a suitable rebate to each agent if there is a budget surplus, or charges 

agents of additional tax if there is a deficit. We rewrite the budget imbalance of a 
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VCG mechanism with a redistribution scheme r as: 

n n 

~(c, r) = ps(c)- L r(i; c_i) = (n- m)c*m- L r(i; c_i)· 
i=l i=l 

Now we will use the worst case analysis to measure the performance of any VCG 

mechanism. The worst case performance index of a mechanism will be defined as the 

largest budget imbalance relative to a meaningful measure of "efficient surplus" over 

all cost profiles. 

Drawing on the concept of opportunity cost, we notice that implementing a 

VCG mechanism actually saves costs when performing tasks. To perform tasks, a 

VCG mechanism will spend the efficient cost while a random assignment, as the 

primitive benchmark, will spend average cost. The saved cost garnered by the VCG 

mechanism is the difference between the average cost and the efficient cost. Thus, we 

define efficient surplus ( es) as follows: 

where CN = l:iEN Ci. 

m 
es(c) = -CN- Tm(c) 

n 

We define efficiency loss as the performance measurement of a VCG mecha-

nism with the redistribution scheme r. It is written as the following number An,m, 

0 < Anm < 00 , -

An,m(r) = sup l~(c, r)l 
cERN es(c) 

+ 

for the case of n agents and m objects. If ~(c, r) > 0 and es(c) = 0 given a cost 
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profile c E R!j_, we set An,m ( r) = oo conventionally. An optimal VCG mechanism is 

a VCG mechanism with a redistribution schemer* which has the smallest efficiency 

loss A~,m = An,m(r*) :::; An,m(r) for any redistribution schemer. 

Another natural estimator of efficient surplus is the spread between maximal 

cost and efficient cost (l:~=n-m+1 c*k - 2:::~= 1 c*k). Using this estimator, Moulin 

(2010) performs the worst-case analysis when the object is a single costly task. The 

corresponding index of efficiency loss is smaller due to an increase in the denominator. 

It is, however, difficult to write a general formula for the optimal loss when m ~ 2. 

Alternatively, we might think that we can use efficient cost as an estimator of efficient 

surplus, but this ultimately fails as Moulin (2010) proves that the index would be at 

least n - 1 for m = 1. 

Using efficiency loss as a performance measure, we compute the efficiency loss of 

the pivotal mechanism (which does not redistribute anything) as follows: 

An,m(O) = sup !!! [ "'m *i + "'n *i] - "'m *i 
cER!f_ n L.._..i=1 C L.._..i=m+1 C L.._..i=1 C 

(n- m)c*m 

(n- m)c*m n 
sup = . 

N !!!.=.!!:. "'~-1 c*i + !!!.=.!!c*m + !!! ""~ c*i m - 1 cER+ n L,..~=1 n n L.._..~=m+1 

The last equality holds since the worst case occurs when c*1 , · · · , c*(m-1), c*(m+1), · · · , c*n 

are as small as possible. By setting c*1 = · · · = c*(m-1) = 0 and c*m = c*(m+l) = 

· · · = c*n, we find the efficiency loss of the pivotal mechanism. If m = 1, the pivotal 

mechanism has infinite efficiency loss. Given m, m ~ 2, its efficiency loss is increasing 

inn. Since Am+1,m = 1 + m~ 1 , the smallest efficiency loss inn is already greater than 

1. With this, the implementation cost of the pivotal mechanism is too large compared 

to the benefit it creates. Therefore, the pivotal mechanism is not attractive to use, 
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and so we must construct redistribution schemes. 

3.2 Main Results 

We denote by (~) the binomial coefficient. The notation f(n) c:::' g(n) means 

. f(n) 
hm -(-) = 1. 

n-+oo g n 

The notation r* denotes the optimal redistribution scheme when there are n agents n,m 

and m objects. Likewise, .\~,m denotes the optimal efficiency loss for the case of n 

agents and m objects. 

3.2.1 Optimal Non-Deficit VCG Mechanisms 

The residual claimant is not required to create financial inflow, so the redistribution 

scheme should be designed to satisfy the following non-deficit constraint: 

Non-Deficit (ND): given r, ~(c, r) ~ 0 for all c E Rf_. 

Theorem 1.1 Let m = 1 and n ~ 3. the optimal efficiency loss of any non-deficit 

VCG mechanism is given as: 

.\* = n- 1 
n,l 2n-2- 1" 



The following linear redistribution scheme defines an optimal mechanism: 

and for n, n 2:: 6, 

where 

3 n-2 
r~, 1 (c-i) = 2::::aA;(c-i)*k + 2::::,BZ(c-i)*k +w~_ 1 (c-i)*(n- 1 ) 

k=1 k=4 

n2 - 2n-2n - 2n + 2 n2 - 2n-1 - 3n + 4 
a;' = 1' a; = (2n-2- 1) (n- 2)n ' a; = - (n- 2)(n- 3)(2n-2 - 1)' 

"'k-2 (n-2) 
* A~,1 A~,1 Dj=1 j 1 ,B --- + -- · --- zfk is even·, 
k - _ 1 (n-2) (n-2) n n k-1 k-1 

"'k-3 (n-2) 
,8* A~,1 A~,1 L..j=1 j 1 f k dd 

k = - ( n - k) - n - 1 G=:~) + (~=:~) i is o ; 

w* 1 = n-

1 
if n is odd; 

n (2n-2 - 1) 

w~_ 1 = 0 if n is even. 
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Remark 1 If the spread between maximal cost and efficient cost is used as an 
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estimator of efficient surplus, the optimal efficiency loss for m = 1 is .X.~, 1 = 2n~--;:~ 1 

when n is odd, and .X.~, 1 = 2n~--;:~2 when n is even (Moulin (2010)). As we mentioned 

in Section 2, this index is smaller than our optimal efficiency loss. 

Theorem 1.2 For 2 ::; m ::; n- 2, (i) the optimal efficiency loss of any non­

deficit VCG mechanism is given as: 

(n m)(n-1) 
.X.* = m-1 

n,m ( _ ) ""m-2 (n-2) + ""n-2 (n-2) 

and (ii) for a fixed m, 

n m Lik=O k m Lik=m k 

m 
.X.* '""_n __ 

n,m - m!2n-2. 

We provide the optimal redistribution schemes corresponding to Theorem 1.2 in 

Appendix 2.5.2 (Lemma 2 and Lemma 3). 

Theorem 1.3 For n ~ 3, the optimal efficiency loss of any non-deficit VCG 

mechanism is written as: 

n-1 
.X.* ----

n,n-1 - 2n-2 _ 1" 

Notice that the optimal efficiency loss for m = n - 1 is the same as the optimal 

efficiency loss for m = 1. 

If we abandon non-deficit requirement, and find the optimal redistribution scheme 
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r#, the corresponding efficiency loss is: 

'# - l~(c, r#)l 
Anm- sup ( ) . 

' cERN es C 
+ 

The following result shows that the total optima1 loss of any VCG mechanism is 

almost the same as the optimal loss of any non-deficit VCG mechanism. 

Proposition 1 The optimal efficiency loss Xft m of any VCG mechanism satisfies 
' 

A~m ~ ~A~,m for all n and m. 

Even if we discard non-deficit constraint, and request the residual claimant to 

finance the mechanism, there is no essential change in the total optimal loss. The 

optimal loss from budget surplus under a non-deficit mechanism is equally split into 

surplus loss (efficiency loss due to surplus) and deficit loss (efficiency loss due to 

deficit). 

3.2.2 Optimal Individually Rational VCG Mechanisms 

In this section, we will restrict our discussion to anonymous mechanisms. 

Anonymity (AN): A VCG mechanism with the redistribution scheme r is 

anonymous if r(i; c_i) = r(c-i) for all i E N. 

A VCG mechanism is expected to cause each agent to have a net disutility less 

than or equal to his disutility under random assignment.9 This notion is expressed 

in the following test: 

Unanimity upper bound (UUB): Vi(c) ~ ~Ci for all i EN and c E R~. 

9 While the random assignment is simple to implement, and strategy-proof, it is not efficient 
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Unfortunately, this test is not compatible with the non-deficit property in our 

model. 10 

Proposition 2 There exists no anonymous linear VCG mechanism that satisfies 

unanimity upper bound and non-deficit. 

A weaker constraint for unanimity upper bound is individual rationality. Indi­

vidual rationality implies that participation in the mechanism will cost any agent less 

than or equal to what it would cost them if they were to perform the task alone. 

Individual Rationality (IR): Vi~ ci for all i EN. 

Proposition 2 and Corollary 1 below show that non-deficit requirement is very 

restrictive, and therefore makes the implementation of VCG mechanisms unattractive. 

When there is a single bad, we cannot improve upon the pivotal mechanism that has 

an infinite efficiency loss. Therefore, we will investigate VCG mechanisms that allow 

for a budget deficit. 

With budget deficit permitted, the ratio of budget surplus to efficient surplus is 

bounded by >. and the absolute ratio of budget deficit to efficient surplus is bounded 

by f.1: 

~(c) . ~(c) 
if ~(c) > 0, 0 < -(-) ~ >. and 1f ~(c) < 0, 0 < --(-) ~ f.l· es c es c 

This two-way worst case constraint is written as: 

ps(c)- >. · es(c) ~ L r(c-i) ~ ps(c) + f.1· es(c) for all c E R~. (3.2) 
iEN 

10Moulin (2010) proves a similar but more universal point for the case of a single bad. Form= 1, 
the unanimity upper bound test fails under the non-deficit constraint for general strategyproof 
mechanisms. 



