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Abstract 

We discuss the numerical solution of some controllability problems for time­
dependent flow models. The emphasis is on algorithmic aspects, discretization 
issues, and memory-saving devices. Numerical results are presented for controlla­
bility studies involving the viscous Burgers equation, an advection-diffusion equa­
tion, and the unsteady Stokes equations. 

1 Introduction 

The main goal of this expository article is to discuss the numerical solution of flow­
related controllability problems. Since these problems are quite difficult both from a 
mathematical and a computational points of view for general flow models, our strategy 
is to develop expertise first for simple models like the one-dimensional viscous Burgers 
equation (Section 2), a linear advection-diffusion equation (Section 3), and the unsteady 
Stokes equations (Section 4). The corresponding approximate controllability problems 
are solved by a combination of penalty techniques, finite element space approximations, 
finite difference time discretizations, and either direct or iterative methods for solving 
the discrete controllability problems. 

It is our opinion that the models and methods discussed here are necessary prelimi­
nary steps to address more complicated and realistic flow problems, like those modelled, 
for example, by the Navier-Stokes equations for incompressible viscous flow. Indeed, 
despite their basic difficulties, flow control problems have motivated a large body of 
literature; concerning the problems considered in this article, let us mention [1], [3], [6], 
[7], [8], [9], [11], [13], [18], [23], [24], [25], [27], [28], [29], [36], [38], [39], [42], [43], [44], 
[46], [47], [51], [53]. The problems considered here are clearly related to some which 
have been treated in the above references. However, in the present work a particular 
attention has been given to time-dependent problems and to algorithmic aspects, in­
cluding storage-saving devices ( Appendix A) and direct solution methods, such as the 
one based on the Singular Value Decomposition (Appendix B). 

*Department of Computational and Applied Mathematics, Rice University, Houston, TX 77251-
1892. 

1Department of Mathematics, University of Houston, Houston, TX 77204-3476. 
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2 Pointwise Control of the Burgers Equation 

2.1 Generalities 

Nonlinear advection and viscous diffusion are two important features of many flow 
models. The simplest equation with both these features is the viscous Burgers equation, 

namely 

Yt - vy,,,, + YYx = f in (0, 1) x (0, T). (2.1) 

In (2.1), y (x, t) can be interpreted as a velocity at a point x and at time t; we shall 
assume from now on that 

{x, t} E (0, 1) x (0, T) = Q, 

where 0 < T < +oo. In (2.1 ), v > 0 is a viscosity parameter and f a density of external 
forces. Equation (2.1) can be used in the modeling of weak shock waves when the flow 
of interest is a perturbation of a uniform sonic gas flow ( see [45]). Indeed, the simplicity 
of the Burgers equation has made it natural starting point in the investigation of flow 
control problems as shown by recent articles such as [1], [4], [7], [8], [13], [20]. This 
section is another contribution in that direction. 

2.2 Problem Formulation 

The kind of problems that will be discussed here in connection with equation (2.1) are 
pointwise control problems, where m functions vm(t), m = 1, ... , M will "force" the 
equation at the points am E (0, 1), m = 1, ... , M. Completing Burgers equation with 
initial and boundary conditions, the state equation under consideration becomes 

M 

Yt - VYxx + YYx = f + ~ Vmb (x - am) 
m=l 

y,,(0, t) = 0, y(l, t) = 0, 

y(0) = Yo· 

in Q, 

t E (0, T), 

(2.2)1 

(2.2)2 

(2.2h 

In (2.2), x f--+ b(x - am) denotes the Dirac measure at am and J now denotes a density 
of possible forcing in addition to the control. 

A remark concerning notation: Throughout the rest of the paper, y(t) will be used 
to denote the function x f--+ y(x, t). Also, the following notations will be used: 

(y,z) = fo 1 

y(x)z(x)dx, 

IIYIIL2(0,1) = (y, y)1 12
, 

2 

Vy, z E L2(0, 1), 

Vy E L2(0, 1), 



A variational formulation of the state equation (2.2) is given by 

where 

! 
y(t) E V0 a.e. on (0, T); Vz E V0 we have 

(Yt, z) + V (Yx, Zx) + (YxY, z) 
M 

= (f,z)+ I:vm(t)z(am) a.e. on (0,T), 
m=l 

y(O) = Yo, 

Vo = { z I z E H 1 
( 0, 1) , z( 1) = 0} . 

(2.3)i 

(2.3)2 

Given a target function Yr(E L2(0, 1)), the aim is to find functions v = {vk}~1 
such that y(T) is close to Yr at a minimal cost for the control function. To make this 
precise, we define the space of admissible controls %' by 

Next, let the cost function J be defined by 

1 2 k 2 
J(v) = 211vll"ll + 211y(T) - YrllL2(0,1), (2.4) 

where, in (2.4), y is a function of v through (2.3) and k a "large" positive parameter. 
Finally, the control problem that we consider is defined by 

Find u E %' such that 
J(u) :s; J(v), Vv E %'. 

(2.5) 

In this way, the closeness to the target YT will be forced-in a least-squares sense-by 
penalty, with k being the penalty parameter. The value of k determines the relative 
importance between the cost of the control and the distance to the target. 

The numerical solution of the control problem (2.5) was considered in [13] ( and re­
ported in [18]). There are some substantial differences between the methods discussed 
in the above references and those in this article. For example, we rely here on conju­
gate gradient algorithms instead of quasi-Newton's, and we use "more" explicit time 
discretization schemes. Another difference is that we also consider the case where the 
"supports" of the controllers, the am 's, are unknown. 

In order to handle those cases when the am 's are unknown, we introduce the ( convex) 
set 

02f = %' X (0, l)M 

and the augmented cost function J : 02f -+ JR defined with obvious notation by 

J(v, b) = ~llvll~ + tlly(T)- Yrlli2(0,1) + ¢(b), (2.6) 

where ¢: JRM-+ JR+ is an auxiliary function whose relevance will be discussed below. 
The new control problem is defined then by 

Find { u, a} E 02f such that 

J(u,a)::; J(v,b), V{v,b} E Olf. 
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Remark 2.1: We could have allowed some of the bm's to take the value 0; from the 
variational formulation (2.3)i, this would have been equivalent to replace the homoge­
neous Neumann boundary condition Yx(O, t) = 0 in (2.2)2 by 

Yx(O, t) = L Vm(t), 
mE.:T 

where :J is the subset of {1, ... , M} consisting of those integers m such that bm = 0. 

Remark 2.2: A crucial difference between problems (2.5) and (2.7) is that in the 
second case, the set ~ of the admissible controls is not a vector space. This can 
complicate the iterative solution of problem (2.7). However, since o// is convex, it is 
fairly easy to choose</> in (2.6) so that b will stay in (0,l)M; we shall return to that 
point in Section 2.6. 

2.3 Gradient Calculations 

Most minimization algorithms use some information on the gradient of the cost func­
tion. In the case of the functional l, an expression for the gradient of l can be found 
easily using the perturbation technique described below. 

Consider thus the solution y to the state equation (2.2), (2.3) for a specific control 
{ v, b} E o//. Differentiating l at { v, b} with respect to a variation, { ov, ob} of the 
control yields 

1T al al 
ol(v, b) = 0 av(v, b) · ovdt + ab (v, b)- ob 

1T 11 dq> = 
0 

v · ov dt + k 
O 

(y(T) - YT )oy(T) dx + db (b) · ob, 

(2.8) 

where we have used the dot-product notation for the canonical scalar product in JRM. 
Consider now (2.3) and p E L2(0, T; V0 ) such that Pt E L 2 (0, T; V~) (V~: dual space of 
V0 ); we have then p E '7&' 0 ([0, T]; L2(0, 1)) [12, Ch. XVIII]. Taking z = p(t) in (2.3) and 
integrating over (0, T) we obtain 

y(O) = Yo, 

1
1T < Yt,P > dt + V 1T dt 11 

YxPx dx + 1T dt 11 

Yxypdx (2.9) 

T 1 M T 

= 1 dt 1 fpdx + ~
1

1 p(bm, t)vm(t) dt, 

where < ·, · > denotes the duality pairing between V~ and V0 (if Yt is smooth enough, 
< Yt, p > reduces to J0

1 
YtP dx ). 

Differentiating (2.9) yields 

oy(O) = 0, 

1
1T < 0Yt,P > dt + V 1T dt 11 

0YxPx dx + 1T dt 11 

(yoy)xpdx 

M T 

= L 1 [p(bm, t)ovm(t) + Px(bm, t)vm(t)obm] dt. 
m=l O 

(2.10) 
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Integrating by parts in time, and using the fact that 

by E L2 (0, T; Vo) n 1&'0 ([0, T]; L2(0, 1)), 

by1 E L2 (0, T; Vt), 

it follows from (2.10) that 

11 

p(T)by(T) dx - 1T < Pt, by> dt 

+ V 1T dt 11 

PxbYx dx + 1T dt 11 

(yby)xpdx (2.11) 

M T 

= 1-; 1 [p(bm, t)bvm(t) + Px(bm, t)vm(t)bbm] dt. 

Let us assume now that p is the solution of the following adjoint equation, 

p(T) = k(YT - y(T)), 

(1 f1 (2.12) 
- < Pt, z > +v lo PxZx dx + lo p(yz)x dx = 0, Vz E Vo, a.e. on (0, T). 

Then (2.11) reduces to 

-k 11 

(y(T) - YT) by(T) dx 

= 1T (t p(bm, t)bvm(t)) dt + t (1T Px(bm, t)vm(t) dt) bbm. 

(2.13) 

Combining (2.13) and (2.8), we obtain 

rT aJ aJ 
lo ov(v,b)-bvdt+ f)b(v,b)-bb 

= 1T [t ( Vm(t) - p(bm, t)) bvm(t)] dt (2.14) 

M [ OqJ {T l + 1-; f)bm (b) - lo Px(bm, t)vm(t) dt bbm. 