79 

A pair of (A, f.-l) is said to be feasible if it satisfies constraint (3.2) along with 

individual rationality. Let A be the set of all feasible pairs (A., f.-£). 

For two pairs (X, f.-£1 ) and (A, f.-£) in A, if X 2:: ).. with f.-£1 > 1-l holds or X > ).. with 

f.-£1 2:: f.-l holds, then (A, f.-£) dominates (X, f.-£1). When X > ).. and 1-l' > f.-£, (A, f.-l) strictly 

dominates (X, f.-£1). If a pair (A.*, f.-£*) in A is not dominated by any pairs in A, the pair 

is said to be optimal. We denote the set of all optimal pairs by using 8A and call 8A 

the optimal frontier. A VCG mechanism is said to be optimal if its redistribution 

schemer* generates an optimal pair (A.*, f.-£*) in 8A. 

With this new definition of optimality, we provide the optimal VCG mechanisms 

form= 1 in Theorem 2.1. 

Theorem 2.1 For the case of m = 1, n 2:: 3, there are two optimal anonymous 

and individually rational vee mechanisms. One is the pivotal mechanism whose 

)..~ 1 = oo and f.-£~ 1 = 0. For the other, f.-£~ 1 = 1 with )..~ 1 = 0, and its linear 
' ' ' ' 

redistribution scheme is r~ 1 ( c_i) = n-1 ( c_i)*1 for all i E N. 
' n 

Corollary 1 For the case of m = 1, n 2:: 3, the pivotal mechanism is the optimal 

anonymous vee mechanism that satisfies individual rationality and non-deficit. 

Remark 2 According to Theorem 2.1, there are only two extreme pairs of f.-£~ 1 
' 

and )..~. 1 for the case of m = 1. The pivotal mechanism has infinite efficiency loss due 

strictly to surplus, and therefore generates no deficit. This phenomenon is unique for 

the case of m = 1, while there are infinitely many pairs of f.-£~ m and )..~ m for m 2:: 2. 
' ' 

In addition, as the other optimal mechanism has f.-£~ 1 = 1 with )..~ 1 = 0 (generating 
' ' 

no surplus), its optimal efficiency loss due to deficit is relatively small, compared to 

the infinite efficiency loss due to surplus of the pivotal mechanism. This implies that 

by allowing deficit, we can save a great deal of efficiency loss. We will observe that 
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this property holds true form~ 2 in the following Theorem 2.2 and Theorem 2.3: 

Theorem 2.2 For the case of m = 2, n ~ 3, the optimal frontier of any individ­

ually rational VCG mechanism is given as follows: 

>. * * 
n,2 + J.l-n,2 = 1 

A(n, 2) B(n, 2) 

where 

(n-1) 
A(n, 2) = n- 1 and B(n, 2) = 2n_; _ 1 . 

B(n, 2) is strictly decreasing inn and B(n, 2) ~ 2::~ 1 • 

Remark 3 The function P(n, 2) = B(n, 2)/A(n, 2) is strictly decreasing inn. As 

the number of agents increases, deficit becomes much more inexpensive than surplus. 

For instance P(3, 2) = 0.5 implies that unit surplus loss can be replaced with 0.5 unit 

deficit loss when there are three agents. Computing P( 4, 2) = 0.33, P(5, 2) = 0.21, 

and P(6, 2) = 0.13, we observe that when more agents participate, the shrinking 

deficit loss can replace unit surplus loss. 

Here we illustrate the optimal redistribution schemes corresponding to Theo­

rem 2.2. If J.J-~ 2 = 0 (non-deficit), the optimal redistribution scheme is r*(c-i) = 
' 

n~2 (c-i)* 1 . For the opposite case, >.~.2 = 0 (deficit only), the redistribution scheme 

of the optimal individually rational VCG mechanism is given as follows: 

6 n-1 
r*(c-i) = L ak(c_i)*k + L f3'k(c-i)*k 

k=1 k=7 
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where 

5[(n;1) _ (2n-2 _ 1)]. 

(n~3) (2n-2 _ 1) ' 

2 (n-1) ""'n-2 (n-2) 
(3* 2 L.Jl=k l 

k = - (2n-2- 1) (~::::i) (n- k) 
if k is odd; 

2 (n;1) 
f3Z = (2n-2- 1)(n- k + 1) 

2(n-1) [k (n-1) _ En-2 (n-2)] 
2 n k-2 l=k-3 l if k is even. 
(2n-2 - 1) (~::::i) (n- k) 

In addition, the optimal redistribution schemes for any J-L~,2 > 0 are provided in 

Appendix 2.5.2 (Lemma 4). 

Theorem 2.3 Form, 3 ~ m ~ n- 1, the optimal frontier of any anonymous 

and individually rational VCG mechanism is given as: 

),* * 
n,m + f-Ln,m = 1 

A(n, m) B(n, m) 

where 

(n-1) n 
A(n, m) = Emr_::;(1n-2) - m-1' 

k=O k 

(n-1) nm 
B(n m) - m-1 '"""' --' - ""'m-3 (n-2) + _!!!...._ ""'n-2 (n-2) - m!2n-2. 

L.Jk=O k n-m L..Jk=m-1 k 
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Remark 4 We conjecture that for a fixed m, the function P( n, m) = !~:::~ is 

strictly decreasing inn as is P(n, 2). This implies that the more agents participate, 

the smaller deficit loss that results can replace unit surplus loss. Because P( n, m) ~ 

m(m~J!~n 2 , more participation enables this replacement to be effective: the deficit 

becomes much more inexpensive than surplus as the number of agents increases. This 

behavior is not present in the problem of assigning economic goods. As Moulin (2009) 

discusses, individual rationality does not affect the relationship between surplus loss 

and deficit loss. For the case of economic goods, unit surplus loss can be replaced 

with unit deficit loss regardless of individual rationality. 

Remark 5 Recall that the optimal loss of the pivotal mechanism is m~l. A( n, m) 

~ mr:.._l in Theorem 2.3 tells us that the optimal mechanism converges to the pivotal 

mechanism if deficit is not allowed. Again, the efficiency loss of the pivotal mechanism 

increases as more agents participate and its implementation cost always exhausts the 

entirety of efficient surplus. 

3. 3 Conclusion 

Contrary to expectations, individual rationality significantly changes the characteris­

tics of optimal mechanisms when facing the problem of assigning bads. Additionally, 

we need to run further equity tests on our optimal mechanisms. Although we pro­

vide a partial answer in Al, a more systematic analysis of the relationship between 

different performance measures could raise interesting questions. 
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3.4 Appendices 

3.4.1 Discussion 

We will illustrate that the alternative performance measure in Guo and Conitzer 

(2009) does not work in the problem of assigning bads. According to Guo and Conitzer 

(2009), the index is defined as: 

l~(c, r)l 
TJn,m(r) = sup ( ) . 

cE'RN pS C 
+ 

The optimal "GC" mechanism is a VCG mechanism with a redistribution schemer* 

that generates TJ~,m = rJn,m(r*) :::; rJn,m(r) for any redistribution schemer. The follow­

ing propositions show that this measure is inappropriate since its optimal mechanism 

cannot even achieve its original goal. 

Proposition 3 below presents the optimal "GC" mechanism and the correspond­

ing index. Proposition 4 proves that the "GC" optimality fails to achieve its original 

objective. 

Proposition 3 The optimal non-deficit linear "GC" mechanism has the index: 

(n-1) 
* m-1 

TJn,m = ""~-1 (n-:-1) · 
L.JJ=O J 

If m = 1, the mechanism redistributes nothing. Form ;:::: 2, its redistribution scheme 

r is written as r*(c-i) = E;;:/ ak:(c-i)*k. Ifm is odd, ak: = ( -l)kak and ifm is even, 
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ak = ( -1)k-1ak. Here we write: 

(n _ m) 2::~.::::1 (n-:-1) (n _ m) (n-1) ~~-1 (n-:-1) 
ak = J-0 J * - m-1 L...,J=O J 

k(n-1) 'fln,m- k(n-1) ~~ 1 (n-:-1) 
k k L...,J=O J 

Proof. The worst case constraint is as follows: 

The non-deficit and worst case constraints are written together as: 

(n- m)c*m;::: L r(i; c_i) ;::: (1- 'f/n,m)(n- m)c*m. 
iEN 

Again, the system of inequalities is symmetric across all variables, so we will construct 

a symmetric redistribution scheme r(c-i)· We can write: 

L r(c-i) = nao + (n- 1)a1 · c*1 + (a1 + (n- 2)a2)c*2 + (2a2 + (n- 3)a3)c*3 + · · · 
iEN 

+ ((n- 3)an-3 + 2an-2)c*(n-2) + ((n- 2)an-2 + an-1)c*(n-1) 

Step 1: We first show that the non-deficit and worst case constraints imply 

am= am+1 = · · · = an-1 = 0 and ao = 0. For cost profile c*1 = c*2 = · · · = c*n = 0, 

non-deficit and worst case constraints imply 0 ;::: na0 ;::: 0, that is, a0 = 0. For a 

cost profile c*1 = c*2 = · · · = c*(n-1) = 0 and c*n = 1, the two constraints imply 

0 ;::: (n- 1)an-1 ;::: 0, so an_1 = 0. For a cost profile c*1 = · · · = c*(n-2) = 0 and 
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c*(n-1) = 1, the constraints imply 0 2': (n- 2)an_2 2': 0, so an_2 = 0. Likewise, we can 

conclude that am = ... = an-1 = 0. 

Then, the non-deficit and worst case constraints are written as: 

0 2': (n- 1)a1 · c*1 + (a1 + (n- 2)a2)c*2 + (2a2 + (n- 3)a3)c*3 + · · · 

+ ((m- 2)am-2 + (n- m + 1)am-1)c*(m-1) + ((m- 1)am-1 + (n- m)( -1))c*m 

and 

0 :::;; (n- 1)a1 · c*1 + (a1 + (n- 2)a2)c*2 + (2a2 + (n- 3)a3)c*3 + · · · 

+ ((m- 2)am-2 + (n- m + 1)am_I)c*(m-1) 

+ ((m- 1)am-1 + (n- m)( -1 + TJn,m))c*m. 

Applying Lemma 1, we transform the original optimization problem into a linear pro­

gram. We aim to minimize TJn,m satisfying the non-deficit and worst case constraints 

as follows: 

(n- m) 2': (m- 1)am-1 2': (n- m)(1- T/n,m) 

(n- m) 2': (m- 2)am-2 + nam-1 2': (n- m)(1- T/n,m) 

(n- m) 2': (m- 3)am-3 + n(am-2 + am-d 2': (n- m)(1- TJn,m) 

(n- m) 2': a1 + n(a2 + a3 + · · · + am-1) 2': (n- m)(1- TJn,m) 

(n- m) 2': n(a1 + a2 + a3 + · · · + am-1) 2': (n- m)(1 - T/n,m)· 
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Step 2: Let a redistribution scheme f(c-i) = :L;:-;_1 ak(c-i)*k generate iJn,m· Sup­

pose that TJn,m ::::; 'f/~,m· Let Xk = L~lc1 aj and let xi:: = :L~Ic1 a; fork= 1, ... 'm -1. 

If m is odd, observe that 

(m- 1)x:n_1 = (n- m)(1- 'fl~m) 
' 

(m- 2)x:n_2 + (n- m + 2)x:n_1 = (n- m) 

(m- 3)x:n_3 + (n- m + 3)x:n_2 = (n- m)(1- 'f/~,m) 

(m- 4)x:n_4 + (n- m + 4)x:n_3 = (n- m) 

2x; + (n- 2)x*3 = (n- m)(1- 'f/~ m) 
' 

x~ + ( n - 1 )x; = ( n - m) 

nx~ = (n- m)(1- 'f/~ m)· 
' 

Since the redistribution scheme f satisfies non-deficit and worst case constraints, 

we have (m- 1)xm-1 ~ (n- m)(1 - TJn,m)· In addition, we have TJn,m ::::; 'f/~,m and 

(m-1)x:n_1 = (n-m)(1-'fl~m)· We can then conclude Xm_1 ~ x:n_1 . The constraints 
' 

also give (n- m) ~ (m- 2)xm_2 + (n- m + 2):i;m_1, and the previous observation 

gives (m- 2)x:n_2 + (n- m + 2)x:n_1 = (n- m). With Xm-1 ~ x:n_1 , we conclude 

Xm-2 ::::; x:n_2 . Applying the same logic from the third to the (m- 1)th constraints 

and observation, we know Xm-3 ~ x:n_3, Xm-4 ::::; x:n_4, · · ·, X1 ::::; xi (the direction of 

inequality is alternating). Finally, the mth constraints give nx1 ~ (n- m)(1- iJn,m) 

and the observation gives (n- m)(1- 'f/~,m) = nxi, so x1 ~xi. Concluding X1 =xi 

and iJn,m = 'f/~,m' we have xi = x; fori = 1, · · · , m-1, and this implies that ak = ai:: for 

k = 1, · · · , m-1. Therefore, 'f/~ m is optimal, and r* is a unique optimal redistribution 
' 
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scheme. • 

Proposition 4 

(i) Form fixed, 'f}~,m increases inn and it converges to 1. 

(ii) For n fixed, 'f}~,m decreases in m. 

(iii) Form fixed, the largest ratio of budget imbalance to efficient surplus (efficiency 

loss) of the optimal "GC" mechanism diverges inn if m is even: 'rJ~,m ~ n and 

it is infinite if m is odd. 

Proof. 

( k ) ""m-1 (k-1) ( k-1) ""m-1 (k) 
h(k + 1) _ h(k) = m-1 ~j=O j - m-1 ~j=O j 

""r:"-1 (k) 0 ""r:"-1 (k-:-1) 
~J=O J ~J=O J 

( k-1) m-1 (k) 
m-1 1 . 0 

= (k _ m + 1) I:m-1 (k). I:m-1 (k-:-1) L)m- - J) j > · 
J=O J J=O J J=O 

which implies that h is increasing in n. Finally, limn--+oo 'f}~,m = 1. This is because 

(n-1) rv nrn-1 and ""m-1 (n-1) rv nrn-1 
m-1 - (m-1)! ~j=O j - (m-1)! · 
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we have 

l(k+l)-l(k)~(~(n~l))' _ (t,(n~l))(~(n~l)) 

~(~ (n~ !)) ( _ (n~ 1) +(~=D)+ (n~ !)(~= D 

and thus, L(k) is increasing in k. With £(2) > 0, L(k) is positive for any k ;::: 2, so 

l(k) increases ink. Therefore, 7J~m decreases in m. 
' 

(-1) 1 (n-m)(;;',~D 
(iii) Suppose m is even. Then, l · az + (n - l - 1) · al+l = E~o1 (n~ 1) for 
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0 < l < m- 2 and (m- l)a 1 = (n- m) ET=o2 (nt) S1"nce we have - - m- "m-1 (n-:-1) • 
L..J=O J 

m-2( l)l( )(n-1) "'m-2(n-1) 
"""'r*(c_ ·) = """' - n- m m-1 *(l+l) + ( _ ) L.Jj=O j *m 
~ ~ ~ "'m-1 (n-1) c n m "'m-1 (n-1) c ' 
iEN l=O L.Jj=O j L.Jj=O j 

the efficiency loss of the optimal "GC" mechanism is 

[ "'m *k "'m-1 *k] n L.J k=2 c - L.Jk=1 c 
. sup even odd "'n *k ( ) "'m *k . cER:t. m L.Jk=m+1 C - n - m L.Jk=1 C 

Observing that the ratio increases as c*(m+l) c*(m+2) · · · c*n decrease we write 
' ' ' ' 

[ "'m *k "'m-1 *k] n L.J k=2 c - L.Jk=1 c 
S even odd 
up "'n *k ( ) "'m *k cER:t. m L.Jk=m+1 C - n - m L.Jk=1 C 

[ *m + "'m-2 *k "'m-1 *k] n c L.J k=2 c - L.Jk=1 c 
~p ~- ~ . 

cER:t. (n- m) [(m- l)c*m- 2:~::/ c*k- L7:::i c*k] 
odd even 

Notice that given c*1 c*3 · · · c*(m-1) the ratio increases as c*2 c*4 · · · c*(m-2) m-
' ' ' ' ' ' ' 

crease. Thus, the expression is written as 

sup m 1 ] 
cERN (n- m) [(m- l)c*m- c*1 - 2 Lk::a c*k 

+ odd 

n(c*m- c*1) n 

sup [ J cER:t. (n- m) (m- l)c*m- c*1 - (m- 2)c*m n- m 

The second last equality holds since the ratio increases as c*3, c*5, · · · , c*(m-1) increase. 

Th \ n(;;,-=.i) nr k h (n-1) nm d "'m-1 (n-1) nm-1 
US, A = L:m-1 (n-:-1). vve nOW t at n m-1 ~ (m-1)! an L...Jj=O j ~ (m-1)! · 

J=O J 
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Therefore, >. ~ n if m is even. Similarly, if m is odd, m ~ 3, 

n{ [(n-1) + 2 ~~-2 (n-1)] c*m + (n-1) [ ~m--2 c*k - ~m_:::-1 c*k]} 
(n- m) m-1 L..JJ-0 k m-1 L..Jk-1 L..Jk-2 ). = SU odd even 

~m-1 (n-1) P ~n *k ( ) ~m *k 
L..Jj=O j cE'R!j_ m L..Jk=m+l C - n - m L..Jk=1 C 

n{ [(n-1) + 2 ~~-2 (n-1)] c*m + (n-1) [ ~m__::-2 c*k - ~m_:::-1 c*k]} 
(n- m) m-1 L..JJ-0 k m-1 L..Jk-1 L..Jk-2 

= SU odd even 

L:~~1 (nj1) eEl:: (n- m) [(m- 1)c*m- L:~~2 c*k- L:J:~i c*k] 
odd even 

The last equality holds since the ratio increases as c*(m+l), · · · , c*n decrease. Observ-

ing that the ratio increase as c*1, c*3 , · · · , c*Cm-2) increase, we write 

[( n-1) 2 ~m-2 (n-1)] *m >. ( n - m) n m-1 + LJ j =0 j c 

= L:~~1 (nj1) c~i:: ( n - m) [ ( m - 1 )c*m - 2 L:7:;:i c*k J 
even 

[( n-1) 2 ~m-2 (n-1)] *m (n- m) n m-1 + L..Jj=O j c = sup = oo. 
L:~~1 (nj1) cE'R!j. (n- m) [(m- 1)c*m- (m- 1)c*m J 

The second last equality holds since the ratio increases as c*2, c*4, · · · , c*Cm-1) increase. 

If m = 1, we know the pivotal is optimal and its efficiency loss is infinite. • 

The statement (i) points out that the pivotal mechanism becomes optimal as 

the number of agents increases. The optimal mechanism fails to redistribute any of 

the budget surplus of the pivotal mechanism. The statement (iii) shows that the 

efficiency loss of the optimal "GC" mechanism diverges in n or is infinite. Therefore, 

throughout this paper, we insist that we measure the performance of a mechanism 

by a worst case ratio whose denominator is efficient surplus. 
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3.4.2 Proofs 

We will use notations as follows: 

t' 

B!,t' = L (~) ' 
k=t 

B-+t = BO,t 
s s 

L Xk = x2 + X4 + · · · and L Xk = x1 + X3 + · · · . 
j=2 j=l 
even odd 

Lemma 1. 