Let us consider {w, c} E %' x JR; it follows then from (2.14) that the derivative of J at 
{ v, b} in the { w, c }-direction is given by 

rT aJ aJ 
lo ov(v,b)-wdt+ ob(v,b)·c 

= 1T [t (vm(t) - p(bm, t))wm(t)] dt (2.15) 

M [ OqJ ( l + 1-; f)bm (b) - lo Px(bm, t)vm(t) dt Cm, 

where pis obtained from { v, b} and y via the solution of the adjoint equation (2.12). 

5 



Remark 2.3: The adjoint system (2.12) can also be written as 

p(T) = k(yT - y(T)), 

-pt - VPxx - YPx = 0 in Q, (2.16) 

vpx(0, t) + p(0, t)y(0, t) = 0, p(l, t) = 0 a.e. on (0, T). 

Remark 2.4: One approach to solve the minimization problems (2.5) or (2.7) would 
be to directly discretize equations (2.2), (2.16) and then (2.4) ( or (2.6)) and (2.15), and 
use the discrete cost function and gradient obtained in this manner in the minimiza­
tion algorithm. However, quite large values of the parameter k in the cost function is 
usually needed to closely approximate a given target function. This makes the min­
imization problem badly conditioned and an accurate expression for the gradient is 
needed. Unfortunately, there is no guarantee that a directly discretized adjoint equa­
tion will produce an accurate gradient of the discrete cost function. A proper ( and 
safer) way to proceed is to first select discretizations of the state equation and of the 
cost function, and then derive the adjoint equation and the gradient associated with 
the discrete problem. 

2.4 The Semi-Discrete Control Problem 

Time discretization being considered first, we divide the time interval (0, T) into N 
subintervals of equal length b..t = T / N. We approximate then °I/ by 

°I/At= JRNxM X (0, l)M. 

A typical element of °I/ At is { v, b} with 

The semi-discrete analogue of problem (2. 7) is then 

Find { uAt, a At} E °I/At such that 

Jt:.t(ut:.t,at:.t) ~ Jt:.t(v,b), V{v,b} E °l/t:.t, 

where, in (2.17), the functional Jt:.t is defined by 

jt:.t (v, b) = ~t t t lv;;.1 2 + 111YN - YTlli 2 (0,1) + <f>(b), 
n=l m=l 

(2.17) 

(2.18) 

with yN obtained from { v, b} via the solution of the following semi-discrete state 
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equation: 

Y
0 = Yoi 

far n = 1, ... , N, yn is obtained from yn-l through the solution 

of the elliptic problem 

yn E V0 ; Vz E Va we have 

[1 yn _ yn-1 [1 [1 
la b.t zdx+v la y;zxdx+ lo y;-

1
yn-

1
zdx 

1 M 

= 1 rzdx + 1; v;;.z(bm)• 

(2.19) 

A few comments have to be made about the chosen discretization; we note in 
particular that the diffusion term is treated implicitly while the advection term is 
treated explicitly. This implies that the fully discrete analogue of the elliptic problem in 
(2.19) will be equivalent to a linear system associated with a matrix which is symmetric, 
positive definite and independent of n. This matrix will be Cholesky factorized once 
and for all, followed by just the solution of two triangular systems at each time step 
for the corresponding right-hand side. The semi-implicit nature of the time-stepping 
scheme implies a problem-dependent limit on the size of b.t, in particular for advection­
dominated problems. 

To compute the gradient of JAt, we can proceed as in Section 2.3. Differentiating 
(2.18), we obtain 

_At f)jAt f)jAt 
{jJ (v, b) = ~(v, b) · 8v + ab(v, b) · 8b 

N M fl de/> 
= b.t LL v;;,8vm + k lo (yN - YT )8yN dx + db (b) · 8b, 

n=lm=l 0 

and differentiating (2.19) yields 

8yo = O; 

and forn = 1, ... ,N 

8yn E V0 ; Vz E V0 we have 

r1 {jyn _ {jyn-1 r1 
lo b.t zdx + v la 8y;zx dx 

+ 11 (oy;-lyn-1 + y;-loyn-1) zdx 

M 

= I:: [8v;;,z(bm) + v;;,zx(bm)8bm]. 
m=l 
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Consider now {pn} :=I C Vt; it follows then from (2.21 )2 that 

N l 

+ b.t I: 1 (oy;-lyn-l + y;-liyn-l) pn dx 
n=l O 

(2.22) 

N M 

= b.t I: L [ov;;.pn(bm) + v;;.p;(bm)obml. 
n=l m=l 

Some algebraic manipulation in the left-hand side of (2.22) yields 

N M 

= b.t I: L [pn(bm)ov;;. + v;;.p;(bm)obml. 
n=l m=l 

(2.24)1 

{ 

pN E V0 such that, Vz E V0 , 

r1 pN _ pN+l fl N 
lo b.t z dx + V lo Px Zx dx = 0, 

(2.24}2 

and for n = N - l, ... , l: 

{ 

pn E Va such that, Vz E V0 , 

l
l pn n+l ll ll - p zdx + v p;zx dx + pn+i (ynzt dx = 0, 

0 b.t O 0 

(2.24h 

Taking z = oyn in (2.24) for n = l, ... , N, and combining with (2.23), we obtain 

1 N M 

k 1 (YT - YN) 8yN dx = b.t LL [pn(bm)ov;;. + v;;.p;(bm)8bm]. 
0 n=l m=l 

(2.25) 

Finally, combining (2.20) and (2.25), we obtain 

aJ::.t aJ::.t 
~(v, b) · 8v + ab(v, b) · ob 

= b.t ti [v;;. - pn(bm)]ov;;. + j; [ !~ (b)- b.t t v;;.p;(bm)] obm. 
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We have thus proved that, V{v,b},{w,c} E '2/Ll.t, 

oJLl.t oJLl.t 
~(v,b)·w+ Bh(v,b)·c 

= fltf;f; [v;;,-pn(bm)]w;;, + f; [:b~ (b)- flttv;;,p;(bm)l Cm, 

(2.26) 

If the control positions are fixed, (2.26) reduces to 

oJLl.t N M 

~(v) · w = flt LL [v;;, - pn(bm)] w;;,, Vv, w. 
n=l m=l 

Remark 2.5: We note that the initialization of the discrete adjoint equation (2.24) 
is made at time step N + 1. This is typical of discrete adjoint equations and will be 
observed again in the following paragraphs of this article. We also observe that in 
(2.24), step N is different from the other ones. This is typical of those situations where 
one term in the state equation is treated explicitly. Other observations are that the 
discretization of the adjoint equation reflects the one of the state equation, namely 
implicit treatment of the diffusion and explicit treatment of the advection. The fact 
that the discrete advective term contains yn is clearly a consequence of the nonlinearity. 
This does not cause any difficulty other than the necessity of storing {yn} :=1 . At first 
glance, it seems like the values of yn have to be stored at every time step. Actually, as 
shown in Appendix A, storage requirements can be dramatically reduced at the cost of 
an extra solution of the state equation. This will be a critical issue for problems with 
multi-dimensional state equation. 

Remark 2.6: If a finite element method is used for the space approximation, using 
piecewise-linear functions to approximate the space V0 is a most natural choice. A 
difficulty with this choice is that the gradient oJLl.t / ob will be discontinuous, since 
derivatives of p appears in oJLi.t/ob (see (2.26)). On the other hand, usual descent 
methods require the cost function to be at least 'i&'1 . One obvious way to obtain a con­
tinuous oJLl.t /obis to use 'i&'1 approximations of p. This would unnecessarily complicate 
the numerical methodology; a simpler method compatible with 'i&'0 approximation of 
V0 will be discussed in Section 2.6. 

2.5 The Discrete Control Problem (I): Fixed Control Positions 

2.5.1 Space Discretization and Related Properties 

For the space discretization, we introduce an integer I, then h = l/ I and xi = ih for 
i = 0, ... , I; we denote by](; the interval (xi-I, xi]. We approximate then Va by 

Voh = {z I z E 'i&'0 [0, 1], z(l) = 0, zlK, E Pi, i = 1, ... ,I}, (2.27) 

where P 1 is the space of polynomials of degree s; 1. As a vector basis for Voh we consider 
Bh = { <pi} {=o where 'Pi is the usual "hat" functions defined by 
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( 8ij is the Kronecker delta 1 ). 

The discrete control problem considered in this section is 

Find uf E lRNxM such that 

Jk(uAt) < Jk(v) h h - h ' Vv E ]RNxM, 
(2.28) 

where 

(2.29) 

and where y[! is obtained from the solution of the fully discretized state equation 

{ 

y~ E Voh, such that 

(Yt <p;) = (Yo, <p;), Vi = 0, ... , I; 

far n = 1, ... , N, Yh is obtained from y~-l through the solution 

of the discrete elliptic problem 

yh E Voh;'vi = 0, ... ,I, we have 

(
yh-y~-l ) (dyh dr.pi) ( n-ldy~-l ) 

f:i.t '<pi + v dx ' dx + Yh ~' r.p; 
M 

= (r,<p;) + I: v;;,<p;(am)-
m=l 

The fully discrete adjoint system corresponding to (2.29), (2.30) is given by 

{ 
pf +l E Voh, such that 

(pf +l' l.f!i) = k(yT - yf:' i.pi), Vi = 0, ... ,I; 

{ 

pf: E Voh; 'vi= 0, ... ,I, we have 

pf: - pf +l dpf: di.pi 
( f:i.t ,<p;) + v( dx ' dx) = O; 

far n = N - 1, ... , 1, we obtain Ph through the solution of 

Ph E Voh; 'vi= 0, ... ,I, we have 

n n+l d n d d n 
( Ph - Ph ·) + ( Ph l.f!i) + (...J!A n+1 ·) 

k ' r.p, v dx ' dx dx Ph ' r.p, 

( n n+l dr.p;) _ 0 + YhPh , dx - · 

Then the derivative of Jf t at v in the w-direction will be 

f)JAt N M 
f)~ (v) · w = f:i.t LL [v;;, - p~(am)] w;;,. 

n=l m=l 

1 i = J, 
0 i=pj 
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2.5.2 Implementation Details 

In the numerical experiments, the initial condition y0 , the target YT, and the forcing 
term J, are, for simplicity, replaced by piecewise linear approximations, Yoh, YTh, and 
fh- This changes the first line in (2.30) and (2.31) to a simple identity. The state, {yh }, 
and the adjoint state, {ph}, are expanded in the basis Bh, and the integrals obtained 
are computed exactly using the Simpson rule. This gives a system of equations with 
a constant, symmetric, positive definite, tridiagonal matrix on the left hand side. The 
Cholesky factorization of this matrix is done once and for all requiring the storage of 
a bidiagonal matrix. At each time step, the state is then computed by solving two 
bidiagonal linear systems. 