(i) b1c1 + · · · + bnCn < 0 for 0 < cl < 

k = 1,· · · ,n. 

(ii) b1c1 + · · · + bnCn > 0 for 0 < cl < < Cn if and only if "L,7=k bj > 0 for 

k = 1,· · · ,n. 

for 0 :S C1 :S · · · :S Cn if and only if bndn + ("L,7=n-l bj )dn-1 +("L,7=n-2 bj )dn-2+ · · · + 

("L,7=l bj)d1 ::; 0 for all di ~ 0, i EN. Setting for each i EN, di = 1 and dj = 0 for 

all j E N, j =1- i, we have the statement proven. (ii) can be proven in the same way . 

• 
Proof of Theorem 1.2 

Statement (i) 

Firstly, we will show the statement for the case of m, 4::; m ::; n- 2. 

Case 1. m is odd: 
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The worst case constraint is as follows: 

), 2:: (n- m)c*m- 2::~1 r(i; c_i) 
!I! ""'n . _ ""'m *i 
n ui=1 C~ ui=1 C 

The non-deficit and worst case constraints are characterized by a system of linear 

inequalities as follows: 

n n m 

(n- m)c*m 2:: L r(i; c_i) 2:: (n- m)c*m- >.(: L Ci- L c*i). 
i=1 i=1 i=1 

In the inequalities above, both sides of 2::~= 1 r(i; c_i) is symmetric in all variables. 

If every r(i; c_i) for i E N satisfies all inequalities, we can construct a symmetric 

scheme r meeting the inequalities. The symmetric scheme is written as r( c_i) = 

~ EiEN,7rEIT r( i; c-::_i) where II is the set of all permutations of N \ { i} and c-::_i results 

from permuting the coordinates of c_i accordingly. Therefore, it is natural to restrict 

our discussion to symmetric redistribution schemes. r(i; c_i) will be denoted by r(c-i) 

from now on. 

Let en-k = (0, 0, · · · , 0, 1, 1, · · · , 1), en-k E Rn for k = 0, 1, · · · , n where 2::~= 1 

( en-k) · = n - k Let En- 1-k = (0 0 · · · 0 1 1 · · · 1) En- 1-k E Rn-1 for k = 
t 0 ' ' ' ' ' ' ' ' 

0, 1, · · · , n- 1 where E~:11 (En- 1-k)i = n- 1 - k. Define Pk = r(En- 1-k) for k = 

0, · · · , n - 1. The set { e 0 , e1, · · · , en} is a basis of C, C = { c E R~ I c1 ~ c2 ~ · · · ~ 

en}. Each c* E Cis uniquely written as a linear combination of elements of the basis. 

Since c_i = (En-1 -En-2)(c-i)*1+ (En-2- En-3)(c-i)*2 + ... +(E3_ €2) (c_i)*(n-3) 

+(E2- E1) (c-i)*(n-2) +E1(c-i)*(n-1), the redistribution scheme is written as r(c-i) 

= (Po- P1)(c-i)*1 +(P1- P2)(c-i)*2 + · · · + (Pn-3- Pn-2)(c-i)*(n-2) +Pn-2(c-i)*(n-1) · 

Recall that ps(c) = (n- m)c*m and es(c) = r;: EiEN ci- EZ:,1 c*i. For a cost 
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profile en-k, we notice that if 0 ~ k ~ m- 1, es(c) = ~(n- m) and ps(c) = n- m 

and if m ~ k ~ n, es(c) = ~(n- k) and ps(c) = 0. 

Now we will apply en-k for various k's. When k = 0, the non-deficit and worst 

case constraints are written as n - m ~ np0 ~ n - m, so p0 = n--:,_m. When k = n, the 

two constrains are written as 0 ~ npn_1 ~ 0, so Pn-1 = 0. Applying en-k for other k, 

1 ~ k ~ n- 1, the non-deficit and worst case constraints are written as follows: 

( n - m) ( 1 - ~ - ~) ~ ( n - 1) P1 ~ ( n - m) ( 1 - ~) 

(n- m) ( 1- ~A) ~ 2p1 + (n- 2)p2 ~ n- m 

(n- m) ( 1- ~A) ~ 3p2 + (n- 3)p3 ~ n- m 

( m-1 ) (n- m) 1- n A ~ (m- 1)Pm-2 + (n- m + 1)Pm-1 ~ n- m 

m(n- m) 
- A ~ ffiPm-1 + (n- m)pm ~ 0 

n 
m(n- m -1) 

- A ~ ( m + 1) Pm + ( n - m - 1) Pm+l ~ 0 
n 

2m 
--A~ (n- 2)Pn-3 + 2Pn-2 ~ 0 

n 
m 
--A~ (n- 1)Pn-2 ~ 0. 

n 

We will use the notations M and p as follows: 
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(n- 1) 0 0 0 0 

2 (n- 2) 0 0 0 P1 

0 3 (n- 3) 0 0 P2 

M= andp = 

0 0 0 3 0 Pn-3 

0 0 0 (n- 2) 2 Pn-2 

0 0 0 0 (n- 1) 

Then, M is a (n- 1) X (n- 2) matrix and p E nn-2. Using the notations of 

M and p, the central part of above inequalities is written as the follows: (M p)I = 

(n- 1)pl, (Mp)2 = 2pl+(n- 2)p2, (Mp)3 = 3p2+(n- 3)p3, · · ·, (Mp)n-2 = (n-

2)Pn-3 + 2Pn-2 and (M P)n-l = (n- 1)Pn-2· 

By computing the null space of the transposed M, we find the hyperplane of 

nn-l as the range of M. For X in the range of M, the hyperplane is presented as 

and the last term (n:_1)Xn-l appears in either side depending on whether n is odd or 

even. The no deficit and worst case constraints imply that 

and 
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for 2 :::; k :::; m - 1. And 

for m :::; k :::; n - 1. 

When n is odd, the non-deficit and worst case constraints imply that 

(n-m)[~ (:) -1]2 
odd 

(~)x1 + ~ (:)x. + ~ (:)x. ~ ~ (:)x. + .%
1 
(:)x, 

odd odd even even 

m-1 ( ) ( k ) n-1 ( ) ~ (n- m) L ~ 1- ;A -A L ~ : (n- k). 
k=2 k=m+1 
even even 

Then, we have 

(n- m) [E~~J (~)- 2:~,;12 (~)J 
A > even odd 

- ( ) "m-1 k (n) "n-1 m ( k) (n) · n- m wk=2:;:;; k + wk=m+1 n n- k 
even even 

Likewise, when n is even, the non-deficit and worst case constraints imply that 

(n-m)[~ (:) -1]2 
odd 

(~)x1 + ~ (:)x. + ~ (:)x, ~ ~ (:)x. + ,~1 (:)x, 
odd odd even even 

m-1 ( ) ( k ) n-2 ( ) ~ ( n - m) £; ~ 1 - ; A - A k];_ 
1 

~ : ( n - k). 

even even 
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Then, we have 

(n- m) [ET:~ (~)- E~=-12 (~)J 
A> even odd 

- ( ) ""'m-1 k (n) ""'n-2 m ( k) (n) ' n- m L..Jk=2 n k + L..Jk=m+l--;;: n- k 
even even 

The optimal efficiency loss is written as follows: 

(n- m) [ET:~ (~)- 2:~==-12 G)] 
).* = even odd 

n,m (n- m) ET:i ~ (~) + E~=m+l 7:(n- k) G). 
even even 

~ (~) - ~ (~) = ~( -l)k (~) = (-l)m-1 (: ~ ~). 
k=O k=1 k=O 
even odd 

From k(~) = nG::::i), we write 

~ k (~) = n ~ (~ = ~) = n ~ (n ~ 1) 
k=2 k=2 k=1 
~- ~- ~ 

=n ~ w~2) + (~=Dl =n[~ (n~2) +}; (n~2)l 
odd odd even 



and 

t m(n- k)(n) = m [n t (n)- t k(n)] 
k=m+l n k n k=m+l k k=m+1 k 

even even even 

=m[ t (n) _ t (n-1)] 
k=m+l k k=m+1 k- 1 

even even 

= [ t (n) _ ~ (n -1)] 
m k=m+1 k k=m k 

even odd 

=m{ t W~l)+(~=Dl 
k=m+1 

even 

-~ w~ 2) + (~=D n 
odd 

= m [ t (n ~ 1) _ ~ (n ~ 2)] . 
k=m k=m-1 

Therefore, the optimal efficiency loss is written as 

(n m)(n-1) 
..\* = m-1 

n,m ( _ ) "'m-2 (n-2) + [ "'ii (n-1) _ "'ii-1 (n-2)] · n m L.Jk=O k m L.Jk=m k L...Jk=m-1 k 

Case 2. m is even: 
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When n is odd, the non-deficit and worst case constraints imply that 

( 1 ),) m-1 ( ) ( k ) n-2 ( ) 
n( n - m) 1 - ;;: - ;;: + ( n - m) ~ ~ 1 - ;;: >. - >. k];1 ~ : ( n - k) 

odd odd 

~ (7)x~ + ~ (~)x. + .~1 (~)x. ~ ~ (~)x. + ~ (~)x• 
odd odd even even 

::; ( n - m) I: (~) . 
k=2 
even 

Then, we have 

(n- m) [~~::-/G) - ~7:;:5 G)] 
), > odd even 

- ( ) ""'m-1 k (n) ""'n-2 m ( k) (n) · n - m ~k=1 ;;; k + ~k=m+l -;;;- n - k 
odd odd 
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Likewise, when n is even, the non-deficit and worst case constraints imply that 