The Fletcher-Reeves version of the conjugate gradient algorithm [16] is used to solve 
the minimization problem (2.28). (The Polak-Ribiere version [41] was also tested but 
was found to be less efficient.) The unknowns are in JR_NxM and the scalar product is 
the canonical one. The algorithm can shortly be described as follows ( see for instance 
Polak [41] for a more extensive discussion): Starting with an initial guess, u 0 E JR_NxM, 

successive approximations of the solution to the minimization problem, are found by 
setting, for m 2:'.: 0, 

The first search direction, w 0 , is the gradient of the cost function at step 0, g 0 • Search 
directions for m > 0, that is, Wm, are found by linear combinations of the previous 
search direction, Wm-l, and the present gradient, gm, 

where 
gm ·gm 

/m = 
gm-1 · gm-1 

(This choice of ,m constitutes the Fletcher-Reeves version.) The step length, Pm, should 
be chosen to minimize the function p 1----+ J( um - pwm ). Since this line search problem 
is nonlinear, it is in itself a nontrivial and computationally expensive task. However, 
as has been shown by Al-Baali [2], the line search does not need to be done exactly for 
the conjugate gradient method to converge if certain conditions are satisfied. Here, a 
cubic backtracking strategy is used for the selection of the step length as described by 
Dennis and Schnabel [14, Ch. 6]. 

The computer programs were implemented in C with double precision IEEE arith­
metic and all runs were performed on SUN Spare 2 or Spare 10 workstations. The 
stopping criterion in the conjugate gradient algorithm was 

go· go 

where f = 10- 5
• Initial guess was u0 = 0. 

2.5.3 Numerical Results 

Here, the following test problem is considered: 

T = l, I= 128, N = 256, v = 10- 2
, k = 8; 

11 

(2.33) 



0.9 

0.8 

0.7 

h 0.6 
.____, 

;::,, 0.5 -£ 0.4 

0.3 

0.2 

0.1 

00'---o~.1 __,o.2'----'0.-3 --'0_4--'0_5--'-0.6---'-o. 7--'-0_0--'-0_9_.. 

X 

Figure 1: The target state (dashed) and 
the computed final state (solid) for a = 
2/3; lly(T) - YTII/IIYTII = 0.091, 47 iter-
ations. 
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Figure 3: The target state (dashed) and 
the computed final state (solid) for a = 
1/5; lly(T) - YTII/IIYTII = 0.20, 89 itera­
tions. 
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Figure 2: The computed optimal control 

for a = 2/3; llvll = 0.11. 
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Figure 4: The computed optimal control 

for a= 1/5; llvll = 0.11. 

(x, t) E (0, 1/2) X (0, T); 
(x, t) E [1/2, 1) X (0, T), 

xE(0,1), 
XE (0,1). 

This test problem was also considered by Dean and Gubernatis [13] 2
• The target 

state satisfies the boundary conditions but is not necessarily reachable. 
First, several runs were performed with a single control point at different control 

positions. Figures 1 and 3 show the target function, YT, and the final state, y(T), 
when a = 2/3 and a = 1/5 respectively3

, while Figures 2 and 4 show the computed 

2 Dean and Gubernatis used I = N = 60. 
3 To be precise: The control points were put on the grid points nearest to these values. 
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Figure 5: The target state (dashed) and 
the computed final state (solid) with two 
control points at a 1 = 1/5 and a 2 = 3/5; 
lly(T)- YTII/IIYTII = 0.025, 86 iterations. 
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Figure 6: The target state ( dashed) and 
the computed final state (solid) with 
five control points, a 1 = 0.1, ... , a5 

0.9, evenly spaced; lly(T) - YT 11/IIYTII 
0.0085, 82 iterations. 

optimal control. The norms refers to the L 2-norm of the discrete entities. For a = 2/3, 
a good fit downstream (i.e., for larger x) from the control point can be noticed, while 
the solution seems to be close to uncontrollable upstream. The positive sign of the 
solution implies that the convection is directed towards increasing x 's, which is why it 
seems reasonable that the state is at least locally controllable in that direction. The 
only way of controlling the system upstream is through the diffusion term, which is 
small compared to the convection term for small v. For the case a = 1/5, there are 
clearly problems with controllability far downstream of the solution. (Recall that there 
is a distributed, uncontrolled forcing, f, which affects the solution.) 

Figure 5 shows the target and the final state when two control points are used; one 
at a = 1/5, and one at a = 3/5. This gives a significantly better result. Figure 6 
shows the result when five control points are used, placed at 0.1, 0.3, 0.5, 0.7, and 
0.9, giving a very good fit. The dimension of the minimization problem is N x M, 
but the computational time is not much dependent on the number of control points. 
For example, the CPU time (user time, SPARC 10) for the case of one control point 
at 1/5 was about 22 seconds compared to 27 seconds with five control points. Thus, 
the time-consuming part is the solution of the state and adjoint equation and not the 
manipulations of the control vectors. 

2.5.4 Comparison with the Results Reported by 
Dean and Gubernatis 

Dean and Gubernatis [13] report results for a run with a single control point at 3/5 
(Figure 3 in [13]), and for a run with two control points, one at 1/5 and one at 2/3 
(Figure 4 in [13]). The latter problem is solved with a relaxation technique, solving first 
for one control point at 3/5 and then, keeping that control fixed, solving for another 
control point at 1/ 5. The result for a single control point is very close to the one 
achieved here for a = 2/3 ( compare Figure 1 with Figure 3 in [13]). For two control 
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points-compare Figure 5 with Figure 4 in [13]-the results look similar upstream of the 
second control point. There is some discrepancy downstream though, with somewhat 
better fit here. This is natural, since here the two controls are solved for simultaneously. 

2.6 The Discrete Control Problem (II): Unknown Control Positions 

As already mentioned in Section 2.4, there are some additional complications arising 
in the discrete case when the control positions are treated as unknown. 

Recall ( from Section 2.4) that the semi-discrete control problem is 

Find { u, a} E JRNxM x (0, l)M such that 
J~t(u, a) ~ J~t(v, b ), V {v, b} E JRNxM x (0, l)M, 

(2.34) 

where 

N M 

J~t(v, b) = ~.6.t LL ( v~,)
2 + tf\yN - YTlli-2(0,1) + </>(b ). 

n=l m=l 

(2.35) 

The partial derivatives of J~t with respect to the control position are, from (2.26), 

m= 1, .... M, (2.36) 

with p given by (2.24). A problem with this gradient is, as pointed out before, that 
it will be discontinuous when the space approximation is done with piecewise linear 
elements. So, an expression for the gradient is needed that does not contain derivatives 
of the adjoint state. This is possible to obtain by systematic use of the fact that 

11 1 lb+H/2 
z(x)t5(b- x) dx = z(b) = lim - z(x) dx. 

O H!O H b-H/2 

The basic idea is to approximate the pointwise controls of the system with terms like 
the last one in the expression above-but with a finite H. That is, the control will 
be distributed over a segment of length H instead of acting pointwise. Let H > 0 be 
given, and replace the state equation (2.19) with 

Y
0 = Yo; (2.37)1 

far n = 1, ... , N, yn is obtained from yn-l through the solution 

of the elliptic problem 

yn E V0; Vz E Vo we have 

(2.37)2 
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A straightforward calculation, analogous with the one in Section 2.4, yields 

m= l, ... ,M, 
8JAt 8¢> b._t N 

m(v, b) = az;-(b)- H L v;;. [pn(bm + H/2)- pn(bm - H/2)], 
m m n=l 

(2.38) 

where {pn} ~;;/ is the solution to the same adjoint equation as before, that is, equa­
tion (2.24). Comparing with (2.36), we note that p~(bm) has been replaced by a differ­
ence approximation consistent with the approximated pointwise control. 

Now perform a finite element approximation with piecewise linear functions. We 
get the fully discrete state equation by considering (2.37) with V0 replaced by the space 
Voh defined as in (2.27), and with (2.37)i replaced by 

(2.37); 

The fully discrete state equation and the cost function (2.35) yield a discrete adjoint 
system defined as in (2.24) but with V0 replaced by Voh and with (2.24 )1 replaced by 

11 

pN+I z dx = k 11 

(YT - yN)z dx, Vz E Voh· (2.24 ); 

As already discussed in Section 2.2, the reason for including the auxiliary function 
</> in the cost function is that the control positions may not stay inside the domain (0, 1) 
during the iteration process. This function was chosen to be the 'i&'1 function 

M 

</>(b) = L {0(-bm)b~ + 0(bm - 1) [1- bm]
2
}, (2.39) 

m=l 

where 0 is the Heaviside function4
• To allow the positions bm to attain any real value, 

we extend the functions in Voh by zero outside of ( 0, 1 ). Then for those bm ~ ( - H /2, 1 + 
H /2), we have 

l
bm+H/2 

z(O dl = o, 
bm-H/2 

Vz E Voh, 

and corresponding terms in the sum on the right-hand side of (2.37) 2 will thus be zero. 
The function </> has a nonzero derivative only outside of [O, 1], and its contribution to 
the gradient of Jilt will act as a "soft wall" leading a temporary bm ~ (0, 1) back to the 
proper region as the iteration process continues. This means that the constraint (0, 1) 
can be dropped in the minimization problem (2.34), giving the following problem to 
implement: 

Find { u, a} E RNxM x RM such that 
JAt(u,a) :S JAt(v,b), V{v,b} E RNxM X RM, 

(2.40) 

0(x) = { ~ : ~ ~'. 
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Figure 7: The target state, YT, ( dashed) 
and the computed final state, y(T) 
(solid). Test problem from Section 2.5.3. 
Both position and control as unknown si­
multaneously; lly(T)-YTII/IIYTII = 0.062; 
312 iterations. 

or if the controls, v, are fixed: 
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Figure 8: The computed optimal con­
trol. Both position and control as un­
known simultaneously. Starting values: 
u = 0, a= 0.1. Final values: /lull = 0.12; 
a= 0.54. 

Find a E JR M such that 
Jilt(a) :S Jflt(x), Vx E JR.M. (2.41) 

We discuss now some numerical results for unknown position and control. Again, 
consider the problem in Section 2.5.3. Recall that using a single control point at 
a= 2/3, it was hard to control the solution upstream of the control point (see Figure 1), 
while with a = l / 5 it was hard to control the solution close to the right boundary ( see 
Figure 3). It seems natural that the optimal placement of the single control point 
should be somewhere in between these positions. To verify this, we solved the control 
problem with both the control and the position as unknown. The results5 with the 
starting guess u = 0, a = O.l are shown in Figures 7 and 8. 

The optimal position turned out to be a = 0.54. Several experiments using different 
starting positions gave the same result. It should be pointed out that treating both 
control and position as unknown seems to lead to a more badly-conditioned problem 
than if one of them is fixed. The convergence rate was slow, and the convergence 
criterion had to be relaxed somewhat-above, E = 5 x 10-4 was used-but the run 
reported above still needed about 300 iterations to converge. 

We considered also the following test problem in this context: 

Problem 2 
T = 1, I= 60, N = 120, v = 10-2

, k = 8; 

5 For all experiments in this section, I= 60 and N = 120 was used. 
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(solid) for Test Problem 2. Both position 
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The results are given in Figures 9 and 10. 
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Figure 10: The computed optimal con­
trol. Both position and control as un­
known simultaneously; Starting values: 
u = 0, a= 0.7. Final values: llull = 0.24, 
a= 0.36. 

(x, t) E (0, 0.7) X (0, T); 
(x,t) E [0.7,1) x (0,T), 

x E (0,1), 
x E (0,1). 

3 Boundary Control of a Linear 
Advection-Diffusion Problem 

3.1 Generalities 

Many physical phenomena can be viewed as a combination of a diffusion and an ad­
vection phenomenon. In the last section, pointwise control of a nonlinear advection­
diffusion problem in one space dimension was considered. In this section, we consider 
a boundary control problem in two space dimension, but we will restrict ourselves to a 
linear state equation. 

Let n E R 2 be an open, bounded and connected region with sufficiently smooth 
boundary and let 0 < T < +oo. We assume that the boundary is partitioned into two 
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disjoint parts, r c and r 1 . The state equation considered in this section is 

ay 
at - at::.y + V ·Vy= f in Ox (0, T), 

y = v on f c x (0, T), 

ay 
ay+aan=ag onf1 x(0,T), 

y(O) = Yo, 

(3.1) 

where V: n x (0, T)----+ IR2 such that V · V(t) = 0, a > 0 is a constant, a : f 1 ----+ JR, 
and a/ an denotes the outward normal derivative. A possible physical interpretation of 
the system (3.1) is given below. 

Consider a flow of an incompressible Newtonian fluid that is convection driven, that 
is, the temperature effects on the mechanical properties of the flow can be neglected. 
This allows a decoupling of the relevant energy and flow equations, so that the velocity 
field of the fluid, V, can be assumed to be known independently of the temperature 
field, y. Assume also that the heat flow is governed by Fourier's law, 

q = -r,,'\ly, 

with a constant thermoconductivity, r,, > 0. The constant a in the state equation 
is the thermal diffusivity, a = r,,/ pc, where p is the density of the fluid ( assumed to 
be constant), and c the specific heat per unit mass. The term f represents the heat 
generated through viscous forces and will have the form 

J = 213 (vv + (vvf). (vv + (vvf), (3.2) 

where {3 = µ/ pc 2 0, and where µ is the dynamic viscosity coefficient. Under these 
assumptions, the temperature field of the fluid will satisfy the differential equation (3.1 ). 
Regarding the boundary conditions on r 1 , we assume that the heat transfer on r 1 1s 
governed by Newton's law of external heat transfer, that is, 

n · q = C(y - y,), 

where n is the unit outward normal of r 1 , y, is the temperature of the surroundings, 
and C is a constant (the heat transfer number). This, together with Fourier's law, 
yields a boundary condition like the one on r 1 • 

3.2 The Control Problem 

Let us consider the following problem: Given a particular temperature distribution, YT, 
in the domain n, we want the temperature at time t = T to approximate YT, that is, we 
want y(T) ~ YT. We consider the case when our means of control is the temperature as 
a function of space and time restricted to a part, r O of the boundary. As before, we will 
add the restriction that the a control should be of minimal cost in a norm sense. This 
Dirichlet boundary control problem may not be the most natural in the interpretation 
of equation (3.1) that is given in Section 3.1. Controlling the flux at the boundary 
may be physically more reasonable. However, Dirichlet boundary control is the most 
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natural in similar, but more complicated cases like the incompressible Na vier-Stokes 
equations. Since this form of control gives rise to some regularity complications ( cf. 
below), it might be fruitful to first consider this relatively simple case. 

To find a mathematical formulation of the problem above, let YT be a target function 
defined in fl. Consider a cost function of the general form 

I k 
J(v) = 211vll~ + 211y(T) - YTIIL (3.3) 

where k > 0 is a penalty parameter which, as in the cost function (2.4), balances the 
need for a cheap cost and a close approximation of the target function. The control 
problem considered here is 

Find u E %' such that 
J(u):S:J(v), VvEo/1'. 

(3.4) 

To make this precise, the space of admissible controls, %', and the space in which 
the error will be measured, 1(, has to be specified. There is a certain freedom in the 
choice of those spaces, but as a minimal requirement, we need to choose spaces so that 
the functional J is differentiable with respect to the control. This is the case if %' and 
J( are chosen so that, for each v E %', the function t t--t y(t) is continuous in K. To 
avoid having to evaluate derivatives on r c, a natural choice for the control space is 
%' = L2 ((0, T) X r c)- Unfortunately, by standard regularity results (see e.g. [32]), the 
function t t--t y(t) will not be continuous in]( = L2 (f2) for this choice of control space. 
However, by defining 

Va= {zlz E H 1(f2): zlrc = O}, (3.5) 

we have6
, y E '7&'0 ([O, T]; V~ (fl)), where Vt is the dual space of Va. (How to evaluate 

the dual norm is shown below.) 
Choosing%'= L2((0,T) X fc) and J( = Vt, we obtain the cost function 

where, for YT E V~, </> is the solution to the following Poisson's equation: 

-b.</> = y(T) - YT in n, 
</> = 0 on I\, 

81> = 0 
an on f 1 . 

(3.6) 

(3.7) 

The mapping (y(T) - YT) -+ </>maybe viewed as a smoothing; the V~-norm will be 
less sensitive to highly oscillatory components of the error than if, for instance, a L2

-

norm would have been applicable and used instead. This smoothing makes it possible 
to assume very little smoothness of the control and still get a well-defined expression 
of the residual y(T) - YT. 

6Assuming that VE L00 (n x (0,T))2, a E L00 (f1), and (e.g.) f E L2(n), g E L2(f1). 
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Remark 3. 7: An important issue in this context is the controllability of the sys­
tem (3.1). Under suitable conditions we have approximate controllability (see [20] for 
the precise assumptions and a proof), that is, for all YT E J(, there are controls in 
%' making lly(T) - YT IIK arbitrarily small. Another intresenting question is whether 
we have approximate controllability in case we constrain the control to be constant or 
having a fixed distribution on r c, so that the control is a function of time only. This 
appears to be an open problem. 

With the above choices of%' and K, the problem (3.4) has a unique solution. However, 
for a given value of the penalty parameter k, we have no knowledge a priori about the 
size of lly(T) - YTIIK- This can be expected to depend strongly on the character of 
the flow, V, the location and size of r c, and on the balance between ad vection and 
diffusion, which is determined by the size of the parameter o:. To ensure that the 
advection actually assists in controlling the system, we will always assume that r c is 
at an inflow region of the boundary, that is, n · V < 0 on r c· Another parameter of 
interest, especially for highly advective flows, is the final time T, since the advection 
represents a finite speed of propagation in n for a control applied at r c • 

A similar calculation as in § 2.3, shows that the derivative of J at v in the direction 
w E %' is 

where p is the solution to the following adjoint equation: 

op 
-- - o:f:lp - V · Vp = 0 

&t 

p=0 

&p 
o:

0
n +ap+n-Vp=0 

p(T) = k¢. 

in !1 X (T, 0), 

on f c x (T, 0), 

onf1 x(T,O), 

3.3 The Semi-Discrete Control Problem 

(3.8) 

(3.9) 

The state equation (3.1) is discretized in time using a similar scheme as in Section 2.4 
for the Burgers equation. We divide the time interval (0, T) into N subintervals of 
equal length f:lt = T/N and, with obvious notation, approximate (3.1) by 

Y
0 = Yo; 

far n = 1, ... , N, solve 

yn _ yn-1 
f:lt - o:f:lyn + yn. Vyn-1 = fn in n, 

on re, 

on f 1 . 
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Thus, the diffusion term is treated implicitly while the convection term is treated 
explicitly; this yields a constant, symmetric, positive definite system of equations to 
solve at each time step. To approximate%" and J, we choose 

(3.11) 

and 

(3.12) 

where</> is defined as before (equation (3.7)). 
By a perturbation technique, as in Section 2.4, we obtain from (3.10) and (3.12) 

the semi-discrete adjoint equation 

forn = N-1, ... ,1 

inn, 

on re, 

on r 1 ; 

and the following expression for the derivative of J At: 

3.4 Space Discretization 

inn, 

on re, 
on r1, 

(3.13)1 

(3.13)2 

(3.13)a 

(3.14) 

We assume that n is a polygonal domain in R 2
• Let Ti, = {JC;}: 1 be a triangulation 

of n with M elements, I(;, and let h = maxK,ETh diam(JC;). Let the space Vh be the 
space of continuous, piecewise linear functions on n, that is 

where P1 is the space of polynomials of degree :S 1. The space Vo as defined in (3.5) is 
approximated by 

Voh = {zlz E Vh : zlrc = 0}. 