( 1 ), ) m-1 ( ) ( k ) n-1 ( ) 
n(n- m) 1- ;;: - ;;: + (n- m) ~ ~ 1- ;;:>- -A k];1 ~ : (n- k) 

odd odd 

~ (7)x~ + ~ (~)x. + .%
1 
(~)x. ~ ~ (~)x. + ~ (~)x. 

odd odd even even 

::; ( n - m) I: (~) . 
k=2 
even 

Then, we have 

(n- m) [~~1 G)- ~7:;:5 (~)J 
),> ~ n= 

- ( ) ""'m-1 k (n) ""'n-1 m ( k) (n) · n - m ~k=1 ;;; k + ~k=m+l -;;;- n - k 
odd odd 
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The optimal efficiency loss is written as follows: 

(n- m) [E~11 (~) - 2:7:~~ (~)J 
). * = odd even 

n,m ( ) "'m-1 k (n) "'n m ( ) (n) · n - m L.Jk=1 :n k + L.Jk=m+l -:;:;: n - k k 
odd odd 

We write E~/ G) - 2:7:~~ (~) = - 2:~,:01 ( -1 )kG) = ( -1 )m (;=~) = (;=~) since m 
odd even 

is even. And we write 

n ~ m ~ k (~) = ( n - m) ~ (~ = ~) = ( n - m) 'f (n ~ 1) 
k=1 k=l k=O 
odd odd even 

even 

and 

n ( ) [ n ( ) n ( )] m """' n """' n """' n - 1 - L..t (n- k) k = m L..t k - L..t k 1 
n k=m+ 1 k=m+1 k=m+1 -

odd odd odd 

=m L n - L n-1 [ n ( ) n-1 ( )] 

k=m+l k k=m k 
odd even 

=m{ t w~l) + (~=Dl- ~ w~ 2) + (~=DD 
m+1 k=m 
odd even 

=m[t(n~l)- ~ (n~2)]· 
k=m k=m-1 

Therefore, the optimal efficiency loss is written as 

* (n- m)(;=~) 
An,m = ( _ ) "'m-2 (n-2) + [ "'n (n-1) _ "'n-1 (n-2)] · n m L.Jk=O k m L.Jk=m k .L.Jk=m-1 k 
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We rewrite the optimal efficiency loss as follows: 

A* = (n-m)(:~~) 
n,m ( _ ) "'m-2 (n-2) + ["'ii (n-1) _ "'ii-1 (n-2)] n m 6k=O k m 6k=m k 6k=m-1 k 

where ii = ii if m is odd and ii = fi if m is even. ii = n- 1 if n is odd and ii = n- 2 

if n is even. fi = n - 2 if n is odd and fi = n - 1 if n is even. 

Case 3. m = 2: the non-deficit and worst case constraints are characterized by 

(n- 2)c*2 2:: L r(c-i) 2:: (n- 2)c*2- A[~ L ci- c*1- c*2]. 
iEN iEN 

We apply en-k to the system above. Again Po= n~2 and Pn-1 = 0. Fork= 1, 

1 1 A 
( n - 2) ( 1 - -) 2:: ( n - 1) PI 2:: ( n - 2) ( 1 - - - -) 

n n n 

and for n - 1 2:: k 2:: 2, 

Then, we have 

2 
0 2:: kPk-1 + (n- k)pk 2:: -A· -(n- k). 

n 

(n- 2)(n- 1- A)- A£; (~) (n- k)~ :S 0 

odd 

and find the optimal loss. 



Case 4. m = 3: the non-deficit and worst constraints are written as 

(n- 3)c*3 ~ L r(c-i) ~ (n- 3)c*3 - A[~ L ci- c*1 - c*2 - c*3]. 

iEN iEN 

Applying en-k for 0:::; k:::; n, we have Po= n;-:3 , Pn-1 = 0 and for k = 1, 

( n - 3) ( 1 - ~) ~ ( n - 1) p1 ~ ( n - 3) ( 1 - ~) - A ( ~ ( n - 1) - 2) 

fork= 2, 

and for n - 1 ~ k ~ 3, 

Finding 

gives 

Statement (ii) 

Case 1. m is odd: 

3 
0 ~ kPk-1 + (n- k)pk ~ -A-(n- k). 

n 

even 

even 
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We rewrite the optimal efficiency loss as 

.X* = (n- m) (r:=.~) 
n,m (n - m)B--+(m-2) + m [Bm,n - Bm-1,n-1) . 

If n is even, we write 

and if n is odd, we write 

n-2 n-1 n-2 

= 2n-2 _ B--+(m-1) 
n-2 

Bm,ii _ Bm-1,ii-1 = ~ [(n- 1) _ (n- 2)] = ( _ 2) ~ (n- 2) 
n-1 n-2 ~ k + 1 k n + ~ k + 1 

k=m-1 k=m-1 

102 

Then, we have (r:=.~) ~ (~~-1;,. Note that B-=~-2) is a polynomial of degree 

m - 2 and B-=~-1) is a polynomial of degree m - 1. Thus, we have 

(n- m)B-=~-2) + m(2n-2 - B-=~-1)) ~ m2n-2 

(n- m)B-=~-2) + m((n- 2) + 2n-2 - B-=~-1)) ~ m2n-2. 

Therefore, we conclude 

* (n- m) nm-1 
A ~ ·----n,m - m! 2n-2 . 

Case 2. m is even: 
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We rewrite the optimal efficiency loss as 

(n m) (n-1) 
A.* = m-1 

n,m (n - m)B--t(m-2) + m [Bm,n - Bm-1,n-1] . 
n-2 n-1 n-2 

S. (n-1) n=-1 d 
mce m-1 ~ (m-1)! an 

Bm,n _ Bm-1,fi-1 = ~ [(n- 1) _ (n- 2)] 
n-1 n-2 ~ k + 1 k 

k=m-1 

I: (n- 2) 
k=m-1 k + 1 

= 2n-2 _ B--t(m-1) 
n-2 ' 

l d \ * (n-m) n=-1 • 
We COnC U e An,m ~ m! 2n-2 • 

We provides optimal redistribution schemes for m > 3 odd, corresponding to 

Theorem 1.2 in the following lemma. 

Lemma 2 The optimal redistribution scheme form odd is as follows: 

3 m-1 m+3 

r~,m(c-i) = L ak(c-i)*k + L f3f.(c-i)*k + L l'f.(c-i)*k 
k=1 k=4 k=m 

n-m-2 

+ L ~~+k(c-i)*(m+k) + W~-1 (c-i)*(n-1) 

k=4 

where 

2A.~ m(n- m) * -2A.~,m(n- m). 
a*1 = O·, a* ' · a 

2 = n(n- 2) ' 3 = (n- 3)(n- 2) ' 
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even 

f3Z = n- m + _n_ ( n- m ) { n- (k- 1)-X~,m _ (k;1) ~ (nj1) 
n- k n- k n- k + 1 n (n) L.t (n-2) 

2 j=2 k-3 

+ 2(k;1) ~ (n- jA~,m)(]=:;) - 2(k;1) } 
L.t if k is odd; 

n(~::::;) j=2 j! n(~::::;) 
even 

L tt · L _ n-m '\'3 * '\'m-1 {3* e zng n,m - -n- - L...k=1 ak - L...k=4 k' 

* - - n m m + k * m n,m n - 2 - m _m_L { 
( ) ,X* k-3 ( ) (n-1) } 

~m+k- m + k n(n- (m + k)) An,m + nC~~~) f; m + j n- m c~~~) n,m 

if k is even; 
k-4 (n-2) 

* m * n { m( m + k - 1) * m * "" m+j 

~m+k = -:;;An,m + n- (m + k) n(n- (m + k- 1)) An,m + -:;;An,m ~ (m:~~1) 

(n-1) } m m . . . 
- n _ m ( n- 1 ) Ln,m if k zs odd, 

m+k-1 
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m A* if n is odd; 
n(n- 1) n,m 

w~_ 1 = 0 if n is even. 

Proof. To find the optimal redistribution scheme, notice that when A= A~,m' we 

have X 1 = (n-m)(n-1)/n. When 2::; k::; m-1, Xk = n-m if k is an odd number 

and Xk = (n- m) (1- ~A~,m) if k is an even number. When m::; k::; n -1, Xk = 0 

if k is an odd number and Xk = -A~,m m(:-k) if k is an even number. Recalling 

Xi = ( M p )i, we can find the optimal redistribution scheme has coefficients. 

The last term is given as 

Pn-2 = - ( m ) A~ m if n is odd and 0 if n is even. 
nn-1 ' 

The first three terms are given as 

Po- P1 = 0 

2A~m(n- m) 
Pl-P2= ~(n- 2) 

-2A* (n- m) n,m 
P2 - P3 = ( n - 3) ( n - 2) . 