The space of traces of vh on r C is 

,vh = {µIµ E Cef/
0 (r c), whereµ= zlrc for some Z E vh}, 
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Xi Xz Xi 

Figure 11: A function µ E I vh when f c 

is a piece of the boundary x 2 = Const. 
Figure 12: The extension z E Mh corre­
sponding to the function µ E I Vh visual­
ized in Figure 11. 

We take as the space of discrete admissible controls the Cartesian product of N such 
spaces, that is, 

0//hflt = ,vh x ... x ,vh, 

where dim(O//h) = N dim(,Vh)- Thus, for any v E d//hflt, we have v 
vh E ,Vh. 

The following, unique decomposition of Vh will be used: 

where 
Mh = { ziz E Vh: I(; n fc = 0 ~ zlK, = 0, VI(; E ½}. 

The space M h can be viewed as an extension of I Vi into Vh; for every function µ E I Vh, 
we associate a unique function z E Vh such that z will be zero at every node except at 
the nodes of f c where it will be equal to µ. Figure 11 shows an example of a function 
µ E , Vh when r c is a piece of the line x 2 = Const. Figure 12 shows the corresponding 
extension z E M h. 

We take as the fully discrete state equation 

y~ = Yoh, with Yoh E Vh an approximation of y0 ; 

for n = 1, ... , N, Yh is obtained from Yh-i through the solution 

of the discrete elliptic problem 

Yh E Vh such that Yhlrc = vh and, Vz E Voh, 

l yn _ Yn-l l l 
h h z dx + Cl' 'v yh · 'v z dx + yn · 'v Yh- 1 z dx 

n ~t n n 

+ r ayhzdI' = r rzdx + r agnzdI', Jr, ln Jr, 
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and as our discrete cost function 

where 

Jt = ~t f; Ire (v~)2 dr + ~ L 1\J1fk1 2 
dx, 

{

</>h E Vah such that, Vz: Vah, 

k\J<f>h·\Jzdx= k(Yh -yy)zdx. 

(3.16) 

(3.17) 

Remark 3.8: Note that in (3.6) and (3.12), we prescribed a target function YT in the 
dual space V~ whereas in (3.17), we assume that the target is smooth enough to be 
represented as a function in L2(D-). 

The fully discrete analogue to the problem 3.4 is 

(3.18) 
Find utt E '1£hAt such that 
JAt(uAt) < JAt(v) Vv E ~At h h-h' h' 

The state equation 
adjoint equation 

(3.15) and the cost function (3.16) defines the fully discrete 

P
N+l _ k/4 . 
h - 'f'h, 

{

pf: E Vah such that, Vz E Vah, 

r PN PN+l r r 
lo h ~/ z dx + a lo \Jpf: · '7 z dx + lr, apf: z df = O; 

far n = N - 1, ... , 1, p~ is obtained from p~+i through the solution 

of the discrete elliptic problem 

p~ E Vah such that, Vz E Vah, 

1 Ph - p~+i zdx + al \Ip~· \Jzdx + 1 p~+iyn+l · \Jzdx 
fl t:i.t fl fl 

+ f ap~zdr = 0, lr, 

where, {>.,:}~=l are the solutions to 

Ah E -yVh such that, Vz E Mh, 

f A,:zdf = 
lrc 

(3.19)1 

(3.19)2 

(3.19)2 

(3.20) 

ifn = N; 
, 3.21) 

otherwise. 
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Comparing (3.14) and (3.20), we note that the quantity Ah is an approximation 
to cxapn / an. To see why the approximation should be of this form, we return to the 
semi-discrete case and consider the space 

Vi= {zlz E H 1(D),zlr 1 = O}. 

By the Green's formula, we have 

Reducing the term containing the Laplacian with the help of the adjoint equation (3.13) 
yields, Vz E Vi, 

if n = N, 

(3.22) 
otherwise. 

In the fully discrete case, we have that Vph is discontinuous at each element boundary, 
so it is questionable what an expression like aph / an would mean. However, the right­
hand side of (3.22) is well-defined even in the fully discrete case. Using this observation, 
it is straightforward (but somewhat tedious) to derive the discrete gradient (3.20) where 
Ah is the discrete analogue of cxapn / an; see [4] for an example of a calculation in a 
similar situation. 

3.5 Implementation and Results 

In this section, we consider a number of test problems with n = (0, 1) x (0, 1). Let 
the independent variable be denoted x = { x1 , x2}. The edge x2 = 0 was chosen to be 
the part of the boundary where the control is applied, r c , and r 1 is the rest of the 
boundary. We used a standard, quasi-uniform triangulation of n (Figure 13). 

All the integrals are computed using the trapezoidal rule. This means that the 
fully discretized state and adjoint equation will have precisely the same structure as 
if a standard finite difference scheme were used for the space discretizations with the 
Laplacian discretized by the five-point formula (cf. [26, p. 31], for instance). The 
remaining linear systems were solved by using the FISHPACK library routine depx4, 
based on the work by Swarztrauber [49]. This solves the system by a generalized cyclic 
reduction algorithm, which is a fast direct solver. 

The term f 1-i(ph - p~+i )z dx in (3.21) vanishes when the trapezoidal rule is used 
(recall that Ph = 0 on r c and that zlK, = 0 whenever K; n r c = 0). For this triangu­
lation, the term fo Vph · V z dx reduces to a finite difference approximation of apn / an. 
However, the term involving V also contributes for n < N, so, altogether, Ah will not 
reduce to a straight-forward difference approximation of apn; an. 

Regarding the implementation of the conjugate gradient algorithm to solve the 
minimization problem (3.18), it is basically the same as for the Burgers equation (see 
Section 2.5.2) with one major difference; there is no need for an inexact line search 
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X1 

Figure 13: The triangulation of n. 

since due to the linearity of the state equation, the optimal step length can be explicitly 
computed at each iteration step at no extra cost in terms of evaluations of the state 
equation. 

As a first test problem, we consider the following target function: 

1 
Yr= 2 2 2, 

a0 + (x1 - ai) + (x2 - a2) 

the constant advecting field V = {0, 1 }, and the following parameter values: 

T = 1.4, k = 104, 

flt = 2 X 10- 2
, O' = 10- 2

, 

1 1 
ao = 10' a1 = a2 = 2· 

h1 = h2 = 1/20, 

f = 10- 6
' 

(3.23) 

As a convergence criterion for the conjugate gradient algorithm we used (2.33). At 
convergence, we got 

IIYf -Yrll 
IIYrll 

_ { 0.0018 (V~-norm), 
- 0.083 (L2-norm); 

Figures 14 and 15 show cross sections of the target state and the computed final state at 
x2 = 1/2 and x1 = 1/2 respectively. Figure 16 shows the computed optimal control as 
a function of time and space. The number of iterations was about 250 for this problem, 
as for all converging test problems reported in this section. 

A few runs were performed with different values of the parameter O'. When the 
system becomes highly dissipative ( O' ,....., 1 ), it also becomes quite hard to control. The 
controllability increased with decreasing values of O' down to O' ,....., 10- 2 • Convergence 
problems started to occur for even smaller values. The reason might be that the 
simple discretization scheme used here is too unsophisticated for a strongly advection­
dominated equation. 

This encouraging result makes it tempting to try a few harder problems. As a 
second problem, consider the pyramid-shaped target function visualized in Figure 17. 
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Figure 14: Cross section of the target 
state, YT, (dashed) and the final state, 
yf, (solid) at x2 = 1/2. 
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Figure 15: Cross section of the target 
state, YT, (dashed) and the final state, 
yf (solid) at x1 = 1/2. 

Figure 16: The computed optimal control associated with the final state given in 
Figures 14 and 15. 
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YT 

Figure 17: The pyramid-shaped target function. 

We obtained the following numerical results using the same parameter values (3.23) as 
above: 

IIYf - YTII 
IIYTII 

_ { 0.0066 (V~-norm), 
- 0.067 (L2-norm); 

Figure 18 shows the final state y{; and Figures 19 and 20 show the cross sections at 
x2 = 1/2 and x 1 = 1/2 respectively. 

A series of targets converging towards a discontinuous function was selected as a 
third test problem. Here, we present the results of two of the runs. Let r 1 , r 2 be two 
parameters such that 0 < r 1 ~ r 2 < 1/2, and let 

The target function is then defined by 

if O ~ r < r 1 , 

if r 1 ~ r < r2, 

if r 2 ~ r < r 1 . 

(3.24) 

This target approaches a discontinuous target-a circular cylinder with radius r cen­
tered at { 1 /2, 1 /2 }-as r 2 ---+ r 1 • The actual target function used was a piecewise linear 
approximation of the function given above. The target for r 1 = 0.2, r 2 = 0.45 is visual­
ized in Figure 21. Using this target and the parameter values (3.23), we obtained the 
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Figure 18: The final state corresponding to the target state in Figure 17. 
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Figure 19: Cross section of the target 
state, YT, (dashed) and the final state, 
y{:, (solid) at x2 = 1/2. 
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Figure 20: Cross section of the target 
state, YT, (dashed) and the final state, 
y{: (solid) at x 1 = 1/2. 

28 



1 

YT 

following results 

IIYf - YTII 
IIYTII 

Figure 21: A target state. 

_ { 0.0050 (V~-norm), 
- 0.047 (L2-norm); 

Figure 22 shows the computed state at t = T and Figures 23 and 24 show the cross 
sections at x2 = 1/2 and x1 = 1/2 respectively. 

The steeper the slope in the target function, the more badly conditioned the problem 
becomes, until finally the algorithm fails to converge. A "limit case" is shown in 
Figures 25-28, showing the target function and the computed final state. Figure 29 
shows the control as a function of time. In this case, we used the following parameter 
values: 

r 1 = 0.25, r 2 = 0.3, T = 1.4, k = 104
, 

h1 = h2 = 1/40, b..t = 10- 2
, Q = 10-2. 

(3.25) 

The iterations were stopped after 400 iterations. At that point, the norm of the gradient 
had been reduced by a factor of"' 2 x 103

, instead of 106 as required for full convergence. 
The result were 

IIYf - YTII 
IIYTII 

_ { 0.026 (V~-norm), 
- 0.25 (L2-norm); 
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yf; 

Figure 22: The final state corresponding to the target state in Figure 21. 
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Figure 23: Cross section of the target 
state, YT, (dashed) and the final state, 
y{!, (solid) at x 2 = 1/2. 
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Figure 24: Cross section of the target 
state, YT, (dashed) and the final state, 
y{! (solid) at x1 = 1/2. 
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Figure 25: A target state. 

1 

Figure 26: The final state corresponding to the target state in Figure 25. 
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Figure 27: Cross section of the target 
state, YT, ( dashed) and the final state, 
y{;, (solid) at x2 = 1/2. 
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Figure 28: Cross section of the target 
state, YT, (dashed) and the final state, 
y{; (solid) at x 1 = 1/2. 

Figure 29: The computed optimal control corresponding to the final state given in 
Figure 25. 
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4 Forcing Control of Flow Governed by the 
Unsteady Stokes Equations 

4.1 Generalities and Problem Formulation 

In this section, we consider systems governed by the Unsteady Stokes equations, 

ay 
8t - ll ~y + v' 7r = f in n' 

v' · y = 0 inn, 

y=g0 onf0 , 

ay 
v- - n1r = g 1 on f1, 

an 

y(O) = Yo· 

( 4.1) 

Here, y(x, t) E ~d models the velocity field and 1r(x, t) E ~ the pressure field of a fluid 
which fills the open and connected region n C ~d (d = 2 or 3 is the space dimension), 
and v is a positive constant. These equations are obtained by linearization of the in­
compressible Navier-Stokes equations about a zero flow. At a part of the boundary, 
r O, we have a prescribed velocity field g 0 • The boundary condition at the rest of the 
boundary, r 1 , is not particularly "physical", but it can be used to implement down­
stream boundary conditions for flow in unbounded regions. Considering the control of 
a system like (4.1) is an important step towards the control of the full Navier-Stokes 
equations. 

Remark 4.9: The proper approximation for flow at very low Reynolds numbers­
when the viscous forces are considerably greater than the inertia forces-is the Stokes 
equations. These differ from ( 4.1) in that there is no time-derivative term ay / at. 

The control problem is of the same type as before: we want the velocity field y at time 
t = T to approximate a given target state, YT· In this case, the system is controlled 
through the forcing term which will be nonzero only in the open, nonempty subdomain 
w CD, 

f(x t) = { v(x, t) ifx E ~' 
' 0 otherwise. 

We define the space of admissible control to be 1/ = L2 (w X (0, T)/, and we consider 
the cost function 

J(v) = ! fJ lvl 2 dxdt+ ~ r ly(T)-YTl 2 dx, 
2 }o w 2 ln 

( 4.2) 

where k > 0 is a penalty parameter as in (2.4) and (3.3), and where I · I denotes the 
Euclidean norm in ~d- The control problem is to find the function u which minimizes 
J among all v E 1/. 

With the above choice of 1/, the function t f---+ y( t) is continuous 7 in L2 
( n), so the 

cost function ( 4.2) is well defined and the control problem will have a unique solution. 

7 For this, we also need to assume that the domain has a sufficiently smooth boundary, and that the 
inhomogeneous terms in ( 4.1) are in suitable function classes. 
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Remark 4.10: Another quite interesting problem is the Dirichlet boundary control 
of (4.1). As for the advection-diffusion problem in Section 3, if we define the admissible 
controls in an L2 space on the boundary, t 1-+ y(t) will not be continuous in L 2(D.). 
Thus, in this case we need to strengthen the regularity requirements on the control 
or, as we did for the advection-diffusion problem, use a weaker norm for the error 

y(T)- YT· 

Some quite powerful controllability results hold for this system [20]. Letting V be 
the space of reachable final states, that is, 

V = {y(T)IY is a solution of (4.1) for some v E %'}, 

and H the space 
H = {zlz E L2(nt: v' · z = O}, 

we have V = H in L2 
( n /. So every "reasonable" target function can be approximated 

arbitrarily well in a least-squares sense. In fact, for this result to hold, it is enough 
to control only two of the components of v in three-space and only one component in 
two-space. 

Remark 4.11: An interesting problem, still under investigation, is the control with 
respect to domain variations; from the work of I. Diaz, E. Zuazua and J .L. Lions, 
there are indications that the approximate controllability property holds with respect 
to "small" domain perturbations. 

Thus, in the case d = 2, we can assume that the control is given in the form v = 
{v,O}. A similar calculation as in previous sections yields the gradient J'(v) = v-p1 lw, 
where p = {p1 , p2 } is the solution to the adjoint equation 

8p 
-at-v~p+v'a=O inn, 

v'·p=O 

p=O 

8p 
v- - na = 0 an 

p(T) = k(Yr - y(T)). 

4.2 Discretization and Implementation 

inn, 

on f 0 , ( 4.3) 

We use the following simple implicit scheme for the time discretization (~t = T/N): 

Y0 = Yo, 

for n = l, ... , N, solve 
n n-1 

y ~~ - v~y" + v'1r" = f" inn, 

v' · y" = 0 in n, 
( 4.4) 

on f 0 , 
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where, for n = 1, ... , N, 

fn = { o{vn,o} in w, 
inn\ w. 

We approximate the space of admissible controls %' with 

and the cost function J with 

b.t N 1 k 1 J'~·t(v)= -L (vn/ dx+- (y(T)-YT)2 dx. 
2 n=l w 2 n 

For the numerical experiments below, we use a method that only needs solutions of 
the state equation. However, for completeness we state the expression for the gradient 
of J 6 t and the adjoint equation; for v, w E %' 6 t, we have, with obvious notation, 

N 

< 'vJ6 t(v), w >= ~t I: 1 (vn _ pnwn dx, 
n=l w 

for n = N, ... , 1, solve 

pn+I _ pn 
---- - v~pn +'van= 0 in f2 

~t ' 
'v . pn = 0 in n, 
pn = 0 

Opn 
v-- - nan= 0 on 

on f 0 , 

on f 1 . 

( 4.5) 

This discretization leads to a sequence of stationary, Stokes-like problems for both 
equation (4.4) and (4.5). The fully discretized versions of these problems are solved by 
a preconditioned conjugate gradient algorithm ([10], [18]). 

As before, we use continuous, piecewise linear functions for the space approxima­
tions. To avoid instabilities resulting in spurious oscillations in the solution, we define 
the pressure on a grid twice as coarse as the grid associated with the velocity. In this 
way we satisfy a certain compatibility condition between the velocity and pressure ap­
proximations, the Babuska-Brezzi or inf-sup condition. We refer to the literature for 
the details ([17], [18], [26], [40]). 

An important property of the unsteady Stokes equations ( 4.1) ( as well as their dis­
crete analogue) is their time invariance; the coefficients in the equations do not depend 
on time, this in contrast to the other state equations considered in this article ( equa­
tions (2.2) and (3.1)). The time invariance yields a particular structure to the control 
problem which makes it feasible, if the problem is not too large, to employ a direct 
method, based on one of the classical methods developed for the linear least-squares 
problem. Appendix B shows that the present control problem can be formulated, using 
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Figure 30: The domain used for the test problem. The arrows indicate flow in and out 
of the region. 

the standard linear-algebra notation, as a version of the linear least-squares problem. 
Appendix B also briefly discusses some of the classical computational methods for this 
problem and when they can be efficiently invoked to solve this kind of control problem. 
For the experiments reported below, we used a direct method based on the Singular 
Value Decomposition of the forward map ( cf. Appendix B). 

4.3 Numerical Results 

As a test problem, we chose the damping of a plane Poiseuille flow. The domain 
(Figure 30) is the rectangle n = (0, 2) x (0, 1) with r O being the edges x2 = 0 and 
x2 = 1, and f 1 the edges x1 = 0 and x1 = 2. The subdomain in which the control is 
applied is w = (1/2, 3/2) x (1/4, 3/4). The boundary conditions are homogeneous, that 
is, g 0 = g 1 = 0 ( cf. equation ( 4.1)), and the initial condition is the parabolic velocity 
profile y 0 = {4x 2 (1- x2 ),0}. Solving equation (4.1) under these conditions with no 
forcing f yields a solution exponentially decaying in time with a rate determined by 
the size of the parameter v. The control problem is to find a control, acting only on 
the subdomain w, such that the velocity field in full domain n is dampened as much as 
possible at a given final time T. To obtain this, we simply choose the target YT = 0. 
We choose to keep the control constant in the subdomain w and to update the control 
each second time step. The size of the control problem, that is, the dimension of the 
discrete space of admissible controls, is then dim( o///t) = N /2, where N is the number 
of time steps. The Lapack routine dgesvd [15] was used to perform the SVD. The 
computer program was written in Fortran 77 and all runs were performed on a Sun 
Spare 10. 