We will find the coefficient Pk- Pk+l for all k, 3 ::; k::; m- 2. We have 

(n- m) {n- 2hA* ~ 2h(2h -1)(;.~;) 
P2h = n- 2h n n,m - ~ (2j + 2)(2j + 3) (2nh-=_22) 

~ (n- 2jA~,m)(2h)(2h- 1) (~-:=_;) _ 2h(2h- 1)} 
+ L__; (2 ') 1 ( n-2 ) ( n-2 ) 

j=l n J · 2h-2 n 2h-2 



for 2 ~ h ~ m2l and 

n- m 2h+ 1 
P 2h+I = n- 2h- 1 - n- 2h- 1 P 2h 

for 2 ~ h ~ m23 . Since we can write 

(n- m) n- 2h>.~,m n 
P2h-1- P2h = · - -P2h 

2h n 2h 

for 2 ~ h ~ m2l and 

n-m n 
P2h- P2h+1 = -n---2-h---1 + n - 2h - 1 P2h 

for 2 ~ h ~ m;-3 , we conclude that 

(n- m) n- 2h>.~,m 
P2h-1 - P2h = 2h · n 

n (n- m) {n- 2h)..* ~ 2h(2h -1)(;;~;) 
- 2h n- 2h n n,m- j=O (2j + 2)(2j + 3)(2nh-::_22) 

~ (n- 2j>.~,m)(2h)(2h- 1) (;;-::._;) _ 2h(2h- 1)} 
+ ~ (2 ')l(n-2) (n-2) 

j=l n J · 2h-2 n 2h-2 

for 2 ~ h ~ m2l and 

n-m 
P2h - P2h+1 = - n _ 2h _ 1 

n (n- m) {n- 2h>.* ~ 2h(2h- 1)(;;~;) 
+ n- 2h -1 n- 2h n n,m- j=O (2j + 2)(2j + 3)G~_22) 
~ (n- 2j>.~,m)(2h)(2h- 1)(;;-::._;) _ 2h(2h- 1)} 

+ ~ (2 ')l(n 2) (n-2) 
j=l n J · 2h-2 n 2h-2 

106 



107 

for 2 ~ h ~ m23 . From ~";=~2 Pk - Pk+1 = Po - Pm-1 and Po = n-:,_m, we can compute 

Pm-1· 

Now we will find the remaining coefficients Pk- Pk+1 form- 1 ~ k ~ n- 3. We 

have the first four terms as 

n 
Pm-1- Pm = Pm-1 

n-m 

m ,\* nm 
Pm- Pm+1 =-:;;: n,m- (n _ m)(n _ (m + 1))Pm-1 

m * nm(m+ 1) 
Pm+l- Pm+2 =- (n- (m + 2)) An,m + (n- m)(n- (m + 1))(n- (m + 2))Pm-1 

m * m(m+2) * 
Pm+2- Pm+3 =-:;;:An,m + (n _ (m + 3))(n _ (m + 2)) An,m 

nm(m + 1)(m + 2) 
(n- m)(n- (m + 3))(n- (m + 2))(n- (m + 1))Pm-1· 

We can write 

h-2 ( ) ( n ) _ m(m + 2h) * m ,\* m + 2j + 2 m+2H2 
Pm+2h- n(n- (m + 2h)) An,m + n n,m :?= m + 2h + 1 ( n ) 

J=O m+2h+1 

( m ) ( m + 1 ) (m:1) 
- n Pm-1 

n - m m + 2h + 1 (m+2h+l) 

for 2 ~ h ~ n-r;-2. With 

n- (m+ 2h) 
Pm+2h-1 = - m + 2h Pm+2h, 
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we have 

n { m(m + 2h) * 
Pm+2h-1- Pm+2h =-m + 2h n(n _ (m + 2h)) An,m 

h-2 ( ( n ) + m .A* """ m + 2j + 2) m+2j+2 
n n,m ~ m + 2h + 1 ( n ) 

j=O m+2h+1 

( m ) ( m + 1 ) (m:1) } 
- n-m m+2h+1 (m+;h+l)Pm-1 

for 2 ~ h ~ n-;:-2 . With 

m * m+2h+ 1 
Pm+2h+l = ---;;.An,m- n _ (m + 2h + 1)Pm+2h, 

m * n { m(m + 2h) * 
Pm+2h- Pm+2h+1 = --;;-An,m + n _ (m + 2h + 1) n(n _ (m + 2h)) An,m 

+ m .A* ~ (m + 2j + 2) (m+~j+2) 
n n,m ~ m + 2h + 1 ( n ) 

j=O m+2h+1 

( m ) ( m + 1 ) (m:1) } 
- n-m m+2h+1 (m+;h+l)Pm-1 

for 2 < h < n-m-4 . • 
- - 2 

The following lemma provides optimal redistribution schemes for m = 2, corre-

sponding to Theorem 1.2. 

Lemma 3 The following linear redistribution scheme defines an optimal mecha-

nism form= 2: 

5 n-1 

r~.2 (c-i) = L a'k(c-i)*k + L f3'k(c-i)*k 
k=1 k=6 
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where 

Proof of Theorem 1.1 

When m = 1, ps(c) = (n- 1)c*1 and es(c) = ~ 'L,iEN c;- c*1 . Applying en-k 

with k = 0 and k = n, the no deficit and worst case constraints give p0 = n-1 and n 

Pn-1 = 0. With k = 1, the constraints are -(1 + >.) (n~1 ) ~ (n- 1)p1 ~ - n~ 1 . And 

for k, 2 ~ k ~ n- 1, the constraints give -A n~k ~ kpk_1 + (n- k)pk ~ 0. Setting 

M and p as before, we find the same hyperplane and 

-(n- 1) 2 (~)x1 + (;)x, + ... ~ (~)x, + (~)x. + ... 2 ->. t, (~) (n ~ k) 

even 
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leads to the following inequality: 

n-1 >. > --;:--. -----,--
- ~k=2 G) (n~k) 

even 

where n is n -1 if n is odd and n is n- 2 if n is even. Therefore, the optimal efficiency 

loss to efficient surplus is given as >.~,I = 2nn_-;~I. 

The optimal redistribution mechanism is as follows: If n = 3, p0 - PI = 1 and 

PI = -~. If n = 4, Po- PI = 1, PI - P2 = -~, and P2 = 0. If n 2: 5, the first three 

terms are given as 

Po- fi = 1 

8 - 8n - 2nn + 4n2 

PI- P2 = ( -4 + 2n) ( -2 + n)n 

2(8 - 2n - 6n + 2n2 ) 

and the last term is given as 

4 
Pn-2 = - ( -4 + 2n) n 

if n is odd and Pn-2 = 0 if n is even. The residual terms are computed as 

1 

for 1 :=:::; h :=:::; n25 · 1 { n:odd} + n24 · 1 { n:even}, and 

4(n- 1) 4 L:~=I (n;!I) 1 
P2h+2 - P2h+3 = - ( _ 2h _ 3) (2n _ 4) - 2n _ 4 ( n-2 ) + ( n-2 ) 

n 2h+2 2h+2 
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for 1 ~ h ~ n25 · 1{n:odd} + n26 · 1{n:even}· • 

Proof of Theorem 1.3 

When m = n -1 and m 2': 2, ps( c) = c*(n-l) and es( c) = - ~ LiEN Ci + c*n. When 

cost profile is en-k, ps(c) = 1 for 0 ~ k ~ n- 2 and ps(c) = 0 for n- 1 ~ k ~ n. 

Likewise, es(c) = 1 - ~(n- k) for 0 ~ k ~ n- 1 and es(c) = 0 for k = n. At each 

profile en-k, the no deficit and worst case constraints give 1-~- ~ ~ ( n -1) p1 ~ 1- ~ 

for k = 1, 1 - >..~ ~ kPk-l + (n- k)pk ~ 1 for 2 ~ k ~ n- 2 and ->..(1 - ~) ~ 

(n- 1)Pn-2 ~ 0 fork= n- 1. Using the same M and p and finding the hyperplane, 

we have 

(n -1- A)+~ (1- A~)(~)~~ (~)x• ~ ~ (~)x• ~ ~ (~) 
odd odd even even 

if n is odd and 

(n-1) + ~ (~) ~ ~ (~)x. ~ ~ (~)x• ~ ~ (~) (1- A~) 
odd odd even even 

if n is even. Then, we have the following inequality: 

when n is odd, and 

"'n-2 (n) _ "'n-3 (n) 
L....k=l k L....k=O k ).. > odd even 

- "'n-2 fs_ (n) 
L....k=l n k 

odd 

z:~=~ (~) - z:~:~ G) 
).. > even odd 

- "'n-2 k (n) 
L....k=2 n k 

even 
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when n is even. Then, the optimal efficiency loss to efficient surplus is written as 

'* n-1 • An,n-1 = 2n-2-1 · 

Proof of Proposition 1 

Case 1. m = 1: when deficit is allowed, the two way worst case constraints are 

written as 

Applying en-k, for k = 1, we have 

n-1 n-1 
(-1- >.)-- ~ (n -1)p1 ~ (-1 + >.)--

n n 

and for n - 1 2: k 2: 2 

n-k n-k 
->.-n- ~ kPk-1 + (n- k)pk ~ >.-n-. 

Then, we have 

(n -1){-1 +A)+~{; (:){n- k) 2 -~ {; (:)(n- k) 
odd even 

giving 

n-1 
>.> . 

- 2n-1- 1 

\# n-1 R 11" \* _ n-1 )..# _ 2n-2-1 rv 1. Thus, A = 2n-1_1. eca 1ng A - 2n-2_1' )..• - 2n-1_1 - 2. 
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Case 2. n - 1 :;::: m :;::: 2: when deficit is allowed, the two way constraints are 

given as 

Applying en-k, for k = 1, this is written as 

and m - 1 :;::: k :;::: 2, 

(n- m)- A [: (n- k)- (m- k)] ~ kPk-1 + (n- k)pk 

~ (n- m) +A [: (n- k)- (m- k)]. 