We used the following parameter values: 

T = 1.0, 
1 

v= -, 
20 

and the following discretization: 

h1 = h2 = 1/16, fl.t = 0.02. 
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Table 1: Damping coefficients and the cost of the control for different values of the 
penalty parameter. 

k 11Yv(T)IIL2(0) 
llvll£2(wx(D,T)) IJy(T)IIL2(n) 

20 0.10 1.1 
100 0.050 1.4 
1,000 0.018 1.8 
10,000 0.0062 2.2 

The size of the forward map A, as defined in Section B.l, is 1122 by 25 with this 
discretization. Due to the time-invariant nature of the state equation and the fact that 
the control has no spatial dependence in this case, the state equation needs to be solved 
only once to compute the map A (cf.Appendix B). Note that the adjoint equation does 
not need to be computed at all. In fact, once A is computed, the state equation is not 
needed any more either. From that point of view, the direct approach is optimal in this 
case. The limitation is the size of the problems that can be treated. Both the storage 
and the the time needed to compute (in this case) the Singular Value Decomposition 
will be serious concerns for larger problems. 

Figure 31 shows how the introduction of the control affects the temporal develop­
ment of the the norm of the state, lly(t)IIL2(!1)· The curve given by asterisks shows how 
the norm decays without any control, and the rest of the curves show the behavior for 
different values of the penalty parameter k. Figure 32 shows the controls as a function 
of time. Table 1 gives some numerical values on the efficiency of the damping in terms 
of the the ratio between the value 11Yv(T)IIL2(n) (the norm of the final state with the 
optimal control applied) and the value [[y(T)[[L2(n) (without any control) for the dif­
ferent values of k. Figures 33 and 34 show the energy distribution in the final state for 
two different values of k. 

The fact that the control problem is so easily solved for different values of the 
parameter k can be used to analyze the least-squares problem in a way proposed by 
Lawson and Hanson (31]. The control problem was solved for 15 values of the regular­
ization parameter ranging from k = 1/10 to about k = 1/2 x 1011

. (Recall that this 
only involves repeated solutions of the diagonal system (B.10) with E = 1/ k) The norm 
of the control and the norm of the residual, [[y(T)-YTII, were computed for each value 
of k. The norm of the control versus the norm of the residual for each value of k, is 
plotted in Figure 35. Note that this curve constitutes the boundary for all possible 
coordinate combinations because of the minimum property (B. 7); for any control vec­
tor v, the pair {llvll, [[y(T; v)- YTII} lies on or above the curve. From the figure we 
see that the norm of the residual decreases quite dramatically when k is increased up 
to about 105 after which the curve starts to flatten out. For k larger than about 108

, 

the norm of the residual stays practically constant. Thus, if the objective is "maximal 
damping to a reasonable cost", k ,...., 108 seems to be a good choice. 

Using k = 108
, we get a damping coefficient (in the sense of Table 1) of 7 x 10-4, 
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Figure 31: The spatial norm of the state, 
lly(t)IIL2(n), as a function of time with­
out the control (asterisks) and with the 
computed optimal control for k = 20 
(solid), 100 (dashes), 1,000 (dashdots), 
and 10,000 (dots). 
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Figure 33: The energy distribution of the 
final state, ly(x, T)l2, for the case k = 20. 
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Figure 32: The control as a function of 
time for k = 20 (solid), 100 (dashes), 
1,000 (dash-dots), and 10,000 (dots). 
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Figure 35: The norm of the control versus the norm of the residual for values of the 
regularization parameter ranging from k = 1/10 to k = 1/2 x 1011

. 

and the norm of the the control becomes llull = 5.9. Figure 31 shows the norm of the 
state as a function of time without any forcing term (asterisks) and with the computed 
optimal control. Figure 32 shows the control as a function of time. Thus, in this case 
we get a very efficient damping of the flow to the prize of less regular behavior of the 
control and the state. 

5 Conclusions 

In this paper, we have discussed numerical solutions of controllability problems to some 
fairly simple flow models. For these models, the numerical methods that are described 
in this paper provide efficient solution algorithms. One of our main objectives is to 
apply these computational methods to the flow control of more complicated systems 
like, for example, the systems modelled by the Na vier-Stokes equations for viscous, 
incompressible flow. 
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puted optimal control for k = 108 (solid). 
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Appendix A 

Reducing the Storage Requirements in 
Gradient Computations 

When computing the gradient of the cost function (2.29), we first solve the state equa­
tion (2.30) and then the adjoint equation, (2.31). Finally, we use the information from 
the solution of the adjoint equation to compute the gradient (2.32). As we see from 
(2.31), a non-linear state equation yields an adjoint equation with coefficients that con­
tain the solution of the state equation. For large, multi-dimensional problem it will 
be very memory demanding to store all the N values of the state variable simultane­
ously. However, there is a strategy to reduce the storage requirements at the expense 
of an extra solution of the state equation. Below, we demonstrate the strategy for the 
gradient given in Section 2.5.1. 

We assume that the number of time steps N is factored as 

N=PQ, (A.1) 

where P and Q are positive integers. Briefly, the strategy can be described as follows. 
The interval (0, N fit) is partitioned into P slices, each consisting of Q time steps. 
First, we solve the state equation up to time step n = N - Q, storing only the P 
values of the states on the boundary between the slices. Then, for each slice, starting 
with the last one, we solve the state equation for the Q - 1 "internal" time steps and 
store corresponding states, and solve the adjoint equation in that same slice using the 
information about the states that is just computed. 

In algorithmic form, the computation of the gradient becomes 

Solve the state equation (2.30) far n = 0, ... , N - Q, 
storing only the sampled sets= {y~Q}f:01 

far l = P - 1, P - 2, ... , 0, 

with y~Q E S as initial condition, 
for n = lQ + 1, lQ + 2, ... , (l + l)Q - 1, 

compute y~ from y~-l by solving (2.30)2; 

T { n}(l+l)Q-1 
set t- Yh n=lQ+1 ; 

if l = P - 1, 
compute yf: from yf:- 1 ET by solving (2.30)2 ; 

set Ps - pf+1
, where pf+1 is the solution to (2.31)1; 

with p, as initial condition, 

for n = (l + l)Q, (l + l)Q - 1, ... , lQ, 
compute p~ from p~+i by solving (2.31) 3 (or (2.31) 2) 

using the information in T, 
and add the contribution from p~ to the gradient; 

IQ 
set Ps t- Ph ; 
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Since S and T contain P and Q - 1 vectors respectively, the storage requirement 
is P + Q - 1 state vectors. Thus, to minimize storage, we should minimize P + Q - 1 
among all factorizations (A.1). If N 112 is an integer, the minimum is attained for 
P = Q = N 1l 2

, giving a required storage of 2N 112 
- 1 vectors instead of N, which will 

be a substantial saving for large problems. 
The price for this reduction in storage is the extra computations of the states in 

step (A.2)i. However, note that the state equation needs to be solved only up to 
n = N - Q at that step, and that the state equation is solved only for the "internal" 
steps at step (A.2)2. The work accumulated at steps (A.2) 1 and (A.2)2 corresponds to 
2-1/ P-1/Q solutions of the state equation, and the work accumulated at step (A.2)5 
corresponds to 1 solution of the adjoint equation. 

The "best" choice of P and Q depends on the size of the problem and on how costly 
it is to compute the state equation: 

• If the problem is small enough, it might be feasible to store all the states. This 
corresponds to the choice P = 1, Q = N above. Then, N state vectors need to 
be stored and the state equation is solved once. 

• For medium-large problems, we can choose P = 2, Q = N /2. In this case, N /2+ 1 
state vectors need to be stored and the state equation needs to be solved close to 
one and a half times. 

• For large problems, we choose P = Q ( or approximately so). Then, 2N 112 
- 1 

state vectors need to be stored and the state equation needs to be solved (almost) 
two times. 

Remark A.1: The above approach can be further generalized. Let us consider the 
factorization 

N = PQR, 

where P, Q, and R are positive integers. The interval (0, N ~t) is still partitioned 
into P slices, but now each such slice is in its turn subdivided into Q slices, each 
consisting of R time steps. A similar algorithm as (A.2) for this situation needs a 
storage of P + Q + R - 2 state vectors, and the state equation needs to be solved 
3 - 1/ P - 1/Q - 1/ R times. Thus if P = Q = R, the storage needed is roughly 3N 113 

and the state equation needs to be solved about 3 times. 
Driving this factoring technique to an extreme, and assuming than 

N = 2M, 

for a positive integer M, we get a storage of O(log N). In this case, the corresponding 
algorithm would need a storage of M + 1 state vectors and the state equation needs to 
be solved M /2 times. 

Remark A.2: Dr. W.W. Symes at Rice University pointed out to us that a similar 
memory-saving device har been introduced by A. Griewank ([22]) in the context of 
Automatic Differentiation. A minor modification of Grieswank's algorithm has been 
implemented by J. Blanch in a code for linearized inversion for 2D viscoacoustic me­
dia ([50]). 

42 



Appendix B 

The Control Problem as an 
Algebraic Least-Squares Problem 

B.1 Equivalent Formulations of the Control Problem 

For linear state equations, the control problems that are treated in this article are 
closely related to the linear least-squares problem. Formulating the problem in this 
way makes it natural to try some of the classical computational methods that have 
been developed for this class of problems. 

To see how the control problem can be reformulated as a least-squares problem using 
the standard linear-algebra-type notation, let us consider a fully discretized control 
problem of the type treated in this article. Below, for notational convenience, we drop 
the sub- and superscripts h and !:J..t, and use subscripts for the time levels. 