For n- 1:;::: k:;::: m, 

If m is odd (if m is even, computation is the same), 

(n _ rn)(n- 1) + >.(n- m) + 'f (~) [(n- m) + >-(:(n- k)- (m- k))] 
k=3 
odd 

+A: :2. (~)(n- k)~ ~ (~) [n-m- >-(:(n- k)- (m- k))] 
odd even 

-A: L (~)(n-k). 
k=m+l 

even 
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This is rearranged as 

and thus, 

)..# = (n- m) (;-=_~) 
( _ ) ""m-2 (n-1) + ""n-1 (n-1) n m L.Jk=O k m L.Jk=m k 

c 1 2 R 11' '* - (n-m)(,';;:::.;) c 2 > > 2 
!Of n - ~ m ~ . eca mg A - ( _ ) ""m-2 (n 2) ""n 2 (n 2) !Of n - _ m _ , 

n m L..Jk=O k +m L..Jk=m k 

we write 

for n- 2 ~ m ~ 2. Form= n- 1, 

)..# 2n-2 - 1 1 
A* - 2n-1 - 1 ~ 2. • 

Proof of Proposition 2 

We will apply cost profile en-k for k, 0 :::; k :::; n. Recall for 0 :::; k :::; m - 1, 

es(c) = ~(n- m) with ps(c) = n- m and for m :::; k :::; n, es(c) = ~(n- k) with 

ps(c) = 0. 

v; < !!!c. with anonymity requires n-mc*m < r(c*1 · · · c*(m-1) c*(m+1) . . . em) 
t_ n t n - ' ' ' ' ' . 



This is written as 

(Po - PI)c*1 + · · · + (Pm-2 - Pm-l)c*(m-l) - n - m c*m 
n 

+ (Pm-1 - Pm)c*(m+l) + · · · + Pn-2c*n ~ 0. 
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This inequality holds if and only if Pk ~ 0 for all k, m:::; k:::; n- 2 and Pk ~ n~m for 

all k, 0 :::; k :::; m - 1. The non-deficit constraint implies 

(n- m)c*m ~ (n- 1)(po- pr)c*1 + [(po- PI)+ (n- 2)(PI - P2)]c*2 

+ · · · + [(m- 1)(Pm-2- Pm-d + (n- m)(Pm-1- Pm)]c*m + · · · 

+ [(n- 2)(Pn-3- Pn-2) + Pn-2]c*(n-l) + (n- 1)Pn-2c*n 

and by Lemma 1, this holds if and only if Pn-2 :::; 0, (n - 2)Pn-3 + 2Pn-2 :::; 0, 

· · · , ffiPm-1 + (n- m)pm :::; 0, (m- 1)Pm-2 + (n- m + 1)Pm-1 :::; n- m, · · · , 

p0 + (n- 1)p1 :::; n- m and np0 :::; n- m. With unanimity upper bound, this implies 

Pn-2 = · · · = Pm = 0. Since Pm = 0, the non-deficit constraint gives mpm-1 :::; 0 but 

this contradicts Pm-1 ~ n:m given by unanimity upper bound. Therefore, there is no 

anonymous linear VCG mechanism satisfying unanimity upper bound and non-deficit . 

• 
Proof of Theorem 2.1 

We know that the pivotal mechanism is anonymous and individually rational. 

It generates no deficit, that is, J.-l~. 1 = 0, but its efficiency loss is .A~. 1 = oo. If .A is 

restricted to be finite, we have that for k = 0, es(c) = 0 and ps(c) = n- 1, so the 

worst case constraint implies p0 = n~ 1 . For k = n, the worst case constraint implies 
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Pn-1 = 0. For k, 1 :::; k :::; n- 1, the worst case constraint gives 

1 1 
->.-(n- k) :::; kPk-1 + (n- k)pk :::; J.L-(n- k) 

n n 

and individual rationality implies r( c_i) 2': 0, which is Pk 2': 0 for all 0 :::; k :::; n - 1. 

The worst case and individual rationality constraints are together written as 

1 
0:::; kpk-1 + (n- k)pk :::; J.L-(n- k) 

n 

for 1 :::; k :::; n - 1. For X in the range of M, we have 

and for 2 :::; k :::; n - 1 

n-1 o:::; x1 :::; --(J.L- 1) 
n 

m 
0 :::; xk :::; J.L-(n- k). 

n 

Note that from 0 :::; X 1 :::; n-;: 1 (J.L- 1), we should have 1-L 2': 1. Let J.L = 1. Set Pk = 0 

for all k, 1 :::; k :::; n- 2, then the inequality constraints are satisfied. With p0 = n-;: 1 , 

we can set r(c-i) = n-;:1 (c-i)*1 and compute the efficiency loss of this redistribution 

scheme. D.( c)= n-;: 1 (c*1 - c*2) and es(c) = L;;~Nc; - c*1. 

Therefore, the optimal J.L = 1 with ), = 0, and the optimal redistribution scheme is 

r( c_i) = n-;:1 ( c_i)*1. • 
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Proof of Theorem 2.2 

We found Po = n~2 and Pn-1 = 0. 

{ n-2 } n-2 
max 0, -n-(n- 1- >.) :s; xl :s; -n-(n- 1 + J-t). 

For 2 :s; k :s; n- 1, 0 :s; Xk :s; J-t~(n- k). Suppose n- 1 2:: ..\. Then, we have 

(n- 2){n- I->.) ~ (~)x1 + t, (~)x. ~ t, (~)x• ~I'~ t, (~) (n- k) 
odd even even 

and 

n-3 ( ) 
(n- 2)(n- 1) = (n- 2)..\~,2 + 2 £; n: 2 J-t~.2 • 

The maximal >.~.2 = n- 1, so >.~.2 satisfies ,\ :s; n- 1. 

R 11 B( 2) (n-l)(n-2) D > 5 h eca n, = 2n 1 _ 2 . ror n _ , we ave 

n- 2 [ n- 1 n- 3 ] (n- 2)[(n- 5)2n-3 + 2] 
B(n, 2)- B(n- 1, 2) = -2- 2n-2- 1 - 2n-3- 1 = - 2(2n-2- 1)(2n-3- 1) < 0, 

so B(n, 2) is strictly decreasing inn. B(4, 2) = n:l gives the result. • 

We provide the optimal redistribution schemes corresponding to Theorem 2.2 in 

the following lemma. 

Lemma 4 For any J-l~.2 > 0 chosen, the optimal redistribution scheme is as 



118 

follows: 

6 n-1 

r*(c-i) = L ak(c-i)*k + L f3k:(c-i)*k 
k=l k=7 

where 
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Proof. If >.~ 2 = 0, then 
' 

* (n- 2)(n- 1) (n;l) 
1-tn,2 = 2 ""'n-3 (n-2) = 2n-2 _ 1 · 

L..,k=O k 

From X1 = n~2 (n- 1), P1 = n~2 . Xk = 0 for k odd, 3 ::; k ::; n and Xk = 

~(n- k) 2~~~J1 for k even, 2 ::; k ::; n. We have Po = P1 = n~2 and Pn-l = 0. Recall 

that >.~,2 and f-£~,2 satisfy 

n-1 n-2 
( ) 

n-3 ( ) 
2 2 = (n- 2)>.~,2 + 2 ~ k J-£~,2 . 

and for k odd, n 2: k 2: 3, 

Therefore, ai = p0 - p1 = 0 and a2 = P1 - P2 = 1 - 2!:. For k 2: 3, we have 
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if k is odd and 

if k is even. 

Given any J.-L~ 2 , 0 < J.-L~ 2 :::; BC((n,m)), we can find the corresponding redistribution , , n,m 

scheme. Let T = JL';. 2 B(n,m)-C(n,m). Now X1 = (n-1)(n-2) (1 + T) instead of X1 = 
A(n,m)(n-1) n 

(n- 1~n-2) for the J.-L~, 2 = L case. For k odd, k ~ 3, still we have Xk = 0 and for k 

even, k ~ 2, we have Xk = J.-L*~(n- k) instead of L~(n- k) for the J.-L~,2 = L case. 

Then, P1 = n~2 [1 + T] with Po = n~2 . For k even, 2 :::; k :::; n, 

and for k odd, n ~ k ~ 3, 

k { 2£ 2£ "'k-3 (n- 2) 2(n-1) L- 1- T} L....,l=3 l 2 
Pk = --=-k - · 1{k~5} +- (n-1) · 1{k~7} + (n-1) · 

n n n k-1 k-1 n 

Therefore, a1 =Po- P1 =- n~2T and a2 = P1- P2 = 1 + T- 2;. Fork~ 3, we have 
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if k is odd and 

(n-1) 
if k is even. From L = 2n_22_ 1 , we have 

and 

Plugging the functional forms of L, T and L- 1- Tin nand minto ak's, we have 

the coefficient a'k for 3 ::; k ::; n - 1 as follows: 
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if k is odd and 

.f k . h 0 * (n2l) • 
1 IS even w ere < /Jn,2 ::; 2n-2_1 · 

Proof of Theorem 2.3 

Let ii = n - 1 and n = n - 2 if n is even and ii = n - 2 and n = n - 1 if n is odd. 

Firstly, we will show for any m, 3 ::; m::; n- 2 in Case 1 and 2: 

Case 1. m is odd: 

Again Po = n~m and Pn-l = 0. For 1 ::; k ::; n- 1, individual rationality and the 

worst case constraint require 

and for m - 1 2:: k 2:: 2 

and for n- 1 2:: k 2:: m, 

m 
0::; xk::; ~J-(n- k). 

n 
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If A~ m~l, then, max { 0, (n- m) ( 1- ~)} = (n- m) ( 1- ~) and max { 0, (n-

m) ( 1- ~- ~)} = (n- m) ( 1- ~- ~). 
We have 

en - m) en + I" - I) + en - m) ~ ( ~) ( 1+1"~) + '!;;, ( ~) f": en - k) 

odd odd 

2 ~ (~)x. + 'J;;, (~)x. = ~ (~)x. + .~1 (~)x. 
odd odd even even 

m-1 ( ) { Ak} ~ ( n - m) ~ ~ max 0, 1 - -;;;: . 

even 

Assuming that A~ m~l, we have 

+n- m) ~ (~)~] + +n -m) ~(~)~+'!;;,(~)en- k):] 
even odd odd 

2 en-m){~ (~)-~ (~)} 
even odd 

and thus, 

A~,m [en- m) ~ (~) ~] + l":,m [en- m) ~ (~)~+'!;;,(~)en- k):] 
== ~d ~d 

= en-m){~ (~)-~ (~)} 
even odd 



This is rewritten as 

l"~,m[(n-m)~ (n~ 2) +m[k~l (n~1) _ }~, (n~2)]] 
+ ~.m[(n- m) ~ (n ~ 2)] = (n -m)(:~ D 
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Now we will check if .X~,m satisfies the assumption A ::; m~l. Let f-L~,m = 8-X~,m 

for some 8;::: 0. Then, 

A~,m ::; m~l holds if and only if 

(n- m)(m-1){~ (~)-~ (~)} 
even odd 

S n{(n- m){~ (~)~ + ~o(~)~} +8~ (~)(n- k): }· 
even odd odd 

Since (~) k = n G:::~) and _G) ( n - k) = n (n~l), the right hand side of the previous 

inequality is written as 

n{ (n- m){ ~ (~)~ + ~o(~)~} +8~ (~)(n- k):} 
even odd odd 

= (n-ml{n ~ (~=~)+nO~(~= D} +nm6~ (n ~ 1). 
even odd odd 
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Thus, A~,m ::; m~l if and only if 

(n- rn){(m-1)(~ (~)-~ (~)) -n ~ (~= ~)} 
even odd even 

:; 8{ n(n- m) ~ (~ = ~) + mn ~ (n ~I)} 
odd odd 

The right hand side of the inequality is nonnegative. We will show that the left hand 

side is always negative and thus, the inequality holds. Let 

A(n) ~ (m-1)(~ (~)-~ (~)) -n ~ G= ~) 
even odd even 

Observe that A(n) < 0 if m = 3. Form;::: 5, we check first 

A(m+l) ~ (m-1)(~ (m:l)-~ (m:l)) -(m+l) ~ v: 1) 

== ~d == 
~ (m -l)m- (m + 1) ~ (k: 1) :; (m- l)m- m(m +I)< 0 

k=2 
even 

and show that A( n) is decreasing in n. 

A(n)-A(n+IHm-1)(~(~)- ~(~)) -n~(~=D 
even odd even 

_ (m _I)(~ (n; I) _ ~ (n; I)) + (n +I)~ (k: J 
even odd even 
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have 

A(n)- A(n + 1) ~(m- 1) [~ C: 1) -%: (k: 1)] +%: k(k: 1). 
odd even even 

Finally, we write 

A(n)- A(n + 1) ~(m- 1) [~ (k: 1) -~ (k: 1)] + ~ k(k: 1) 
odd even even 

~(m-1)[~ (~)-~ (~)] + ~k(k: 1) > 0 
even odd even 

and thus, A( n) is decreasing in n. We conclude that A( n) < 0, that is, the desired 

inequality holds for ).~ m. 
' 

Case 2. m is even: 

We have 

max{o,n(n-m)(1-~-~) }+%: (~)max{o,(n-m)(1- ~)} 
odd 

~ ~ (~)x. + .~1 G)x. ~ ~ (~)x. + i;,. (~)x. 
odd odd even even 

~ (n-m) ~ (~) (1+ I'~)+ I' t.. (~) :(n- k) 
even even 

Given m, the optimal surplus loss ). * can be considered as a function of n. We 

should find k such that k = max{k, 3::::; k::::; m -l,oddl ~ ~ .A*(n) for all n}. Here 

.A*(n) is the optimal surplus loss computed with assuming n/k ~.A*. 
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Assuming njk ~A, we have 

max { 0, ( n - m) ( 1 - A:) } = ( n _ m) ( 1 _ A:) 

only for 3 ::=:; k ::=:; k. Then, 

(n- m)(n- A- 1) + (n- m) t, (~) ( 1- ~) 
odd 

~ ~ (~)x• + ,1;
1 
(~)x. = ~ (~)x, + ~ (~)x, 

odd odd even even 

even even 

g1ves 

A[(n- m) t (~)~] + +n- m) ~ (~)~ +: ~ (~)(n- k)l 
odd even even 

<: (n- m) [ t (~) -~ (~) l 
odd even 

and thus, 

A;,.m [ ( n - m) t, ( ~) ~] + l'~.m [ ( n - m) ~ ( ~) ~ + : ~ ( ~} n - k)] 
odd even even 

=(n-m)[t,(~)-~ (~)] 
odd even 
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Let M~,m = 8>.~,m for some 8 2:: 0. Then, the optimal surplus loss computed with 

assuming n / k 2:: >.~,m is 

(n- m) [2:L1 G)- 2:7::~ (~)J 
\* odd even 
Anm = [ 

' (n- m) L:L1 (~) ~ + 8 2:~,:-i (~) ~J + 7:8 l:~=m G) (n- k) 
odd even even 

and this >.~,m should not contradict the assumption, that is, 

(n- m) [ 2:~=1 (~) - 2:~,:-~ (~)J 
~ > odd even 

k - (n- m) [ 2:~=1 (~) ~ + 8 2:~,:-i G) ~J + 7:8 l:~=m G) (n- k) 
odd even even 

for 3 :=::; k :=::; m - 1. This inequality is equivalent to 

o[~ G)k+ n ~m ~(~)en- k)]z k[t, (~)-%: (~) ]-t, G)k 
even even odd even odd 

Since the left hand side of the inequality is always nonnegative for any n, n 2:: m + 1, 

we like to have the right hand side negative for any n, n 2:: m + 1. Our objective is 

to find maximal k, 3 :=::; k ::; m - 1 satisfying 

k[t, (~)-%: (~) ]-t, (~)k ~ 0. (3.3) 

odd even odd 

Let k = m- 1. Then, inequality (3.3) is 

~ (~)kz (m-1)[~ (~)-%: (~)] 
odd odd even 
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This is rewritten as 

~ (~) (m- 1- k)- (m- 1) ~ (~) ,; 0 

odd even 

Let S(n) = Ek~3 (~)(m- 1- k)- (m -1) E7:::5 (~).Firstly observe that 
odd even 

S ( m + 1) = 1 + m 2 - 2m- I ( m + 1) < 0 

for m, m ~ 4. We can show that S(n) is decreasing in n for n ~ m + 1. Using 

(~) - (nkl) = - (k:l), we write 

S(n)- S(n + 1) = -(m- 1) ~(-l)k-l C: 1) + k ~ (k: 1) 

odd 

= -(m -1) ~(-1)•(~) + k ~ (k: 1). 
odd 

S(n)- S(n + 1) = (m -1)(-w-'(: ::_ ~) + k ~ (k: 1) · 

odd 

Since m is even, we have S(n) - S(n + 1) > 0 implying that S(n) is decreasing in 

n given m. Therefore, we conclude S(n) < 0 for all n, n ~ m + 1 as desired. That 

is, k = m - 1 works without contradiction and the optimal efficiency loss must be 

computed with k = m - 1. 



Plugging k = m- 1, we have 

l'~,m [<n- m) ~ (n ~ 2) + m[.tl (n ~I)- .f2 (n ~ 2) ]] 
+A~.m[{n- m) ~ (n ~ 2)] = (n- m)(:~ D· 

Now we will show the statement for the case of m = n- 1 form 2: 3: 

The two way worst case constraints are written as 
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[n - 1 1 n-1 ] [n - 1 1 n-1 ] 
c*(n-1) - ..\ -n-c*n- -:;;, ?= c*i :::; ?= r(c-i) :::; c*(n-1) + J.L -n-c*n--:;;, ?= c*i . 

z=1 zEN t=1 

Applying en-k with individual rationality, we have p0 = ~ and Pn-I = 0. Fork= 1, 

n-1-..\ n-1+J.L 
max{O, } :::; (n -1)p1 :::; ---

n n 

and for n- 2 2: k 2: 2, 

k k 
max{O, 1- -..\} :::; kPk-1 + (n- k)pk :::; 1 + -J.L. 

n n 

For k = n - 1, we have 

n-1 
0 :::; (n- 1)Pn-2 :::; J.L--. 

n 
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If n is odd and n".:_ 2 2:: A, 

(n- 1- A)+ I:(~) (1- ~A) ~I: (n) (1 + ~J.L) + J.L(n- 1) 
k=3 n k=2 k n 
odd even 

which is equivalent to 

(n- 1) ~ A(2n-2- 1) +fL. 2n-2. 

Thus, the optimal frontier is 

(n- 1) = A*(2n-2 - 1) + J.L* · 2n-2. 

We can easily check that the maximal A* on the optimal frontier satisfies A* ~ n".:_2 . 

Likewise, if n is even and A ~ n".:... 2 , 

(n-1+ !') + ~ (~) (1+ ~I')+ (n: 1)1'n: 1 2 ~ (~) (1- ~A) 
odd even 

From this, we have 

and the optimal frontier is 

A*(2n-2- 1) + J.L*2n-2 = n- 1. 

The maximal A* on the optimal frontier doesn't contradict A ~ n".:...2 • • 
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