Assume that we have a (finite-dimensional) space of admissible controls '2/. Given 
an element v E '2/, we solve the fully discretized state equation and obtain the discrete 
states {Yn}~=l where Yn's are in some finite-dimensional space F. We define A: '21-+ F 
as the map v - YN. Wanting to approximate YN with a given function YT E F, we 
consider the least-squares problem 

min IIA(v)- YTll 2
, 

vE%' 
(B.1) 

where II · II denotes a vector norm in F The map A is affine if the state equation is 
linear which we will assume from now on. Thus we have A(v) = A(O) + Av, where 
A : '21 -+ F, the forward map, is linear. The action of A corresponds to solving a 
homogeneous version of the state equation for an given control v and observing the 
final state YN· Letting z = YT - A(O), we see that (B.l) also can be written 

min II Av - zll 2
, 

vE%' 
(B.2) 

which is clearly a linear least-squares problem. If the minimization is done in the 
Euclidean ( or two-) norm, then u is a solution to (B.2) if and only if it satisfies the 
normal equations 

(B.3) 

where AT is the transpose of A. 

Remark B.3: Here we consider only minimization in the 2-norm. Everything dis­
cussed in this Appendix can easily be generalized to the case when the norm is given 
by 

for a symmetric, positive definite matrix M. 

The normal equations (B.3) always has a solution, and the solution is unique if A has 
at least as many rows as columns and if the columns of A are linearly independent. To 
stabilize the solution of the normal equations (B.3) in the case of an underdetermined 
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system (more columns than rows in A), or in the case of linearly dependent or nearly 
linearly dependent columns in A, one may introduce a positive parameter E and solve 
the regularized normal equations 

(B.4) 

In fact, solving the regularized normal equations is equivalent to solving the penal­
ized control problem considered in this article, 

where 

Find uk E %' such that 
J(uk):'S:J(v), VvE%'. 

1 k 
J(v) = 21\vl\ 2 + 2\\Av - z\\ 2

. 

(B.5) 

The unique solution to this problem is uk = u, where u is the solution to (B.4) with 
E = 1/k. 

Remark B.4: Equation (B.4) is called a Tikhonov regularization of the, in general, 
ill-posed problem Au = z ([30], [52]). When equation (B.4) is a subproblem arising 
from a non-linear least-squares problem, this regularization procedure is known as the 
Levenberg-Marquardt method ([37], [14]). 

Remark B.5: Equation (B.4) is defined m the space of the control variables, %'. 
Introducing 

we see that f and u, satisfy 

1 
J = -(z - Au,), 

f 

(El+ AAT)f = z, 
u, = AT f. 

(B.6) 

This change of variables yields an equation, equivalent to (B.4), but in the space of the 
state variables F. This formulation is especially advantageous if dim(F) ~ dim(%'). 
Applying the Reverse Hilbert Uniqueness Method to controllability problems associated 
with evolution equations yields in a natural way the formulation (B.6) ([33], [19], [34]). 

Remark B.6: There are several ways to motivate the introduction of the regulariza­
tion parameter E (or, equivalently, the penalization parameter k). First, as mentioned 
above, it guarantees a unique solution in the case of a rank-deficient forward map A. 
Secondly, as discussed in the main portion of the text, it can be viewed as a parameter 
that balances the need for a cheap control, \\v\\, and a small residual, \\Av - z\\. A third 
interpretation is to view E as multiplier that is connected to a particular constrained 
minimization problem, as shown below. 

Since the u, that solves equation (B.4) also minimizes the cost function (B.5) for 
k = 1/E, we have for all v E %', 

E 1 E 1 

2\\u,\\ 2 + 2\\Au. - z\\ 2
::; 21\v\\ 2 + 21\Av - z\\ 2

. 
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In particular, for all v with llvll ~ llu,11, we have 

IIAu, - zll ~ IIAv - zll-
That is, the solution u, of equation (B .4) solves the constrained minimization problem 

min IIAv - zll 2 

vE'W (B.7) 
under the constraint llvll ~ 8. 

with 8 = llu,11 
Conversely, specifying a trust region 8 2'. 0, the solution of problem (B.7) satisfies 

equation (B.4) for some E 2:: 0. It follows from the Kuhn-Tucker necessary conditions 
for constrained minimization [35] that if u solves the problem (B.7), there exists an 
E 2:: 0 so that { u, E} is a stationary point of 

1 .X 
£(v,.X) = 211Av - zll 2 + 2(11vll 2 

- 8). 

Setting v' uL equal to zero yields equation (B.4) and setting (8/8.X)£ = 0 yields !lull= 8. 
Thus, if u solves the problem (B. 7) for a given 8 2'. O, there exists an E 2:: 0 such that 
u = u,, where u, solves equation (B.6) and !lull = 8. 

B.2 Direct Solution Methods 

We observed in the previous section that for linear state equations, the minimization 
problem of interest, (B.5), is equivalent to solving the regularized normal equations 
(B.4) or (B.6). The advantage of using the conjugate gradient algorithm to solve this 
problem is that we do not need an explicit matrix representation for A; we only need 
the action of A ( or A) and AT, computed through the solution of the state and the 
adjoint equation respectively. By a direct method to solve the control problem, we 
mean a method that uses a matrix representation of A, AT A, or AAT and solves the 
normal equations (B.4) or (B.6) directly. It turns out that this can be a quite efficient 
and stable approach when the size of the problem is not too large. 

Below we give a short review of three classical, direct methods to solve the regular­
ized least-squares problem. There is a vast literature concerning the numerical aspects 
of the linear least-squares problem to which we refer the reader for further details and 
clarifications ([5], [31], [21, Ch. 5], [48, Ch. 5] e.g.). We discuss methods for the prob­
lem in the formulation (B.4) only; methods for the problem in the formulation (B.6) 
will be similar. 

Since the matrix on the left-hand side of equation (B.4) is symmetric and positive 
definite, the system can be solved by a Cholesky-factorization of El+ AT A. However, 
explicitly forming the product AT A might lead to numerical instabilities that can be 
avoided by using Householder factorizations of an augmented matrix AL instead. For 
this, we consider the least-squares problem 

(B.8) 

where 
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The normal equations associated with (B.8) are AIALu = AizL which by the 
definition of AL and zL is the same as equation (B .4). Consider the Householder ( or 
QR) factorization of AL, 

where Q is orthogonal and R 1 is upper triangular. For all v E %', 

= II ( ~' ) V - ( it: ) ' 
which means that minimum is attained for v = u, where u is the solution to R 1 u = 
QI ZL-

Another solution technique where AT A need not to be formed is to use the singular 
value decomposition (SVD) 

(B.9) 

where, if A is an m-by-n matrix, U is an orthogonal m-by-m matrix, V an orthogonal 
n-by-n matrix, and ~ an n-by-n diagonal matrix which contains the square root of 
the eigenvalues of AT A. Such a decomposition exists for each rectangular matrix A. 
Substituting (B.9) in (B.4) yields 

Thus, if Un is the first n columns of U, solving equation (B.4) is equivalent to solving 

(B.10) 

and setting u = V w. 
Note that solving equation (B .10) is trivial since the system is diagonal. This 

is a clear advantage with this method. Once the matrix A has been computed and 
decomposed, it is very easy and fast to solve for different E. Compared to the SVD, 
both the Cholesky and the QR factorizations have smaller operation counts for a single 
application, but these factorizations have to be redone for each value of E. Another 
advantage with the SVD is that it contains explicit information about the conditioning 
of the problems in terms of the singular values ~-

Regardless of which of these direct methods that is used, note also that it is easy 
to change the target since all information about the target function is contained in the 
vector z. This is in sharp contrast to when the conjugate gradient algorithm is used, 
when all the the work has to be redone for each target. 
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B.3 Computing a Matrix Representation for the Forward Map 

The drawback with the approach sketched above is that the matrix A has to be explic­
itly constructed which can be both computationally expensive and memory demanding. 
The matrix can be computed, column by column, by applying unit vectors from %' to 
the state equation and computing the corresponding final states. In general, this will 
be a very costly calculation. 

However, for problems with a certain structure, the matrix representation for the 
forward map is quite cheap to compute. Recall that the forward map A, as defined in 
Section B.l, is the composition of applying the control v E %', solving the homogeneous 
part of the state equation, and observing the final state YN. Let us partition an element 
v E %' in the following way 

where the control at time level n, Vn, is in some finite-dimensional space %'A, whose 
dimension is the spatial degrees of freedom for the control. Given a control v E %', we 
consider the solution of an abstract state equation 

Yo= 0; 

for n = l, ... , N (B.11) 

Yn = En(Yn-1 + Bvn), 

where En E .!t'(F) denotes the linear "solution procedure" at each time step, and 
B E .:t'( %'A, F) the linear application of the control through a boundary condition or a 
forcing term. The homogeneous part8 of the state equation (3.15) is of the type (B.11). 
Likewise, the homogeneous part of the fully discrete analogue of ( 4.4) is also of the 
form (B.11). In the latter case we have something stronger, namely time invariance; 
the "solution procedure" En does not change with n. In such a case, when En = E, we 
can conclude by induction that the final state is the discrete convolution 

where 

(B.12) 

Thus, for time invariant state equations, the forward map has the block Krylov 
structure evident in (B.12), and to compute En B, we can simply apply E to En-l B. 
Making use of this recursive structure, the total work involved in computing A corre­
sponds to solving the state equation dim(%'A) times (recall that the column dimension 
of B is dim( %'A)). As a comparison, when the state equation is time-variant, cor­
responding calculation corresponds to solving the state equation about N dim(%'A)/2 
times. 

To summarize: Explicitly computing a matrix representation for the forward map 
will be computationally cheap if the state equation is time invariant and if the spatial 
degrees of freedom for the control-the parameter dim( %-'A)-is small. 

8 That is, (3.15) with Yoh = 0, r = 0, and gn = 0 for all n. 
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